52 research outputs found
High flux polarized gamma rays production: first measurements with a four-mirror cavity at the ATF
The next generation of e+/e- colliders will require a very intense flux of
gamma rays to allow high current polarized positrons to be produced. This can
be achieved by converting polarized high energy photons in polarized pairs into
a target. In that context, an optical system consisting of a laser and a
four-mirror passive Fabry-Perot cavity has recently been installed at the
Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized
gamma rays by inverse Compton scattering. In this contribution, we describe the
experimental system and present preliminary results. An ultra-stable
four-mirror non planar geometry has been implemented to ensure the polarization
of the gamma rays produced. A fiber amplifier is used to inject about 10W in
the high finesse cavity with a gain of 1000. A digital feedback system is used
to keep the cavity at the length required for the optimal power enhancement.
Preliminary measurements show that a flux of about /s with
an average energy of about 24 MeV was generated. Several upgrades currently in
progress are also described
Organic electrode coatings for next-generation neural interfaces
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes
The ThomX project status
Work supported by the French Agence Nationale de la recherche as part of the program EQUIPEX under reference ANR-10-EQPX-51, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI - http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/wepro052.pdfA collaboration of seven research institutes and an industry has been set up for the ThomX project, a compact Compton Backscattering Source (CBS) based in Orsay - France. After a period of study and definition of the machine performance, a full description of all the systems has been provided. The infrastructure work has been started and the main systems are in the call for tender phase. In this paper we will illustrate the definitive machine parameters and components characteristics. We will also update the results of the different technical and experimental activities on optical resonators, RF power supplies and on the electron gun
Microtornillos: Una revisión
Los microtornillos son un tipo de implante alveolar que proporcionan un método excelente de anclaje. Por su parte, los microtornillos son un elemento económico, fácil de colocar y retirar. Se realiza una revisión del procedimiento quirúrgico y de su utilización clínica y se analizan las ventajas, los inconvenientes y las posibles complicaciones. Se llega a la conclusión de que el procedimiento de inserción de los microtornillos es tan sencillo, que permite su utilización incluso en situaciones clínicas que presentan disminución del soporte dentario. La estabilidad a largo plazo es predecible y fiable y han constituido un impulso para eliminar la cooperación del paciente, además de conseguir resolver problemas relacionados con el control del anclaje dentario. Entre sus principales indicaciones se encuentran los siguientes movimientos dentarios: intrusión de molares, retrusión de incisivos y de la intrusión de incisivos entre otras. En los últimos años, se han diseñado implantes de dimensiones pequeñas para situarlos en cualquier superficie del proceso alveolar, incluso en áreas interdentales. Son relativamente económicos, y las técnicas de colocación y desinserción son simples. Como todo elemento que se inserta en la cavidad bucal, es necesario hacer un estudio radiográfico exhaustivo. No debemos olvidar que estos implantes se colocan entre raíces o en zonas próximas de los dientes. Se han reportado numerosos artículos sobre la lesión periodontal y radicular al insertarlos, éste es el motivo por el cual daremos importancia a este aspecto y detallaremos el procedimiento a seguir en la planificación de la técnica y en las complicaciones que pueden surgir si no se lleva a cabo
Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons
As part of the R&D toward the production of high flux of polarised Gamma-rays
we have designed and built a non-planar four-mirror optical cavity with a high
finesse and operated it at a particle accelerator. We report on the main
challenges of such cavity, such as the design of a suitable laser based on
fiber technology, the mechanical difficulties of having a high tunability and a
high mechanical stability in an accelerator environment and the active
stabilization of such cavity by implementing a double feedback loop in a FPGA
THE FOUR-MIRROR LASER STACKING CAVITY FOR POLARIZED GAMMA-RAY/POSITRON GENERATION
Abstract A non planar four mirror cavity has been designed and constructed to demonstrate the production of high gamma ray fluxes from Compton scattering of laser and electron beams at ATF. A pulsed laser is amplified using the recent technology of Yb-doped photonic cristal fibres. Seeding the high finesse four-mirror cavity with this amplified laser beam will allow reaching average powers between 0.1MW and 1MW
Inhomogeneous States in a Small Magnetic Disk with Single-Ion Surface Anisotropy
We investigate analytically and numerically the ground and metastable states
for easy-plane Heisenberg magnets with single-ion surface anisotropy and disk
geometry. The configurations with two half-vortices at the opposite points of
the border are shown to be preferable for strong anisotropy. We propose a
simple analytical description of the spin configurations for all values of a
surface anisotropy. The effects of lattice pinning leads to appearance of a set
of metastable configurations.Comment: 10 pages, 7 figures; submitted to Phys. Rev.
Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity
As part of the positron source R&D for future colliders and Compton
based compact light sources, a high finesse non-planar four-mirror Fabry-Perot
cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first
measurements of the gamma ray flux produced with a such cavity using a pulsed
laser is presented here. We demonstrate the production of a flux of 2.7
0.2 gamma rays per bunch crossing ( gammas per second) during
the commissioning
Technical Design Report EuroGammaS proposal for the ELI-NP Gamma beam System
The machine described in this document is an advanced Source of up to 20 MeV
Gamma Rays based on Compton back-scattering, i.e. collision of an intense high
power laser beam and a high brightness electron beam with maximum kinetic
energy of about 720 MeV. Fully equipped with collimation and characterization
systems, in order to generate, form and fully measure the physical
characteristics of the produced Gamma Ray beam. The quality, i.e. phase space
density, of the two colliding beams will be such that the emitted Gamma ray
beam is characterized by energy tunability, spectral density, bandwidth,
polarization, divergence and brilliance compatible with the requested
performances of the ELI-NP user facility, to be built in Romania as the Nuclear
Physics oriented Pillar of the European Extreme Light Infrastructure. This
document illustrates the Technical Design finally produced by the EuroGammaS
Collaboration, after a thorough investigation of the machine expected
performances within the constraints imposed by the ELI-NP tender for the Gamma
Beam System (ELI-NP-GBS), in terms of available budget, deadlines for machine
completion and performance achievement, compatibility with lay-out and
characteristics of the planned civil engineering
- …
