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 24 

ABSTRACT   25 

Wildfires and fossil fuel combustion release large amounts of greenhouse gases into 26 

the atmosphere, but also produce Black Carbon (BC, or pyrogenic carbon) from 27 

incomplete combustion.  Processes controlling BC production and its fate are an 28 

integral component of the carbon cycle.  Constraining BC export from land to the 29 

ocean is critical given on-going changes in land use and climate that affect fire 30 

occurrence and BC dynamics. Here, we compile an inventory of concentration and 31 

radiocarbon contents (∆14C) of particulate BC (PBC) for a globally distributed suite of 32 

rivers, and show that PBC fluxes co-vary with river sediment particulate organic carbon 33 

(POC), indicating that PBC export is primarily controlled by erosion. River PBC is not 34 

exclusively from modern sources but includes PBC that has aged (up to 17,000±780 35 

14C yrs) from intermediate terrestrial carbon pools in several high latitude rivers.  The 36 

global, flux-weighted 14C age of PBC delivered to the ocean (3,700±400 14C yrs, ∆14C 37 

= -372±28‰) implies protracted storage in terrestrial reservoirs before export. River 38 

PBC accounts for 15.8±0.9% of POC, amounting to a global river PBC flux of 0.017-39 

0.037 Pg yr-1 to the oceans. This corresponds to 4-32% of the of global annual BC 40 

production, implying an export efficiency that is one to two orders of magnitude greater 41 

than for POC. When buried in marine sediments, PBC is sequestered, forming an 42 

important long-term sink for atmospheric CO2.   43 

 44 

Forest fires and fossil fuel combustion release large amounts of carbon as greenhouse 45 

gases and aerosols into the atmosphere, contributing to the on-going changes in 46 

Earth’s climate that are occurring at an unprecedented rate 1. Up to 27% of this fire-47 

derived carbon is transformed into Black Carbon (BC, or pyrogenic carbon, charcoal 48 
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residues 2) – a byproduct of incomplete combustion - rather than emitted as 49 

greenhouse gases 3.  The majority of BC is from vegetation fires (Figure 1).  Once 50 

incorporated into surface reservoirs (e.g. soils, lake sediments), BC participates in 51 

many biogeochemical processes, and influences carbon cycling on local to global 52 

scales 3,4.  Biomass burning transfers carbon from fast-cycling (atmosphere-53 

biosphere) pools to more slowly cycling soil and sedimentary reservoirs 5, creating a 54 

long-term carbon sink 6,7. Due to its aromatic structure, a substantial fraction of BC 55 

decomposes slowly 8,9, and can persist in soils for hundreds to thousands of years 5,10.   56 

 57 

Greater understanding of the role of this slow-cycling component of the carbon cycle 58 

and its significance as a sink of atmospheric CO2 requires improved constraints on the 59 

origin, dynamics and fate of BC. River systems connect terrestrial and marine carbon 60 

cycles, exporting approximately 2.7 Pg C yr-1 to the oceans 11, where it is ultimately 61 

either mineralized to CO2 and CH4 12-14 or sequestered in sediments 15.  Rivers deliver 62 

BC from land to the ocean both as particulate BC (PBC) in particulate organic carbon 63 

( 1<63 µm) and dissolved BC (DBC) in dissolved organic carbon (<1 µm)4,16.  64 

Dissolved BC, which comprises a substantial fraction (10%) of dissolved organic 65 

carbon (OC) globally, is continuously exported from soils for decades after wildfire 66 

burning 17,18 (26.5 Tg yr-1), and can cycle in the deep ocean on millennial timescales 67 

(~ 20,000 14C yrs) 19,20. The global amount and age of PBC transported by rivers, has 68 

remained largely unknown until now. PBC river fluxes, age and transport is essential 69 

for constraining land-ocean transfer as well as assessing its significance as a CO2 sink 70 

by sequestration in continental margin sediments 21. Current global PBC flux estimates 71 

vary by a factor of 20 (0.005-0.108 Pg yr-1) 22,23, and the magnitude and timescales of 72 

transport, transformation and degradation processes are not well understood 16,24. As 73 
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river basins are facing anthropogenic pressures, both directly via changes to the land 74 

surface (e.g. increasing fire intensity and frequency, accelerated deforestation, 75 

conversion to agriculture) and fluvial networks (e.g. dams, channelization, irrigation), 76 

and indirectly via climate change (e.g. increasing temperatures and an invigorated 77 

hydrological cycle) 11,25,26, we need to  constrain PBC river export to assessing past 78 

and future perturbations of this slowly cycling pool in the carbon cycle.  79 

 80 

Here, we use the abundance and radiocarbon (14C) content to constrain the flux and 81 

age of river PBC of 18 globally distributed rivers. We quantify river PBC in suspended 82 

or deposited sediments collected at the terminus of 11 of the largest rivers worldwide, 83 

(such as the Amazon, Congo, Brahmaputra, and major Arctic rivers) and 7 small 84 

mountainous rivers 27 (S.Table 1). These samples represent 15-34% of the global 85 

organic carbon exported by rivers (high and low estimates of export from 28).  We used 86 

river suspended sediments (collected by filtration) or freshly deposited river sediments 87 

(<63 µm) (Supplementary Materials, S.Figure 1). We measured BC in Particulate 88 

Organic Carbon (POC, as <63um size fraction), providing the age of PBC at or near 89 

the river terminus (S.Table 1, S.Figure 1). To characterize PBC derived predominantly 90 

from residues of biomass burning, we use chemical oxidation to liberate corresponding 91 

benzene polycarboxylic acids (BPCAs) 29. The analytical window captured by this 92 

method implies that the mass weighted PBC fluxes are conservative under-estimates 93 

for PBC fluxes, since it does not include by-products of low-temperature fires (e.g. 94 

levoglucosan 21,30 We assume BC molecular markers have the same 14C age within 95 

BC. Subsequently, we purified BPCA marker compounds 29 and converted them to 96 

CO2 followed by 14C measurement by gas ion source Accelerator Mass Spectrometry 97 

31. PBC fluxes from each river were estimated by multiplying the relative PBC 98 
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concentration (from BPCA concentrations) with the reported biospheric OC yield of 99 

each river given by Galy et al. 28, thereby normalizing PBC to biospheric OC export. 100 

The biospheric OC yield was calculated using previous reported data and linear 101 

correlations between biospheric OC yield and sediment yield in Galy et al., 28 102 

(Supplementary Information).  103 

 104 

BC as a major component of riverine particulate organic carbon 105 

We find PBC comprises a significant component of river biospheric POC (15.8±0.9% 106 

PBC river flux-weighted mean, n=18, Supplementary Materials).  This proportion of 107 

river PBC is similar to global averages of the riverine dissolved BC (10.6±0.7%) 18 and 108 

of soil organic carbon (13.7%) 32. The proportion of PBC as a component of river POC 109 

ranges from 2.7±0.4 % PBC (Pettaquamscutt) to 32.9±2.9 % PBC (Eel) 110 

(Supplementary Materials, S.Table 2, S.Figure 2). Corresponding PBC fluxes from 111 

rivers range from 8±2 (Fraser) to 1162±218 Gg yr-1 (Amazon).  There is no correlation 112 

between BC concentration and river basin drainage size (S.Figure 3), however PBC 113 

yield is positively correlated with suspended sediment yield (sediment discharge 114 

normalized to the drainage area). This correlation follows a power-law relationship 115 

(r2=0.61) (Figure 3a) and indicates that the rate of PBC export is controlled primarily 116 

through soil erosion, mobilization and transport processes, much like export of POC 117 

28,33.  PBC concentrations vary by a half order of magnitude, while suspended 118 

sediment yield varies by four orders of magnitude, illustrating that PBC export is 119 

primarily controlled by erosion (not concentration).  Given that rivers sequester the 120 

majority of terrestrial exported POC by burial in ocean sediments 34, these 121 

observations establish a direct link between soil erosion and PBC sequestration on 122 

continental margins. 123 
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  124 

Time-lags between production and riverine export of PBC  125 

We find a large range in PBC Δ14C values, indicating fast (+74±62 ‰, modern, Congo) 126 

to slow (-880±12‰, 17,000±780 14C yrs, Colville) PBC cycling within individual 127 

watersheds (Figure 3, S. Table 1). The global flux-weighted age average of 3,700±400 128 

14C yrs (-372±28‰) is significantly higher (older) than the few measurements on river 129 

dissolved BC (450±280 14C yrs, 475±150 14C yrs and 1140 14C yrs, from 16,19,20). 130 

Globally, PBC is older than total POC, with two exceptions in the Godavari and Congo 131 

Rivers where PBC is modern (Figure 3).   Assuming all BC produced from burning of 132 

modern biomass has a mean post-bomb ∆14C value of +100‰ and BC derived from 133 

fossil fuel combustion has a ∆14C value of -1000‰ (i.e., is radiocarbon-depleted), we 134 

estimate that 44±28% of river PBC is from fossil fuel contributions (Supplementary 135 

Materials). However, assuming only two end members is overly simplistic given the 136 

range of potential PBC sources and transport pathways 16,35. A regional study in the 137 

Pettaquamscutt River basin (USA) estimated a maximum fossil fuel BC contribution of 138 

only 19%, and indicated that there is a time lag between production and river export 139 

of PBC35.  This implies that BC can “pre-age” during temporary storage in intermediate 140 

terrestrial reservoirs (e.g. soils) 35.   141 

 142 

River PBC thus reflects at least three pools: i) biomass-derived char from recent 143 

vegetation fires, ii) pre-aged BC (held within the catchment in soils, wetlands and 144 

floodplains before river transport and ocean deposition 35), and iii) fossil fuel-derived 145 

BC.  Fossil fuel-derived BC mass contributions are considered minor for the following 146 

reasons.  First, the annual production of biomass-derived BC (114-383 Tg yr-1) is one 147 

to two orders of magnitude higher than BC produced by fossil fuel combustion (2-29 148 
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Tg yr-1) (Figure 1).  Second, soil formation rates span centuries to millennia, and the 149 

vast majority of BC eroded from soils must pre-date the beginning of the industrial 150 

revolution. Third, there is mounting evidence that soil OC inputs dominate the POC 151 

load in most river systems 28,36, as indicated for PBC by our own data. PBC 152 

contributions to river PBC pools are therefore likely dominated by inputs from biomass 153 

burning. 154 

 155 

Given the importance of soil OC as a component of riverine POC export, rivers 156 

constitute a source of pre-aged PBC. PBC can be temporarily stored in soils and 157 

alluvial deposits for thousands of years 37,38, much like other molecular markers of 158 

terrestrial vegetation (e.g., higher plant-derived long-chain n-alkanes and n-alkanoic 159 

acids) 39-41.  River PBC 14C ages are generally older than those of other terrestrial 160 

vegetation molecular markers 39-41 implying slower PBC turnover rates. Moreover, the 161 

correlation between ∆14C values of PBC and POC (Figure 3b, r2=0.48, p=0.005) 162 

suggests that pre-aged soil OC, including PBC, is an important component of overall 163 

OC export. This linear relationship is close to unity (1.05±0.02), indicating that 164 

common mechanisms are responsible for aging of both soil OC and BC pools, as well 165 

as implying that the ratio of BC and non-BC reactivity is roughly constant, regardless 166 

of environmental conditions. PBC experiences pre-aging (relative to POC) in river 167 

basins by a relatively constant amount globally, including locations where 168 

environmental conditions both favor preservation or mineralization.  169 

 170 

Global implications and future outlook 171 

Although sequestration in marine sediments is considered to be the ultimate fate of 172 

BC 21 (Figure 1), marine sediment BC burial fluxes only account for 3-10% of global 173 
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BC production fluxes 42.  In soils, BC constitutes on average 13.7% (ranging to 50%) 174 

of total organic carbon 32. This inconsistency between BC in soils and marine 175 

sediments raises the question as to where the majority of BC produced annually on 176 

land goes. Inland waters are both significant holding pools of organic carbon (with 177 

storage of up to 50% of carbon along the river-to-ocean continuum), and processers 178 

of this carbon 12,14,43. In this way, PBC may be sequestered for years up to millennia 179 

in intermediate reservoirs prior to export and burial in marine sediments 35,44. For 180 

example, PBC has been found to be retained in alluvial deposits for thousands of years 181 

37, implying that BC can undergo pre-aging en-route to its ultimate burial site. The large 182 

fluxes and diverse ages of PBC in our study supports the conclusion that dissolved 183 

and particulate BC pools in rivers are partially decoupled, with dissolved BC driven by 184 

hydrology 16,19,45 whereas PBC is subject to erosional and depositional dynamics 185 

(Figure 1). This preliminary global assessment of river PBC flux represents an 186 

underestimate since it is based on BPCA markers tracing the most refractory 187 

components of BC (i.e., it does not include more labile BC from low temperature fires 188 

30). Our study highlights the need for further source-to-sink studies to determine 189 

controls on the fluxes and degrees of pre-aging of PBC in river catchments prior to 190 

export.   191 

 192 

Assuming a soil BC stock of 200 Pg 32, and a BC production rate of 0.123-0.56 Pg C 193 

per yr , the BC mean turnover time in soils at steady state ranges from 1600 to 3500 194 

yrs (Figure 3) 4. This is much longer than estimates of bulk soil OC turnover times 195 

(mean residence time, 25-110 yrs) 46, highlighting the refractory nature of BC, and 196 

consistent with our estimated watershed-wide erosion rates. Using our weighted mean 197 

PBC as a fraction of biospheric POC (15.8±0.9%) and estimated global biospheric 198 
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POC flux (0.157−50
+74 Pg yr-1 28), we estimate an annual global flux of PBC to the ocean 199 

of 0.017-0.037 Pg BC. This riverine PBC flux is approximately equal to the global 200 

dissolved BC flux (0.027 Pg yr-1)18 indicating that, relative to atmospheric fluxes 201 

(0.002-0.005 Pg yr-1)4, river transport serves as the dominant process for mobilization 202 

of BC from land to ocean (Figure 1).  Thus, rivers transport 4-32% of the 0.114-0.383 203 

Pg BC that is produced annually to the oceans. This is one to two orders of magnitude 204 

larger than the fraction of biospheric OC that is exported, indicating that a much larger 205 

fraction of PBC (relative to biospheric OC or dissolved BC) is laterally exported instead 206 

of respired in soils. Furthermore, the average age of riverine PBC (3,700±400 14C yrs) 207 

is closer to the calculated mean BC turnover time (800-1000 yrs) 47 in soils than that 208 

of the biospheric OC (~50 yrs)48. Together these observations provide global evidence 209 

that PBC is more refractory than POC. Like POC 49, river PBC is likely to be transferred 210 

and buried in marine sediments on continental margins, and thus preserved over 211 

geological timescales. Indeed, our estimated global riverine PBC flux amounts to 20% 212 

of the terrestrial organic carbon stored annually in ocean sediments 50, suggesting that 213 

processes of BC production, protracted storage in terrestrial reservoirs, mobilization 214 

and burial in marine sediments thus represent an important geologic atmospheric CO2 215 

sink.   216 

 217 

These findings have implications for our understanding of the role of BC cycling in the 218 

face of direct (e.g., land-use) and indirect (climate) anthropogenically-driven change.   219 

Some increases in the intensity and frequency of fires with on-going climate change 220 

51,52 may enhance BC production. Here, we find river PBC is efficiently exported and 221 

stored in sediments rather than degraded to CO2 en-route to burial in the ocean, 222 

suggesting a negative feedback to increased biomass burning. Such interpretations 223 
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are likely overly simplistic, by not taking into account seasonal differences between 224 

production and erosion of BC.  However, the strong correlations imply that these 225 

trends are robust at a global scale. Nevertheless, it is clear that further consideration 226 

of BC dynamics within river basins at regional and global scales is warranted in order 227 

to better constrain this important component of the carbon cycle.  228 

 229 
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 287 

 288 

 289 

 290 

 291 

Figure 1. Global schematic synthesis of the BC cycle in major reservoirs.  Estimates 292 

are derived from Supplementary Table 3.  The relative size of the reservoir (Tg) is 293 

given by the size of the circle. Schematic BC ∆14C values are given by the shade of 294 

white (modern, post 1950) to dark red (ancient -1000‰) in (circle) reservoirs and river 295 

BC (arrow) pools.  Fluxes are in Tg yr-1 given by the relative size of the blue and red 296 

arrows.  297 

 298 
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 299 

 300 

Figure 2. PBC fluxes (values in Gg yr -1) and PBC ∆14C values (in ‰).  PBC ∆14C 301 

values are given by the shade of yellow (bomb) to dark red (ancient -1000‰) for the 302 

river catchment. Rivers were sampled at their outlets. Small colored circles indicate 303 

small mountainous rivers with drainage basin areas less than 250,000 km2.  The 304 

histogram represents fluxes per river (Gg yr -1), where the grey bar represents the flux 305 

of the Padma, which is the combined fluxes of the Brahmaputra and Ganges rivers. 306 
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 313 

Figure 3. a) Relationship between PBC yield and suspended sediment yield.  PBC 314 

was normalized to the biospheric OC yield given in 28. The regression line is YPBC yield 315 

=0.005(Ysed)0.69 ; r2=0.61; P<0.001.  b)  Relationship between ∆14C values of PBC and 316 

POC.  The regression line is YPBC14C=1.05(XbiosphericOC)-132 ; r2=0.48; P<0.001. 317 
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