962 research outputs found
Conformally Invariant Operators via Curved Casimirs: Examples
We discuss a general scheme for a construction of linear conformally
invariant differential operators from curved Casimir operators; we then
explicitly carry this out for several examples. Apart from demonstrating the
efficacy of the approach via curved Casimirs, this shows that this method
applies both in regular and in singular infinitesimal character, and also that
it can be used to construct standard as well as non--standard operators. The
examples treated include conformally invariant operators with leading term, in
one case, a square of the Laplacian, and in another case, a cube of the
Laplacian.Comment: AMSLaTeX, 16 pages, v2: minor changes, final version to appear in
Pure Appl. Math.
An analysis of interplanetary solar radio emissions associated with a coronal mass ejection
Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma
that may cause severe geomagnetic storms if Earth-directed. Here we report a
rare instance with comprehensive in situ and remote sensing observa- tions of a
CME combining white-light, radio, and plasma measurements from four different
vantage points. For the first time, we have successfully applied a radio
direction-finding technique to an interplanetary type II burst detected by two
identical widely separated radio receivers. The derived locations of the type
II and type III bursts are in general agreement with the white light CME recon-
struction. We find that the radio emission arises from the flanks of the CME,
and are most likely associated with the CME-driven shock. Our work demon-
strates the complementarity between radio triangulation and 3D reconstruction
techniques for space weather applications
Alternativity and reciprocity in the Cayley-Dickson algebra
We calculate the eigenvalue \rho of the multiplication mapping R on the
Cayley-Dickson algebra A_n. If the element in A_n is composed of a pair of
alternative elements in A_{n-1}, half the eigenvectors of R in A_n are still
eigenvectors in the subspace which is isomorphic to A_{n-1}.
The invariant under the reciprocal transformation A_n \times A_{n} \ni (x,y)
-> (-y,x) plays a fundamental role in simplifying the functional form of \rho.
If some physical field can be identified with the eigenspace of R, with an
injective map from the field to a scalar quantity (such as a mass) m, then
there is a one-to-one map \pi: m \mapsto \rho. As an example, the electro-weak
gauge field can be regarded as the eigenspace of R, where \pi implies that the
W-boson mass is less than the Z-boson mass, as in the standard model.Comment: To be published in J. Phys. A: Mathematical and Genera
Molecular basis of FIR-mediated c-myc transcriptional control
The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455
Normative references to non-legally binding instruments in national space laws : A risk-benefit analysis in the context of domestic and public international law
Abstract available: http://iafastro.directory/iac/paper/id/48124/abstract-pdf/IAC-18,E7,4,6,x48124.brief.pdf?2018-03-24.21:42:37Peer reviewe
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Turbulence Heating ObserveR – satellite mission proposal
The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’. THOR has been selected by European Space Agency (ESA) for the study phase
- …
