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Abstract  24	

Humans have interacted with fire for thousands of years, yet the utilization of 25	

fossil fuels marked the beginning of a new era. Ubiquitous in the environment, 26	

pyrogenic carbon (PyC) arises from incomplete combustion of biomass and 27	

fossil fuels, forming a continuum of condensed aromatic structures. Here we 28	

develop and evaluate 14C records for two complementary PyC molecular 29	

markers, benzene-polycarboxylic-acids (BPCAs) and polycyclic-aromatic-30	
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hydrocarbons (PAHs) preserved in aquatic sediments from a sub-urban and a 31	

remote catchment in the United States (U.S.) from mid-1700s to 1998. Results 32	

show that the majority of PyC stems from local sources and is transferred to 33	

aquatic sedimentary archives on sub-decadal to millennial time scales. 34	

Whereas a small portion stems from near-contemporaneous production and 35	

sedimentation, the majority of PyC (<90%) experiences delayed transmission 36	

due to ‘pre-aging’ on millennial timescales in catchment soils prior to its ultimate 37	

deposition. BPCAs (soot) and PAHs (precursors of soot) trace fossil fuel-38	

derived PyC. Both markers parallel historical records of the consumption of 39	

fossil fuels in U.S., yet never account for more than 19% total PyC. This study 40	

demonstrates that isotopic characterization of multiple tracers is necessary to 41	

constrain histories and inventories of PyC, and that sequestration of PyC can 42	

markedly lag its production. 43	

 44	

1. Introduction  45	

Combustion processes have played a major role in the biogeochemical cycling 46	

of carbon (C) for more than four hundred million years 1. Yet the utilization of 47	

fossil fuels marked the beginning of a new era (post-1840s) when humans 48	

dramatically accelerated the cycling of fossil C. Today, carbon dioxide 49	

emissions from fossil fuel burning are more than twice that from biomass 50	

burning 2. However, ‘the Anthropocene epoch’ 3 has also ushered in enhanced 51	

combustion efficiencies and emission controls, as well as the use of cleaner 52	

burning fuels (petroleum and natural gas), attenuating or changing 53	

environmental impacts.  54	

 55	
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Incomplete combustion processes cause the formation of solid residues, 56	

frequently termed “black carbon” or “pyrogenic carbon” (PyC) 4-5. PyC 57	

corresponds to a continuum of condensed aromatic structures with different 58	

chemical and physical properties 6-8. In addition to macromolecular or ‘bulk’ 59	

forms of PyC, which typically describes the solid residues of combustion 60	

including charcoal and soot, the lower-molecular-weight precursors of 61	

combustion condensates, such as polycyclic aromatic hydrocarbons (PAHs), 62	

are a class of widespread environmental contaminants, some of which are 63	

notorious for their carcinogenic and mutagenic properties 9-10. Moreover, while 64	

PAHs are directly identifiable in chromatographic analyses, ‘bulk’ PyC can only 65	

be assessed via operationally-defined measurements. 66	

 67	

PyC is ubiquitous in the environment 11-12 due to its transport and widespread 68	

dispersal by wind and water 5. Subsequent to its production and redistribution, 69	

PyC may engage in a cascade of processes the culmination of which is either 70	

degradation 13 or (ultimate) burial in sediments 14-16. Estimates of the global PyC 71	

stocks and fluxes carry large uncertainties stemming from diverse methods of 72	

detection and quantification. Some methods are prone to analytical artefacts 73	

and thus hinder precise quantitative assessment of environmental PyC 17-19, 74	

while others, such as the precursors of combustion condensates, e.g., PAHs, 75	

only trace a restricted portion of the combustion continuum.  76	

 77	

The depositional fluxes of combustion-derived (pyrogenic) PAHs parallel 78	

industrialization on a regional scale 20. PAHs are however trace level PyC 79	

products, with concentrations typically two or more orders of magnitude lower 80	
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than ‘bulk‘ PyC 21. In contrast, benzene polycarboxylic acids (BPCAs) are more 81	

quantitative tracers of ‘bulk’ PyC which are liberated by laboratory-based 82	

chemical oxidation of combustion residues 19, 22. Specifically, in contrast to 83	

PAHs that reflect vapour-phase combustion processes, BPCAs appear to track 84	

macromolecular PyC residues, such as charcoal and soot, that comprise a 85	

greater fraction of the PyC burden delivered to and sequestered in the 86	

environment 21.  87	

 88	

The combined application of both PAHs and BPCAs as molecular markers of 89	

combustion can facilitate development of more comprehensive records of 90	

combustion from sedimentary archives. When coupled with molecular-level 91	

natural abundance radiocarbon (14C) measurements, they can provide 92	

quantitative constraints in sources of PyC derived from either biomass burning 93	

or fossil fuel combustion. The success of this approach, however, requires high-94	

fidelity sedimentary archives with well-defined catchments. In a prior 95	

investigation of an exceptionally well-dated sedimentary sequence from the 96	

northeastern USA (Pettaquamscutt River estuary, Rhode Island), we observed 97	

incongruent PAH and BPCA flux variations 21, suggesting that these two well-98	

established groups of PyC markers differ markedly in provenance and mode of 99	

transport and deposition. Specifically, we found that records of combustion are 100	

clearly decoupled in the (pre-)industrial era and chronicle local and regional 101	

combustion practices 21. 102	

 103	

Here, our objectives were to (1) use 14C characteristics to reconcile previously 104	

observed decoupled records for these two suites of complementary molecular 105	
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markers of combustion; (2) constrain the provenance and transport pathways of 106	

pyrogenic carbon in sediment deposited since the pre-industrial era; (3) 107	

compare results from a urbanized catchment with that from a remote location in 108	

the context of local and regional land-use and fuel consumption history. 109	

 110	

2. Experimental Section 111	

Study Area 112	

Pettaquamscutt River basin is a suburban setting located in South 113	

Kingston, southern Rhode Island, USA (Figure 1). This 9.7 km long estuary 114	

ranges in width from 100 to 700 m, and has a small watershed (~35 km2) 115	

dominated by oak woodland, wetlands and open waters 23-24. This system can 116	

be geographically divided into two remnant kettle lakes (upper and lower basin) 117	

and a 6.4-km long channel that connects it to the main source of salt water to 118	

this estuary, Narragansett Bay in Rhode Island Sound 25. Samples were 119	

collected in the deepest point (20 m) of the lower basin of the River 20. 120	

Siskiwit Lake is a remote site located on Isle Royale in the northwestern 121	

portion of Lake Superior, close to the USA-Canada border (Figure 1). Isle 122	

Royale is distal from major urban and industrialized centers, the nearest being 123	

55 km away, and over 98% of its land is designated wilderness 26. More than 50 124	

lakes are located on the Isle, of which Siskiwit Lake is the largest with an 125	

approximate area of 16.8 km2 and a maximum depth of 46 m. This lake is 126	

situated 17 m higher than, and 600 m inland from Lake Superior, preventing 127	

exchange between these two water bodies. Atmospheric deposition is 128	

considered the only source of contamination to Siskiwit Lake 26. 129	
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 130	

Figure 1: Overview on study sites (made with Natural Earth) with left Siskiwit Lake, centre northeastern 131	
North America with prevailing vector mean wind composites from 1871-1998 (NOAA/ESRL) and right 132	
Pettaquamscutt River.	133	

Sampling and Sediment Dating. In Pettaquamscutt River basin, four 134	

rectangular aluminum freeze corers (90x30x10 cm) were collected, immediately 135	

packed with dry ice, x-rayed for age chronology and kept frozen until at the 136	

laboratory 27. While maintained frozen by applications of liquid nitrogen, the 137	

cores were sectioned at 0.5-cm intervals using a tile saw equipped with a 138	

diamond wafering blade (0.63-mm thickness). After subsequent freeze-drying, 139	

homogenized sediment samples of equivalent depth (correlated based on varve 140	

patterns reveals in X-ray and visual images) were combined. Sedimentation 141	

rates were calculated using the constant rate of supply (CRS) 28 model, and the 142	

results were then compared to a remarkabley detailed high-resolution varve 143	

chronology by Lima, et al. 27. Eight depth-age intervals were defined for the 144	

Pettaquamscutt River basin sediments as follows: in the industrialized era, P1 145	

(1999-1982), P2 (1981-1962), P3 (1960-1931), P4 (1929-1898) and P5 (1896-146	

1873), and prior to significant industrial activities, P6 (1871-1842), P7 (1840-147	

1768) and P8 (1764-1735).  148	

 149	

In Siskiwit Lake, seven gravity cores (ca. 20-30 cm length and a diameter of 10 150	

cm) were collected, sliced at 2-cm intervals, placed into plastic freezer bags, 151	

sealed and stored in ice for transport. Sediment samples were later transferred 152	
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to combusted glass jars and freeze-dried prior to analysis. Unfortunately, the 153	

upper 8 cm of the record (i.e., post-1954) was lost during coring due to the 154	

aggressive nature of gravity coring. Sediment chronology was then established 155	

with the constant initial concentration (CIC) model to estimate the missing top 156	

sediments deposited over 43 years. 29. The calculated sedimentation rate (0.18 157	

cm yr-1) was in close agreement with a previous study 26. The Siskiwit Lake 158	

sediments were combined at a coarser resolution. Four horizons were defined 159	

for BPCAs: S1 (1954-1926), S2 (1915-1882), S3 (1871-1837) and S4 (1826-160	

1793); and three for PAHs: S1x (1954-1932), S2x (1921-1887), and S3x (1832-161	

1798). The latter chronology was extended by a 14C PAH record of the same 162	

location published by Slater, et al. 30. 163	

 164	

Total Organic Carbon (TOC). A Fisons 1108 elemental analyzer was used to 165	

measure the total organic carbon (TOC) content of the sediments after removal 166	

of carbonates 27. Samples were run in triplicate and all reported weight 167	

percentages represent the mean ± one standard deviation. Carbon 168	

concentration were determined through a 5-point calibration curve (0.1 to 1 mg) 169	

of a sulfanilamide standard. Instrumental blanks were run after sets of 12 170	

analyses, yielding blanks better than 0.004 mg C.  171	

 172	

Extraction and purification of benzene polycarboxylic acids (BPCAs). 173	

BPCAs are specific measures of combustion residuals, liberated by chemical 174	

oxidation of residues such as char and soot 21, 31. Briefly, oxidative degradation 175	

(170°C, 8 h) of PyC was achieved via nitric acid treatment of air dried 176	

sediments 32. BPCAs were purified from the products by removal of polyvalent 177	
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ions and non-polar organic compounds using cation exchange (Dowex® 178	

50WX8) and solid phase extraction (Discovery® DSC-18, 500 mg) columns and 179	

then separated by preparative liquid chromatography using an Agilent 1290 180	

infinity HPLC system equipped with a 2.7µm Agilent Poroshell 120 C-18 181	

column. Quantification of BPCAs was achieved from seven-point calibration 182	

curves (2 to 200ng µl-1) using commercially available BPCA standards including 183	

pentacarboxylic acid (Aldrich S437107) and hexacarboxylic acid (Aldrich 184	

M2705). All measurements were carried out in duplicate. To demonstrate that 185	

the BPCA methodology is insensitive to the presence of petrogenic (rock-186	

derived) graphitic C, a limitation of other PyC methods 33, we processed and 187	

sought to quantify BPCAs liberated from natural graphite, type: Sri Lankan, 188	

99.7% C (Asbury Carbons). The lack of detectable BPCAs implies that we can 189	

exclude possible interferences from lithogenic material in 14C-based source 190	

apportionment using BPCAs.  191	

Isolation of BPCAs for 14C analysis. Briefly, according to Hanke, et al. 32, 192	

target analytes were collected in repetitive runs yielding amounts of about 30 µg 193	

C while injection volumes were adjusted per sample (1 to 20 µl per inj.-1) 32. The 194	

purified fractions were dried (3 hours) on a hot plate (~70°C) using ultrapure 195	

nitrogen stream and stored at 6 °C. Samples were then oxidized to CO2 with 196	

sodium persulfate in 12 ml Exetainer vials and measured on a gas ion source 34 197	

equipped MICADAS AMS at ETH Zürich 35. All measured samples were 198	

convoyed with process standards (14C modern and depleted charcoals in 199	

various concentrations) that span over the entire analytical procedure facilitating 200	

the correction of measured data for constant contamination 32. Reported results 201	

on BPCAs are mean values with the standard deviation of duplicates.  202	
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 203	

Extraction, Purification and Combination of pyrogenic PAHs. Non-alkylated 204	

(pyrogenic) PAHs are formed as precursors of condensates during combustion 205	

processes and represent intermediates in soot formation 12. Each 0.5-cm 206	

sediment interval total lipid extract was separated on a column packed with 100-207	

200 mesh fully-activated silica gel where PAHs were eluted with a mixture of 208	

toluene and hexane (1:1). After extraction and purification, the PAH fractions 209	

were concentrated and further combined yielding fractions corresponding to 210	

coarser depth intervals in order to obtain sufficient amounts of individual PAHs 211	

for 14C analysis. The resulting fractions were subjected to preparative capillary 212	

gas chromatography (PCGC) for isolation of individual PAHs. The measurement 213	

precision was better than 5%.  214	

 215	

Preparative Capillary Gas Chromatography (PCGC). Automated preparative 216	

capillary gas chromatography (PCGC; Eglinton, et al. 36) was used to isolate 217	

non-alkylated PAHs through repetitive injections (~100) from sedimentary 218	

extracts. PAHs in Siskiwit Lake extracts were isolated using the one-219	

dimensional PCGC system 37. For the Pettaquamscutt River extracts it was 220	

necessary to use a two-dimensional system PCGC because the samples 221	

contained interferring biogenic organic compounds 38. For Pettaquamscutt River 222	

basin, we report phenanthrene, fluoranthene, pyrene, benz[a]anthracene, 223	

chrysene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[e]pyrene, and 224	

benzo[g,h,i]perylene as an integrated pyrogenic PAH signal, and for Siskiwit 225	

Lake the sum of phenanthrene, anthracene, fluoranthene, pyrene, 226	

benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[j]fluoranthene, 227	
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benzo[k]fluoranthene, benzo[a]pyrene, benzo[e]pyrene, indeno[123-cd]pyrene 228	

and benzo[ghi]perylene. Here, reported values are the sum of measured PAHs 229	

and standard deviation.  230	

 231	

Radiocarbon Measurements. Compound-specific radiocarbon analyses and 232	

initial processing of data of BPCAs were performed at the laboratory of Ion 233	

Beam Physics, ETH Zürich, Switzerland, while PAHs were measured at the 234	

National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility, 235	

Woods Hole Oceanographic Institution, Woods Hole, USA. All samples were 236	

corrected for extraneous carbon 32, 37 and reported as F14C 39, which is percent 237	

modern carbon but independent from the year of measurement 39. Calculations 238	

of mean residence time and 14C ages were retrieved from the atmospheric 14C 239	

calibration curve (Intcal13) 40-41.  240	

3. Results and Discussion 241	

 Pettaquamscutt River basin. The sedimentary record spans the time interval 242	

from 1738 to 1998 AD (Table 1) 27, capturing what moments in “human history”. 243	

Combustion history in this sedimentary archive was reconstructed in eight 244	

depth-intervals tracing periods influenced by both local (e.g., land-use) and 245	

more widespread (regional industrialization) phases of change. We find BPCA 246	

concentrations vary by over a factor of two, from 0.347 to 0.826 g kg-1 247	

throughout the record with a general decrease in concentrations towards the 248	

latter half of the 20th Century (Table 1). In contrast, prior to the industrial era 249	

(before 1840s) PAH concentrations were very low (about 0.0001 g kg-1), and 250	

varied between with 0.006 g kg-1 (1983 – 1998 AD) and 0.062 g kg-1 (1932-251	

1961 AD) during the industrial era. Thus, these quantities reproduce the time 252	
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trends observed by individual measurements in high-temporal resolution from 253	

the same sediments 21. Summarizing, pyrogenic PAHs are two orders of 254	

magnitude lower in abundance than BPCAs, with the sharply contrasting 255	

temporal evolution patterns of these two PyC tracers indicating they are 256	

decoupled 21 similar to previous research using operationally-defined PyC 257	

methods 42-44. 258	

 259	

The uppermost TOC 14C samples show the highest 14C concentrations 260	

corresponding to the ‘bomb peak’, where 14C was added to the atmosphere 261	

through thermo-nuclear ‘bomb’ testing in the late 1950s and early 1960s (Table 262	

1). The atmospheric inventory of 14C doubled during this period and manifests 263	

itself, albeit in a muted fashion, in the TOC 14C record. While this bomb 14C 264	

signal would have been transferred to vegetation via photosynthetic C fixation, 265	

and subsequently to products of biomass burning, it is, if at all, only very weakly 266	

pronounced in the PyC records (Table 1). However, this increase is strongly 267	

muted relative to concomitant atmospheric 14C variations 40, with values that are 268	

consistently lower than its corresponding atmospheric signature at the time of 269	

deposition. The low-amplitude ‘bomb spike’ and depressed 14C values may 270	

reflect reservoir (incl. hard water) effects and or supply of pre-aged organic 271	

matter to the sediments. The term ‘pre-aged’ describes the time lag between 272	

production and the subsequent transport trajectory until deposition in 273	

sedimentary archives. PyC is an excellent tracer of pre-aged organic matter 274	

because it is uniquely terrestrial in origin, and corresponding 14C records allow 275	

for more facile attribution of inputs. In contrast, TOC reflects a myriad of organic 276	

matter sources and processes associated with its transformation and 277	
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decomposition in the water column and sediments 45. For BPCAs (tracers of 278	

‘bulk’ PyC) we attribute a fraction of ‘pre-aged’ PyC in deciphering origins of 279	

sedimentary PyC. 280	

 281	

The BPCA records in Pettaquamscutt River sediments coincide with our 282	

historical knowledge on the catchment. Europeans colonized the catchment 283	

throughout the 17th Century first building ships and then started to establish 284	

farmland with both these activities promoting deforestation and land clearance 285	

that peaked in the mid-1700s 46. The sediments deposited between 1738 and 286	

1766 reflect this biomass-derived PyC inputs with relatively modern BPCA 14C 287	

values (F14C = 0.836±0.035). In the late 1700s, agricultural land use started to 288	

develop to residential land 46, and no obvious manifestation of this change 289	

occurs in the sedimentary BPCA record (1770-1841). Abandonment of local 290	

farmland continued throughout the 19th century, while on a regional scale, 291	

consumption of fossil fuels in U.S. started and already accounted for 9.3% of 292	

energy consumption in U.S. by 1850 AD 47. BPCA concentrations increase 293	

between the periods 1770-1841 and 1843-1872 AD yet there is no substantial 294	

accompanying change in the BPCA 14C record due to the increasing use of 295	

fossil fuels implying that this increase is due to enhanced local re-mobilization 296	

processes.  297	

Table 1 Results on quantities and 14C concentrations for TOC, BPCAs and PAHs in Pettaquamscutt River 298	
basin sediments over eight periods of time (F14C reads as percent modern C) 299	

Time 
range 

Depth 
interval Total organic carbon Benzene-[penta+hexa]-

carboxylic acids 
Polycyclic aromatic 

hydrocarbons 

[Years AD] [cm] [%] F14C [g kg-1] F14C [g kg-1] F14C 

1983-1998 0 - 9.5 7.3±0.2 1.003±0.004 0.347±0.006 0.713±0.019 0.006 0.198±0.010 

1962-1981 10 - 19 7.7±0.4 1.027±0.004 0.457±0.011 0.686±0.014 0.047 0.071±0.004 

1932-1961 19.5 - 29 7.9±0.2 0.880±0.003 0.633±0.017 0.633±0.013 0.062 0.066±0.003 
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1898-1930 29.5 - 36 9.8±0.5 0.873±0.004 0.841±0.007 0.610±0.015 0.039 0.131±0.007 

1874-1897 36.5 - 42 9.2±0.1 0.905±0.003 0.763±0.031 0.673±0.014 0.007 0.183±0.009 

1843-1872 42.5 - 49 9.9±0.3 0.944±0.005 0.826±0.077 0.819±0.014 n/a n/a 

1770-1841 49.5 - 64 8.9±0.1 0.918±0.003 0.680±0.011 0.822±0.020 n/a n/a 

1738-1766 64.5 - 70 8.9±0.1 0.911±0.004 0.694±0.072 0.826±0.035 n/a n/a 

 300	

As fossil fuel consumption increased from 1874 to 1897, and coal superseded 301	

wood as the primary fuel source by 1885 AD 47, the sediments reveal marked 302	

increases in PAH concentrations (~0.007 g kg-1). This allowed for enough 303	

material for 14C analysis (0.183±0.002 F14C). This interval corresponds to a 304	

notable decline in BPCA 14C compared to the previous years, and together with 305	

the PAH data this change is consistent with increased accumulation of soot and 306	

associated condensation residues of fossil fuel burning in the Pettaquamscutt 307	

River basin sediments. During the interval between 1898 and 1930, the 308	

sedimentary deposits recorded an increased concentration and further 309	

decreases in F14C values of both PAHs and BPCAs, the latter reaching its 310	

minimum value over the entire record. These changes are consistent with 311	

increased dependence on fossil fuels at both local and regional scales. By this 312	

time, the proportion of fuel use from biomass burning was already less than 313	

10% on a regional scale, and petroleum was increasingly used, ultimately 314	

exceeding coal consumption by 1950 AD 47. Locally, the residential land 315	

increased by at least 4.7% from 1930s to 1950s 46. During this phase 1932-316	

1961, the BPCA 14C increased slightly, while that of the PAHs decreased 317	

further.  318	

 319	

The subsequent period from 1962 to 1981 also corresponds to increasing 320	

consumption of petroleum and natural gas and subordinate use of coal (~ 20%) 321	
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in terms of overall fuel consumption 47. Additionally, implementation of stricter 322	

emission controls and catalytic converters during this period led to reduced 323	

particulate emissions, coinciding with decreasing BPCA and PAH abundances, 324	

molecular markers with lower quantities and slightly increasing 14C signatures 325	

indicating either less PyCfossil fuel or supply of very small portion of bomb 14C-326	

affected PyCcontemporary. This trend of decreasing PyC concentrations and 327	

increasing F14C values continues in the sediments for the period 1983 to 1998, 328	

consistent with changing combustion practices on a regional scale that resulted 329	

in increasing combustion efficiency and tighter environmental regulations. 330	

However, different modes of combustion (gas phase vs. pyrolysis) cause the 331	

formation of different PyC qualities, which again greatly depend on fuel type, 332	

reaction times and the combustion efficiency 48-49. On local scale, land-use 333	

change may only have a minor influence on the sedimentary PyC deposits 334	

during the era of industrialization, although the catchment has underdone 335	

reforestation and residential land now accounts for about 30% of the catchment 336	

50. 337	

 338	

Pre-aging of PyC prior to burial. The sedimentary legacy of combustion, as 339	

manifested in the concentrations and 14C values of PAHs and BPCAs, reveals 340	

clear changes in quantity and sources of PyC over time. PAHs signals appear 341	

to closely follow regional-scale patterns in fossil fuel consumption, whereas 342	

BPCAs appear to track more local biomass combustion practices and runoff 343	

from the catchment 21. However, the BPCA 14C values (<0.826±0.035 F14C) are 344	

systematically lower, i.e. ~16% in the preindustrial era, than the corresponding 345	

atmospheric 14C values (>0.982±0.008 F14C), implying that they could not have 346	
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been produced from burning of contemporaneously synthesized biomass. The 347	

14C offset is apparent even prior to the industrial era and associated utilization 348	

of fossil fuels. Thus BPCAs must trace at least a portion of biomass-derived 349	

PyC that is pre-aged and supplied to ‘ultimate‘ site of burial with a certain lag 350	

time. During the three time intervals recording the pre-industrial era (1738-1766, 351	

1770-1841, 1843-1872), we observed BPCA F14C values of 0.826±0.009, which 352	

corresponds to 1290±160 14C years. Given that at least some fraction of the 353	

BPCA signature reflects near instantaneous (i.e., on seasonal to decadal 354	

timeframe) burning and translocation from biomass source to sedimentary sink, 355	

the observed 14C age likely represents mixed aged PyC components, with some 356	

exhibiting ages greater than ~1300 14C years. Sedimentary signatures of 357	

combustion thus reflect inputs not only from different sources in the catchment, 358	

but also similar sources but differing pre-depositional histories. Here we 359	

observe this pre-aging for BPCAs and our findings ought to be supported by 360	

studies employing other ‘bulk’ PyC approaches. However, the phenomenon of 361	

pre-aging has also been seen in other molecular-level studies tracing the 362	

carbon cycle and its trajectory in the environment 51-52.  363	

 364	

We define three PyC inventories yet two of which supply biomass-derived PyC 365	

(Table 2): the immediate post-fire input (PyCcontemporary) and an integrated 366	

signature reflecting the mean residence time (MRT) of a certain catchment 367	

(PyCpre-aged). Additionally, the usage of fossil fuels with the onset of 368	

industrialization has left its signature on the environment 15, 53-54, introducing an 369	

additional source of PyC since the mid-1800s. 370	

Table 2: Conceptual framework of inventories that supply PyC to sediments from local and regional 371	
sources of combustion. PyCcontemporary + PyCpre-aged equals PyC from biomass burning and PyC derived 372	
from fossil fuel combustion becomes only active with the onset of industrialization. 373	
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Characteristics PyCcontemporary PyCpre-aged Fossil fuel combustion 

Time [years] 0 to 60 60 to 10,000 > 60.000 

Origin Local sources Catchment soils Domestic and industrial 
combustion and transport 

F(t) Direct e-kt Direct 

Transport 
pathways 

Atmospheric deposition, 
surface runoff 

Erosional (sub-) 
surface processes 

Primarily atmospheric 
deposition 

 374	

Three pools must therefore be taken into consideration in order estimate and 375	

allocate the sources of PyC supplied to sediments in the Pettaquamscutt River 376	

and Siskiwit Lake catchment (Table 2; Equations 1 & 2).  377	

 378	

Equation (1)    	   379	

Equation (2)    	  380	

 381	

The following boundary conditions were chosen to determine the contribution of 382	

pre-aged PyC to the total pool of PyC from biomass burning: (1) the maximum 383	

period of time since deposition assuming that vegetation growth and soil build-384	

up did not commence following glacial retreat earlier than 10,000 years before 385	

present in both catchments; (2) an absence of ancient (fossil) PyC due to a lack 386	

of post-glacial erosion processes in Pettaquamscutt River basin 25 and the 387	

Great Lakes region; and (3) the PyCcontemporary
55 is assumed to be small 388	

accounting for only about 10% of the total PyC produced during a fire event 389	

because, the greater part of PyC will remain in immediate proximity of a fire and 390	

deplete in stocks only over the long term 56-57. Given that the mean fire return 391	

interval is, in average, about 300 years for Pettaquamscutt River catchment and 392	

about 150 years for Siskiwit Lake catchment 58, this may coincide with the 393	
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average 14C ages for the respective pre-aged PyC. To account for disparities in 394	

the catchment location and variable factors that influence rate and extent of 395	

PyCcontemporary mobilization (e.g., precipitation, relief), we consider a variation of 396	

10% for the two pools: ƒcontemporary = 10±10% and ƒpre-aged = 90±10%. These 397	

conditions facilitated to explain more than 98% of biomass-derived PyC 398	

(supporting information).  399	

 400	

We used the advanced source apportionment model based on three scenarios 401	

(Table 3) to estimate the pre-aged PyC pool. The time lag between production 402	

and burial is given by retention within intermediate reservoirs (e.g., soils, rivers) 403	

and decelerated transport of PyC in the catchment. These processes may 404	

explain the lag time (pre-aging) of PyC between production and deposition. We 405	

argue that contemporary inputs account for only a minor fraction yet is variable, 406	

and thus we report PyCpre-aged within the range 90±10% resulting in the mean 407	

value and standard deviation for pre-aged PyC of the three possible scenarios. 408	

We further expect the average pre-industrial age of PyC of ~1300 14C years to 409	

remain steady throughout the industrialized era because of (1) the low age 410	

variability (±160 14C years) in the three reference intervals (1738-1766, 1770-411	

1841, 1843-1872 AD) and (2) the variable pool size of PyCpre-aged resulting in a 412	

total uncertainty that is three times larger than the initial value (Table 3). The 413	

model thus is robust against possible variation in the present-day mean 414	

residence time (MRT) as modest changes would be undetectable. 415	

Subsequently, we retrieve an average MRT of 1,500±210 years for PyC within 416	

the Pettaquamscutt River basin catchment, which agrees well with the limited 417	

data available in literature (<1500 years) 59-60. In this study we can exclude 418	
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sources of ‘pre-aged’ dissolved PyC circulating in the marine environment, but 419	

this could substantially influence the results in other environmental settings. 420	

 421	

Table 3: Scenarios of varied composition for pool PyCbiomass in Pettaquamscutt River basin sediments 422	
resulting in different PyC catchment mean residence times (MRT) depending on active entry of 423	
PyCcontemporary (0-30 years before deposition)  424	
 425	

# F14Cmeasured
a) ƒcontemporary F14Ccontemporary

b) ƒpre-aged F14Cpre-aged 
Catchment MRTc) 

[years] 

1 0.826±0.043 0.00 0.982±0.008 1.00 0.826±0.05 1290±480 

2 0.826±0.043 0.10 0.982±0.008 0.90 0.808±0.05 1460±490 

3 0.826±0.043 0.20 0.982±0.008 0.80 0.787±0.05 1710±510 
a) Average F14C of BPCAs (1738-1872); b) Average atmospheric F14C in 1790±50 AD derived from Intcal1340-41 c) 
Uncertainties derived from atmospheric 14C concentrations and of BPCA 14C data 

 426	

Legacy of fossil fuel combustion in sedimentary deposits. Fuel 427	

consumption in U.S. started to change with the onset of industrialization, and 428	

this change is clearly reflected by the marked increase in PAH fluxes from the 429	

late 1800s onwards recorded in a high-resolution record from Pettaquamscutt 430	

River basin sediments 20 as well as in our 14C BPCA and PAH data (Figure 2). 431	

Assuming a constant age of biomass-derived PyC obtained from samples pre-432	

dating the industrialization it is possible to apply isotope mass balance 433	

calculations to retrieve the contribution from fossil fuels (Equations 1 & 2). We 434	

found concentrations of fossil fuel-derived PyC vary between 12 and 18% for 435	

BPCAs and between 80 and 93% for PAHs over this time interval. The latter of 436	

which is similar to recent findings by Jautzy, et al. 49. 437	

 438	
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 439	
Figure 2: Pettaquamscutt River basin. (left) PyC from combustion of fossil fuels increases in late 1800s in 440	
BPCAs and PAHs (vertical error bars indicate depth interval; horizontal error bar the analytical error) and 441	
corresponds to the (right) consumption of fossil fuels in U.S. (dashed line) and biofuel wood (dotted line).  442	
The declining contribution in both PyC markers from 1970s reflects the increasing usage of cleaner 443	
burning fuels as well as emission control. 444	
 445	

With respect to char and soot measured by BPCAs, the above estimates are 446	

similar to dissolved PyC in a Chinese river (15-23% PyCfossil fuel) but much lower 447	

than its particulate counterpart (~50% PyCfossil fuel) 61. The portion of fossil PyC 448	

in arctic surface sediments accounted for 80% 62, yet this study used a different 449	

method that is susceptible to measure lithogenic graphite as PyC 63. 450	

Surprisingly, the absolute quantities of BPCAs and PAHs differ by several 451	

orders of magnitude, yet both estimates of PyCfossil fuel follow a similar trend and 452	

parallel the proportional consumption of fossil fuels (coal, petroleum and natural 453	

gas) during the industrial era (Figure 2). We find divergence between the 454	

percent amounts of PyCfossil fuel and fuel consumption post-1970s due to 455	

increased combustion efficiency and stricter emission controls resulting in 456	

reduced production of soot particles 64. 457	

 458	

Thus, isotope mass balance-derived proportions of PyCfossil fuel based on both 459	

PAHs (binary mixture) and BPCAs (ternary mixture) trace the consumption of 460	



	 20	

fossil fuels throughout the industrial era. However, the proportion of fossil PyC 461	

in PAHs always is much larger than in BPCAs. Using BPCAs 14C records of 462	

‘bulk’ PyC reveals relatively uniform inputs and a time lag (‘pre-aging’) from the 463	

source of local biomass-derived PyC to the sink, whereas the amounts of fossil 464	

fuel-derived PyC change with time. There are two implications for this finding. 465	

First, fossil fuel consumption represents only a minor fraction (<20%) of the 466	

overall PyC burden in Pettaquamscutt River basin sediments as represented by 467	

BPCAs 19, 65. In contrast, pyrogenic PAHs show markedly different temporal 468	

behaviour and predominantly trace fossil fuel combustion processes. Second, 469	

fossil fuel-derived PyC record is defined by regional-scale processes, which 470	

implies this signal is carried by atmospheric transport. Previous studies have 471	

found that PAHs adsorb onto soot and exhibit atmospheric transport times of 472	

about 10 days 66-67. The Pettaquamscutt River catchment is located downwind 473	

of industrial centres 21, 68, and thus records the regional combustion activity 474	

through transport and deposition of atmospheric particulates.  475	

 476	

Siskiwit Lake. The sedimentary profile of BPCAs and PAHs 14C spans over the 477	

time interval from 1793 to 1954 AD, and is augmented by additional PAH data 478	

for four time points (1950-2000 AD) reported by Slater, et al. 30 (Figure 3). 479	

Concentrations of ‘bulk’ PyC (given by BPCAs) range from 0.85 to 0.93 g kg-1 480	

for BPCAs thus are similar to those for the Pettaquamscutt River basin. In 481	

contrast, maximum PAH concentrations (0.0013 g kg-1) between 1793 and 2000 482	

30 are considerably lower than those of the Pettaquamscutt basin (0.062 g kg-1). 483	

Thus, the PAH inventory in Siskwit Lake correspond to ~ 21% of the suburban 484	

catchment, highlighting the pristine location out of reach to centres of industrial 485	
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activity. BPCA 14C values are near constant between 1793 and 1871 (F14C of 486	

0.905±0.019) and decrease thereafter to F14C of 0.658±0.022 between 1926 487	

and 1954 (Table S2). The PAH 14C record shows a similar profile, with F14C of 488	

0.895±0.014 between 1798 and 1832, decreasing to 0.528±0.005 between 489	

1926 and 1954 (Figure 3, Table S3).  490	

 491	

The sampling location on Isle Royale within the Lake Superior, U.S. is ca. 55 492	

km from the nearest populated area 26. Locally, the catchment was extensively 493	

deforested by fishermen and mineworkers in the 19th century, the record of 494	

which is preserved in two sediment samples from 1793-1826 and 1837-1871 495	

AD. Large-scale forest fires cleared more than 50% of the forest area in 1847 496	

and roughly 80% in 1936 AD 69. Since 1940, Isle Royale has been a designated 497	

wilderness area, with near total restrictions on use of combustion engines.  498	

 499	

Adopting the same approach and assumptions used for the Pettaquamscutt 500	

River basin, we report a catchment MRT of 860±110 years for PyCpre-aged pool. 501	

Thus the lag time in Siskiwit Lake catchment is 630 years shorter than in 502	

Pettaquamscutt River basin. This implies more rapid transfers of PyC to its 503	

burial site. This difference may reflect contrasting residence times in soils 504	

and/or transport pathways but can also be linked to the shorter fire return 505	

interval, which here is only 50% of that in the Pettaquamscutt catchment.  506	
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 507	

Figure 3: PyC from biomass burning remains uniform in Siskiwit Lake sediments yet PyC from fossil fuel 508	
combustion adds additional carbon in mid-1900s, which reflects similar in BPCAs (left) and PAHs (right). 509	
Additional PAH data in blue and magenta were taken from Slater, et al. 30. 510	

 511	

In contrast to the suburban catchment, the Siskiwit Lake BPCA-based record of 512	

PyCfossil fuel begins later with a more abrupt change from 0.022 g kg-1 (1.1% of 513	

total PyC) in 1882 - 1915 AD to 0.198 g kg-1 (19.1%) for the interval 1926 - 1954 514	

AD, which is similar to that observed for Pettaquamscutt River basin for 515	

approximately the same period of time. Given the remote setting of Siskiwit 516	

Lake we infer that the fossil fuel-derived quantities of PyC predominantly 517	

derives from long-range atmospheric transport 67.  518	

 519	

In summary, the 14C records constructed in this study for two complementary 520	

groups of molecular markers of combustion (PAHs and BPCAs) provide novel 521	

constraints on the sources and transport pathways of PyC during the pre-522	

industrial and industrial era. Contrasts between urbanized (Pettaquamscutt 523	

River basin) and a remote, relatively pristine location (Siskiwit Lake) enable 524	

further insights to be gained on PyC sources and cycling. Surprisingly, these 525	
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different catchments receive similar quantities and sources of “bulk” PyC 526	

(reflected by BPCAs), with “pre-aged” PyCbiomass representing the dominant 527	

input to the sediments. The similar proportions of PyCfossil fuel estimated for both 528	

PAHs and BPCAs from isotopic mass balance suggests that (a) they are 529	

transported together (e.g., PAHs sorbed onto soot particles) via atmospheric 530	

processes 70, (b) that PyCfossil fuel comprises a minor component of “bulk PyC” in 531	

these sedimentary records, and (c) that the PAH component is predominantly 532	

derived from fossil fuels, confirming the decoupling between the precursors of 533	

combustion condensates and bulk PyC. These findings have implications for 534	

local vs. regional-scale assessments of combustion practices and their impact 535	

on biogeochemical cycles, as well as with respect to the sources and fate of 536	

persistent organic pollutants, and their relevance to environmental quality in 537	

watersheds. Furthermore, the erosional transport of PyC following a local fire 538	

event may be a prolonged temporal process lasting at least for decades and 539	

thus smoothing out pronounced signals in deposits at the ‘ultimate’ sites burial. 540	

This predominance of pre-aged PyC in aquatic sediments bears strongly on our 541	

understanding of the biogeochemical cycling of PyC on local to global scales.  542	
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 805	
Detailed Sampling and Sediment Dating Procedures.  806	
Four out of seven freeze-cores were selected for the compound-specific radiocarbon study 807	
based on their integrity and number of identifiable features on the X-radiographs. Each 0.5-cm 808	
sample (n = 554) was placed in a combusted glass-jar, freeze-dried and homogenized with a 809	
mortar and pestle.  Because the cores were aligned before sectioning, dried samples of 810	
equivalent depth could be combined and stored for the compound-specific 14C analyses. 811	
Sediment chronology calculations for the Pettaquamscutt River have been detailed elsewhere 1-812	
2. Briefly, 210Pb, 214Pb and 137Cs were measured in dry samples by direct g-counting using a high 813	
purity germanium detector. The constant rate of supply (CRS) 3 model was applied to the 814	
calculated excess 210Pb (210PbExcess = 210PbTotal – 214Pb) and the results obtained were compared 815	
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to an independent varve chronology. The good age agreement between the CRS model and the 816	
varve counts allowed the extension of the sediment chronology beyond the limit of the 210Pb 817	
method (100-150 years). Because the depth-age evaluation was performed for a single core, 818	
137Cs measurements were conducted on samples from the composite horizons to verify if the 819	
stratigraphic resolution had been preserved.  The results obtained show a 1-cm shift in the 820	
depth of maximum fallout of 137Cs, from 18.25 cm to 19.25 cm (Figure 1a), corresponding to a 821	
2-year difference in chronology between the combined cores and the original high-resolution 822	
record of PAHs 4. This difference is within the range of resolution of 210Pb-ages, hence no 823	
correction was applied to account for this small shift. 824	
 825	
Sediments collected in Siskiwit Lake were also dated by 210Pb.  Excess 210Pb was measured at 826	
2-cm intervals and showed that 210Pb supported levels were reached at approximately 10 cm for 827	
all seven cores (Figure 1b). Even though an apparently intact sediment-water interface was 828	
observed at the time of collection, 210Pb measurements revealed that the upper portion of the 829	
sediment cores had been lost during sampling. A plot of the natural logarithm of the excess 830	
210Pb against depth (cm) for one of the cores showed no obvious slope inflections characteristic 831	
of a change in sedimentation rate or the surficial mixing previously reported by  5. Therefore, we 832	
used the constant initial concentration (CIC) model 6 to estimate that the top 8-cm of sediment 833	
of that core had been deposited over 43 years. Neither compaction nor sediment focusing were 834	
taken into account during these calculations. However, the calculated sedimentation rate (0.18 835	
cm yr-1) was in close agreement with values reported by McVeety 5, 7 (0.19 cm yr-1) for that 836	
location.  We then assumed that 210Pb achieved supported levels within 100 years of deposition 837	
and reasoned that because these levels were observed 10 cm from the top, the surficial layer of 838	
the sediment column was dated at 1954. As a result, we estimated that approximately 44 years 839	
(8-cm) of the sediment record were not retrieved by the gravity coring procedure. Because 210Pb 840	
supported levels were reached at approximately 10 cm for all seven cores, we presumed that a 841	
comparable amount of sediment was lost from the upper most portion of all seven cores. 842	

 843	
 844	
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Figure S1: (a) 137Cs activity in the combined horizons differs from that of the original core by 845	
only 1-cm, or approximately 2 years; (b) Total 210Pb activity in seven cores collected in Siskiwit 846	
Lake. Supported levels were achieved at 10-cm for all cores. 847	
 848	
 849	
 850	
Determining the pre-aged pyrogenic carbon fraction 851	
 852	
The conventional binary source apportionment approach using radiocarbon (14C) 8 differentiates 853	
between biomass burning and fossil fuel combustion in environmental samples.  However, 854	
similar to Douglas, et al. 9, we found 14C values of benzene polycarboxylic acids (BPCAs) 855	
derived from pyrogenic carbon (PyC) were at least about 15 % lower than the corresponding 856	
atmospheric 14C concentrations in the pre-industrial age. This finding cannot be explained with 857	
the combustion of fossil fuels. A detailed record on the consumption of fossil fuels in the Unites 858	
States (late 1600s to 2000) reveals that biomass was used for combustion 10 before the 1840s. 859	
Thus, the offset between the BPCA 14C data and the corresponding atmospheric 14C data 11-12 860	
suggests the two pool assumption is not valid, and requires a different interpretation. Here we 861	
suggest that biomass-derived PyC is aging by temporary storage in catchment soils en-route to 862	
deposition in sediments. To account for this lag time, we used the pre-industrial samples of our 863	
archives from prior to the late 1800s.   864	
 865	
 For Pettaquamscutt River sediments, the average F14C value was 0.826±0.043 in the pre-866	
industrial era.  If 100 % of biomass-derived PyC would be pre-aged before being deposited in 867	
sediments, then this pool would be have a mean residence time in the catchment of 1200 14C 868	
years. There is certain chance that a portion of PyC produced during a fire is quickly transported 869	
to its burial site in aquatic sediments. This fraction carries the average 14C signatures of modern 870	
biomass at the time of deposition (> 30 years) 13. Here we argue that the majority of PyC is 871	
older and is supplied on centurial scale to millennial time scales (see Figure S1). However, the 872	
contribution of PyC from contemporary sources might vary over time. We introduce an 873	
uncertainty of ±10% for natural variability, such as, flood events, which enhance soil erosion.  874	
We found that the scenarios 100, 90, 80 % pool size explained 98 % and more of the total 875	
biomass-derived PyC (Figure S1). Thus we rather report a conservative age of the ‘pre-aged’ 876	
PyC fraction (90±10 %) with 1423±231 years for the Pettaquamscutt River catchment. 877	
 878	
Surprisingly, the ‘pre-aged’ PyC 14C signature remained constant in deposits from the pre-879	
industrial era in the Pettaquamscutt River basin and Siskiwit Lake, U.S. However, the two 880	
catchments have different ages. Thus we concluded that the ‘pre-aged’ fraction of PyC provides 881	
information about certain catchment characteristics that might be similar to reservoir age offsets 882	
and allow here to retrieve the fossil fuel derived- PyC fraction during the industrialization. This 883	
implies that local land-use changes may not be instantly recorded in high-temporal sedimentary 884	
sequences. The reconstruction of combustion history during industrialization using the refined 885	
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source apportionment concept requires a pre-industrial reference sample from the same 886	
catchment. 887	
 888	
 889	
 890	

 891	
Figure	S2:	Visualization	of	the	different	pool	sizes	of	‘pre-aged'	PyC	in	the	Pettaquamscutt	River	892	
sediments	from	the	pre-industrial	age.	The	illustrated	uncertainties	are	empirical	errors	893	

 894	
 895	
 896	
 897	
 898	
Table S1: Individual data from Pettaquamscutt River sediments for pre-aged, contemporary and 899	
fossil fuel-derived PyC 900	
 901	

Age range Depth 
interval Benzene-[hexa+penta]-carboxylic acids derived from PyC 

[years AD] [cm] [g kg-1] % contemporary % pre-aged % fossil fuel 

1983-1998 0 - 9.5 0.347 8.8 79.6 11.6 

1962-1981 10 - 19 0.457 8.4 75.5 16.1 

1932-1961 19.5 - 29 0.633 8.3 74.6 17.1 

1898-1930 29.5 - 36 0.841 8.2 73.9 17.9 
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1874-1897 36.5 - 42 0.763 8.7 77.9 13.4 

1843-1872 42.5 - 49 0.826 10.0 90.0 0.0 

1770-1841 49.5 - 64 0.680 10.0 90.0 0.0 

1738-1766 64.5 - 70 0.694 10.0 90.0 0.0 

 902	
 903	
 904	
 905	
 906	
 907	
 908	
 909	
 910	
 911	
 912	
 913	
Table S2: Results of BPCAs derived from PyC in Siskiwit Lake sediments and the relative 914	
contribution of contemporary, pre-aged and fossil fuel derived PyC 915	
 916	

Age range Depth 
interval TOC Benzene-[penta+hexa]-carboxylic acids derived from PyC 

 [years AD]  [cm] [%] [g kg-1] F14C %   
contemporary 

%                                     
pre-aged 

%                  
fossil fuels 

1926-1954 2-4 8.8±0.01 0.998±0.096 0.658±0.022 8.0 73.0 19.0 

1882-1915 8-10 8.3±0.02 0.800±0.013 0.881±0.033 10.0 88.8 1.3 

1837-1871 16-18 7.5±0.03 0.763±0.024 0.918±0.034 10.4 89.6 0.0 

1793-1826 24-26 7.9±0.09 0.755±0.002 0.892±0.037 10.5 89.5 0.0 

 917	
 918	
 919	
 920	
 921	
 922	
Table S3: TOC and PAHs data for Siskiwit Lake sediments in three depth intervals 923	
 924	

Age range Depth 
interval TOC PAHs * 

[years AD] [cm]   [%] C/N ratio δ13C [g kg-1] F14C 

1932-1954 0-4 8.8±0.1 18.6 -25.4 0.0004 0.528±0.005 

1887-1921 6-12 8.3±0.2 17.6 -23.7 0.0002 0.733±0.008 

1798-1832 22-28 8.2±0.3 17.2 -22.4 0.0001 0.895±0.139 

* PAHs = sum of 13: Phen, Anth, Fla, Py, BaA, Chry, BbF, BjF, BkF, BaP, BeP, IP and BghiP 
 925	
 926	
 927	
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