998 research outputs found

    Classical and quantum complementarity

    Get PDF
    Two complementary observables can be measured simultaneously so that the exact individual distributions can be recovered by a proper data inversion. We apply this program to the paradigmatic example of the Young interferometer from the classical and quantum points of view. We show complete parallelism between complementarity in the quantum and classical theories. In both domains, complementarity manifests in a pathological behavior for the inferred joint distribution.Comment: 6 pages, 2 figure

    CaracterizaciĂłn de haces Ăłpticos vĂ­a tomografĂ­a en el espacio de fases

    Get PDF
    Tesis inĂ©dita de la Universidad Complutense de Madrid, Facultad de Ciencias FĂ­sicas, Departamento de Óptica, leĂ­da el 12-09-2014Depto. de ÓpticaFac. de Ciencias FĂ­sicasTRUEunpu

    Quantum metrology with nonclassical states of atomic ensembles

    Full text link
    Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well developed techniques for trapping, controlling and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold and ultracold gases of neutral atoms. Moreover, atoms can couple strongly to external forces and light fields, which makes them ideal for ultra-precise sensing and time keeping. All these factors call for generating non-classical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.Comment: 76 pages, 40 figures, 1 table, 603 references. Some figures bitmapped at 300 dpi to reduce file siz

    Entanglement and Complete Positivity: Relevance and Manifestations in Classical Scalar Wave Optics

    Full text link
    Entanglement of states and Complete Positivity of maps are concepts that have achieved physical importance with the recent growth of quantum information science. They are however mathematically relevant whenever tensor products of complex linear (Hilbert) spaces are involved. We present such situations in classical scalar paraxial wave optics where these concepts play a role: propagation characteristics of coherent and partially coherent Gaussian beams; and the definition and separability of the family of Twisted Gaussian Schell Model (TGSM) beams. In the former, the evolution of the width of a projected one-dimensional beam is shown to be a signature of entanglement in a two-dimensional amplitude. In the latter, the partial transpose operation is seen to explain key properties of TGSM beams.Comment: 7 pages Revtex 4-

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    MuSR method and tomographic probability representation of spin states

    Full text link
    Muon spin rotation/relaxation/resonance (MuSR) technique for studying matter structures is considered by means of a recently introduced probability representation of quantum spin states. A relation between experimental MuSR histograms and muon spin tomograms is established. Time evolution of muonium, anomalous muonium, and a muonium-like system is studied in the tomographic representation. Entanglement phenomenon of a bipartite muon-electron system is investigated via tomographic analogues of Bell number and positive partial transpose (PPT) criterion. Reconstruction of the muon-electron spin state as well as the total spin tomography of composed system is discussed.Comment: 20 pages, 4 figures, LaTeX, submitted to Journal of Russian Laser Researc
    • 

    corecore