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Abstract— In human-robot interaction, a robot must be
prepared to handle possible ambiguities generated by a human
partner. In this work we propose a set of strategies that allow a
robot to identify the referent when the human partner refers to
an object giving incomplete information, i.e. an ambiguous de-
scription. Moreover, we propose the use of an ontology to store
and reason on the robot’s knowledge to ease clarification, and
therefore, improve interaction. We validate our work through
both simulation and two real robotic platforms performing two
tasks: a daily-life situation and a game.

I. INTRODUCTION

In daily human interactions, where people refer to objects
(“Look at the bike”), sometimes the utterance does not con-
tain sufficient information to be understood correctly. That
is, ambiguities concerning the referent can occur (“Which of
the two bikes visible to me does she mean?”). To establish
an efficient exchange of information and thus communicate
meaning, these ambiguities have to be resolved. Humans
employ several basic strategies in order to clarify such
ambiguities, and they do so efficiently and smoothly. First,
by applying internal cognitive strategies; and only later, when
those proved unsuccessful, verbal inquiries come into play.

In human-robot interaction, the robot must be prepared
to handle possible ambiguities generated by the human
partner. We believe that a robotic system should include
a clarification strategy which allows to find the referent
autonomously if possible, for two reasons. First, humans
are not always aware of when they create ambiguities and
therefore, they will expect that the robot will be able to
resolve them internally. And second, a robot that is not able
to resolve ambiguities by itself would have to constantly
inquire the human for clarification which would result in
a tedious human-robot interaction.

One disambiguation strategy applied by humans is to take
the other’s visual perspective into consideration. Studies in
developmental psychology demonstrate that even very young
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children rely on the speaker’s visual access. They take into
account that others might see things they themselves do not
see [1]. When two objects are available to the child and
the adult can only see one of them, they understand that
whenever the adult is looking for an object, she can only
refer to the one she cannot see [2]. This ability to engage in
visual perspective taking is thus one fundamental strategy in
solving referential ambiguities among humans.

In the field of human-robot interaction, few work has
been done on applying perspective-taking mechanisms for
ambiguity resolution. Trafton et al. proposed in [3], [4] a
system by which the robot is able to figure out which of
several cones the human is referring to in different situations
(visible/not visible for one of the interacting agents). Berlin
et al. [5] focused on the use of visual perspective taking
skills for learning from a human teacher. Visual perspective
taking has been also used to aid action recognition between
two robots [6]. In the present work, we propose the use of
visual perspective taking based on [7] to ease clarification of
referential utterances in scenarios with multiple objects.

However, we believe that apart from this fundamental
cognitive mechanism of visual perspective taking, the robot
should be provided with means to extract and clarify as much
information from both the environment and the speaker’s
utterance as possible. For instance, the speaker might refer
to a specific frame of reference, which can be observer-
relative (as in the case of referring to an object “on the right”)
and thereby producing ambiguities comparable to the ones
just discussed. Alternatively, the speaker might specify the
location of the desired object in relation to another object (“X
is inside of Y”). Finally, he might provide information about
specific features like the object’s size or color. This work,
therefore, is additionally directed at supplementing the robot
with mechanisms covering such demands.

In particular, we introduce an approach for finding the
referent based on a set of descriptors when incomplete
information has been provided (incomplete in the sense of
ambiguous information, i.e. more than one object fulfills the
given description). To this end, the robot should reason based



on its current knowledge about the world and interact with its
human partner, if required, in order to obtain further informa-
tion that will allow the robot to identify the referred object.
The robot’s current knowledge of the world is based on the
description of objects in the environment and assumptions
about the visual access of its human partner. A first attempt
was introduced in [8]. The novelty of the work here is that
the robot’s knowledge is represented by an ontology. The
advantage of using an ontology is that it is not only used as
a central knowledge repository, but more importantly, that
it provides a semantic level allowing a certain degree of
reasoning on the stored knowledge. To validate our approach,
we present two types of tasks: a daily situation where a
human ask for an object using ambiguous information, and
a game, which exploits the reasoning ability of the robot
through the use of the ontology. We must remark that we
do not aim at dealing with natural language understanding
or conversational reasoning. Our work is mainly centered on
finding the “right” discriminants to ground the referent.

The paper is organized as follows. Section II goes through
the different types of information that compose the knowl-
edge of the robot used in this work. Next, in Section III
we describe our ontology-based approach for finding out the
referent. Integration and validations scenarios are detailed
in Section IV and finally, conclusions and future work are
presented in Section V.

II. THE ROBOT’S KNOWLEDGE

In this section we describe the different sources of infor-
mation that take part of the robot’s knowledge (about the
world and the agents in) used in this work. This information
is then used to disambiguate between different objects.

A. Visual Perspective Taking

Visual perspective taking refers to the ability for visually
perceiving the environment from other’s point of view. This
ability allows us to identify the referent in situations when the
visual perception for one person differs from the other one.
In developmental psychology, one typical example consists
of two similar objects in a room (eg. two balls) where both
are visible for the child, but only one is visible for the adult.
Thus, when the adult asks the child to hand over “the ball”,
the child is able to correctly identify which ball the adult
is referring to (i.e. the visible one from the adult point of
view), without asking.

The robot computes the visibility information for each
object (or agent) in the environment with respect to each
agent. This information is stored in each agent’s cognitive
model (we will come back to this aspect in Section III-A).

In [7], [8] we present a model-based approach for im-
plementing visual perspective taking abilities. In this ap-
proach, 2D perspective projections of the 3D environment
(Figure 1a,b) is used to determine if an object is visible
to an agent. We first obtain the projection of the isolated
object (Figure 1c, the blue box), and we compare it with the
“real” projection of the scene which considers occlusions of
the evaluated object (Figure 1d, the teddy bear is partially

(a) (b)

(c) (d)

Fig. 1. (a) An example of the environment, (b) human visual perspective,
(c) free relative projection and (d) visible relative projection.

occluding the blue box). A visibility ratio of the object is then
computed by comparing both images. An object is visible to
an agent if the ratio is over a given threshold.

In order to obtain a visual perspective, the actual visibility
alone is not enough. We believe that visual perspective taking
ability is not restricted to what the other person is seeing in
a given moment, but also what he “can” see with a minimal
effort (moving the eyes or the head). To model the potential
visibility of an object we compute the visibility ratio while
turning the head of the agent model towards the object.

In order to enrich the visual perspective model and reason
on the human’s focus of attention, the placement of the object
respect to the human’s vision is also computed. According
to human’s gaze direction and object’s position, we compute
whether the object is within the human’s focus of attention
(FOA), field of view (FOV) or out of field of view (OOF).

B. Spatial Perspective Taking

Spatial perspective taking refers to the qualitative spatial
location of objects (or agents) with respect to a frame (eg.
the keys on my left). Based on the frame of reference, the
description of an object varies. Humans mix perspectives
frequently during interaction. This is more effective than
maintaining a consistent one, either because the (cognitive)
cost of switching is lower than remaining with the same
perspective, or if the cost is about the same, because the
spatial situation may be easily described from one per-
spective rather than another [9]. Ambiguities arise when
one speaker refers to an object within a reference system
(or changes the reference system, i.e., switches perspective)
without informing her partner about it. For example, the
speaker could ask for the “keys on the left”. Since no
reference system has been given, the listener would not know
where exactly to look. However, asking for “the keys on your
left” gives enough information to the listener to understand
where the speaker is referring to. The reference system has
to be defined properly because the terms of reference (left,
right, above,...) may be identical in different systems [10].



On the contrary, when using an exact, unambiguous term of
reference to describe a location (eg. “go north”) no ambiguity
arises.

In this work, we use two types of the frames of refer-
ence: egocentric (from the robot perspective) and addressee-
centered (from the human perspective). Thus, given an object
and the referent we divide the space around the referent
into four regions: front, left, right and back. The number of
these regions are doubled with the distinction of near and far
from the referent in the center. These regions are separated
by arbitrary angle values relative to the referent orientation.
Depending of the task the number of regions can be increased
to 16 to include a more precise spatial placement information
(e.g. “near front right”, “far back left”).

C. Symbolic Location Descriptors

Symbolic location descriptors allow the robot to represent
spatial relations between objects in the environment. They
are computed based on the 3D geometric world representa-
tion. In this work we propose the use of three basic symbolic
relations between each pair of objects. However, their inverse
relations can be automatically computed enlarging the sym-
bolic descriptions easily:

IsIn: indicates if an object (or an agent) is inside of
another object. It is computed by testing if the bounding
box of an object is “completely inside” the bounding box of
another object. Eg. Bottle IsIn TrashBin. Its inverse
relation corresponds to TrashBin Contains Bottle.

IsOn: indicates if an object (or an agent) is placed on
top of another object. We test if the bottom of the object’s
bounding box is placed higher than the top of another
object’s bounding box and lower than an arbitrary value (this
value depends on the errors of the object perception system).
Eg. Red-box IsOn Blue-box. Its inverse relation cor-
responds to Blue-box IsUnder Red-box.

IsNextTo: tests if an object (or an agent) is next to another
object. It is based on the distance between two objects and
their relative placement: if neither one of the objects is
placed higher or lower wrt the other, and neither one is
inside the other, and if the distance between both objects
is not greater than the longest dimension of the bigger
object, then the objects are considered next to each other. Eg.
Bottle IsNextTo Cup. There is no inverse relation, but
symmetric, i.e. Cup IsNextTo Bottle.

D. Feature Descriptors

Objects have features (like color, size, shape, texture, etc.)
that allow us to distinguish one from another. Besides, we
can also categorize objects in different classes and refer to
their class as a descriptor. For example, a glass is an object
that can be classified based on its purpose in different ways,
such as a beer glass, a wine glass, a champagne glass, and
others. However, the wine glass can also be subdivided in
two categories, white wine glass and red wine glass. Hence,
in a scenario with three glasses (a champagne glass, a white
wine glass and a red wine glass), simply asking for “the
glass” would bring out ambiguities. Asking for “the wine

glass”, still would produce confusion. The only unambiguous
feature description would be asking for “the red wine glass”
instead.

In the current approach, the robot cannot perceive these
type of features by itself (due to limitations in perception,
which is not the focus of our work). Thus, we have to
explicitly inform them to the robot. So far, this information
is loaded into the ontology during initialization.

III. ONTOLOGY-BASED CLARIFICATION PROCESS

Given a complete or incomplete statement, the goal is to
determine the referent based on the current knowledge of the
robot. In this section we first introduce the ontology used in
our robot for storing and reasoning on its knowledge, and
then the ontology-based approach for resolving the referent.

A. ORO - The Ontology

ORO (the “OpenRobot Ontology” server [11]) is a
central knowledge repository that stores, manages, pro-
cesses and exposes knowledge for the robot. It for-
mally represents statements on the world as triples
<subject> <predicate> <object>. It uses two
open-source libraries: Jena for storage and manipulation of
statements and Pellet first-order logic reasoner to classify,
apply rules and compute inferences on the knowledge base.

ORO defines an initial upper ontology for human-aware
robotics called OpenRobots Commonsense Ontology. This
initial ontology contains a set of concepts, relationships
between concepts and rules that defines the “cultural back-
ground” of the robot, i.e. the a priori known concepts.
Currently, this commonsense knowledge is focused on the
requirement of human-robot interactions in everyday envi-
ronments, but contains as well generic concepts like thing,
object, location and relationships between those.

Besides simply storing and reasoning about knowledge,
ORO offers several useful features for human-robot inter-
action. One advantage offered by the ORO architecture is
that independent cognitive models for each agent can be
maintained. When the robot interacts with a new agent,
a separate triple storage is created to store the robot’s
knowledge about the agent’s perception. For instance, in the
case of perspective taking, we compute the visibility and
spatial information about the world from each agent point
of view, and store it in their own cognitive models. Having
separate cognitive models allows us to store and reason on
different models of the world.

Regarding the ontology performance, it has proved to be
fast enough to solve the problems presented in this work.
In a benchmark example, it is able to solve around 73000
simple queries per second and 7000 more complex ones per
second.

B. Clarification Algorithm

The ontology is first initialized with the description of the
environment represented by object features as defined in Sec-
tion II-D which is considered the robot’s initial knowledge
about the world (along with the common sense concepts).



Thing

Plant Animal

plant1 animal1 animal2 animal3

green banana grass whiteyellow

hasColor eats eats hasColor hasColor

Fig. 2. Ontology example. Names with first capital letter correspond to
classes (type); bold names, to properties; and italic names, to instances.

During interaction, the robot’s knowledge is updated with
the incoming information from the geometric reasoning, i.e.
visual perspective taking, spatial perspective taking and sym-
bolic locations descriptors. Based on all this information, and
a given partial (or complete) description of an object (list of
attribute-value pairs), the robot is able to identify the referred
object the following way (Algorithm 1). First it obtains all
objects that fulfill the initial description. Based on the result
it either succeeds (obtains one single object), fails (no object
with that description could be found) or obtains several
objects. In this latter case, a new descriptor is added to the
initial description and the process starts over again. Failure
occur when the description does not match any object from
the robot’s knowledge. Either because the robot’s knowledge
is incomplete (the human refers to an unknown descriptor or
descriptor value) or due to inconsistent information (human’s
and robot’s beliefs differ).

Algorithm 1 clarify(description)
1: objectL← get obj with desc(description)
2: if length(objectL) == 1 then
3: return first(objectL)
4: else if length(objectL) == 0 then
5: return no object found
6: else
7: description← add descriptor(description)
8: return clarify(description)
9: end if

Let us take a look at an example to better understand the
overall process. Suppose there are two bottles on a table, b1, a
red glass bottle and b2, a green plastic bottle. The human asks
the robot for a bottle: “Give me the bottle”. Thus, the ini-
tial description corresponds to [(type, bottle)]. Since both
objects fulfill this description, a new descriptor is required.
Suppose we add the color information. In this case, the new
description corresponds to [(type, bottle), (color, red)].
The algorithm ends now indicating that the object is identi-
fied as b1, the red glass bottle.

In order to add a new descriptor (attribute-value pair) two
alternatives are available: directly asking the human for a
new descriptor, or automatically searching a new attribute
and ask the human for its value. In the latter case, we need
to automatically find the best discriminant for the current list
of objects being evaluated (objectL in the algorithm).

Finding a discriminant: We have implemented a set of
semantic categorization functions in ORO. One of them
consists in looking for discriminants, i.e. descriptors that
allow a maximum discrimination among a set of individuals.
In the example above, considering the attributes type, color
and material, ORO would return color and material as
discriminants, since their values are unique for the given set
of objects.

We distinguish two types of discriminants. Complete dis-
criminants are those attributes (or properties) that totally
discriminate the set of individuals. In other words, proper-
ties whose values can uniquely identify those individuals.
However, they are not always available. First, because two
or more individuals may share the same value, and second,
because not all individuals may share the same properties.
Thus, partial discriminants are those that “better” split the
set of individuals in different subsets based on some criteria.

The algorithm to determine the type of discriminant avail-
able (Algorithm 2) has the following steps (to better follow
it, we base its description on the ontology example illustrated
in Figure 2. We search a discriminant for the following
individuals: plant1, animal1, animal2 and animal3). First
we obtain the direct properties for all the individuals, i.e.
we do not consider all the hierarchy of properties (line 1).
In the example, plant1 has two superclasses (plant and
thing), but we only take the most direct one (the class
plant). Next, we compute the number of individuals per
property (line 4) and the number of different values for that
property (line 5). If there is more than one different value for
the property (in other words, if not all individuals have the
same value), then we consider that property as a potential
discriminant (lines 6 and 7). Finally, we sort the list of
potential properties following two criteria: the number of
individual occurrences (i.e. the most individuals are covered
by that property, the better) and the values occurrences (i.e.
the more distinct values, the better). The best discriminant
corresponds to the first element of the sorted list. In other
words, the class with higher number of occurrences and more
variety in it. If several properties are equal, return all of them.

In our example, the algorithm would return the class name
as the partial discriminant. If we only consider the instances
of the class Animal, it would return two properties equally
discriminant: {hasColor,eats}. It should be noted that
this way of proceeding does not respect the open world
assumption. We believe that the robot should only reason
bases on his current knowledge.

IV. INTEGRATION AND VALIDATION TASKS

In order to validate our approach, we have use two types
of tasks. The first one corresponds to a daily-life situation
where a human asks the robot for an object providing partial
information, while the second one is focused on a child
game: the Spy-Game. Figure 3 illustrates the scenario for
both tasks. The relevant objects of the scenario are described
through the features presented in Section II. Table I shows
some of the objects indicating wether the description is
manually given or automatically computed. For example,



Algorithm 2 get discriminant(individuals)
1: P ← get properties(individuals)
2: P̂ ← nil
3: for all p ∈ P do
4: nind ← nb ind with prop(p)
5: nval ← nb diff values(p)
6: if nval > 1 then
7: P̂ ← append([p, nind, nval])
8: end if
9: end for

10: sort(P̂ )
11: return first(first(P̂ ))

Fig. 3. Scenario for validation tasks. Top row correspond to the real envi-
ronment, while the bottom row are snapshots of the modeled environment.
Robot’s visual perspective (left) and human’s visual perspective (right).

the information provided for the object orange-bottle is that
it belongs to the class Bottle and that its color is orange.
Based on the knowledge in the common sense ontology, the
robot can infer it is also a Tableware, and that its shape
is cylindrical. The remaining descriptors (location, spatial
and visual perspective taking) are automatically computed
through geometric reasoning. In both tasks, the agents com-
municate by using screen and keyboard. Both tasks have been
performed in simulation as well with two robotic platforms:
Jido and HRP-2.

A. Integration

The whole system is integrated into both robotic platforms
as components of the LAAS architecture [12]. In order to
acquire and keep a coherent model of the environment,
three main modules are used: the Object Recognition Module
detects and localizes objects through markers; the Human
Detection Module localizes and tracks the human looking
orientation through motion capture cameras; and the Robot
Manager Module provides the robot’s current configuration.
The Geometric Reasoner constantly updates its 3D environ-
ment while ORO is updated when required (either through
interaction or automatically through geometric reasoning).

human Give me the ball.
robot (Possible objects: objectL = [purple-ball, orange-

ball])
(Removing non visible objects for the human:
objectL = [orange-ball])
You want the orange-ball.

human Give me the bottle.
robot (Possible objects: objectL = [blue-bottle, yellow-

bottle, orange-bottle, red-bottle])
(Removing non visible objects for the human:
objectL = [blue-bottle, yellow-bottle])
(Complete discriminants: color.)
Which one: blue or yellow?

human Blue.
robot (Possible objects: objectL = [blue-bottle])

You want the blue-bottle.

human Give me the box on the table.
robot (Possible objects: objectL = [accesskit, white-

box])
(Removing non visible objects for the human:
objectL = [accesskit, white-box])
(Complete discriminants: none (both boxes
share type, shape))
Which one? I need more information.

human On your left.
(Possible objects: objectL = [white-box])
You want the white-box.

Fig. 4. “Which one?” example. The uppermost cell includes an ambiguous
situation solvable through visual perspective taking, the middle cell a
feature-based solution, the lower cell a spatial perspective taking based
solution.

B. Task 1: Which one?

In this task we are considering a daily situation where the
human needs an object and asks the robot to pass it over.
The human query either provides complete information, i.e.
based on the description the referent is identifiable, or partial
information resulting in an ambiguity, i.e. more than one
object matches the description. In the first case, the robot
can directly hand the object since only one object matches
the description. However, in cases where more than one
object matches the query, the robot should try to resolve
the ambiguity efficiently. Based on the algorithm presented
in Section III-B, the robot tries to automatically find out a
complete discriminant that will allow it to resolve the ambi-
guity in one single question (asking for the attribute’s value).
If no complete discriminant is available, it is an efficient
strategy to ask the human for more specific information (an
attribute-value pair) resulting in a fast referent identification.
Figure 4 describes three situations where type of information
provided by the human varies.

C. Task 2: Spy-Game

This game is based on the traditional children game “I
Spy”. The idea is to discover the object (which should be
visible to everyone) or concept one of the participants is



Id Type Color Shape Location Spatial PT Visual PT
Robot Human Robot Human

purple-ball ball purple sphere on shelf1 back near front far false false
orange-bottle Bottle, Tableware orange cylinder on big table front right near front left near true false

red-bottle Bottle, Tableware red cylinder in trashbin front right far back left near false false
orange-box Box, Object orange cube on accesskit front near front left near true true

TABLE I
EXAMPLE OF OBJECTS’ DESCRIPTIONS. IN BOLD, INFORMATION GIVEN AT INITIALIZATION. ALL OTHER DESCRIPTORS ARE AUTOMATICALLY

COMPUTED BY THE GEOMETRIC REASONING OR INFERRED FROM THE ONTOLOGY ON-LINE.

human It is a tableware.
robot (Possible objects: objectL = [blue-bottle, yellow-

bottle, orange-bottle, red-bottle and cup-with-
handle])
(Removing non visible objects for the human and
the robot: objectL = [blue-bottle, yellow-bottle,
cup-with- handle])
(Discriminants: type, color.)
Which type of object it is: bottle or cup?

human Bottle.
robot (Possible objects: objectL = [blue-bottle, yellow-

bottle])
[Discriminants: color.]
What color the object is: blue or yellow?

human Blue.
robot [Possible objects: objectL = [blue-bottle])

The object is the blue bottle!

Fig. 5. Spy Game example.

thinking of by asking questions such as: “Is it green? Is it
a machine? Is it on your left?”, etc. When playing, children
exploit their knowledge about the world while categorizing
and describing objects through useful discriminants.

The Spy Game (see Figure 5 for an example) starts with
the human user giving a first hint that corresponds to the
initial description indicated in the algorithm introduced in
Section III-B. The robot tries to figure out the object automat-
ically searching for discriminants (complete or partial) and
querying the human for their values until either discovering
the object or giving up (no object matches the description).

V. CONCLUSIONS AND FUTURE WORK

Grounding the referent is essential for a robot to inter-
act with humans. Humans constantly generate and resolve
ambiguities, and therefore, they expect that robots will be
able to do so as well. Thus, we believe that it is important
to include various clarification strategies helping the robot to
better understand its human partner. However, to interact suc-
cessfully with a human partner, the knowledge and reasoning
processes available to the robot are critical. In this work we
have presented different sources of information to feed the
robot’s knowledge, as well as an ontology to store, manage
and reason on it. We have introduced an algorithm that allows
the robot to detect and resolve ambiguous situations arising

in natural interaction. Two application tasks have been de-
scribed: Spy Game and object identification. The validation
tasks were successfully performed both in simulation and on
two different robot platforms (HRP-2 and Jido).

Although we have performed a step forward in solving
ambiguities, there is still a lot of work to do. The most
immediate one is to integrate the use and recognition of
deictic gestures, such as pointing and showing (humans use
these types of gestures) as another source of information for
clarification. We also plan to include comparative reasoning
among a set of objects to identify properties such as: the
bigger one, the nearest one, etc. Finally, we also plan to
extend the robot’s knowledge by learning new concepts based
on the descriptions obtained when failure occurs.
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