167 research outputs found

    What on Earth have we been burning? Deciphering sedimentary records of pyrogenic carbon

    Get PDF
    Humans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here we develop and evaluate 14C records for two complementary PyC molecular markers, benzene-polycarboxylic-acids (BPCAs) and polycyclic-aromatic-hydrocarbons (PAHs) preserved in aquatic sediments from a sub-urban and a remote catchment in the United States (U.S.) from mid-1700s to 1998. Results show that the majority of PyC stems from local sources and is transferred to aquatic sedimentary archives on sub-decadal to millennial time scales. Whereas a small portion stems from near-contemporaneous production and sedimentation, the majority of PyC (<90%) experiences delayed transmission due to ‘pre-aging’ on millennial timescales in catchment soils prior to its ultimate deposition. BPCAs (soot) and PAHs (precursors of soot) trace fossil fuel-derived PyC. Both markers parallel historical records of the consumption of fossil fuels in U.S., yet never account for more than 19% total PyC. This study demonstrates that isotopic characterization of multiple tracers is necessary to constrain histories and inventories of PyC, and that sequestration of PyC can markedly lag its production

    Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics

    Get PDF
    Storing large amounts of organic carbon, soils are a key but uncertain component of the global carbon cycle, and accordingly, of Earth System Models (ESMs). Soil organic carbon (SOC) dynamics are regulated by a complex interplay of drivers. Climate, generally represented by temperature and moisture, is regarded as one of the fundamental controls. Here, we use 54 forest sites in Switzerland, systematically selected to span near-independent gradients in temperature and moisture, to disentangle the effects of climate, soil properties, and landform on SOC dynamics. We estimated two SOC turnover times, based on bulk soil 14C measurements (τ14C) and on a 6-month laboratory soil incubation (τi). In addition, upon incubation, we measured the 14C signature of the CO2 evolved and quantified the cumulated production of dissolved organic carbon (DOC). Our results demonstrate that τi and τ14C capture the dynamics of contrasting fractions of the SOC continuum. The 14C-based τ14C primarily reflects the dynamics of an older, stabilised pool, whereas the incubation-based τi mainly captures fresh readily available SOC. Mean site temperature did not raise as a critical driver of SOC dynamics, and site moisture was only significant for τi. However, soil pH emerged as a key control of both turnover times. The production of DOC was independent of τi and not driven by climate, but primarily by the content of clay and, secondarily by the slope of the site. At the regional scale, soil physicochemical properties and landform appear to override the effect of climate on SOC dynamics

    Climate warming and elevated CO2 alter peatland soil carbon sources and stability

    Get PDF
    Peatlands are an important carbon (C) reservoir storing one-third of global soil organic carbon (SOC), but little is known about the fate of these C stocks under climate change. Here, we examine the impact of warming and elevated atmospheric CO2_{2} concentration (eCO2_{2}) on the molecular composition of SOC to infer SOC sources (microbe-, plant- and fire-derived) and stability in a boreal peatland. We show that while warming alone decreased plant- and microbe-derived SOC due to enhanced decomposition, warming combined with eCO2_{2} increased plant-derived SOC compounds. We further observed increasing root-derived inputs (suberin) and declining leaf/needle-derived inputs (cutin) into SOC under warming and eCO2_{2}. The decline in SOC compounds with warming and gains from new root-derived C under eCO2_{2}, suggest that warming and eCO2_{2} may shift peatland C budget towards pools with faster turnover. Together, our results indicate that climate change may increase inputs and enhance decomposition of SOC potentially destabilising C storage in peatlands

    Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat

    Get PDF
    Background and Aims Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality. Methods Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray Ό-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution. Results Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar. Conclusions Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose

    Impact of amendments on the physical properties of soil under tropical long-term no till conditions

    Get PDF
    Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil's physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming

    Global-scale evidence for the refractory nature of riverine black carbon

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Nature Geoscience 11 (2018): 584-588, doi:10.1038/s41561-018-0159-8.Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.A.C. acknowledges financial support from the University of Zurich Forschungskredit Fellowship and the University of Zurich (grant No. STWF-18-026). M.R., S.A. and M.S. acknowledge support from the University Research Priority Projection Global Change and Biodiversity (URPP-GCB). M.Z. acknowledges support from the National Natural Science Foundation of China (No. 41521064). T.E. acknowledges support from the Swiss National Science Foundation (“CAPS-LOCK” and “CAPS-LOCK2” #200021_140850). V.G. acknowledges financial support from an Independent Study Award from the Woods Hole Oceanographic Institution

    Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review

    Get PDF
    Biochar application has multiple benefits for soil fertility improvement and climate change mitigation. Biochar can act as a source of nutrients and sequester carbon (C) in the soil. The nutrient release capacity of biochar once applied to the soil varies with the composition of the biochar, which is a function of the feedstock type and pyrolysis condition used for biochar production. Biochar has a crucial influence on soil C mineralization, including its positive or negative priming of microorganisms involved in soil C cycling. However, in various cases, biochar application to the soil may cause negative effects in the soil and the wider environment. For instance, biochar may suppress soil nutrient availability and crop productivity due to the reduction in plant nutrient uptake or reduction in soil C mineralization. Biochar application may also negatively affect environmental quality and human health because of harmful compounds such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins, and dibenzofurans (PCDD/DF). In this review, we discuss the linkage between biochar composition and function, evaluate the role biochar plays in soil fertility improvement and C sequestration, and discuss regulations and concerns regarding biochar's negative environmental impact. We also summarize advancements in biochar production technologies and discuss future challenges and priorities in biochar research
    • 

    corecore