195 research outputs found
Comparative Study of Superabsorbent Polymers and Pre‐soaked Pumice as Internal Curing Agents in Rice Husk Ash Based High‐Performance Concrete
Utilisation of superabsorbent polymers (SAP) and pre‐soaked lightweight aggregates (LWA) as internal
curing (IC) agents for the mitigation of autogenous shrinkage and micro‐cracking of high strength/highperformance
concrete (HSC/HPC) have been well researched and documented in literature. Rice husk
ash (RHA) on the other hand has been adjudged to be of good pozzolanic activity and a possible
alternative to silica fume (SF) in low water/binder (W/B) concrete production. An experimental
comparative study was conducted in the current work to assess the effectiveness of the two known ICagents
on rice husk ash (RHA) based HPC. HPC mixtures of fc,cube28=60 MPa minimum target strength
produced and internally cured with 0.3% content of SAP by weight of binder (bwob) and varied content
of pre‐soaked pumice (5 to 10% in steps of 2.5%) by weight of coarse aggregate (bwocg) were cast using
100 mm cubes samples. Thereafter, the samples were cured for 7, 14, 28 and 56 days by water
immersion before subjecting them to compressive strength test. The results showed 0.2% bwob SAP
HPC (SHPC1) to be the best performed internally cured HPC at the early ages with similar long‐term
strength values as 5 and 7.5% bwocg saturated pumiced HPC (PHPC1&2). The study thereby
recommends SAP content of 0.2% bwob and saturated pumice content up to 7.5% bwocg for use as ICagent
in HPC
Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials
[EN] In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not
require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen.
Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique.The authors acknowledge the support from University College Cork (Ireland), Universidad Politecnica de Valencia and the Spanish Administration under grant BIA2014-55311-C2-2-P and Salvador Madariaga's Programme (PR2016-00344/PR2017-00658).Gosálbez Castillo, J.; Wright, W.; Jiang, W.; Carrión García, A.; Genovés, V.; Bosch Roig, I. (2018). Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials. Ultrasonics. 88:148-156. https://doi.org/10.1016/j.ultras.2018.03.011S1481568
Influence of curing on pore properties and strength of alkali activated mortars
The paper investigates the effect of wet/dry, wet and dry curing on the pore properties and strength of an alkali activated cementitious (AACM) mortar. The pore characteristics were determined from the cumulative and differential pore volume curves obtained by mercury intrusion porosimetry. AACM mortars possess a bimodal pore size distribution while the control PC mortar is unimodal. AACM mortars have a lower porosity, higher capillary pore volume, lower gel pore volume and lower critical and threshold pore diameters than the PC mortar which indicate greater durability potential of AACMs. Wet/dry curing is optimum for AACM mortars while wet curing is optimum for the PC mortar. Shrinkage and retarding admixtures improve the strength and pore structure of the AACMs
Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability
The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-013-0614-0Purpose Blended cements use waste products to replace
Portland cement, the main contributor to CO2 emissions in
concrete manufacture. Using blended cements reduces the
embodied greenhouse gas emissions; however, little attention
has been paid to the reduction in CO2 capture (carbonation)
and durability. The aim of this study is to determine if the
reduction in production emissions of blended cements compensates
for the reduced durability and CO2 capture.
Methods This study evaluates CO2 emissions and CO2 capture
for a reinforced concrete column during its service life
and after demolition and reuse as gravel filling material.
Concrete depletion, due to carbonation and the unavoidable
steel embedded corrosion, is studied, as this process consequently
ends the concrete service life. Carbonation deepens
progressively during service life and captures CO2 even after
demolition due to the greater exposed surface area. In this
study, results are presented as a function of cement replaced
by fly ash (FA) and blast furnace slag (BFS).
Results and discussion Concrete made with Portland cement,
FA (35%FA), and BFS blended cements (80%BFS) captures
47, 41, and 20 % of CO2 emissions, respectively. The service
life of blended cements with high amounts of cement replacement,
like CEM III/A (50 % BFS), CEM III/B (80 % BFS),
and CEMII/B-V (35%FA), was about 10%shorter, given the
higher carbonation rate coefficient. Compared to Portland
cement and despite the reduced CO2 capture and service life,
CEM III/B emitted 20 % less CO2 per year.
Conclusions To obtain reliable results in a life cycle assessment,
it is crucial to consider carbonation during use and
after demolition. Replacing Portland cement with FA, instead
of BFS, leads to a lower material emission factor, since
FA needs less processing after being collected, and transport
distances are usually shorter. However, greater reductions
were achieved using BFS, since a larger amount of cement
can be replaced. Blended cements emit less CO2 per year
during the life cycle of a structure, although a high cement
replacement reduces the service life notably. If the
demolished concrete is crushed and recycled as gravel filling
material, carbonation can cut CO2 emissions by half. A case
study is presented in this paper demonstrating how the results
may be utilized.This research was financially supported by the Spanish Ministry of Science and Innovation (research project BIA2011-23602). The authors thank the anonymous reviewers for their constructive comments and useful suggestions. The authors are also grateful for the thorough revision of the manuscript by Dr. Debra Westall.García Segura, T.; Yepes Piqueras, V.; Alcalá González, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment. 19(1):3-12. https://doi.org/10.1007/s11367-013-0614-0S312191Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138Berge B (2000) The ecology of building materials. Architectural Press, OxfordBertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, WeinheimBörjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, BrusselsCIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, SacramentoCollins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, SpainDodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286ECO-SERVE Network Cluster 3 (2004) Baseline Report for the Aggregate and Concrete Industries in Europe. European Commission, Hellerup: http://www.eco-serve.net/uploads/479998_baseline_report_final.pdf , accessed 10 September 2012European Federation of Concrete Admixtures Associations (2006) Environmental Product Declaration (EPD) for Normal Plasticizing admixtures. Environmental Consultant, Sittard: http://www.efca.info/downloads/324%20ETG%20Plasticiser%20EPD.pdf , accessed 13 October 2012Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, SpainGalán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930Institute for Diversification and Energy Saving (2010) Conversion factors of primary energy and CO2 emissions of 2010. M. Industria, Energía y Turismo, Madrid, Spain: http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Factores_Conversion_Energia_y_CO2_2010_0a9cb734.pdf , accessed 10 September 2012ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, SwitzerlandISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, SwitzerlandJiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, StockholmLeber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, SpainMarinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093The Concrete Centre (2009) The Concrete Industry Sustainability Performance Report. The Concrete Center, Camberley: http://www.admixtures.org.uk/downloads/Concrete%20Industry%20Sustainable%20Performance%20Report%202009.pdf , accessed 9 September 2012Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, SwedenWeil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206World Steel Association (2010) Fact sheet: the three Rs of sustainable Steel. World Steel Association, Brussels: http://www.steel.org/Sustainability/~/media/Files/SMDI/Sustainability/3rs.ashx , accessed 15 September 2012Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–132
Investigation of moisture condition and Autoclam sensitivity on air permeability measurements for both normal concrete and high performance concrete
While on site measurement of air permeability provides a useful approach for assessing the likely long term durability of concrete structures, no existing test method is capable of effectively determining the relative permeability of high performance concrete (HPC). Lack of instrument sensitivity and the influence of concrete moisture are proposed as two key reasons for this phenomenon. With limited systematic research carried out in this area to date, the aim if this study was to investigate the influence of instrument sensitivity and moisture condition on air permeability measurements for both normal concrete and HPC.
To achieve a range of moisture conditions, samples were dried initially for between one and 5 weeks and then sealed in polythene sheeting and stored in an oven at 50 °C to internally distribute moisture evenly. Moisture distribution was determined throughout using relative humidity probe and electrical resistance measurements. Concrete air permeability was subsequently measured using standardised air permeability (Autoclam) and water penetration (BS EN: 12390-8) tests to assess differences between the HPCs tested in this study.
It was found that for both normal and high performance concrete, the influence of moisture on Autoclam air permeability results could be eliminated by pre-drying (50 ± 1 °C, RH 35%) specimens for 3 weeks. While drying for 5 weeks alone was found not to result in uniform internal moisture distributions, this state was achieved by exposing specimens to a further 3 weeks of sealed pre-conditioning at 50 ± 1 °C. While the Autoclam test was not able to accurately identify relative HPC quality due to low sensitivity at associated performance levels, an effective preconditioning procedure to obtain reliable air permeability of HPC concretes was identified
Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge
Calcium sulfoaluminate-belite cement (CSAB) offers lower CO2 emissions in its production, compared with Portland cement. However, for the production of CSAB a high amount of alumina is required, and the scarcity and high cost of high-purity bauxite make these cements costly at present. In this study, the use of uncalcined aluminium anodising sludge (AAS) as the main source of alumina to produce CSAB clinkers, replacing bauxite, was assessed. The CSAB clinkers produced were mainly composed of ye’elimite and belite, along with minor traces of alite, and/or brownmillerite, depending on the alumina source. Clinkers derived from AAS as a source of aluminium showed a lower content of ye’elimite (35.5%), as well as the formation of alite (8.2%) when compared to a reference clinker produced with reagent-grade materials. Comparable hydration products were identified in the hydrated cements independent of the alumina source used. The use of AAS to produce CSAB cement was proven to be technically feasible, and the cement thus produced has desirable technical characteristics, presenting high mechanical strength (>40 MPa in paste samples)
Solid-state nuclear magnetic resonance spectroscopy of cements
Cement is the ubiquitous material upon which modern civilisation is built, providing long-term strength, impermeability and durability for housing and infrastructure. The fundamental chemical interactions which control the structure and performance of cements have been the subject of intense research for decades, but the complex, crystallographically disordered nature of the key phases which form in hardened cements has raised difficulty in obtaining detailed information about local structure, reaction mechanisms and kinetics. Solid-state nuclear magnetic resonance (SS NMR)spectroscopy can resolve key atomic structural details within these materials and has emerged as a crucial tool in characterising cement structure and properties. This review provides a comprehensive overview of the application of multinuclear SS NMR spectroscopy to understand composition–structure–property relationships in cements. This includes anhydrous and hydrated phases in Portland cement, calcium aluminate cements, calcium sulfoaluminate cements, magnesia-based cements, alkali-activated and geopolymer cements and synthetic model systems. Advanced and multidimensional experiments probe 1 H, 13 C, 17 O, 19 F, 23 Na, 25 Mg, 27 Al, 29 Si, 31 P, 33 S, 35 Cl, 39 K and 43 Ca nuclei, to study atomic structure, phase evolution, nanostructural development, reaction mechanisms and kinetics. Thus, the mechanisms controlling the physical properties of cements can now be resolved and understood at an unprecedented and essential level of detail
- …