66 research outputs found

    Non-antibiotic Isotretinoin Treatment Differentially Controls Propionibacterium acnes on Skin of Acne Patients

    Get PDF
    Emergence and potential transfer of antibiotic resistance in skin microorganisms is of current concern in medicine especially in dermatology contexts where long term treatment with antibiotics is common. Remarkably, non-antibiotic therapy in the form of isotretinoin – a non-antimicrobial retinoid is effective at reducing or eradicating the anaerobe Propionibacterium acnes which is causally involved in the complex pathogenesis of Acne vulgaris. This study measured the extent of colonization of P. acnes in patients with primary cystic or severe acne from three defined skin sites in ‘non-lesion’ areas before, during and after treatment with isotretinoin. Patients attending acne clinics were investigated using standardized skin sampling techniques and the recovery of anaerobic P. acnes from 56 patients comprising 24 females and 32 males (mean age 22 years, age range 15–46 years) who were given a standard course of isotretinoin (1 mg/kg/day) are reported. P. acnes cultured from the external cheek surface of patients following treatment showed a significant reduction (1–2 orders of magnitude) compared with their pre-treatment status. Interestingly, other distinct sites (nares and toe web) failed to show this reduction. In addition, high levels of antibiotic-resistant P. acnes were recorded in each patients’ skin microbiota before, during and after treatment. In this study, microbial composition of the skin appears substantially altered by isotretinoin treatment, which clearly has differential antimicrobial effects on each anatomically distinct site. Our study confirmed that orally administered isotretinoin shows good efficacy in the resolution of moderate to severe acne that correlates with reductions in the number of P. acnes on the skin, including resistant isolates potentially acquired from previous treatments with antibiotics. Our study suggests that the role of tetracycline’s and macrolides, which are currently first line treatments in dermatology, might be reserved for severe or life-threatening infections since current antibiotic stewardship guidelines from medical departments no longer prescribe these antibiotics for routine use

    Nitrogen Production in Starburst Galaxies Detected by GALEX

    Get PDF
    We investigate the production of nitrogen in star-forming galaxies with ultraviolet (UV) radiation detected by the Galaxy Evolution Explorer Satellite (GALEX). We use a sample of 8745 GALEX emission-line galaxies matched to the Sloan Digital Sky Survey (SDSS) spectroscopic sample. We derive both gas-phase oxygen and nitrogen abundances for the sample and apply stellar population synthesis models to derive stellar masses and star formation histories of the galaxies. We compare oxygen abundances derived using three different diagnostics. We derive the specific star formation rates of the galaxies by modeling the seven-band GALEX+SDSS photometry. We find that galaxies that have log (SFR/M_*) ≳ − 10.0 typically have values of log (N/O) ~ 0.05 dex less than galaxies with log (SFR/M_*) ≟ − 10.0 and similar oxygen abundances

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation

    Full text link
    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z~2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with 1-sigma detections of emission lines to f > 2.5x10^{-18} erg/s/cm^2, means that the galaxies in the sample are typically ~7 times less massive (median M_* = 10^{9.5} M_sun) than previously studied z~2 emission-line galaxies. Despite their lower mass, the galaxies have OIII/Hb ratios which are very similar to previously studied z~2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the OIII emission line is more spatially concentrated than the Hb emission line with 98.1 confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(OIII)/L(0.5-10 keV) ratio is intermediate between typical z~0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked OIII spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.Comment: ApJ accepted. 8 pages, 6 figure

    GRB 090426: The Environment of a Rest-Frame 0.35-second Gamma-Ray Burst at Redshift z=2.609

    Get PDF
    We present the discovery of an absorption-line redshift of z = 2.609 for GRB 090426, establishing the first firm lower limit to a redshift for a gamma-ray burst with an observed duration of <2 s. With a rest-frame burst duration of T_90z = 0.35 s and a detailed examination of the peak energy of the event, we suggest that this is likely (at >90% confidence) a member of the short/hard phenomenological class of GRBs. From analysis of the optical-afterglow spectrum we find that the burst originated along a very low HI column density sightline, with N_HI < 3.2 x 10^19 cm^-2. Our GRB 090426 afterglow spectrum also appears to have weaker low-ionisation absorption (Si II, C II) than ~95% of previous afterglow spectra. Finally, we also report the discovery of a blue, very luminous, star-forming putative host galaxy (~2 L*) at a small angular offset from the location of the optical afterglow. We consider the implications of this unique GRB in the context of burst duration classification and our understanding of GRB progenitor scenarios.Comment: Submitted to MNRA

    CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results

    Get PDF
    We present the data release and data reduction process for the Epoch 1 NIRCam observations for the Cosmic Evolution Early Release Science Survey (CEERS). These data consist of NIRCam imaging in six broadband filters (F115W, F150W, F200W, F277W, F356W and F444W) and one medium band filter (F410M) over four pointings, obtained in parallel with primary CEERS MIRI observations (Yang et al. in prep). We reduced the NIRCam imaging with the JWST Calibration Pipeline, with custom modifications and reduction steps designed to address additional features and challenges with the data. Here we provide a detailed description of each step in our reduction and a discussion of future expected improvements. Our reduction process includes corrections for known pre-launch issues such as 1/f noise, as well as in-flight issues including snowballs, wisps, and astrometric alignment. Many of our custom reduction processes were first developed with pre-launch simulated NIRCam imaging over the full 10 CEERS NIRCam pointings. We present a description of the creation and reduction of this simulated dataset in the Appendix. We provide mosaics of the real images in a public release, as well as our reduction scripts with detailed explanations to allow users to reproduce our final data products. These represent one of the first official public datasets released from the Directors Discretionary Early Release Science (DD-ERS) program.Comment: 27 pages, 14 figures, submitted to ApJ. Accompanying CEERS public Data Release 0.5 available at ceers.github.io/releases.htm

    CEERS Epoch 1 NIRCam Imaging:Reduction Methods and Simulations Enabling Early JWST Science Results

    Get PDF
    We present the data release and data reduction process for the Epoch 1 NIRCam observations for the Cosmic Evolution Early Release Science Survey (CEERS). These data consist of NIRCam imaging in six broadband filters (F115W, F150W, F200W, F277W, F356W and F444W) and one medium-band filter (F410M) over four pointings, obtained in parallel with primary CEERS MIRI observations. We reduced the NIRCam imaging with the JWST Calibration Pipeline, with custom modifications and reduction steps designed to address additional features and challenges with the data. Here we provide a detailed description of each step in our reduction and a discussion of future expected improvements. Our reduction process includes corrections for known prelaunch issues such as 1/f noise, as well as in-flight issues including snowballs, wisps, and astrometric alignment. Many of our custom reduction processes were first developed with prelaunch simulated NIRCam imaging over the full 10 CEERS NIRCam pointings. We present a description of the creation and reduction of this simulated data set in the Appendix. We provide mosaics of the real images in a public release, as well as our reduction scripts with detailed explanations to allow users to reproduce our final data products. These represent one of the first official public data sets released from the Directors Discretionary Early Release Science (DD-ERS) program.</p

    The MOSDEF survey:AGN multi-wavelength identification, selection biases and host galaxy properties

    Get PDF
    We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on the identification, selection biases, and host galaxy properties of 55 X-ray, IR and optically-selected active galactic nuclei (AGN) at 1.4<z<3.81.4 < z < 3.8. We obtain rest-frame optical spectra of galaxies and AGN and use the BPT diagram to identify optical AGN. We examine the uniqueness and overlap of the AGN identified at different wavelengths. There is a strong bias against identifying AGN at any wavelength in low mass galaxies, and an additional bias against identifying IR AGN in the most massive galaxies. AGN hosts span a wide range of star formation rate (SFR), similar to inactive galaxies once stellar mass selection effects are accounted for. However, we find (at ∌2−3σ\sim 2-3\sigma significance) that IR AGN are in less dusty galaxies with relatively higher SFR and optical AGN in dusty galaxies with relatively lower SFR. X-ray AGN selection does not display a bias with host galaxy SFR. These results are consistent with those from larger studies at lower redshifts. Within star-forming galaxies, once selection biases are accounted for, we find AGN in galaxies with similar physical properties as inactive galaxies, with no evidence for AGN activity in particular types of galaxies. This is consistent with AGN being fueled stochastically in any star-forming host galaxy. We do not detect a significant correlation between SFR and AGN luminosity for individual AGN hosts, which may indicate the timescale difference between the growth of galaxies and their supermassive black holes

    NGC922 - A new drop-through ring galaxy

    Get PDF
    We have found the peculiar galaxy NGC922 to be a new drop-through ring galaxy using multi-wavelength (UV-radio) imaging and spectroscopic observations. Its `C'-shaped morphology and tidal plume indicate a recent strong interaction with its companion which was identified with these observations. Using numerical simulations we demonstrate that the main properties of the system can be generated by a high-speed off-axis drop-through collision of a small galaxy with a larger disk system, thus making NGC922 one of the nearest known collisional ring galaxies. While these systems are rare in the local Universe, recent deep HST images suggest they were more common in the early Universe.Comment: 5 pages, accepted for publication in MNRAS Letter

    The COS Legacy Archive Spectroscopy SurveY (CLASSY) Treasury Atlas

    Full text link
    Far-ultraviolet (FUV; ~1200-2000 angstroms) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of JWST will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before, however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the COS Legacy Spectroscopic SurveY (CLASSY) treasury and its first high level science product, the CLASSY atlas. CLASSY builds on the HST archive to construct the first high-quality (S/N_1500 >~ 5/resel), high-resolution (R~15,000) FUV spectral database of 45 nearby (0.002 < z < 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellar mass (6.2 < logM_star(M_sol) < 10.1), star formation rate (-2.0 < log SFR (M_sol/yr) < +1.6), direct gas-phase metallicity (7.0 < 12+log(O/H) < 8.8), ionization (0.5 < O_32 < 38.0), reddening (0.02 < E(B-V < 0.67), and nebular density (10 < n_e (cm^-3) < 1120). CLASSY is biased to UV-bright star-forming galaxies, resulting in a sample that is consistent with z~0 mass-metallicity relationship, but is offset to higher SFRs by roughly 2 dex, similar to z >~2 galaxies. This unique set of properties makes the CLASSY atlas the benchmark training set for star-forming galaxies across cosmic time.Comment: Accepted for publication in Ap

    Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations

    Get PDF
    • 

    corecore