288 research outputs found

    Superconducting Coherence and the Helicity Modulus in Vortex Line Models

    Full text link
    We show how commonly used models for vortex lines in three dimensional superconductors can be modified to include k=0 excitations. We construct a formula for the k=0 helicity modulus in terms of fluctuations in the projected area of vortex loops. This gives a convenient criterion for the presence of superconducting coherence. We also present Monte Carlo simulations of a continuum vortex line model for the melting of the Abrikosov vortex lattice in pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps

    The role of point-like topological excitations at criticality: from vortices to global monopoles

    Get PDF
    We determine the detailed thermodynamic behavior of vortices in the O(2) scalar model in 2D and of global monopoles in the O(3) model in 3D. We construct new numerical techniques, based on cluster decomposition algorithms, to analyze the point defect configurations. We find that these criteria produce results for the Kosterlitz-Thouless temperature in agreement with a topological transition between a polarizable insulator and a conductor, at which free topological charges appear in the system. For global monopoles we find no pair unbinding transition. Instead a transition to a dense state where pairs are no longer distinguishable occurs at T<Tc, without leading to long range disorder. We produce both extensive numerical evidence of this behavior as well as a semi-analytic treatment of the partition function for defects. General expectations for N=D>3 are drawn, based on the observed behavior.Comment: 14 pages, REVTEX, 13 eps figure

    Critical behavior of Ginzburg-Landau model coupled to massless Dirac fermions

    Full text link
    We point out interesting effects of additional massless Dirac fermions with N_F colors upon the critical behavior of the Ginzburg-Landau model. For increasing N_F, the model is driven into the type II regime of superconductivity. The critical exponents are given as a function of N_F.Comment: RevTex4, 4 pages, 1 figure; author information and latest update to this paper at http://www.physik.fu-berlin.de/~kleinert/institution.html; version 2: new references and comments on chiral symmetry breaking adde

    A vortex description of the first-order phase transition in type-I superconductors

    Full text link
    Using both analytical arguments and detailed numerical evidence we show that the first order transition in the type-I 2D Abelian Higgs model can be understood in terms of the statistical mechanics of vortices, which behave in this regime as an ensemble of attractive particles. The well-known instabilities of such ensembles are shown to be connected to the process of phase nucleation. By characterizing the equation of state for the vortex ensemble we show that the temperature for the onset of a clustering instability is in qualitative agreement with the critical temperature. Below this point the vortex ensemble collapses to a single cluster, which is a non-extensive phase, and disappears in the absence of net topological charge. The vortex description provides a detailed mechanism for the first order transition, which applies at arbitrarily weak type-I and is gauge invariant unlike the usual field-theoretic considerations, which rely on asymptotically large gauge coupling.Comment: 4 pages, 6 figures, uses RevTex. Additional references added, some small corrections to the tex

    Numerical study of duality and universality in a frozen superconductor

    Full text link
    The three-dimensional integer-valued lattice gauge theory, which is also known as a "frozen superconductor," can be obtained as a certain limit of the Ginzburg-Landau theory of superconductivity, and is believed to be in the same universality class. It is also exactly dual to the three-dimensional XY model. We use this duality to demonstrate the practicality of recently developed methods for studying topological defects, and investigate the critical behavior of the phase transition using numerical Monte Carlo simulations of both theories. On the gauge theory side, we concentrate on the vortex tension and the penetration depth, which map onto the correlation lengths of the order parameter and the Noether current in the XY model, respectively. We show how these quantities behave near the critical point, and that the penetration depth exhibits critical scaling only very close to the transition point. This may explain the failure of superconductor experiments to see the inverted XY model scaling.Comment: 17 pages, 18 figures. Updated to match the version published in PRB (http://link.aps.org/abstract/PRB/v67/e014525) on 27 Jan 200

    QED_3 theory of underdoped high temperature superconductors II: the quantum critical point

    Full text link
    We study the effect of gapless quasiparticles in a d-wave superconductor on the T=0 end point of the Kosterlitz-Thouless transition line in underdoped high-temperature superconductors. Starting from a lattice model that has gapless fermions coupled to 3D XY phase fluctuations of the superconducting order parameter, we propose a continuum field theory to describe the quantum phase transition between the d-wave superconductor and the spin-density-wave insulator. Without fermions the theory reduces to the standard Higgs scalar electrodynamics (HSE), which is known to have the critical point in the inverted XY universality class. Extending the renormalization group calculation for the HSE to include the coupling to fermions, we find that the qualitative effect of fermions is to increase the portion of the space of coupling constants where the transition is discontinuous. The critical exponents at the stable fixed point vary continuously with the number of fermion fields NN, and we estimate the correlation length exponent (nu = 0.65) and the vortex field anomalous dimension(eta_Phi=-0.48) at the quantum critical point for the physical case N=2. The stable critical point in the theory disappears for the number of Dirac fermions N > N_c, with N_c ~ 3.4 in our approximation. We discuss the relationship between the superconducting and the chiral (SDW) transitions, and point to some interesting parallels between our theory and the Thirring model.Comment: 13 pages including figures in tex

    Anomalous dimensions and phase transitions in superconductors

    Full text link
    The anomalous scaling in the Ginzburg-Landau model for the superconducting phase transition is studied. It is argued that the negative sign of the η\eta exponent is a consequence of a special singular behavior in momentum space. The negative sign of η\eta comes from the divergence of the critical correlation function at finite distances. This behavior implies the existence of a Lifshitz point in the phase diagram. The anomalous scaling of the vector potential is also discussed. It is shown that the anomalous dimension of the vector potential ηA=4d\eta_A=4-d has important consequences for the critical dynamics in superconductors. The frequency-dependent conductivity is shown to obey the scaling σ(ω)ξz2\sigma(\omega)\sim\xi^{z-2}. The prediction z3.7z\approx 3.7 is obtained from existing Monte Carlo data.Comment: RevTex, 20 pages, no figures; small changes; version accepted in PR

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore