24 research outputs found

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    Full text link
    It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions

    DarkSide-50, a background free experiment for dark matter searches

    No full text
    The existence of dark matter is inferred from gravitational effects, but its nature remains a deep mystery. One possibility, motivated by considerations in elementary particle physics, is that dark matter consists of elementary particles, such as the hypothesized Weakly Interacting Massive Particles (WIMPs), with mass ~ 100 GeV and cross-section ~ 10−47 cm2, that can be gravitationally trapped inside our galaxy and revealed by their scattering on nuclei. It should be possible to detect WIMPs directly, as the orbital motion of the WIMPs composing the dark matter halo pervading the galaxy should result in WIMP-nucleus collisions of sufficient energy to be observable in the laboratory. The DarkSide-50 experiment is a direct WIMP search using a Liquid Argon Time Projection Chamber (LAr-TPC) with an active mass of 50 kg with a high sensitivity and an ultra-low background detector

    First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del Gran Sasso

    No full text
    We report the first results of DarkSide-50, a direct search for dark matter operating in the un- derground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a ( 46.4 0.7 ) kg active mass, operated inside a 30 t or- ganic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a ( 1422 67 ) kg d exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1 1

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    No full text
    It is generally inferred from astronomical measurements th at Dark Matter (DM) comprises approximately 27% of the energy-dens ity of the universe. If DM is a subatomic particle, a possible candidate is a Weakl y Interacting Mas- sive Particle (WIMP), and the DarkSide-50 (DS) experiment i s a direct search for evidence of WIMP-nuclear collisions. DS is located undergr ound at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of thr ee active, embedded components; an outer water veto (CTF), a liquid scintillato r veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This pap er describes the data acquisition and electronic systems of the DS detectors , designed to detect the residual ionization from

    Search for supersymmetry in pp collisions at in events with a single lepton, large jet multiplicity, and multiple b jets

    No full text
    Results are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of 8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least two of which are identified as b jets. The data sample corresponds to an integrated luminosity of 19.3 fb(-1) recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric models that involve strong-production processes and cascade decays of new particles. The resulting final states contain multiple jets as well as missing transverse momentum from weakly interacting particles. The event yields, observed across several kinematic regions, are consistent with the expectations from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark-antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino masses

    The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview

    No full text
    There are different BCR-ABL1 fusion genes that are translated into proteins that are different from each other, yet all leukemogenic, causing chronic myeloid leukemia (CML) or acute lymphoblastic leukemia. Their frequency has never been systematically investigated. In a series of 45503 newly diagnosed CML patients reported from 45 countries, it was found that the proportion of e13a2 (also known as b2a2) and of e14a2 (also known as b3a2), including the cases co-expressing e14a2 and e13a2, was 37.9% and 62.1%, respectively. The proportion of these two transcripts was correlated with gender, e13a2 being more frequent in males (39.2%) than in females (36.2%), was correlated with age, decreasing from 39.6% in children and adolescents down to 31.6% in patients ≥ 80 years old, and was not constant worldwide. Other, rare transcripts were reported in 666/34561 patients (1.93%). The proportion of rare transcripts was associated&nbsp;with gender (2.27% in females and 1.69% in males) and with age (from 1.79% in children and adolescents up to 3.84% in patients ≥ 80 years old). These data show that the differences in proportion are not by chance. This is important, as the transcript type is a variable that is suspected to be of prognostic importance for response to treatment, outcome of treatment, and rate of treatment-free remission

    THE 2010 VERY HIGH ENERGY gamma-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    No full text

    Measurement of the ratio B(t -> Wb)/B(t -> Wq) in pp collisions at root s=8 TeV

    No full text
    The ratio of the top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the t (t) over bar dilepton final state with proton-proton collision data at root s = 8 TeV from an integrated luminosity of 19.7 fb(-1), collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 +/- 0.003 (stat.) +/- 0.032 (syst.) is measured, in a good agreement with current precision measurements in electroweak and flavour sectors. A lower limit R > 0.955 at the 95% confidence level is obtained after requiring R 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, Gamma(t) = 1.36 +/- 0.02 (stat.)(-0.11)(+0.14) (syst.) GeV
    corecore