64 research outputs found

    Contribution of water-limited ecoregions to their own supply of rainfall

    Get PDF
    The occurrence of wet and dry growing seasons in water-limited regions remains poorly understood, partly due to the complex role that these regions play in the genesis of their own rainfall. This limits the predictability of global carbon and water budgets, and hinders the regional management of naturalresources. Using novel satellite observations and atmospheric trajectory modelling, we unravel the origin and immediate drivers of growing-season precipitation, and the extent to which ecoregions themselves contribute to their own supply of rainfall. Results show that persistent anomalies in growing-season precipitation—and subsequent biomass anomalies—are caused by a complex interplay of land and ocean evaporation, air circulation and local atmospheric stability changes. For regions such as the Kalahari and Australia, the volumes of moisture recycling decline in dry years, providing a positive feedback that intensifies dry conditions. However, recycling ratios increase up to40%, pointing to the crucial role of these regions in generating their own supply of rainfall; transpiration in periods of water stress allows vegetation to partly offset the decrease in regional precipitation. Findings highlight the need to adequately represent vegetation–atmosphere feedbacks in models to predict biomass changes and to simulate the fate of water-limited regions in our warming climate

    Filtration artefacts in bacterial community composition can affect the outcome of dissolved organic matter biolability assays

    Get PDF
    Inland waters are large contributors to global carbon dioxide (CO2) emissions, in part due to the vulnerability of dissolved organic matter (DOM) to microbial decomposition and respiration to CO2 during transport through aquatic systems. To assess the degree of this vulnerability, aquatic DOM is often incubated in standardized biolability assays. These assays isolate the dissolved fraction of aquatic OM by size filtration prior to incubation. We test whether this size selection has an impact on the bacterial community composition and the consequent dynamics of DOM degradation using three different filtration strategies: 0.2 μm (filtered and inoculated), 0.7 μm (generally the most common DOM filter size) and 106 μm (unfiltered). We found that bacterial community composition, based on 16S rRNA amplicon sequencing, was significantly affected by the different filter sizes. At the same time, the filtration strategy also affected the DOM degradation dynamics, including the δ13C signature. However, the dynamics of these two responses were decoupled, suggesting that filtration primarily influences biolability assays through bacterial abundance and the presence of their associated predators. By the end of the 41-day incubations all treatments tended to converge on a common total DOM biolability level, with the 0.7 μm filtered incubations reaching this point the quickest. These results suggest that assays used to assess the total biolability of aquatic DOM should last long enough to remove filtration artefacts in the microbial population. Filtration strategy should also be taken into account when comparing results across biolability assays

    What eddy-covariance measurements tell us about prior land flux errors in CO2-flux inversion schemes

    Get PDF
    0.2 after 200 km). Separating out the plant functional types did not increase the spatial correlations, except for the deciduous broad-leaved forests. Using the statistics of the flux measurements as a proxy for the statistics of the prior flux errors was shown not to be a viable approach. A statistical model allowed us to upscale the site-level flux error statistics to the coarser spatial and temporal resolutions used in regional or global models. This approach allowed us to quantify how aggregation reduces error variances, while increasing correlations. As an example, for a typical inversion of grid point (300 km × 300 km) monthly fluxes, we found that the prior flux error follows an approximate e-folding correlation length of 500 km only, with correlations from one month to the next as large as 0.6

    CO2: An operational anthropogenic CO2 emissions monitoring & verification support capacity

    Get PDF
    This is the third report form the CO2 Monitoring Task Force on the multiple input streams of in-situ observations that are requirement for the Copernicus CO2 Monitoring and Verification Support capacity to: (i) calibrated and validate the space component, (ii) assimilate data in the models and integrate information in the core of the system, and (iii) evaluate the output generated by the system for its end users. The availability of sustained in situ networks is currently a significant factor of risk that needs to be mitigated to establish a European CO 2 support capacity which is fit-for-purpose. The current status of existing networks may be the source of large uncertainties in anthropogenic CO2 emission estimates as well as limited capability in meeting the requirements for country, large city and point source scale assessments. This conclusion results from a risk analysis formulated for four scenarios: 1) maintaining the status quo, 2) assuring sustained funding for the status quo, 3) enhancing network capabilities at European scale with sustained funding and 4) with a significantly improved in situ infrastructure in Europe and beyond. This report substantiates the multifaceted needs and requirements of the European CO2 support capacity with respect to in situ observations. The analysis concerns all core elements of the envisaged integrated system with a particular attention on the impact of such observations in achieving the proposed objectives. The specific needs for the validation of products delivered by the space component that is, the Copernicus Sentinels CO2 monitoring constellation, are addressed as another prerequisite for the success of the CO2 support capacity. This European asset will represent a significant contribution to the virtual constellation proposed by the Committee on Earth Observation Satellites (CEOS) and, accordingly, complementary requirements are elaborated in that international frame. The report highlights that although high measurement standards are present within existing networks such as ICOS, in the context of the needs for targeted in situ data for the realization of the operational system, these data are not fully fit-for-purpose. A fundamental prerequisite is to have a good geographical coverage over Europe for evaluating the data assimilation and modeling system over a large variety of environmental conditions such as, for instance, urban areas, agricultural regions, forested zones and industrial complexes. The in situ observations need to be extended under a coordinated European lead with sustained infrastructure and targeted additional and maintained long-term funding. It has been clearly understood from the onset that the international dimension of the European CO2 support capacity would be critical and that these aspects should be developed in parallel to, and in synergy with the definition and implementation of a European contributing system. It was also understood that this international dimension had both strategic, policy relevant and technical dimensions and the Commission and the relevant European institutional partners have started since several years to engage both bilaterally and multilaterally with the relevant stakeholders and counterparts to develop these relations. Specifically, CEOS will undertake, over the next few years, dedicated preparatory work in a coordinated international context, to provide cumulative added value to the specific programmatic activities of their member agencies. Concerted efforts have already begun in the context of the European Commission's Chairmanship of CEOS in 2018. It is recognized in the context of the European efforts, and increasingly by our international counterparts that a broad and holistic system approach is required to address the requirements which are represented by the climate policy, of which the satellite component, whilst important, cannot effectively be developed in isolation. This system indeed includes the satellite observing capability but in addition, the required modelling component and data integration elements, prior information, ancillary data and in situ observations delivered by essential networks. Acknowledging the need for an efficient coordination at international level for instance via the Global Atmosphere Watch programme of the World Meteorological Organisation is a key towards a successful implementation of appropriate actions to ensure the sustainability of essential networks, to enhance current network capabilities with new observations and to propose adequate governance schemes. Such actions to mitigate current network limitations are deemed critical to implementing the Copernicus CO 2 Monitoring & Verification Support capacity in its full strength.JRC.D.6-Knowledge for Sustainable Development and Food Securit

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    The consolidated European synthesis of CO2emissions and removals for the European Union and United Kingdom : 1990-2018

    Get PDF
    Acknowledgements FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Philippe Ciais acknowledges the support of the European Research Council Synergy project SyG-2013-610028 IMBALANCE-P and from the ANR CLAND Convergence Institute. We acknowledge the work of the entire EDGAR group (Marilena Muntean, Diego Guizzardi, Edwin Schaaf and Jos Olivier). We acknowledge Stephen Sitch and the authors of the DGVMs TRENDY v7 ensemble models for providing us with the data. Financial support This research has been supported by the H2020 European Research Council (grant no. 776810).Peer reviewedPublisher PD

    Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes

    Full text link
    Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions

    Modeled microbial dynamics explain the apparent temperature sensitivity of wetland methane emissions

    Get PDF
    Methane emissions from natural wetlands tend to increase with temperature and therefore may lead to a positive feedback under future climate change. However, their temperature response includes confounding factors and appears to differ on different time scales. Observed methane emissions depend strongly on temperature on a seasonal basis, but if the annual mean emissions are compared between sites, there is only a small temperature effect. We hypothesize that microbial dynamics are a major driver of the seasonal cycle and that they can explain this apparent discrepancy. We introduce a relatively simple model of methanogenic growth and dormancy into a wetland methane scheme that is used in an Earth system model. We show that this addition is sufficient to reproduce the observed seasonal dynamics of methane emissions in fully saturated wetland sites, at the same time as reproducing the annual mean emissions. We find that a more complex scheme used in recent Earth system models does not add predictive power. The sites used span a range of climatic conditions, with the majority in high latitudes. The difference in apparent temperature sensitivity seasonally versus spatially cannot be recreated by the non‐microbial schemes tested. We therefore conclude that microbial dynamics are a strong candidate to be driving the seasonal cycle of wetland methane emissions. We quantify longer‐term temperature sensitivity using this scheme and show that it gives approximately a 12% increase in emissions per degree of warming globally. This is in addition to any hydrological changes, which could also impact future methane emissions

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    corecore