134 research outputs found

    Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at z>1

    Get PDF
    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z~1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines -- with rest-frame equivalent widths ~1000\AA -- in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with 10^8 Msol in stellar mass, undergoing an enormous starburst phase with M_*/(dM_*/dt) of only ~15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10^-4 Mpc^-3) can produce in ~4 Gyr much of the stellar mass density that is presently contained in 10^8-10^9 Msol dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z>1.Comment: accepted for publication in ApJ; 10 pages; 6 figures; 1 tabl

    First results from Faint Infrared Grism Survey (FIGS): first simultaneous detection of Lyman-alpha emission and Lyman break from a galaxy at z=7.51

    Get PDF
    Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-alpha emission and the Lyman break from a z = 7.512+/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble Space Telescope (HST), show a significant emission line detection (6 sigma) in multiple observational position angles (PA), with total integrated Ly{\alpha} line flux of 1.06+/- 0.12 e10-17erg s-1cm-2. The line flux is nearly a factor of four higher than the previous MOSFIRE spectroscopic observations of faint Ly{\alpha} emission at {\lambda} = 1.0347{\mu}m, yielding z = 7.5078+/- 0.0004. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-{\alpha} measurements. A 4-{\sigma} detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), potentially making this source the highest-redshift AGN yet found. Thus, this observation from the Hubble Space Telescope clearly demonstrates the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.Comment: Published in ApJL; matches published versio

    Clues to AGN Growth from Optically Variable Objects in the Hubble Ultra Deep Field

    Full text link
    We present a photometric search for objects with point-source components that are optically variable on timescales of weeks--months in the Hubble Ultra Deep Field (HUDF) to i'(AB)=28.0 mag. The data are split into four sub-stacks of approximately equal exposure times. Objects exhibiting the signature of optical variability are selected by studying the photometric error distribution between the four different epochs, and selecting 622 candidates as 3.0 sigma outliers from the original catalog of 4644 objects. Of these, 45 are visually confirmed as free of contamination from close neighbors or various types of image defects. Four lie within the positional error boxes of Chandra X-ray sources, and two of these are spectroscopically confirmed AGN. The photometric redshift distribution of the selected variable sample is compared to that of field galaxies, and we find that a constant fraction of ~1% of all field objects show variability over the range of 0.1<z<4.5. Combined with other recent HUDF results, as well as those of recent state-of-the-art numerical simulations, we discuss a potential link between the hierarchical merging of galaxies and the growth of AGN.Comment: 9 pages, 6 figures, accepted for publication in Astrophysical Journal, minor changes to reference

    The WFC3 Infrared Spectroscopic Parallel (WISP) Survey

    Get PDF
    We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is obtaining slitless, near-infrared grism spectroscopy of ~ 90 independent, high-latitude fields by observing in the pure parallel mode with Wide Field Camera-3 on the Hubble Space Telescope for a total of ~ 250 orbits. Spectra are obtained with the G102 (lambda=0.8-1.17 microns, R ~ 210) and G141 grisms (lambda=1.11-1.67 microns, R ~ 130), together with direct imaging in the J- and H-bands (F110W and F140W, respectively). In the present paper, we present the first results from 19 WISP fields, covering approximately 63 square arc minutes. For typical exposure times (~ 6400 sec in G102 and ~ 2700 sec in G141), we reach 5-sigma detection limits for emission lines of 5 x 10^(-17) ergs s^(-1) cm^(-2) for compact objects. Typical direct imaging 5sigma-limits are 26.8 and 25.0 magnitudes (AB) in F110W and F140W, respectively. Restricting ourselves to the lines measured with highest confidence, we present a list of 328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The single-line emitters are likely to be a mix of Halpha and [OIII]5007,4959 A, with Halpha predominating. The overall surface density of high-confidence emission-line objects in our sample is approximately 4 per arcmin^(2).These first fields show high equivalent width sources, AGN, and post starburst galaxies. The median observed star formation rate of our Halpha selected sample is 4 Msol/year. At intermediate redshifts, we detect emission lines in galaxies as faint as H_140 ~ 25, or M_R < -19, and are sensitive to star formation rates down to less than 1 Msol/year. The slitless grisms on WFC3 provide a unique opportunity to study the spectral properties of galaxies much fainter than L* at the peak of the galaxy assembly epoch.Comment: 15 pages, 12 figures, submitted to Ap

    A Flux-Limited Sample of z~1 Ly-alpha Emitting Galaxies in the CDFS

    Full text link
    We describe a method for obtaining a flux-limited sample of Ly-alpha emitters from GALEX grism data. We show that the multiple GALEX grism images can be converted into a three-dimensional (two spatial axes and one wavelength axis) data cube. The wavelength slices may then be treated as narrowband images and searched for emission-line galaxies. For the GALEX NUV grism data, the method provides a Ly-alpha flux-limited sample over the redshift range z=0.67-1.16. We test the method on the Chandra Deep Field South field, where we find 28 Ly-alpha emitters with faint continuum magnitudes (NUV>22) that are not present in the GALEX pipeline sample. We measure the completeness by adding artificial emitters and measuring the fraction recovered. We find that we have an 80% completeness above a Ly-alpha flux of 10^-15 erg/cm^2/s. We use the UV spectra and the available X-ray data and optical spectra to estimate the fraction of active galactic nuclei in the selection. We report the first detection of a giant Ly-alpha blob at z<1, though we find that these objects are much less common at z=1 than at z=3. Finally, we compute limits on the z~1 Ly-alpha luminosity function and confirm that there is a dramatic evolution in the luminosity function over the redshift range z=0-1.Comment: 18 pages, in press at The Astrophysical Journa

    Hubble Space Telescope WFC3 Early Release Science: Emission-Line Galaxies from Infrared Grism Observations

    Get PDF
    We present grism spectra of emission-line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 micron grism data in GOODS-South from the PEARS program, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [OIII], and [OII] emission lines detected in the redshift ranges 0.2<z<1.4, 1.2<z<2.2 and 2.0<z<3.3 respectively in the G102 (0.8-1.1 microns; R~210) and G141 (1.1-1.6 microns; R~130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [SII] and [SIII] lines). From these relatively shallow observations, line luminosities, star-formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m(AB)~25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Delta(z)~0.3-0.5). Additionally, one galaxy had no previously-measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m(AB)=26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z>2.Comment: Accepted for publication in AJ. Updated to include referee comments. Updated sample using improved reduction contains 23 new galaxies (Table 1; Figures 2 & 3

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2

    Stellar Populations of Lyman Break Galaxies at z=1-3 in the HST/WFC3 Early Release Science Observations

    Full text link
    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at z=1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST/WFC3 observations cover about 50 sq. arcmin in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z=1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope (beta) is redder than at high redshift (z>3), where LBGs are less dusty; (3) on average, LBGs at z=1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities (0.1L*<~L<~2.5L*), though their median values are similar within 1-sigma uncertainties. This could imply that identical dropout selection technique, at all redshifts, find physically similar galaxies; and (4) stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of ~0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of ~0.90. These relations hold true --- within luminosities probed in this study --- for LBGs from z~1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z~2, but to avoid any selection biases, and for direct comparison with LBGs at z>3, a true Lyman break selection at z~2 is essential. The future HST UV surveys, both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.Comment: Accepted for publication in ApJ (29 pages, 9 figures

    Gemini near infrared field spectrograph observations of the Seyfert 2 galaxy Mrk 573 : in situ acceleration of ionized and molecular gas off fueling

    Get PDF
    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700×2100pc2 circumnuclear region of Mrk573, we find that kinematics within the Narrow- Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges

    FIGS-Faint Infrared Grism Survey: Description and Data Reduction

    Get PDF
    The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8 μm–1.15 μm continuous coverage) with a total exposure time of 40 orbits (≈100 kilo-seconds) per field. This reaches a 3σ3\sigma continuum depth of 26\approx 26 AB magnitudes and probes emission lines to 1017ergs1cm2\sim {10}^{-17}\,\mathrm{erg}\,{{\rm{s}}}^{-1}\,{\mathrm{cm}}^{-2}. This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10,000 spectra of over 2000 distinct sources brighter than mF105W=26.5{m}_{F105W}=26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D spectra for each object in the survey
    corecore