We present a photometric search for objects with point-source components that
are optically variable on timescales of weeks--months in the Hubble Ultra Deep
Field (HUDF) to i'(AB)=28.0 mag. The data are split into four sub-stacks of
approximately equal exposure times. Objects exhibiting the signature of optical
variability are selected by studying the photometric error distribution between
the four different epochs, and selecting 622 candidates as 3.0 sigma outliers
from the original catalog of 4644 objects. Of these, 45 are visually confirmed
as free of contamination from close neighbors or various types of image
defects. Four lie within the positional error boxes of Chandra X-ray sources,
and two of these are spectroscopically confirmed AGN. The photometric redshift
distribution of the selected variable sample is compared to that of field
galaxies, and we find that a constant fraction of ~1% of all field objects show
variability over the range of 0.1<z<4.5. Combined with other recent HUDF
results, as well as those of recent state-of-the-art numerical simulations, we
discuss a potential link between the hierarchical merging of galaxies and the
growth of AGN.Comment: 9 pages, 6 figures, accepted for publication in Astrophysical
Journal, minor changes to reference