92 research outputs found
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Search for gravitational-wave bursts in the first year of the fifth LIGO science run
We present the results obtained from an all-sky search for gravitational-wave
(GW) bursts in the 64-2000 Hz frequency range in data collected by the LIGO
detectors during the first year (November 2005 - November 2006) of their fifth
science run. The total analyzed livetime was 268.6 days. Multiple hierarchical
data analysis methods were invoked in this search. The overall sensitivity
expressed in terms of the root-sum-square (rss) strain amplitude h_{rss} for
gravitational-wave bursts with various morphologies was in the range of 6 times
10^{-22} Hz^{-1/2} to a few times 10^{-21} Hz^{-1/2}. No GW signals were
observed and a frequentist upper limit of 3.6 events per year on the rate of
strong GW bursts was placed at the 90% confidence level. As in our previous
searches, we also combined this rate limit with the detection efficiency for
selected waveform morphologies to obtain event rate versus strength exclusion
curves. In sensitivity, these exclusion curves are the most stringent to date.Comment: v3: various figure and text edits; submitted to PRD; 26 page
Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data
According to general relativity a perturbed black hole will settle to a
stationary configuration by the emission of gravitational radiation. Such a
perturbation will occur, for example, in the coalescence of a black hole
binary, following their inspiral and subsequent merger. At late times the
waveform is a superposition of quasi-normal modes, which we refer to as the
ringdown. The dominant mode is expected to be the fundamental mode, l=m=2.
Since this is a well-known waveform, matched filtering can be implemented to
search for this signal using LIGO data. We present a search for gravitational
waves from black hole ringdowns in the fourth LIGO science run S4, during which
LIGO was sensitive to the dominant mode of perturbed black holes with masses in
the range of 10 Msun to 500 Msun, the regime of intermediate-mass black holes,
to distances up to 300 Mpc. We present a search for gravitational waves from
black hole ringdowns using data from S4. No gravitational wave candidates were
found; we place a 90%-confidence upper limit on the rate of ringdowns from
black holes with mass between 85 Msun and 390 Msun in the local universe,
assuming a uniform distribution of sources, of 3.2 x 10^{-5} yr^{-1} Mpc^{-3} =
1.6 x 10^{-3}yr^{-1} L_{10}^{-1}, where L_{10} is 10^{10} times the solar
blue-light luminosity.Comment: 8 pages, 6 figure
The present gravitational wave detection effort
Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85430/1/jpconf10_203_012002.pd
Search for High Frequency Gravitational Wave Bursts in the First Calendar Year of LIGO's Fifth Science Run
We present an all-sky search for gravitational waves in the frequency range 1
to 6 kHz during the first calendar year of LIGO's fifth science run. This is
the first untriggered LIGO burst analysis to be conducted above 3 kHz. We
discuss the unique properties of interferometric data in this regime. 161.3
days of triple-coincident data were analyzed. No gravitational events above
threshold were observed and a frequentist upper limit of 5.4 events per year on
the rate of strong gravitational wave bursts was placed at a 90% confidence
level. Implications for specific theoretical models of gravitational wave
emission are also discussed.Comment: 13 pages, accepted for publication in Physical Review
All-sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data
We report on an all-sky search for periodic gravitational waves in the
frequency band 50-800 Hz and with the frequency time derivative in the range of
0 through -6e-9 Hz/s. Such a signal could be produced by a nearby spinning and
slightly non-axisymmetric isolated neutron star in our galaxy. After recent
improvements in the search program that yielded a 10x increase in computational
efficiency, we have searched in two years of data collected during LIGO's fifth
science run and have obtained the most sensitive all-sky upper limits on
gravitational wave strain to date. Near 150 Hz our upper limit on worst-case
linearly polarized strain amplitude is 1e-24, while at the high end of
our frequency range we achieve a worst-case upper limit of 3.8e-24 for all
polarizations and sky locations. These results constitute a factor of two
improvement upon previously published data. A new detection pipeline utilizing
a Loosely Coherent algorithm was able to follow up weaker outliers, increasing
the volume of space where signals can be detected by a factor of 10, but has
not revealed any gravitational wave signals. The pipeline has been tested for
robustness with respect to deviations from the model of an isolated neutron
star, such as caused by a low-mass or long-period binary companion.Comment: 18 page
Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO's Sixth and Virgo's Second and Third Science Runs
We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for low-mass compact binary coalescence (CBC) searches during LIGO's sixth science run and Virgo's second and third science runs. We present strain noise power spectral densities (PSDs) which are representative of the typical performance achieved by the detectors in these science runs. The data presented here and in the accompanying web-accessible data files are intended to be released to the public as a summary of detector performance for low-mass CBC searches during S6 and VSR2-3
- …
