280 research outputs found

    Finite strain Landau theory of high pressure phase transformations

    Full text link
    The properties of materials near structural phase transitions are often successfully described in the framework of Landau theory. While the focus is usually on phase transitions, which are induced by temperature changes approaching a critical temperature T-c, here we will discuss structural phase transformations driven by high hydrostatic pressure, as they are of major importance for understanding processes in the interior of the earth. Since at very high pressures the deformations of a material are generally very large, one needs to apply a fully nonlinear description taking physical as well as geometrical nonlinearities (finite strains) into account. In particular it is necessary to retune conventional Landau theory to describe such phase transitions. In Troster et al (2002 Phys. Rev. Lett. 88 55503) we constructed a Landau-type free energy based on an order parameter part, an order parameter-(finite) strain coupling and a nonlinear elastic term. This model provides an excellent and efficient framework for the systematic study of phase transformations for a wide range of materials up to ultrahigh pressures

    Compressibility systematics of calcite-type borates : An experimental and theoretical structural study on ABO3 (A = Al, Sc, Fe and In)

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C , copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp4124259The structural properties of calcite-type orthoborates ABO(3) (A = Al, Fe, Sc, and In) have been investigated at high pressures up to 32 GPa. They were studied experimentally using synchrotron powder X-ray diffraction and theoretically by means of ab initio total-energy calculations. We found that the calcite-type structure remains stable up to the highest pressure explored in the four studied compounds. Experimental and calculated static geometries (unit-cell parameters and internal coordinates), bulk moduli, and their pressure derivatives are in good agreement. The compressibility along the c axis is roughly three times that along the a axis. Our data clearly indicate that the compressibility of borates is dominated by that of the [AO(6)] octahedral group and depends on the size of the trivalent A cations. An analysis of the relationship between isomorphic borates and carbonates is also presented, which points to the potentiality of considering borates as chemical analogues of the carbonate mineral family.This study was supported by the Spanish government MEC under Grant Nos.: MAT2010-21270-C04-01/03/04 and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045), by Generalitat Valenciana (GVA-ACOMP-2013-1012), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). We thank ALBA and Diamond synchrotrons for providing beamtime for the XRD experiments. A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. and B.G.-D. acknowledge Juan de la Cierva fellowship and FPI programs for financial support. We are gratefully indebted to Dr. Capponi and Dr. Diehl for supplying us single crystals of AlBO3 and FeBO3, respectively.Santamaría Pérez, D.; Gomis Hilario, O.; Sans, JÁ.; Ortiz, HM.; Vegas, Á.; Errandonea, D.; Ruiz-Fuertes, J.... (2014). Compressibility systematics of calcite-type borates : An experimental and theoretical structural study on ABO3 (A = Al, Sc, Fe and In). Journal of Physical Chemistry C. 118(8):4354-4361. https://doi.org/10.1021/jp4124259S43544361118

    The atmospheric science of JEM-EUSO

    Get PDF
    An Atmospheric Monitoring System (AMS) is critical suite of instruments for JEM-EUSO whose aim is to detect Ultra-High Energy Cosmic Rays (UHECR) and (EHECR) from Space. The AMS comprises an advanced space qualified infrared camera and a LIDAR with cross checks provided by a ground-based and airborne Global Light System Stations. Moreover the Slow Data Mode of JEM-EUSO has been proven crucial for the UV background analysis by comparing the UV and IR images. It will also contribute to the investigation of atmospheric effects seen in the data from the GLS or even to our understanding of Space Weather

    Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp401524sWe have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. When the initial orthorhombic Pnma Ag2CrO4 structure (phase I) is compressed up to 4.5 GPa, a previously undetected phase (phase II) has been observed with a 0.95% volume collapse. The structure of phase II can be indexed to a similar orthorhombic cell as phase I, and the transition can be considered to be an isostructural transition. This collapse is mainly due to the drastic contraction of the a axis (1.3%). A second phase transition to phase III occurs at 13 GPa to a structure not yet determined. First-principles calculations have been unable to reproduce the isostructural phase transition, but they propose the stabilization of a spinel-type structure at 11 GPa. This phase is not detected in experiments probably because of the presence of kinetic barriers. Experiments and calculations therefore seem to indicate that a new structural and electronic description is required to model the properties of silver chromate.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ1551 4161893), by the MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). A.M. and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva Fellowship Program for its financial support. Diamond and ALBA Synchrotron Light Sources are acknowledged for provisions of beam time. We also thank Drs. Peral, Popescu, and Fauth for technical support.Santamaría Pérez, D.; Bandiello, E.; Errandonea, D.; Ruiz-Fuertes, J.; Gomis Hilario, O.; Sans, JÁ.; Manjón Herrera, FJ.... (2013). Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties. Journal of Physical Chemistry C. 117(23):12239-12248. https://doi.org/10.1021/jp401524sS12239122481172

    Anisotropy effects on the plasmonic response of nanoparticle dimers

    Get PDF
    We present an ab initio study of the anisotropy and atomic relaxation effects on the optical properties of nanoparticle dimers. Special emphasis is placed on the hybridization process of localized surface plasmons, plasmon-mediated photoinduced currents, and electric-field enhancement in the dimer junction. We show that there is a critical range of separations between the clusters (0.1–0.5 nm) in which the detailed atomic structure in the junction and the relative orientation of the nanoparticles have to be considered to obtain quantitative predictions for realistic nanoplasmonic devices. It is worth noting that this regime is characterized by the emergence of electron tunneling as a response to the driven electromagnetic field. The orientation of the particles not only modifies the attainable electric field enhancement but can lead to qualitative changes in the optical absorption spectrum of the system.We thankfully acknowledge financial support by the European Research Council (ERC-2010-AdG Proposal No. 267374 and ERC-2011-AdG Proposal No. 290891), the Spanish Government (Grants MAT2011-28581-C02-01, FIS2013-46159-C3-1-P, and MAT2014-53432-C5-5-R), and the Basque Country Government (Grupos Consolidados IT-578-13).Peer Reviewe

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Molecular basis of targeted therapy in T/NKcell lymphoma/leukemia: A comprehensive genomic and immunohistochemical analysis of a panel of 33 cell lines

    Get PDF
    T and NK-cell lymphoma is a collection of aggressive disorders with unfavorable outcome, in which targeted treatments are still at a preliminary phase. To gain deeper insights into the deregulated mechanisms promoting this disease, we searched a panel of 31 representative T-cell and 2 NK-cell lymphoma/leukemia cell lines for predictive markers of response to targeted therapy. To this end, targeted sequencing was performed alongside the expression of specific biomarkers corresponding to potentially activated survival pathways. The study identified TP53, NOTCH1 and DNMT3A as the most frequently mutated genes. We also found common alterations in JAK/STAT and epigenetic pathways. Immunohistochemical analysis showed nuclear accumulation of MYC (in 85% of the cases), NFKB (62%), p-STAT (44%) and p-MAPK (30%). This panel of cell lines captures the complexity of T/NK-cell lymphoproliferative processes samples, with the partial exception of AITL cases. Integrated mutational and immunohistochemical analysis shows that mutational changes cannot fully explain the activation of key survival pathways and the resulting phenotypes. The combined integration of mutational/expression changes forms a useful tool with which new compounds may be assayed

    Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy \u1d6fe rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment’s individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different \u1d6fe-ray instruments
    corecore