8 research outputs found

    The effectiveness of dynamically processed incremental descriptions in human robot interaction

    Get PDF
    We explore the effectiveness of a dynamically processed incremental referring description system using under-specified ambiguous descriptions that are then built upon using linguistic repair statements, which we refer to as a dynamic system. We build a dynamically processed incremental referring description generation system that is able to provide contextual navigational statements to describe an object in a potential real-world situation of nuclear waste sorting and maintenance. In a study of 31 participants, we test the dynamic system in a case where a user is remote operating a robot to sort nuclear waste, with the robot assisting them in identifying the correct barrels to be removed. We compare these against a static non-ambiguous description given in the same scenario. As well as looking at efficiency with time and distance measurements, we also look at user preference. Results show that our dynamic system was a much more efficient method—taking only 62% of the time on average—for finding the correct barrel. Participants also favoured our dynamic system

    Artificial Cognition for Social Human-Robot Interaction: An Implementation

    Get PDF
    © 2017 The Authors Human–Robot Interaction challenges Artificial Intelligence in many regards: dynamic, partially unknown environments that were not originally designed for robots; a broad variety of situations with rich semantics to understand and interpret; physical interactions with humans that requires fine, low-latency yet socially acceptable control strategies; natural and multi-modal communication which mandates common-sense knowledge and the representation of possibly divergent mental models. This article is an attempt to characterise these challenges and to exhibit a set of key decisional issues that need to be addressed for a cognitive robot to successfully share space and tasks with a human. We identify first the needed individual and collaborative cognitive skills: geometric reasoning and situation assessment based on perspective-taking and affordance analysis; acquisition and representation of knowledge models for multiple agents (humans and robots, with their specificities); situated, natural and multi-modal dialogue; human-aware task planning; human–robot joint task achievement. The article discusses each of these abilities, presents working implementations, and shows how they combine in a coherent and original deliberative architecture for human–robot interaction. Supported by experimental results, we eventually show how explicit knowledge management, both symbolic and geometric, proves to be instrumental to richer and more natural human–robot interactions by pushing for pervasive, human-level semantics within the robot's deliberative system

    A review and comparison of ontology-based approaches to robot autonomy

    Get PDF
    Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.Peer ReviewedPostprint (author's final draft

    Contextualized Robot Navigation

    Get PDF
    In order to improve the interaction between humans and robots, robots need to be able to move about in a way that is appropriate to the complex environments around them. One way to investigate how the robots should move is through the lens of theatre, which provides us with ways to analyze the robot\u27s movements and the motivations for moving in particular ways. In particular, this has proven useful for improving robot navigation. By altering the costmaps used for path planning, robots can navigate around their environment in ways that incorporate additional contexts. Experimental results with user studies have shown altered costmaps to have a significant effect on the interaction, although the costmaps must be carefully tuned to get the desired effect. The new layered costmap algorithm builds on the established open-source navigation platform, creating a robust system that can be extended to handle a wide range of contextual situations

    Grounding the Interaction : Knowledge Management for Interactive Robots

    Get PDF
    Avec le dĂ©veloppement de la robotique cognitive, le besoin d’outils avancĂ©s pour reprĂ©senter, manipuler, raisonner sur les connaissances acquises par un robot a clairement Ă©tĂ© mis en avant. Mais stocker et manipuler des connaissances requiert tout d’abord d’éclaircir ce que l’on nomme connaissance pour un robot, et comment celle-ci peut-elle ĂȘtre reprĂ©sentĂ©e de maniĂšre intelligible pour une machine. \ud \ud Ce travail s’efforce dans un premier temps d’identifier de maniĂšre systĂ©matique les besoins en terme de reprĂ©sentation de connaissance des applications robotiques modernes, dans le contexte spĂ©cifique de la robotique de service et des interactions homme-robot. Nous proposons une typologie originale des caractĂ©ristiques souhaitables des systĂšmes de reprĂ©sentation des connaissances, appuyĂ©e sur un Ă©tat de l’art dĂ©taillĂ© des outils existants dans notre communautĂ©. \ud \ud Dans un second temps, nous prĂ©sentons en profondeur ORO, une instanciation particuliĂšre d’un systĂšme de reprĂ©sentation et manipulation des connaissances, conçu et implĂ©mentĂ© durant la prĂ©paration de cette thĂšse. Nous dĂ©taillons le fonctionnement interne du systĂšme, ainsi que son intĂ©gration dans plusieurs architectures robotiques complĂštes. Un Ă©clairage particulier est donnĂ© sur la modĂ©lisation de la prise de perspective dans le contexte de l’interaction, et de son interprĂ©tation en terme de thĂ©orie de l’esprit. \ud \ud La troisiĂšme partie de l’étude porte sur une application importante des systĂšmes de reprĂ©sentation des connaissances dans ce contexte de l’interaction homme-robot : le traitement du dialogue situĂ©. Notre approche et les algorithmes qui amĂšnent Ă  l’ancrage interactif de la communication verbale non contrainte sont prĂ©sentĂ©s, suivis de plusieurs expĂ©riences menĂ©es au Laboratoire d’Analyse et d’Architecture des SystĂšmes au CNRS Ă  Toulouse, et au groupe Intelligent Autonomous System de l’universitĂ© technique de Munich. Nous concluons cette thĂšse sur un certain nombre de considĂ©rations sur la viabilitĂ© et l’importance d’une gestion explicite des connaissances des agents, ainsi que par une rĂ©flexion sur les Ă©lĂ©ments encore manquant pour rĂ©aliser le programme d’une robotique “de niveau humain”.-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------With the rise of the so-called cognitive robotics, the need of advanced tools to store, manipulate, reason about the knowledge acquired by the robot has been made clear. But storing and manipulating knowledge requires first to understand what the knowledge itself means to the robot and how to represent it in a machine-processable way. \ud \ud This work strives first at providing a systematic study of the knowledge requirements of modern robotic applications in the context of service robotics and human-robot interaction. What are the expressiveness requirement for a robot? what are its needs in term of reasoning techniques? what are the requirement on the robot's knowledge processing structure induced by other cognitive functions like perception or decision making? We propose a novel typology of desirable features for knowledge representation systems supported by an extensive review of existing tools in our community. \ud \ud In a second part, the thesis presents in depth a particular instantiation of a knowledge representation and manipulation system called ORO, that has been designed and implemented during the preparation of the thesis. We elaborate on the inner working of this system, as well as its integration into several complete robot control stacks. A particular focus is given to the modelling of agent-dependent symbolic perspectives and their relations to theories of mind. \ud \ud The third part of the study is focused on the presentation of one important application of knowledge representation systems in the human-robot interaction context: situated dialogue. Our approach and associated algorithms leading to the interactive grounding of unconstrained verbal communication are presented, followed by several experiments that have taken place both at the Laboratoire d'Analyse et d'Architecture des SystĂšmes at CNRS, Toulouse and at the Intelligent Autonomous System group at Munich Technical University. \ud \ud The thesis concludes on considerations regarding the viability and importance of an explicit management of the agent's knowledge, along with a reflection on the missing bricks in our research community on the way towards "human level robots". \ud \u

    Knowledge representation and exploitation for interactive and cognitive robots

    Get PDF
    L'arrivĂ©e des robots dans notre vie quotidienne fait Ă©merger le besoin pour ces systĂšmes d'avoir accĂšs Ă  une reprĂ©sentation poussĂ©e des connaissances et des capacitĂ©s de raisonnements associĂ©es. Ainsi, les robots doivent pouvoir comprendre les Ă©lĂ©ments qui composent l'environnement dans lequel ils Ă©voluent. De plus, la prĂ©sence d'humains dans ces environnements et donc la nĂ©cessitĂ© d'interagir avec eux amĂšnent des exigences supplĂ©mentaires. Ainsi, les connaissances ne sont plus utilisĂ©es par le robot dans le seul but d'agir physiquement sur son environnement mais aussi dans un but de communication et de partage d'information avec les humains. La connaissance ne doit plus ĂȘtre uniquement comprĂ©hensible par le robot lui-mĂȘme mais doit aussi pouvoir ĂȘtre exprimĂ©e. Dans la premiĂšre partie de cette thĂšse, nous prĂ©sentons Ontologenius. C'est un logiciel permettant de maintenir des bases de connaissances sous forme d'ontologie, de raisonner dessus et de les gĂ©rer dynamiquement. Nous commençons par expliquer en quoi ce logiciel est adaptĂ© aux applications d'interaction humain-robot (HRI), notamment avec la possibilitĂ© de reprĂ©senter la base de connaissances du robot mais aussi une estimation des bases de connaissances des partenaires humains ce qui permet d'implĂ©menter les mĂ©canismes de thĂ©orie de l'esprit. Nous poursuivons avec une prĂ©sentation de ses interfaces. Cette partie se termine par une analyse des performances du systĂšme ainsi dĂ©veloppĂ©. Dans une seconde partie, cette thĂšse prĂ©sente notre contribution Ă  deux problĂšmes d'exploration des connaissances: l'un ayant trait au rĂ©fĂ©rencement spatial et l'autre Ă  l'utilisation de connaissances sĂ©mantiques. Nous commençons par une tĂąche de description d'itinĂ©raires pour laquelle nous proposons une ontologie permettant de dĂ©crire la topologie d'environnements intĂ©rieurs et deux algorithmes de recherche d'itinĂ©raires. Nous poursuivons avec une tĂąche de gĂ©nĂ©ration d'expression de rĂ©fĂ©rence. Cette tĂąche vise Ă  sĂ©lectionner l'ensemble optimal d'informations Ă  communiquer afin de permettre Ă  un auditeur d'identifier l'entitĂ© rĂ©fĂ©rencĂ©e dans un contexte donnĂ©. Ce dernier algorithme est ensuite affinĂ© pour y ajouter les informations sur les activitĂ©s passĂ©es provenant d'une action conjointe entre un robot et un humain, afin de gĂ©nĂ©rer des expressions encore plus pertinentes. Il est Ă©galement intĂ©grĂ© Ă  un planificateur de tĂąches symbolique pour estimer la faisabilitĂ© et le coĂ»t des futures communications. Cette thĂšse se termine par la prĂ©sentation de deux architectures cognitives, la premiĂšre utilisant notre contribution concernant la description d'itinĂ©raire et la seconde utilisant nos contributions autour de la GĂ©nĂ©ration d'Expression de RĂ©fĂ©rence. Les deux utilisent Ontologenius pour gĂ©rer la base de connaissances sĂ©mantique. À travers ces deux architectures, nous prĂ©sentons comment nos travaux ont amenĂ© la base de connaissances a progressivement prendre un rĂŽle central, fournissant des connaissances Ă  tous les composants du systĂšme.As robots begin to enter our daily lives, we need advanced knowledge representations and associated reasoning capabilities to enable them to understand and model their environments. Considering the presence of humans in such environments, and therefore the need to interact with them, this need comes with additional requirements. Indeed, knowledge is no longer used by the robot for the sole purpose of being able to act physically on the environment but also to communicate and share information with humans. Therefore knowledge should no longer be understandable only by the robot itself, but should also be able to be narrative-enabled. In the first part of this thesis, we present our first contribution with Ontologenius. This software allows to maintain knowledge bases in the form of ontology, to reason on them and to manage them dynamically. We start by explaining how this software is suitable for \acrfull{hri} applications. To that end, for example to implement theory of mind abilities, it is possible to represent the robot's knowledge base as well as an estimate of the knowledge bases of human partners. We continue with a presentation of its interfaces. This part ends with a performance analysis, demonstrating its online usability. In a second part, we present our contribution to two knowledge exploration problems around the general topic of spatial referring and the use of semantic knowledge. We start with the route description task which aims to propose a set of possible routes leading to a target destination, in the framework of a guiding task. To achieve this task, we propose an ontology allowing us to describe the topology of indoor environments and two algorithms to search for routes. The second knowledge exploration problem we tackle is the \acrfull{reg} problem. It aims at selecting the optimal set of piece of information to communicate in order to allow a hearer to identify the referred entity in a given context. This contribution is then refined to use past activities coming from joint action between a robot and a human, in order to generate new kinds of Referring Expressions. It is also linked with a symbolic task planner to estimate the feasibility and cost of future communications. We conclude this thesis by the presentation of two cognitive architectures. The first one uses the route description contribution and the second one takes advantage of our Referring Expression Generation contribution. Both of them use Ontologenius to manage the semantic Knowledge Base. Through these two architectures, we present how our contributions enable Knowledge Base to gradually take a central role, providing knowledge to all the components of the architectures
    corecore