866 research outputs found
The nature of functional variability in plantar pressure during a range of controlled walking speeds
During walking, variability in step parameters allows the body to adapt to changes in substrate or unexpected perturbations that may occur as the feet interface with the environment. Despite a rich literature describing biomechanical variability in step parameters, there are as yet no studies that consider variability at the body–environment interface. Here, we used pedobarographic statistical parametric mapping (pSPM) and two standard measures of variability, mean square error (m.s.e.) and the coefficient of variation (CV), to assess the magnitude and spatial variability in plantar pressure across a range of controlled walking speeds. Results by reduced major axis, and pSPM regression, revealed no consistent linear relationship between m.s.e. and speed or m.s.e. and Froude number. A positive linear relationship, however, was found between CV and walking speed and CV and Froude number. The spatial distribution of variability was highly disparate when assessed by m.s.e. and CV: relatively high variability was consistently confined to the medial and lateral forefoot when measured by m.s.e., while the forefoot and heel show high variability when measured by CV. In absolute terms, variability by CV was universally low (less than 2.5%). From these results, we determined that variability as assessed by m.s.e. is independent of speed, but dependent on speed when assessed by CV
Increased HCO production in the outer disk around HD 163296
Three formaldehyde lines were observed (HCO 3--2, HCO
3--2, and HCO 3--2) in the protoplanetary disk
around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial
resolution. HCO 3--2 was readily detected via imaging, while
the weaker HCO 3--2 and HCO 3--2 lines
required matched filter analysis to detect. HCO is present throughout most
of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of
the HCO emission is likely caused by an optically thick dust continuum. The
HCO radial intensity profile shows a peak at 100 AU and a secondary bump at
around 300 AU, suggesting increased production in the outer disk. Different
parameterizations of the HCO abundance were compared to the observed
visibilities with minimization, using either a characteristic
temperature, a characteristic radius or a radial power law index to describe
the HCO chemistry. Similar models were applied to ALMA Science Verification
data of CO. In all modeling scenarios, fits to the HCO data show an
increased abundance in the outer disk. The overall best-fit HCO model shows
a factor of two enhancement beyond a radius of 27020 AU, with an inner
abundance of . The HCO emitting region has a lower
limit on the kinetic temperature of K. The CO modeling suggests
an order of magnitude depletion in the outer disk and an abundance of in the inner disk. The increase in HCO outer disk emission
could be a result of hydrogenation of CO ices on dust grains that are then
sublimated via thermal desorption or UV photodesorption, or more efficient
gas-phase production beyond about 300 AU if CO is photodisocciated in this
region
Implementation of an underwater acoustic modem with network capability
This paper introduces the underwater acoustic modem as implemented within the UAN – Underwater Acoustic Network project. The low power modem has implemented turbo equalization algorithms in addition to variable spread rate direct sequence spread spectrum signaling. The network layer implemented on the modem support automatic network discovery, multi hop routing and support for mobile nodes, and when expanded with a single board computer via serial line it supports IP connectivity end-to-end. Experimental results from sea trials are presented
Chemical Processes in Protoplanetary Disks
We have developed a high resolution combined physical and chemical model of a
protoplanetary disk surrounding a typical T Tauri star. Our aims were to use
our model to calculate the chemical structure of disks on small scales
(sub-milli-arcsecond in the inner disk for objects at the distance of Taurus, ~
140 pc) to investigate the various chemical processes thought to be important
in disks and to determine potential molecular tracers of each process. Our
gas-phase network was extracted from the UMIST Database for Astrochemistry to
which we added gas-grain interactions including freeze out and thermal and
non-thermal desorption (cosmic-ray induced desorption, photodesorption and
X-ray desorption) and a grain-surface network. We find that cosmic-ray induced
desorption has the least effect on our disk chemical structure while
photodesorption has a significant effect, enhancing the abundances of most
gas-phase molecules throughout the disk and affecting the abundances and
distribution of HCN, CN and CS, in particular. In the outer disk, we also see
enhancements in the abundances of H2O and CO2. X-ray desorption is a
potentially powerful mechanism in disks, acting to homogenise the fractional
abundances of gas-phase species across the depth and increasing the column
densities of most molecules although there remain significant uncertainties in
the rates adopted for this process. The addition of grain-surface chemistry
enhances the fractional abundances of several small complex organic molecules
including CH3OH, HCOOCH3 and CH3OCH3 to potentially observable values (i.e. a
fractional abundance of >~ 1.0E-11).Comment: 24 pages, 13 figures, accepted for publication in Ap
Photodesorption of CO ice
At the high densities and low temperatures found in star forming regions, all
molecules other than H2 should stick on dust grains on timescales shorter than
the cloud lifetimes. Yet these clouds are detected in the millimeter lines of
gaseous CO. At these temperatures, thermal desorption is negligible and hence a
non-thermal desorption mechanism is necessary to maintain molecules in the gas
phase. Here, the first laboratory study of the photodesorption of pure CO ice
under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO
molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5
larger than previously estimated and is comparable to estimates of other
non-thermal desorption rates. The experiments constrains the mechanism to a
single photon desorption process of ice surface molecules. The measured
efficiency of this process shows that the role of CO photodesorption in
preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ
The chemistry of C3 & Carbon Chain Molecules in DR21(OH)
(Abridged) We have observed velocity resolved spectra of four ro-vibrational
far-infrared transitions of C3 between the vibrational ground state and the
low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on
board Herschel, in DR21(OH), a high mass star forming region. Several
transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM
30m telescope. A gas and grain warm-up model was used to identify the primary
C3 forming reactions in DR21(OH). We have detected C3 in absorption in four
far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1
and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in
velocity to be identified in the C3 spectra. All C3 transitions are detected
from the embedded source MM2 and the surrounding envelope, whereas only Q(4) &
P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope
and MM2 is \sim6x10^{-10} and \sim3x10^{-9} respectively. For CCH and c-C3H2 we
only detect emission from the envelope and MM1. The observed CCH, C3, and
c-C3H2 abundances are most consistent with a chemical model with
n(H2)\sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time
of \sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the
grain at t\sim 0.2 Myr and lasting for 1 Myr can explain the observed C3
abundance in the envelope of DR21(OH) and no mechanism involving
photodestruction of PAH molecules is required. The chemistry in the envelope is
similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos.
The observed lower C3 abundance in MM1 as compared to MM2 and the envelope
could be indicative of destruction of C3 in the more evolved MM1. The timescale
for the chemistry derived for the envelope is consistent with the dynamical
timescale of 2 Myr derived for DR21(OH) in other studies.Comment: 11 Pages, 6 figures, accepted for publication in A&
The cometary composition of a protoplanetary disk as revealed by complex cyanides
Observations of comets and asteroids show that the Solar Nebula that spawned
our planetary system was rich in water and organic molecules. Bombardment
brought these organics to the young Earth's surface, seeding its early
chemistry. Unlike asteroids, comets preserve a nearly pristine record of the
Solar Nebula composition. The presence of cyanides in comets, including 0.01%
of methyl cyanide (CH3CN) with respect to water, is of special interest because
of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like
compositions of simple and complex volatiles are found in protostars, and can
be readily explained by a combination of gas-phase chemistry to form e.g. HCN
and an active ice-phase chemistry on grain surfaces that advances
complexity[3]. Simple volatiles, including water and HCN, have been detected
previously in Solar Nebula analogues - protoplanetary disks around young stars
- indicating that they survive disk formation or are reformed in situ. It has
been hitherto unclear whether the same holds for more complex organic molecules
outside of the Solar Nebula, since recent observations show a dramatic change
in the chemistry at the boundary between nascent envelopes and young disks due
to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and
HC3N) in the protoplanetary disk around the young star MWC 480. We find
abundance ratios of these N-bearing organics in the gas-phase similar to
comets, which suggests an even higher relative abundance of complex cyanides in
the disk ice. This implies that complex organics accompany simpler volatiles in
protoplanetary disks, and that the rich organic chemistry of the Solar Nebula
was not unique.Comment: Definitive version of the manuscript is published in Nature, 520,
7546, 198, 2015. This is the author's versio
Methanol maps of low-mass protostellar systems: the Serpens Molecular Core
Observations of Serpens have been performed at the JCMT using Harp-B. Maps
over a 4.5'x5.4' region were made in a frequency window around 338 GHz,
covering the 7-6 transitions of methanol. Emission is extended over each
source, following the column density of H2 but showing up also particularly
strongly around outflows. The rotational temperature is low, 15-20 K, and does
not vary with position within each source. The abundance is typically 10^-9 -
10^-8 with respect to H2 in the outer envelope, whereas "jumps" by factors of
up to 10^2 -10^3 inside the region where the dust temperature exceeds 100 K are
not excluded. A factor of up to ~ 10^3 enhancement is seen in outflow gas. In
one object, SMM4, the ice abundance has been measured to be ~ 3x10^-5 with
respect to H2 in the outer envelope, i.e., a factor of 10^3 larger than the
gas-phase abundance. Comparison with C18O J=3-2 emission shows that strong CO
depletion leads to a high gas-phase abundance of CH3OH not just for the Serpens
sources, but for a larger sample of protostars. The observations illustrate the
large-scale, low-level desorption of CH3OH from dust grains, extending out to
and beyond 7500 AU from each source, a scenario which is consistent with
non-thermal (photo-)desorption from the ice. The observations also illustrate
the usefulness of CH3OH as a tracer of energetic input in the form of outflows,
where methanol is sputtered from the grain surfaces. Finally, the observations
provide further evidence of CH3OH formation through CO hydrogenation proceeding
on grain surfaces in low-mass envelopes.Comment: Accepted for publication in A&A
- …