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There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

Shakespeare, Hamlet, Act 1, scene 5, 159–167
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Abstract

With the rise of the so-called cognitive robotics, the need of advanced tools
to store, manipulate, reason about the knowledge acquired by the robot has
been made clear. But storing and manipulating knowledge requires first
to understand what the knowledge itself means to the robot and how to
represent it in a machine-processable way.

This work strives first at providing a systematic study of the knowl-
edge requirements of modern robotic applications in the context of service
robotics and human-robot interaction. What are the expressiveness require-
ment for a robot? What are its needs in term of reasoning techniques? What
are the requirement on the robot’s knowledge processing structure induced
by other cognitive functions like perception or decision making? We propose
a novel typology of desirable features for knowledge representation systems
supported by an extensive review of existing tools in our community.

In a second part, the thesis presents in depth a particular instantiation
of a knowledge representation and manipulation system called ORO, that
has been designed and implemented during the preparation of the thesis.
We elaborate on the inner working of this system, as well as its integration
into several complete robot control stacks. A particular focus is given to the
modelling of agent-dependent symbolic perspectives and their relations to
theories of mind.

The third part of the study is focused on the presentation of one im-
portant application of knowledge representation systems in the human-
robot interaction context: situated dialogue. Our approach and associated
algorithms leading to the interactive grounding of unconstrained verbal
communication are presented, followed by several experiments that have
taken place both at the Laboratoire d’Analyse et d’Architecture des Systèmes at
CNRS, Toulouse and at the Intelligent Autonomous System group at Munich
Technical University.

The thesis concludes on considerations regarding the viability and im-
portance of an explicit management of the agent’s knowledge, along with
a reflection on the missing bricks in our research community on the way
towards “human level robots”.

Keywords: Cognitive Robotics, Knowledge Representation and Reasoning, Human-
Robot Interaction, Ontologies, Natural Language Processing
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Résumé

Ancrer l'interaction: Gestion des connaissances pour la robotique inter-
active

Avec le développement de la robotique cognitive, le besoin d’outils avancés
pour représenter, manipuler, raisonner sur les connaissances acquises par
un robot a clairement été mis en avant. Mais stocker et manipuler des con-
naissances requiert tout d’abord d’éclaircir ce que l’on nomme connaissance
pour un robot, et comment celle-ci peut-elle être représentée de manière
intelligible pour une machine.

Ce travail s’efforce dans un premier temps d’identifier de manière sys-
tématique les besoins en terme de représentation de connaissance des ap-
plications robotiques modernes, dans le contexte spécifique de la robotique
de service et des interactions homme-robot. Nous proposons une typologie
originale des caractéristiques souhaitables des systèmes de représentation
des connaissances, appuyée sur un état de l’art détaillé des outils existants
dans notre communauté.

Dans un second temps, nous présentons en profondeur ORO, une in-
stanciation particulière d’un système de représentation et manipulation des
connaissances, conçu et implémenté durant la préparation de cette thèse.
Nous détaillons le fonctionnement interne du système, ainsi que son inté-
gration dans plusieurs architectures robotiques complètes. Un éclairage
particulier est donné sur la modélisation de la prise de perspective dans
le contexte de l’interaction, et de son interprétation en terme de théorie de
l’esprit.

La troisième partie de l’étude porte sur une application importante
des systèmes de représentation des connaissances dans ce contexte de
l’interaction homme-robot : le traitement du dialogue situé. Notre ap-
proche et les algorithmes qui amènent à l’ancrage interactif de la communi-
cation verbale non contrainte sont présentés, suivis de plusieurs expériences
menées au Laboratoire d’Analyse et d’Architecture des Systèmes au CNRS à
Toulouse, et au groupe Intelligent Autonomous System de l’université tech-
nique de Munich.

Nous concluons cette thèse sur un certain nombre de considérations sur
la viabilité et l’importance d’une gestion explicite des connaissances des
agents, ainsi que par une réflexion sur les éléments encore manquant pour
réaliser le programme d’une robotique “de niveau humain”.
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Zusammenfassung

Verankerung der Interaktion: Wissensmanagement für interaktive Roboter

Mit dem Aufstieg der sogenannten kognitiven Robotik ist der Bedarf
an mächtigeren Werkzeugen gestiegen, um das Wissen vom Roboter zu
speichern und weiter zu verarbeiten. Diese Arbeit stellt zuerst eine Studie
über die Anforderungen an solche Werkzeuge vor und schlägt eine neuartige
Typologie von wünschenswerten Eigenschaften für Wissensrepräsentations-
Systeme vor.

Wir führen dann ein solches System namens ORO ein. Wir zeigen
seine innere Arbeitsweise sowie seine Integration in verschiedene Roboter-
Architekturen. Ein besonderer Fokus liegt auf Agenten Perspektiven und
ihre Beziehungen zur Theory of Mind.

Der dritte Teil der Studie stellt eine Komponente zur Verarbeitung von
Dialogen vor, die die interaktive Verankerung der freien verbalen Kommu-
nikation ermöglicht. Wir schließen mit mehreren Experiment-Berichten und
einer Diskussion über die fehlenden Bausteine auf dem Weg zum “human
level” Roboter.
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Conventions and Notations

This thesis relies on several notations and specific writing conventions to describe
symbolic knowledge and logical relations.

Ontologies and excerpts of ontologies presented in the work are mostly written
in the W3C’s OWL language. As a derivative of XML, it uses namespaces to declare
the scopes of concepts. The main namespaces that are used in this work are owl:,
rdf:, rdfs: (respective namespaces and schema namespace of the Web Ontology
Language and the Resource Description Framework), cyc: (concepts defined in the
OPENCYC upper ontology) and oro: (concepts defined in our OpenRobots Common-
Sense ontology). For readability, the namespaces will be omitted when they are not
required for the understanding.

The table below summarises the terminology that we use in this work to discuss
knowledge representation questions. While these terms are generally not strictly
synonyms, we will use them interchangeabily when no confusion may arise.

Entity,
Element,
Concept

Class (OWL),
Concept (DL)

Relation,
Property (OWL),
Role (DL),
(Binary) Predicate

Instance (OWL), In-
dividual (DL)

Description Logic terminology (noted DL above) for classes (i.e. concept) and rela-
tions (i.e. role) will be used only in the specific context of Description Logic. In other
cases, we use the term concept as a general term that encompasses classes, properties and
instances in the OWL terminology.

Depending on the context, a logical statement is either a declarative sentence or the
meaning of this sentence (in this case, it is a fact or a belief ). Statements are generally
represented as triples hsubject, predicate, objecti. Statements that are explicitely added
to a knowledge base are called assertions.

Again, we may use interchangeabily the terms statement, assertion, fact, belief, triple
when no confusion arise.

Single concepts are typeset with this font: concept, while statements are typeset in
this way (when represented as triples): hsubject predicate objecti.

Relations between concepts and rules rely on logical connectors. The table below
presents the most important ones that are found in this thesis.
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j= “models”

u intersection or conjunction of classes
t union or disjunction of classes
8 universal restriction
9 existential restriction
� class equivalence
; empty set

^ logical AND
_ logical OR
! implication

Finally, we punctually use the Manchester Syntax1 to present in a readable way
complex class expressions.

1http://www.w3.org/TR/owl2-manchester-syntax/
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Chapter 1

Introduction: Robots, Interaction and
Knowledge

Nao has been seen playing with autistic children, Justin is able to gently tap on the
chocolate powder dispenser to prepare a hot chocolate, the PR2 robot(s) are taking
orders and bring beers and popcorn around the labs, while Rosie pours pancake dough
on a heater for the afternoon snack: if recent experiments conducted in the labs around
the world are any indication, service robots are leaving the realm of Sci-Fi, dreams and
phantasms to become a reality.

Nao, Justin, PR2, Rosie: robots play with children, prepare hot chocolates, serve fresh beers
or make pancakes. Still in the labs, not yet with complex interactions with humans. What is
missing for them to enter our homes?

From technological demos, these robots are now moving to real-world coworkers
and companions, and they are undoubtedly to knock at our doors in the coming years.

The perceptual layers have moved up from traditional sensing modalities (camera
images, laser scans) to synthetic pseudo-sensors like face recognition, SLAM-based
localisation, or the Kinect-based human tracker.

Perceiving and understanding the environment is now a matter of rebuilding an

1
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Figure 1.1: Towards the cognitive robot

internal, amodal, model of the environment, with two interleaved facets: a continuous,
geometric world on one hand and a discrete, symbolic world on the other hand. This,
by itself, is sufficient to build efficient, compliant, reactive manipulators.

But perceiving an inanimate environment is not enough for a companion robot:
such a robot does not live in isolation in a world that would have been tailored to
its capabilities. It lives in the real world, in interaction with other intelligent agents,
and we want it to be endowed with social skills. It needs also to become aware of the
human, as a physical entity of course, but also as a mindful entity. This implies that
the robot is not only able to represent inanimate objects, not only able to represent its
own mental state, but also able to guess and represent mental states of other agents,
other intelligences. And interaction requires more, like communication skills and social
capabilities: agency, perspective taking, theory of mind, not to mention the endless
piles of information available from our connected world.

Figure 1.1 tries to relate socio-cognitive skills and acting skills of various domains
of robotic research. Our focus in on the cognitive robot, and in this work, we postulate
that further development of such robots relies on the acquisition of even better, richer,
more diverse cognitive abilities, and that the key of this development lies in a better
understanding of what knowledge means to a robot, and how to represent it. The What,
and the How of knowledge for robots.

We propose to give life to these two questions by narrating a short story of two
robots and a human...

2
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Figure 1.2: The Brownie scenario

1.1 A prototypical scenario

The aim of this imaginary scenario (that has not been implemented, neither in simula-
tion nor on a robot) is to materialise early in this thesis the context and challenges of
knowledge representation and manipulation for service, social and interactive robotics.
It underlines the place, the role and the need of knowledge in a near-future, everyday
situation where several robots and humans co-exist and cooperate. This scenario will
also be a source of support examples for later sections of the thesis. Also, we have em-
phasised several keywords in this description: we will come back to them in chapter 2
to explain them formally and relate them to each other.

We entitle our scenario “the Brownie scenario” (Figure 1.2): Robi and Roba are two
service robots, that can freely move and pick objects around (with possibly different
hardware and software architectures, including different knowledge representation
systems: typically, two robots built by two different companies). They cooperate with a
human in a kitchen environment.

The main task of the scenario is the joint realization of a brownie, initiated by Tom,
the human: “Let’s make a brownie for tonight!”.

The scenario is successful 1) if the task is achieved (the brownie is baked), 2) in a
reasonable time (typically shorter than what it would have been required by the human
alone), 3) and the human is happy by the help it received (he/she did not feel useless,
uncomfortable, unsafe).

We voluntarily do not detail the subtasks of the scenario, neither we define how
they are shared amongst agents: our focus is on knowledge needs and flows.

A “first-order” analysis of this task leads to a rough partition of the required repre-
sentation abilities:

1. Representation abilities related to the execution of a complex spatio-temporal
task,

3
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2. Representation abilities related to cooperation with other agents.

We can further refine these categories: to prepare and bake a brownie, the robot
first needs to make sense of the term brownie itself: what is it? what is it used for?
what is it made of? etc. We call this knowledge common-sense knowledge and the robot
must be able not only to represent it, but also to have access to an initial source (for
instance through a initial set of facts that are made available at startup, or via access to
a Web-based knowledge base like Wikipedia)

Once bound to the action make, this should lead the robot to build and represent
a context: we are in a scenario involving cooking. The context enables the robot to
retrieve more common-sense knowledge, like that actions related to cooking often take
place in the kitchen, cooking requires ingredients, utensils and a procedure that may be
provided by a recipe.

These last assertions imply several other capabilities: “cooking often takes place in
the kitchen” implies that representation of both uncertainty and likelihood is desirable.
The fact that cooking is associated to a place further implies that the system models
locations and is able to attach thematic relations to concepts (here, the likely location of
the cooking action).

“cooking requires a procedure and ingredients” hints about another important fea-
ture closely tied on knowledge manipulation: reasoning. The robot can infer that cooking
may require a recipe since a procedure and a list of ingredients are pre-requisites of
the cooking action that may be provided by a recipe. If we omit the “may”, this is a
typical example of first-order logic reasoning. Many other reasoning techniques exist
(including probabilistic ones – ones able to deal with the “may”), we shall illustrate
some of them later in this scenario.

We mentioned that a recipe often provides a procedure (or a plan). The robot should
be able to store this plan in a way that allows later execution. The plan is likely to
contain spatio-temporal constraints (like “put the brownie in the oven for 20 min” or “let’s
cook for tonight”) that must be as well appropriately handled.

To make decision, a robot may also want to predict the state of the world after
some action (“if I leave the cake 2h in the oven, it will burn”). Such ability to project
itself in future or, generally speaking, in other possible state of the world is related to
several cognitive ability and reasoning techniques: planning, projection, representation of
possible worlds and non-monotonic reasoning, in addition to common-sense knowledge
and physics-based reasoning (that allows for instance to predict that an egg is likely to
break if dropped).

Procedures are in addition often underspecified: we can expect the recipe to provide
a cooking duration, but we usually do not expect the recipe to tell us to first open the
oven door, and then put the cake into it, since it is self-evident that the door must first
be opened to put the cake in the oven. Our cognitive robot should ideally be able to
detect and possibly complete such underspecification.

Then, we want our three agents to cooperate. This, in turn, leads to another set of
cognitive abilities.

Cooperation in our scenario can intervene at many places. For instance, an agent
may want to inform another one about the number of eggs that are necessary for the
brownie. This helping behaviour makes sense only if the first agent knows that the
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recipient agent both needs the information but does not know it. This in turn requires
the robot to be able to model the knowledge of the other agents: to think from the
perspective of another agent (an idea that is related to the availability of a theory of mind,
we will come back to it later on).

Ability to communicate is one important pre-requisite to collaboration. Commu-
nication in general requires the addresser and the addressee to share a common inter-
pretative framework (a shared common-sense knowledge – or cultural background
– and a shared context). In our scenario, the agents are working in a kitchen. This
element of context does not however suffice if, for example,the human asks a robot
to “give [him] the bowl”. Behind the symbol “bowl”, which physical entity are we
actually talking about? If we want to talk and act on the world, this so-called grounding
operation is essential. It is a bidirectional process: in covers the top-down operation
(from the symbol to the percept) and the bottom-up converse (retrieval or creation of
symbols from perception).

A related ability is called pre-supposition accommodation: if one of the agent moves
behind another one, with the brownie dough in its arm, and says “be careful, I’m
behind you!”, we want the first agent to be able to represent both symbolically and
geometrically (because, for instance, if the agent want to move, it must take into account
the new obstacle) something that is not directly perceived.

Also central to cooperation are the notions of joint intentions and joint goals: to help
the human during the cooking session, the robots need to track how far they are into the
recipe, what is the next step the human is likely to go for, how tasks are currently split
between agents, what action is currently blocking the procedure, etc. This knowledge
should let the robot identify the intentions of other agents and create accordingly joint
goals. Hence, a knowledge representation system aiming at dealing with cooperative
behaviours is likely to have goal management structures taking explicitly into account
other agents’ actions and goals.

In order to effectively share tasks, the robot must also know what it is capable of:
capability introspection (both in term of general capability and of immediate ability) is
thus often desirable. It can be extended to general introspection (like the ability to tell
“who I am” or “what do I think of”) that may be required for the interaction.

Last but not least, our scenario assumes implicitly natural interaction between hu-
mans and robots (as shown by the casual style of the order “Let’s make a brownie!”),
and we want to ensure that the knowledge available to the robot provides efficient
support to the natural language understanding (for instance by adopting models and
vocabulary that are both well suited for machine processing and remain as close as
possible to the humans own structures and vocabulary), and also to non-verbal forms of
communication, like gestures.

Before explaining with more details in the next chapter the keywords we have
emphasised in the scenario, we would like to briefly focus on the challenges specifically
related to the human-robot interactions. Not only in term of knowledge representation,
but more broadly in term of specific cognitive capabilities.
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Figure 1.3: Interacting with the robot in an everyday situation: the human asks for help
in vague terms, the robot takes into account the human’s a priori knowledge and spatial
perspective to refine its understanding of the question.

1.2 Robots for interaction

This work comes indeed from researches in the specific context of the human-robot
interaction, or, to put it another way, in the context of interaction for joint action with
humans, in a situated environment (figure 1.3).

“Let’s bake a brownie for tonight!”, proposes Tom. The robots smoothly prepare all the
ingredients, and they start to cook together a delicious cake...

Natural interaction and cooperation are actually the current (dare we say, short-
term) targets for the human-robot interaction community. The “Brownie scenario”
we presented above belongs to the broad class of interactive manipulation problems:
several agents agree on a (more or less implicit) joint goal that requires some sort of
cooperation to be successfully achieved. This class of problems involves both dialogue
and manipulation and they are often not completely defined at start-up: they require
iterative, interactive resolution (step-by-step process, questions-answers,...).

What are the cognitive prerequisites for such a sentence –“Let’s make a brownie
for tonight”– to be understood by the robot, correctly interpreted in the spatial and
temporal context of the interaction, and eventually transformed into a set of actions?
We distinguished four main tasks in [74]:

1. building and maintenance of a consistent geometric model of the current situation,
acquired through perception or deduction from previous perceptions,

2. building of an unambiguous and complete symbolic representation of concepts
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??
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Multi-modal Dialog

Mutual
Activity

Observation

Figure 1.4: A robot reasoning about human-robot interaction and anticipation of human
activities: sources of knowledge are multi-modal dialogue and observation of the environ-
ment and the human activities. The robot “knows” and reasons about the fact it is observed
by the human.

(objects, agents, actions...) underlying the interaction, and practical for decision-
making processes,

3. establishing the joint goal(s), building and maintenance of iteratively shared
(human-robot) plans,

4. refinement and execution of the computed plans, and monitoring of those achieved
by the human partner.

While each of these items is equally important to actually perform the interac-
tion – and we will present (with illustration from experiments) how our knowledge
representation system integrates and communicates with other processes to form a
knowledge-enabled robotic architecture –, the thesis focuses on the second point: it
presents techniques, developed and used on several real robots, for the symbolic
representation of environment and mental models suitable for grounded situation
interpretation, decision-making and control.

Models for the interaction Figure G.1 summarises the main aspects of the interaction,
that are to be translated into models. From the robot perspective, several cognitive skills
are involved: dialogue processing through verbal and deictic modalities (what does the
human say? What attitude – gaze orientation, postures, gestures... – does he express?),
acquisition and maintenance of one or several models of the environment, not only
from the robot point of view, but also from the other agents’ points of view, anticipation
(what are the intentions of the human? Can I predict and anticipate his/her actions?),
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Figure 1.5: The Communication Model, as proposed by Jakobson [56]. In bold characters are
the communication dimensions, in italics, the corresponding communication functions.

planning and control (how would I proceed further towards the goal?), monitoring
of the other agents’ activities (do we have an effective cooperation?) and the overall
progress of the task.

As we shall see, all these cognitive capabilities also translate into requirements on
the knowledge representation systems that we want to clarify.

The need of communication is probably the most salient one. The classical model
of communication proposed by Jakobson in 1960 (figure 1.5) exposes in a bright way
the main functions involved in a communication, be it verbal or non-verbal. While
the channel and the code are the technical side of the communication, the message in
relation with the context are directly concerned with the question of the meaning. And
the meaning is itself tightly bound to the knowledge available to the agent.

The question of the communication between a robot and another agent (agent in a
broad sense: another robot, a human, but also a remote knowledge base or the robot’s
developer) actually underlies many of the challenges of knowledge representation:
how to represent the knowledge I want to exchange, and how to recognise, represent
and share a context that ensures that both ends of the communication channel correctly
interpret the message. Or, to put it another way: how to ensure that the meaning is
correctly conveyed around while conducting social interactions?

1.3 The challenges

From the set of questions raised in the previous paragraphs, we can now articulate the
challenges that are to be tackled in this field of knowledge representation for service or
companion robotics.

The first challenge is to... clarify the challenges (!) of knowledge representation: we
said “knowledge”, we said “reasoning”, we said “representation”, but clear definitions
are yet to be provided. Numerous requirements on what Newell calls the knowledge
level of intelligent agents have emerged from our Brownie scenario, but how do they
articulate? Are they comprehensive?

To allow further progresses in the field of cognitive robotics, we think it is mandatory
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to lay down solid theoretical and practical foundations to the knowledge needs of
service and interactive robots. This is our first challenge.

The second challenge is more technical: how to build such a “knowledge-enabled”
robot? Since many years, researchers create and study so-called cognitive architectures,
implemented as abstract, computer-based, virtual models of the human cognition.
Robots, as embodied and interactive agents, raise specific issues. What are those?
Which are the right technical approaches to tackle them? Can we build today at least
an instance of such a cognitive system, and if we can not, why that? How the abstract
idea of knowledge translates into practical, meaningful concepts?

Our third challenge relates to the specific question of the human-robot interaction.
We claim that robots now belong to the realm of social individualities. What does that
mean? Which consequences does that have on our initial knowledge challenge? How
does it translate into practical issues, like natural language understanding?

All the contributions (summarised in the next section) of this thesis can be related to
one of these three challenges, and we hope they contribute to the progress towards the
understanding of these questions.

1.4 Contributions

We have presented our challenges: this section now summarises the main contributions
of the thesis, both from a scientific point of view and from a technical point of view.

1.4.1 Scientific contributions

The starting point of our thesis is the feeling that a better understanding of the knowl-
edge needs of robotic applications in human, i.e. complex, dynamic, semantically-rich,
environments, would be beneficial to the research in cognitive robotic.

Building upon an extensive review of the literature and the formulation of several
interaction scenarii (that themselves led to experiments on real robots), we have it-
eratively refined the “knowledge for interaction” problem. The formalization of this
question is one of the main scientific outcomes of this work: we have listed and or-
ganised into a typology a set of desirable characteristics of knowledge representation
systems for service robotics (chapter 2).

This typology aims at offering a comprehensive and consistent base to evaluate
existing systems and to draw new research perspectives. It also enables to better assess
the progresses of the Service Robot and Human Robot Interaction research communities
towards the long term goal of human-level artificial intelligence for robots, as would say
McCarthy.

Another scientific contribution of this thesis is its participation to narrow down
the gap between research on embodied and disembodied artificial agents: we have
tried to bridge experiences learned from years of research on disembodied cognitive
architectures (both from the computing science and neuropsychology communities)
with the constraints from real-world systems that weigh on robotic architectures. No-
tably, we have tried to identify theoretical reference contributions from the diverse

9



Introduction: Robots, Interaction and Knowledge

fields of cognitive sciences that are relevant to knowledge-enabled robotics. We have also
proposed reference implementations on robots for some of them.

At the architectural level, our work also helps to better understand the knowledge
flows in modern cognitive architectures for robots. By introducing explicit knowledge
in our architectures, it allows the humans that design and program robots to talk
about and question this knowledge: it singularises and materialises concepts that were
beforehand often diffuse and ubiquitous. This leads us to define the idea and propose
an implementation of a knowledge-oriented architecture (section 7.2).

This work has also several more focused scientific contributions. The centralised
semantic architecture that we propose is original. While it exhibits shortcomings for
some cognitive tasks, it also proposes novel efficient ways to represent and manipulate
knowledge simultaneously for multiple agents (chapter 3). Along with the survey of
current knowledge systems that we have conducted, it effectively completes the picture
of available designs of knowledge representation systems.

Amongst the cognitive abilities that our developments have enabled, a particular
scientific focus was led on the acquisition and modeling of multiple, agent-dependent
symbolic worlds. This opened new perspectives related to perspective-aware reasoning
or theories of mind for robots that are detailed in this work.

We also have a scientific contribution on the grounding of human-robot dialogue in
natural language (chapter 5). We have algorithmically formalised a grounding process
that takes advantage of multi-modal communication (verbal, deictic and immanent) and
handles the semantics of several more complex language features like quantification.
This system also has contributions related to the semantic validation of thematic roles
and interactive disambiguation that takes into account human attentional focus.

1.4.2 Technical contributions

This thesis has four major technical contributions: the software development of the
ORO server as a semantic blackboard dedicated to robotic applications, the design of the
ORO ontology as a domain-specific common-sense ontology tailored for service robotic
needs, the pervasive integration of a new semantic layer into several existing robot
architecture, and finally, the software development of Dialogs, a module for natural
language grounding.

The main software contribution of the thesis is the development of an open-source,
versatile and light-weight knowledge base that stores in a formal framework based
on first-order logics both the robot’s own beliefs and the mental models (as perceived
by the robot) of every other cognitive agent that the robot interacts with (chapters 3
and 4). This tool, called ORO, is implemented as a platform/middleware-agnostic
server, and exposes to the robot’s modules several advanced reasoning services (via
the integration of external reasoners). This software project is now publicly available,
used by other laboratories, and comes with extensive documentation and bindings for
several mainstream languages (C++, Python...) and middleware (ROS, YARP).

In parallel of this development, and in collaboration with other developers, we have
also drafted (and partially implemented) a proposal for a standard API for knowledge
manipulation that supports the specific needs of robotic applications (section 2.4).
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Coming along with the ORO server, we introduce in this thesis the ORO common-
sense ontology which is a proposal of an upper ontology for service and interactive
robotics (section G.3). This ontology consists of about two hundred classes, relations
and rules that are relevant for the modeling of the robot’s beliefs and state, and the
interactions with other agents (humans or robots). This ontology also tries to stay closely
aligned with the standard OPENCYC upper-ontology to guarantee interoperability with
semantic web resources and other robots.

A third technical contribution is the introduction of a new knowledge-oriented,
event-driven communication model between high-level decisional modules (section 4.4):
by introducing the notion of semantic events, the ORO server enables the development of
new executive layers that combine reactive behaviour with high-level abstractions: for
instance, triggering a behaviour when a human looks at the robot while sit, can be ex-
pressed in our architecture as a single proposition: subscribe([* type Human,

* looksAt myself, * isSitting true], behaviour_callback()). This
highly expressive event model opens a new range of development opportunities for
decisional modules.

During the preparation of the thesis, we have also developed a new stand-alone
natural language processor for English language (chapter 5). It takes advantage of the
different symbolic models exposed by the ORO server to analyse, resolve the semantics
and ground dialogues. It can process orders, questions and positive assertions and
translates them into new symbolic facts. It includes a custom grammatical parser, a re-
verbalization module, several discrimination strategies, including interactive ones. The
application is developed in Python (about 15K lines of code), can be used in real-time
on the robot, and is accompanied by a speech recognition interface developed as an
Android application.

A last notable software contribution is our involvement in the MORSE simulator for
academic robotics. We have played a central role in the original design and development
of the core functionalities of this open-source simulator which is now used by over
twenty laboratories world-wide. While this project as a whole is not directly related
to main topic of the thesis, we have led the effort towards effective simulation of
human-robot interaction in MORSE. It is briefly presented at section 6.2.1.

1.5 A reader's guide

The thesis in one hour

Because of the contingencies of this world, we acknowledge that the complete reading
of this thesis may not fit in one’s tight schedule.

If you have only about one hour to dedicate to this work, we suggest to read the
following sections in that order:

� What are the challenges? (section G.1.1, page 178),

� Contributions (section G.1.2, page 179),

� The ORO functional overview (section 3.1, page 57),
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� The first interaction experiment (section 6.2.3, page 121),

� The evaluation of ORO and other knowledge representation systems (section 6.1,
page 107),

� And finally, the discussion on perspectives (section 7.3, page 138),

Hopefully, this quick overview of the work can help you to select sections that you
may want to visit more in depth.

For the patient reader

Roughly speaking, the thesis is organised in three parts: an analysis of knowledge
representation systems for service and personal robotic, the presentation of ORO,
our own implementation of such a knowledge representation system, and finally we
report on practical uses of explicit knowledge manipulation on robots, first for natural
language processing, then through several experiments.

The first part is covered in the chapter 2: after a discussion on what we call “knowl-
edge” in our context, we explore its importance by listing, in a typology of characteris-
tics, the requirements of our robots related to knowledge management. This chapter is
completed by a survey of eight systems for knowledge management that have been
already deployed on real robots.

At the end of the thesis, we give a second look at these systems to try to draw a
picture of the overall landscape of knowledge representation approaches in the robotic
research community, to identify new possible research directions.

The second part is covered by chapters 3 and 4. Chapter 3 presents the functional
side of ORO server, some of the algorithms that are implemented, and discusses its
knowledge model (the ORO common-sense ontology). The technical side is presented in
chapter 4 where we emphasise the integration of ORO within a larger robotic architec-
ture. The articulations with perception, planning and control are presented.

Chapters 5 and 6 form the third and last part of the thesis. Chapter 5 details
Dialogs, a module for situated dialogue grounding that takes advantage of the symbolic
knowledge exposed by ORO, and chapter 6 presents several evaluations of our work
through various experiments conducted during the four years of the thesis preparation.

We conclude the thesis with a discussion of several issues related to knowledge
management in service robots (importance of embodiment, relationships between the
symbolic and continuous realms, etc.) and some remarks that could further improve
knowledge representation and management in future robotic architectures.
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Chapter 2

Symbolic Knowledge Representation

2.1 Knowledge and robotics

The idea of Cognitive Robotics was coined in the early 1990s by Reiter. In a chapter
on that subject in Foundations of Artificial Intelligence [78], Levesque reminds about the
manifesto they wrote together in 1998:

Central to this effort is to develop an understanding of the relationship
between the knowledge, the perception, and the action of [. . . ] a robot. The
sorts of questions we want to be able to answer are

� to execute a program, what information does a robot need to have at the
outset versus the information that it can acquire en route by perceptual
means?

� what does the robot need to know about its environment versus what
need only be known by the designer?

� when should a robot use perception to find out if something is true as
opposed to reasoning about what it knows was true in the past?

� when should the inner workings of an action be available to the robot
for reasoning and when should the action be considered primitive or
atomic?

and so on. With respect to robotics, our goal (like that of many in AI)
is high-level robotic control: develop a system that is capable of generating
actions in the world that are appropriate as a function of some current set of
beliefs and desires.

Indeed, pervasive knowledge could safely be considered as the prominent character-
istic of cognitive robotics. This chapter is dedicated to an analysis of what is knowledge
for a robot, and what are the important features of knowledge and knowledge repre-
sentation that are relevant to cognitive robotics.

The next section attempts to give a practical definition of knowledge for robotics,
with a few of its major characteristics. We then review some existing material from
diverse fields of cognitive robotics to propose our own typology of the needs and
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characteristics of knowledge representation for service and interactive robotics. About
fifty such items are identified, defined, and organised in a large set.

We then put into practice this reference by surveying eight systems and architectures
for robots. Their main strengths are underlined, in order to depict the state of the
research in knowledge representation for robots.

Finally, we conclude this chapter on symbolic knowledge representation by briefly
presenting a novel API for knowledge manipulation, jointly designed with several
other researchers on knowledge representation.

What do we call “knowledge”? Since we will discuss at length the concept of knowl-
edge in the context of robotics in the coming pages, it is useful to make our terminology
explicit.

Be it in philosophy, cognitive sciences or computer sciences, reaching an agreement
on a definition of “knowledge” seems difficult.

Allen Newell’s famous Knowledge Level [98] can be a starting point: for Newell, knowl-
edge is a medium between agents and goals, actions, bodies. Whereas the symbol level
deals with representation, the knowledge level deals with language, semantics; whereas
the symbol level deals with inference, the knowledge level deals with entailment. We
will, at the conclusion of the thesis, give a second look to this distinction.

In our robotic context, we define knowledge as a narrower concept, while keeping
Newell’s link to actions: “knowledge” is for us a set of interrelated logical facts that are
meaningful to the robot executive controller. By meaningful we mean that can possibly be
interpreted to lead to a purposeful action. We will see that our main challenge while
designing a cognitive architecture is furthermore to make this knowledge as explicit as
possible.

The relation of data and information to knowledge is a debated epistemology question
known as the “DIKW” hierarchy question. In this thesis, we will associate data to low-
level material like raw sensor output, and information to uncontextualised symbolic
facts.

To give a example, we can imagine a human reading a book while being tracked by
a Kinect sensor: the pose of the human skeleton in the world would be the data, the
fact looksAt(human, book) as interpreted by a geometric reasoning module would
be the information, the fact looksAt(john, war_and_peace), fully grounded and
connected to the whole knowledge base of the robot would be proper knowledge.

This simple example also acknowledges the tight coupling between the symbolic
and the geometric realms: while AI at its origins was mostly a matter of symbolic
models, it has been since recognised that not only that the mind is not a purely abstract
system, disconnected from the physical world, but even more, cognition fundamentally
relies on its relation to the physical world (so-called embodied cognition). Varela [138] is
one of the main discoverer of these mechanisms, and coined the concept of enactivism
as the theoretical framework that study the links between cognition, embodiment and
actions.

From the perspective of communication, knowledge is for us an information inter-
preted in the cultural and social contexts of the robot. This translates into three practical
features: knowledge is made of statements that are contextualized, grounded, and limited
to a domain of validity. These three features have important consequences for the way
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a knowledge representation and storage system must be designed. Let us examine
them:

Contextualizing is the ability for a cognitive system to connect a fact with a cultural
context, an interpretive frame and the set of other facts previously acquired by the agent.

Since machines are limited to syntactic (in contrast to semantic) processing, we are
mostly looking for a syntactic (i.e. , based on symbols) matching between concepts
representations (in our case, sets of alphanumeric characters)..

The cultural context is a broad set of common, general facts that are considered widely
accepted among the interactors (e.g. “bottles may contain water”). This knowledge is
often referred as common-sense knowledge.

By interpretive frame we mean that a concept may have different interpretations
depending on the agent, the current situation or the time frame the statement belongs
to. Since a fact in one frame can be different (or even inconsistent) with a fact in another
frame (for instance, one object can be visible for the robot and invisible for another
agent), the underlying knowledge representation system must properly handle these
interpretive frames.

Note that effectively representing a context is a rather different task than identifying
it. This aspect will be further discussed at the end of this work.

Grounding corresponds to the identification or creation, and then, maintenance of a
link between the symbol (the syntactic form of knowledge the computer will manipu-
late) and its semantics, i.e. its meaning, anchored in the world (the relations between
the symbol, the referent of the symbol, and mediating minds is classically referred
as the semantic triangle, and has been extensively studied in linguistics). The issue of
grounding is well known in cognitive science and is summarised by Harnard [44] by
this question: “how the semantic interpretation of a formal symbol system can be made
intrinsic to the system?”. This issue has a very practical importance in robotic: for a
robot to be both endowed with a symbolic representational and reasoning system, and
able to act in the physical world, it must ground its knowledge.

Domain of validity specifies the scope in which an information is (believed to be)
true. It covers several aspects: temporal, situational and probabilistic. While related to
the previous concept of interpretive frames, the domain of validity addresses the question
whether a fact must be or not considered in a given context. This validity limitation is
not usually carried by the fact itself. In the previous example, for instance, the robot
observes a human sitting at a table. The fact “a human is sitting at the table” is true
only for a limited period of time, until the human stands up. This period of time is not
directly accessible (the robot does not know how long the human plans to stay), but
the knowledge representation must be able to deal with this uncertainty and should
explicitly label this fact as being limited in time.

To know if a fact is permanent or transitional (Pollock [105], page 51) is difficult
(especially considering that a feature may be considered as permanent or not depending
of the context: within the situation “a family meal”, the fact “the human is sitting at the
table” could be considered as permanent. Conversely, “ground is static” is generally
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considered as a permanent fact, expect if we are talking of planetary mechanics for
instance. The difficulty lies in the selection of the relevant situation in which reasoning
must be carried out at a given time) and have currently to be defined in the cultural
background of the robot.

These three aspects lead us to envisage the question of knowledge representation
from two perspectives: elements that are essential to the knowledge (without those,
informations could not become knowledge), and processes that are necessary to produce
knowledge.

Knowledge is essentially dependent on the ability to represent:

� links, connections between atoms of knowledge,

� a general cultural background, in the form of common-sense knowledge,

� interpretive frames, contexts, restrictions on the domain of validity.

It must also rely the following active processes to:

� acquire and maintain knowledge perceived from the physical world or retrieved
from other sources (interaction with other agents, web-based contents,...)

� add and connect new facts to existing ones,

� monitor contexts and accordingly manage the validity of the stored knowledge,

� ensure the logical consistency of the knowledge repository, and explicit inconsis-
tencies when required1.

We have already seen in the imaginary scenario introduced in chapter G.1 that
many other cognitive abilities related to knowledge representation and manipulation
are required by service robots to actually operate, and the above items are more a
high-level view of what knowledge intrinsically need to exist. The next section aims at
providing a large, comprehensive set of cognitive abilities related to knowledge, that
encompasses both essential and non-essential features of knowledge representation
systems.

2.2 A typology of knowledge representation requirements
for robotics

This section now focuses on formalizing the knowledge representation issue: we aim
first at establishing a comprehensive typology and nomenclature (figure G.2) of repre-
sentational needs for robotics in the specific context of service robotics, before painting,
at section G.2.2, the current landscape of approaches to the knowledge representation
problem in the research community. For each such “dimensions” of knowledge rep-
resentation system, we provide a short definition accompanied by links to relevant
literature.

1One may argue that the real world is however inherently inconsistent; we will discuss several aspects
of inconsistencies representation and management later on.
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Figure 2.1: Taxonomy of the analysis dimensions of knowledge representation systems for
service robotics.
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The typology has been built from three main sources: a review of the existing
literature on that topic that we present in the next section; the survey of eight knowledge
representation systems already deployed; our own experience, acquired during the
thesis preparation with the help of many discussions with researchers from both CNRS
and TUM, that allowed to interweave two slightly different perspectives on knowledge
in robotics.

We also wish to mention that the short presentation of each feature does not claim
to be a comprehensive summary of the field: it is beyond our capabilities to cover in a
few lines all what the areas of time representation, planing or formal logic have said during
the last 30 years. We indeed focus on the aspects relevant to knowledge representation
and certainly involuntarily omit many significant works in these fields.

2.2.1 Previous work

As said, the typology we propose is in part based on a comprehensive synthesis of
classifications and analysis found in the literature. This synthesis is focused on cognitive
abilities strictly related to knowledge manipulation in the context of service robotics.

Levesque and Lakemeyer [78] present in their chapter on Cognitive Robotics several
characteristics of knowledge representation systems for robots, stressing the need of
representing the dynamics of the world. Sensing is included in the knowledge representa-
tion via �uents; they introduce the idea of possible worlds to represent distinct parallel
mental models; action representation and reasoning about tasks is discussed in the
context of situation calculus; open world vs. closed world approaches are mentioned. They
also discuss how robot programming and knowledge representation can be related. We
integrate most of these items in our typology.

In a slightly broader context, Heintz et al. [50] define knowledge processing middle-
ware as systems supporting “declarative specifications for flexible configuration and
dynamic reconfiguration of context dependent processing at many different levels
of abstraction”. They identify six characteristics: the system must be able to merge
informations from different, possibly distributed sources; it should support quantitative
as well as qualitative processing of information, it should offer bottom-up and top-down
processing, it should be able to deal with uncertainty, allow for “flexible configuration
and reconfiguration” (which require what we call here non-monotonicity) and finally
meta-knowledge and introspective capacities (“declarative specification of the processing
functionalities”).

Several surveys compare global cognitive architectures [72, 139, 26]. Langley, Laird
and Rogers [72] distinguish nine capabilities: recognition and categorisation, decision
making, perception and situation assessment, prediction and monitoring, planning,
reasoning, execution control, interaction and learning/remembering/introspection.
They also separately identify four properties of a cognitive architecture, that categorise
how knowledge is handled by the architecture: representation of knowledge, organ-
isation of knowledge, utilisation of knowledge and acquisition and refinement of
knowledge. This categorisation had a notable influence on our typology, and many of
these categories are also present in our proposal.

Vernon et al. [139] split these architectures into two broad categories: the cognitivist
ones (where cognition is considered as an explicit computation problem, often based
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on symbol manipulation), and the emergent ones (where cognition only exists as a result
of the interaction of the system with its environment). The approaches presented in this
chapter are, at a few exceptions, prototypical cognitivist approaches that aim at making
knowledge explicit within the robot architecture. Vernon et al. propose twelve charac-
teristics of cognitive system to compare architectures. Amongst them, they mention the
inter-agent epistemology (how the structure of the world is captured in a representation
and shared), the relation to embodiment, the ability to anticipate and to adapt, and the
mechanisms of motivation. While presented at the level of the whole robotic architecture,
these features also translate into knowledge representation strategies and are relevant
to our study.

Chong et al. [26] also provide a recent review of the main cognitive architectures,
with a focus on eight functions: perception, memory, goals management, problem
solving capabilities, planning, reasoning, learning and links to neurobiology.

At an even broader scope, several authors from fields that are connected to robotics
have previously listed desirable features of artificial systems aiming at rich cognitive
abilities.

For instance McCarthy recently listed in [93] the challenges he identifies on the road
to a human-level AI.

� the ability to "operate successfully in the common sense informatic situation",

� the necessity of relying on mathematical logic, as the most fruitful formalism for
machine intelligence,

� the ability to deal with approximate concepts and approximate theories (that would
include representing them, and reasoning with them),

� non-monotonic reasoning,

� what McCarthy calls Elaboration Tolerance: the ability to extend on demand the
closed domain of interpretation for a given assertion,

� the ability to formalise and reason about contexts,

� reasoning about events, and in particular, actions,

� the capacity of introspection,

� and finally, he points the issue of giving computer the right heuristics for decision
making.

Coming from the perspective of natural language processing in situated context,
Roy and Reiter summarise in [112] what they see as the main challenges to be tackled
by knowledge representation systems: cross-modal representation systems, association of
words with perceptual and action categories (grounding), modeling of context, definition
of the right granularity of models, integration of temporal modeling and planning, ability
to match past (learned) experiences with the current interaction and ability to take into
account the human perspective.

Knowledge representation systems in robotics are directly affected by these points,
and we indeed integrate them in our typology, in slightly reformulated ways.
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2.2.2 What can be represented?

A. Expressiveness

A.5. Meta-cognition

A.4. Uncertainty

A.3. OWA/CWA

A.2. Expressive power

A.1. Logic formalism

This first axis of analysis is its intrinsic expressive power. It answers the question:
what can be possibly represented. When it explicitly exists, the language of representa-
tion plays here an obvious role.

Main logic formalisms

The main role of a knowledge representation system is to provide an adequate repre-
sentation system to formally store facts and concepts that could be informally described
in natural language.

Formal logic aims at providing such a representation system with the added value
of providing a tractable support for inference and reasoning.

Most (but not all) of the systems we have surveyed rely on a particular logic for-
malism. The choice of the formalism has a strong impact, on one side, on the range of
ideas that can be expressed conveniently (practical expressiveness) or at all (theoretical
expressiveness), on the other side, on the ability to solve the fundamental inference
problem (called satisfiability: is a given logical sentence true in my model?) in a tractable
manner.

A large number of logic formalisms do exist and we briefly present below the most
relevant ones for systems actually deployed in robotic architectures.

Predicate logic is the family of logic formalisms the most commonly found in knowl-
edge representation. It distinguishes itself from the simpler propositional logic by the use
of quantification to increase generality. First-order logic (FOL) is the subpart of predicate
logic where the objects of predicates (or formulae) are simple terms, while in higher-order
logics, predicates can be themselves objects of other predicates.

Horn clauses are an important subset of FOL because the satisfiability of a set of
such clauses is a P -complete problem (i.e. practically tractable). A Horn clause is a
disjunction of literals (a clause) with at most one positive literal: :p _ :q _ � � � _ :t _ u,
which can also be represented as (p ^ q ^ � � � ^ t)! u. Important logic programming
languages like Prolog are based on Horn clauses.

The family of Description Logics [9] also plays an important role. It is also a subset
of the first-order logic, with some extensions in second-order logic. Description logics
are notable because most of them are known to be decidable (but not always in a
practically tractable manner). In description logic, axioms are build from concepts, roles
(that are unary or binary predicates) and individuals. The W3C OWL-DL standard is a
widely-used language to describe domains with the description logic.

Because description logics have been originally created from the perspective of a
knowledge representation language and not a logic language, their terminology (concept or
class, role or property, individual,. . . ) is well-suited to knowledge description.
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Modal logic, that allows for statement qualification like possibility or necessity, have
been shown to be closely related to description logics [10]. Modal logic allows to
represent conveniently parallel possible worlds and facts like “the robot knows that the
human knows how to read a recipe”.

Temporal logic are designed to represent and manipulate assertions whose truth value
may vary in time. We introduce one of its key idea (the �uents) later in the typology.

One last class of logics that is of particular relevance for robotic applications is
the probabilistic logics or Bayesian logics. These logics provide a formal framework to
reason on propositions whose truth or falsity is uncertain. We elaborate below on the
representation of uncertainty.

Note that most of these logic formalisms are still active research field on their own,
and practical considerations (especially the availability of reasoners efficient enough
for on-line use on a robot) often constrain the choice of a logical formalism and a level
of expressive power.

Expressive power

Logical formalisms each bring a certain level of expressive power. For instance, the
following classical syllogism can not be represented in propositional logic because of
the use of universal quantification:

1. All men are mortal,

2. Socrates is a man,

3. Therefore, Socrates is mortal

However, the following weak version of the syllogism can be represented in propo-
sitional logic:

1. If Socrates is a man, then Socrates is mortal,

2. Socrates is a man,

3. Therefore, Socrates is mortal

Generally speaking, expressive power comes at the cost of more complex satisfiability
and consistency2 computations, possibly leading to untractable, if not undecidable (i.e.
systems where it is proven that a proposition can not be decided to be true or false)
problems.

Figure 2.2 shows that the expressive power of description logics and Horn clauses
partially overlaps. In section 2.2.4 we mention extensions to description logics based
on rule systems that bring closer the two approaches.

The relationships between expressive power and reasoning complexity that follow
has been extensively studied for Description Logics. Zolin [149] maintains a “complex-
ity navigator” that allows to conveniently explore these relationships and indexes most
of the literature on that subject.

2We precise these concepts at section 2.2.4.
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Figure 2.2: expressiveness overlap of Description Logics and logic programs based on Horn
clauses, taken from [40]

It can be noted that the relation between expressiveness and reasoning complexity
is fragile: for instance, adding the following axiom hfarFrom disjointProperty neari
(that states that two individuals can not be at the same time near and far from each other)
changes the expressiveness power of the ORO Common-Sense ontology (presented
at chapter 3) from SHOIQ(D) to SROIQ(D)3: this seemingly innocuous assertion
change the complexity class of the whole ontology, and the concept satisfiability reason-
ing problem switches from a NExpTime-complete problem to a NExpTime-hard problem
(i.e. , at least as hard as the hardest problem in NExpTime).

This “instability” has practical consequences on run-time performances on the
robot because a light alteration of the knowledge structure can lead to very noticeable
performance drops.

Open world and close world assumptions

The close world (CWA) vs. open world (OWA) assumptions name a modelling choice on
the completeness of a knowledge domain. In the close world assumption, a proposition
that can not be proven true is assumed to be false (negation by failure), while in the open
world assumption, a proposition may be considered either true, false or unknown.

This distinction is important in robotics where the robot may have to manipulate
concepts with only partial knowledge on them. For instance, let us imagine a robot
that sees a bottle on a table, whose bottom is hidden by another object. The robot can
not prove that the bottle is indeed on the table. A knowledge representation system
relying on the closed world assumption would then assume the bottle is not on the
table (:RCWA

isOn (bottle, table)) whereas with the open world assumption, the proposi-
tion ROWA

isOn (bottle, table) would be undecided. Example in table 2.1 provides another
example of consequences of the CWA/OWA choice on reasoning.

The OWL language is specifically known to assume an open world. Domains con-
strained with the closed world assumption lead to more tractable inference problems,
and allow for instance the use of logic languages like Prolog. Thus, several approaches
exists to locally close a domain (cf Levesque [78], section 24.3.2 for a summary of those
ones).

3See appendix A for a brief explanation of this notation
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Action Part involved
PickSoftly hand
PickAndPlace arm, hand
MoveArm arm

Table 2.1: Assuming the question is: select actions that do not require to move the arm, a CWA
reasoner would return PickSoftly whereas an OWA reasoner would not return anything
if the PickSoftly action is not explicitly said not to involve the arm.

Representation of uncertainty and likelihood

Sources of uncertainty for a robot are two-fold: uncertainty intrinsic to facts (like “It may
rain tomorrow”), uncertainty caused by imperfect perception of the world (“Is the bottle
really on the table?”). Most logics do not account explicitly for uncertainty. It must be
either relied on specific logics (like Bayesian logics) or on extensions of classical logics.

Meta-cognition: knowledge on the knowledge

As stated by Cox and Raja [28], meta-cognition is composed of both “meta-level control of
cognitive activities and the introspective monitoring of such activities to evaluate and to explain
them".

Sloman proposes in [125] a detailed analysis of meta-cognition and its different
aspects in both natural (human) and artificial systems.

A knowledge representation system endowed with meta-cognition is not only able to
manipulate knowledge but also to exhibit and manipulate the structure of its knowledge
and the reasoning process. For instance, the ability to explain a logical inconsistency in
a KRS is a meta-cognitive function, as is the ability to expose and alter the knowledge
structure (these two reasoning techniques have their own entries in the taxonomy, at
section 2.2.4.

At section 2.2.3 below, we discuss the idea of introspection. Meta-cognition can be
viewed as the technical facet of the introspection in general.

2.2.3 How things are represented?

We do not discuss in this section the general strategies to construct a knowledge model
(they will be presented in section 2.2.7). We focus here on questions that involve repre-
sentational challenges (time, space, context) or require specific cognitive capabilities
(theory of mind, introspection, memory).

B. Representation

B.5. Memory

B.4. Introspection

B.3. Modality

B.2. Context

B.1. Roles
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Role representations

This section discusses strategies and approaches to represent in a knowledge model
three important roles: spatial relations, time and representation of actions.

B.1 Roles

B.1.3. Actions

B.1.2. Time

B.1.1. Space

Representation of space Symbolic representation of space is a widely studied topic.
In particular, a large literature corpus is available on spatial ontologies.

Two main classes of spatial relations are usually represented at the symbolic level:
the topology of environments and the placement of physical entities.

B.1.1 Space
B.1.1.2. Placement

B.1.1.1. Topology

Topological maps are abstractions of an environment as graphs where nodes repre-
sent places and edges represent connections between places. Because they are symbolic
representation, topological maps allow higher-level reasoning (such as containment,
connectivity, regions) than metric maps.

One important contribution to the building of a coherent representational stack for
space representation is the Spatial Semantic Hierarchy [66] introduced by Kuipers. It
consists in multiple interacting representations of space, both qualitative and quantita-
tive, that span from sensor-level representation to ontologies of places and regions.

Symbolic representation of entities placement can be absolute or relative. The
relation isOn, for example, leads to absolute statements: the validity of the relation is
independent of the nature of its subjects and objects, and is also independent of the
observer.

On the contrary, the relation nextTo is relative, and depends on the relative size
of the subject and the object. Two houses distant of 2 meters from each other can be
considered as next to each other. Two ants separated by 2 meters are not next to each
other.

The relation leftOf is another example of relative spatial relation, this time because
it depends on the observer viewpoint.

Choices must be made in the knowledge representation system to adequately repre-
sent relative spatial relations. Options include the computation of such relations only
on-demand, when the context is known (which viewpoints, etc.) or storage of these
facts in different models, one per agent.

Representation of time As an agent acting at human-like time scale and dealing with
temporal concepts (like actions), a robot needs to represent and reason about time. Time
representation is split into two distinct abilities: representing time points (both in the
past – which is roughly equivalent to assignment of timestamps to events the robot
perceives – and in the future), and representing passing time (situations, durations,
timespans) like in “the eggs will be cooked in 10 min”.
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This is usually formalised as a disjunction in time representation between events,
that is, any durationless temporal concept, and situations, that is, any temporal concept
with a non-zero duration4.

Numerous techniques to represent and reason about time have been devised.
Amongst the most significant ones, we can mention Allen’s interval algebra [5] and
Ghallab’s chronicles [39]. The concept of �uent also play an important role for
time representation: fluents are properties (or conditions) that change over time, like
sees(agent1, apple, t).

We call a system that does not account for time (i.e. that mentally permanently lives
in present) atemporal.

Actions Events and actions are two temporal concepts that are of particular impor-
tance to robotic systems, as systems that perceive, react and perform in their environ-
ment.

While representation of events boils down to label a timestamp, representation of
actions are more complex since not only they deal with durations, but they also imply
semantic interactions between concepts. From a taxonomy point of view, actions are a
particular type of event that normally leads to a situation corresponding to the action
realisation.

Thematic roles [41] (also found as semantic roles or theta roles in the literature) allow
to semantically qualify the parameters of an action. The recipient of the action, the
performer, the object acted upon, the destination are some example of common thematic
roles. Table 2.2 presents a more comprehensive list of thematic roles proposed by [1]
(see [43] for a comparison of other sets of thematic roles present in the literature).

In the context of robotic, task often represents an aggregate of (atomic) actions. We
use the term here as the representation of the abstract model of an action. Tasks usually
specify at least the conditions required to performed the action and the consequences
of the realization of the action, and are central to the decisional layers of the robot, in
particular for the planning, monitoring and execution control activities. Knowledge
representation systems may thus have specific mechanisms to represent them (and
possible, to reason about them, as presented in section 2.2.4).

An technical report we have written on task modeling in OWL ontologies is available
in appendix B.

Plans representation is closely related to action and task representation. It is specifi-
cally discussed at section 2.2.4.

Context modeling

Knowledge is contextualized information: it is essential for the robot to associate the
facts it represents to a context. The context carries the keys for the interpretation of the
information and set a common ground for interaction (and, in particular, communi-
cation [56]). It implicitely defines the domain of validity of the facts and carries the
common-sense knowledge required to fill the gaps of the knowledge explicitely shared
between the agents.

4Other definitions of a situation do exist, notably in the context of situation calculus [79], Reiter and
Levesque consider a situation to be an history of actions.
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Role Meaning

Agent The doer or instigator of the action denoted by the predicate.
Patient The undergoer of the action or event denoted by the predicate.
Theme The entity that is moved by the action or event denoted by the

predicate.
Experiencer The living entity that experiences the action or event denoted by

the predicate.
Goal The location or entity in the direction of which something moves.
Benefactive The entity that benefits from the action or event denoted by the

predicate.
Source The location or entity from which something moves.
Instrument The medium by which the action or event denoted by the predi-

cate is carried out.
Locative The specification of the place where the action or event denoted

by the predicate in situated.

Table 2.2: A list of thematic roles, as proposed by Aarts [1]. Depending on the action, only
certain roles are meaningful.

Context is generally difficult to recognise, represent and reuse because it is multiform
and largely implicit nature. It is also never unique: at a given moment, several contexts,
at different temporal, spatial, social scales, overlap.

In the current literature in robotics and cognitive architectures, the term context
usually simply refers to a set of beliefs that initiate a representation (and reasoning)
frame: in [76], the robot creates a context of interaction with a specific human by storing
in a separate model the beliefs of this human and using this knowledge when dialoging
with the human, the reasoning network is reinitialised in the GLAIR architecture when
the hypotheses that defined the current situation are not believed anymore [118].

This acception of context is simplistic, and omit the overlapping and multi-scale
aspects of context modeling.

We see context representation as one of the main challenge of knowledge repre-
sentatio in general, and we will further discuss the importance and issues brought by
context modeling in the conclusion of the thesis.

Modality, contingency and theory of mind

Linked to the context representation, but seen from another angle, knowledge represen-
tation systems may support logical modality. A knowledge model is logically modal if
is support the concept of possible worlds, i.e. , parallel beliefs models (or interpretations)
that can be independently accessed.

A contingent proposition is defined as neither always true (a tautology) nor always
false (a contradiction) in every possible world: its truth value depends on the context.
In knowledge representation systems for robotics that support logical modality, inter-
pretations are often initialised with a common set of initial beliefs (like common-sense
knowledge). This initial common knowledge is hence true in every possible worlds for
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the robot, and thus does not belong to its contingent knowledge.
On the contrary, alternative mental models with contingent knowledge may be used

to represent different (possibly hypothetical or even imaginary) views on the world,
from the robot own perspective or context, or from other perspectives computed by the
robot.

The representation of the mental perspective of other agents has a particular impor-
tance in human-robot interaction. It relies first on the ability to literally view the world
from a standpoint which is not egocentric. This cognitive ability is referred as perspective
taking. Flavell [36] and Tversky [136] define the psychological grounds of perspective
taking, that are themself originated in Piaget’s work on cognitive development (recent
studies on infants include Moll [95] for instance). Perspective taking begins to be
studied on robots as well [133, 21, 111].

The idea of a theory of mind [106] emerges from the perspective taking ability. It can
be defined as the ability for one to understand and acknowledge that other intelligent
agents can have their own mental state (that includes beliefs, intents, desires, knowl-
edge) that is possibly different from one’s own. The attention plays a central to the
development and recognition of a theory of mind [14, 77].

A notable consequence of having a theory of mind is the representation of false
beliefs, i.e. , facts that are believed to be true for an agent, but false for other ones. The
Sally and Ann experiment [77] (figure 2.3) is a classical example of a false belief situation.
In 2.3(d), Sally thinks the ball is in the beige box because she did not see Ann moving it.
An external observer asked “Where will Sally look for the ball?” would answer “in the
blue box” without a theory of mind (i.e. , a model of the knowledge of Sally), whereas
it would correctly answer “In the beige box” with a theory of mind.

Scassellati [116] is one of the first to have implemented a theory of mind on a
humanoid robot.

Self-knowledge: Who am I? What can I do?

Self-knowledge Self-knowledge is the term used in philosophy and psychology to
describe the knowledge that an individual has, acquires or infers about itself through
its experiences. It answers the question “What am I like?”.

Introspection is the technical meaning to access to self-knowledge by the ability
to self describe: what are my capabilities, what is my state (performing some action,
idling, etc.), what are my beliefs, what are my intentions and my plans?

Introspection must be distinguished from meta-cognition: While introspection may
require meta-cognition (for instance to be able to expose its internal knowledge), it is
not always mandatory. The current state of the robot can be represented as a simple
instantiation of a specific category (for instance, if the robot gives an object to the human,
this state could be represented with the triples [ robot performs action1, action1 isA

Give].

Modeling of the robot capabilities A particularly important aspect of self-knowledge
for robots relates to the description of its own capabilities: which sensors/actuators/-
computation services exist and are currently available ? While at a first level, these
descriptions can be static (e.g. the robot has one laser scanner and two arms), at more
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(a) Sally puts the ball
in the beige box.

(b) Sally goes away.

(c) Ann moves the
ball.

(d) Where will Sally look
for the ball?

Figure 2.3: The standard “Sally and Ann” false-beliefs experiment, taken from [77].

advanced levels, the description is updated and reflect the current (and possibly past
and future) state of the robot. Note that these descriptions may also involve geometric
descriptions (a kinematic chain, the pose of a device, etc.) that may be deported outside
of the main knowledge base. Efforts trying to formalize, maintain and expose the
capabilities and state of a robot are not new (and ground themselves in work and
techniques for self-descriptive remote procedure calls in computing science), but take a
renewed importance with applications for high-level multi-robot cooperation.

Recent works by Kunze et al. [68] seeks at defining a formal language to represent
the capabilities of a robot.

Memory

Memory has been studied at length in the cognitive psychology and neuropsychology
communities: Atkinson and Shiffrin [7] introduce the idea of short-term and long-term
memory, Anderson [6] splits memory into declarative (explicit) and procedural (implicit)
memories, Tulving [134] organises the concepts of procedural, semantic and episodic
memories into a hierarchy. Short-term memory is refined with the concept of working
memory by Baddeley [11] (Figure 2.4).

It is worth emphasising that if memory is commonly associated to the process of
forgetting facts after a variable amount of time, it actually covers more mechanisms that
are relevant to robotics, like selective remembering triggered by a specific context or
reinforcement learning.

Most knowledge representation systems offers some kind of memory as a pool of
facts that are not forgotten by the robot until it is halted (this memory is often referred
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Figure 2.4: Overview of the main types of memories, based on [7, 6, 134, 11]

as a working memory, but with a meaning unrelated to Baddeley’s definition). Some
systems may propose persistent storages that allow the robot knowledge to grow over
time, while others may offer a larger range of memory categories, like short term
memory (that lasts for a couple of seconds) or episodic memory (that allows the robot
to selectively remember facts associated to specific events).

In the larger field of cognitive architectures, the SOAR architecture [73] is one of
those that tries to reproduce a human-like memory organisation. The GLAIR cogni-
tive architecture also have a concept of long term/short term and episodic/semantic
memories.

2.2.4 Reasoning techniques

C. Reasoning

C.9. Naive physics

C.8. Planning

C.7. Prediction
and explanation

C.6. Presupposition

C.5. Non-monotonicity

C.4. Uncertainty

C.3. Lazy evaluation

C.2. Instantiation and
structural alteration

C.1. Stan-
dard reasoning

Standard reasoning techniques

We call standard reasoning techniques techniques based on logical inference, using resolu-
tion algorithms like forward chaining, backward chaining or semantic tableaux.

Main reasoning problems include concept satisfiability, consistency checking and in-
stance checking.

Concept satisfiability verifies if it is possible to find a non-empty interpretation of a
concept (or an expression defining a concept) in the knowledge model. For instance,
the formula Plant ^ isRed, which defines the concept of red plants, is satisfiable in a
model KB iff 9a, Plant(a)^ isRed(a), i.e. if we can find at least one red plant a in our
model.
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Checking the consistency of a model is equivalent to checking the satisfiability of
each of the concept defined in the knowledge model.

Instance checking consists in verifying that an individual a is an interpretation of a
concept (or concept expression) C in the knowledge model. A typical example would
be that we are provided with an instance object1 and we want to know if this object is
a kind of Bottle or Glass.

Inferences can also be drawn from other constructs, whose availability depends on
the representation language. OWL, for instance, has constructs for:

� class subsumption (to represent inheritance relations)

� reasoning on roles properties, including:

– entailments based on roles domain and range (for instance, if the domain of
the role thinksOf is known to be ThinkingAgent, then
thinksOf(a, b)!ThinkingAgent(a)),

– universal, existential and cardinality constraints,

– several second-order predicates (inverse, symmetry, transitivity, etc.)

� class restrictions like:

Bottle � Artifact that (hasShape value cylinderShape)

� set operations like:

Color �
⋃

(blue, green, orange, black, . . . )

Rule Languages As mentioned earlier, knowledge models based on description logics
can be extended through rule languages (typically for OWL, the SWRL language).

An intersection of properties is an example of expression that can only be repre-
sented with rules. For instance:

looksAt(?agt, ?obj) ^ pointsAt(?agt,?obj)) focusesOn(?agt, ?obj)

Dynamic instantiation and alteration of the knowledge structure

The content of a knowledge base is often conveniently divided into a structural part that
defines the conceptualisation of a domain in term of vocabulary and relations between
the concepts, and an instantiation of this structure into concrete entities.

The terms TBox and ABox are commonly found to describe these two different types
of statements in ontologies: TBox statements describe a system structure (made, for
example, of a set of classes and properties) whereas the ABox contains TBox-compliant
statements that are asserted in this structure.

Knowledge representation systems allow to modify the ABox, which can be con-
sidered as the dynamic part of the knowledge base. Alteration of the ABox include
the addition or retraction of relations between existing instances, and the addition or
removal of instances. We call the later dynamic instantiation: the capability for a system
to create new instances at run-time. The term dynamic instantiation applies primarily to
concrete entities (typically, a new object is discovered by the robot, a symbolic instance
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is created for it), but may also apply to abstract entities (like an instance of action, of a
feeling, etc.).

The knowledge representation system may also allow to alter the TBox. This requires
the underlying reasoning systems to be able to dynamically take into account structural
changes in the knowledge base.

Example of TBox alteration include modification of the taxonomy (like addition
or retraction of a subClassOf relation), changes to the asserted domain or range of a
predicate, addition or retraction of rules.

Supporting TBox alteration has notable consequences on the learning capabilities of
the system: teaching general facts (i.e. , facts at the level of whole categories) like “cars
go on roads” to a robot requires an alteration of the TBox.

Lazy evaluation

Lazy evaluation describes the ability for a KRS to delay active knowledge acquisition or
reasoning operations until the value is actually needed.

For instance, a system that computes the symbolic relative placement of two objects
only when this fact is required to answer a query would be said to adopt a lazy
evaluation strategy, whereas a system that computes a priori such relations (and by
consequence, carries out such computation for possibly all known objects) would be
said to use a strict evaluation policy.

Lazy evaluation has an immediate impact on efficiency and scalability of the system,
and some problems may even be only tractable with a lazy evaluation strategy (the
relative placements of object is an example of combinatory explosion in strict evaluation
approaches, although this issue could be mitigated in real use-cases by heuristics that
would select a subset of objects to evaluate).

One downside is that the knowledge base never contains explicitly the complete set
of beliefs of the robot. This limits for instance the ability for the robot to react to logical
conditions that involve facts that are lazily evaluated (“trigger a callback when object A
is behind object B” would not be triggered with a purely lazy evaluation strategy for
spatial relations).

(Non) monotonic reasoning

Monotonic reasoning means that addition of new assertions to a knowledge base can
only extend the set of assertions that can be inferred, while a non-monotonic reasoning
scheme may lead to retraction of facts. McCarthy coined a famous example to illustrate
the need of non-monotonic reasoning:

Consider putting an axiom in a common sense database asserting that
birds can fly. Clearly the axiom must be qualified in some way since pen-
guins, dead birds and birds whose feet are encased in concrete can’t fly. A
careful construction of the axiom might succeed in including the exceptions
of penguins and dead birds, but clearly we can think up as many additional
exceptions like birds with their feet encased in concrete as we like. For-
malised non-monotonic reasoning provides a way of saying that a bird can
fly unless there is an abnormal circumstance and reasoning that only the
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abnormal circumstances whose existence follows from the facts being taken
into account will be considered.

An important application of non-monotonic reasoning is the representation of
change: for example, to make a brownie, one needs to crack eggs and mix them to the
chocolate. The eggs disappear and are replaced by a dough:

Egg(a)^ Chocolate (b)^ MakeDough(a, b, c)! : Egg(a)^: Chocolate(b)^ Dough(c)

The insertion of the proposition MakeDough(a, b, c) leads to retraction of other facts.
This rule requires non-monotonic reasoning to be applied.

Default logic is one of the formal logics that account for representing general truth and
exceptions to it (for instance, tomatoes are red, in general). However, due to computational
complexity of these models (most of inferences in default logic are known to be NP -
complete problem), classical logics and most of the existing reasoners do not allow
non-monotonic reasoning. For instance, the SWRL rule language, usually associated
to the OWL-DL ontology language, does not allow non-monotonic reasoning (only
so-called DL-safe rules are allowed).

One important exception is the negation as failure inference rule, as implemented
by PROLOG for instance, that allows for non-monotonicity within the closed world
assumption.

Presupposition accommodation

Presupposition accommodation [140] is the ability for a system to automatically create a
context allowing to make sense of a proposition.

Applied to robotics, we can imagine a human telling a robot “Please get me the
bottle that is behind you”. If the robot has not yet see what is behind it, it needs to
assume (and represents in its knowledge model) that a undefined bottle can be found
somewhere in the half of space behind it.

A knowledge representation system able to cope with presupposition accommoda-
tion would be able to take into account this (usually under-defined) information that is
not grounded into perception for later inferences.

This ability to imagine a physically state of the world that is not actually perceived
can be seen as the converse of the grounding ability.

Note also that presupposition accommodation implies a bidirectional link of the
symbolic knowledge model with a geometric (or physical) model of the environment.

Prediction, projection, explanation

Levesque [78] distinguishes two main tasks related to reasoning on actions and conse-
quences of actions, the projection task and the legality task.

We call diagnosis the converse of the projection task: the ability to track back the
origin of a decision, and explanation the more general ability to explicit a reasoning or a
decision.
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C.6 Prediction
and Explaination

D.4 Explaination

D.3 Diagnosis

D.2 Legality

D.1 Projection

Projection task : determining whether or not some condition while hold after a
sequence of actions. The projection task is a typical non-monotonic reasoning task,
since at each step, the system must add but also retract beliefs, as defined in the tasks
post-conditions.

Legality task : determining whether a sequence of action can be performed starting
in some initial state.

The projection and legality tasks are illustrated in appendix B where the tractability
of task representation in DL ontologies is discussed.

Diagnosis : this corresponds to the ability to rewind on past events in case of failure to
provide possible explanation. This can be seen as the temporal reverse of the projection
task. Because of their modelling of situations as an history of actions, derivatives of
the GOLOG logic programming languages are a good example of the diagnosis task
integrated to the knowledge representation system [42].

Explanation Diagnosis is also linked to the explanation or justification capabilities
that may be offered by the knowledge representation system. The explanation of an
entailment is the sequence (or set of sequences if several are possible) of reasoning steps
that allow to reach a conclusion. An explanation can also conversely explain why a
statement leads to a contradiction.

The following example shows an explanation for an inconsistency in a particular
knowledge base: by adding the statement hrobot1 belongsTo human1i, we observe that
an inconsistency is triggered. The reasoner provides the four following observations to
explain the inconsistency:

1. robot1 Type belongsTo some Thing

2. belongsTo Domain Artifact

3. robot1 Type Agent

4. DisjointClasses: Agent, Artifact

This explanation directly portrays the underlying structure of the knowledge model:
we can understand that a robot is modelled here as an agent, that agents and artifacts are
disjoint classes and that only artifacts can belong to someone, hence the inconsistency.
A KRS may provide mechanisms to expose this kind of analysis, either automatically
when inconsistencies occur, or on demand.

Explanation of contradictions plays a particular role for robots: from a cognitive
point of view, a logical inconsistency (i.e. , a contradiction) can be viewed as a cognitive
con�ict or cognitive dissonance (i.e. , two incompatible models of the world that must be
dealt with). Being able to expose and explain such cognitive conflicts eases the control
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of the behaviour of the robot in unexpected semantic situations, and forms a first step
towards an adequate reaction.

Cognitive dissonance is also identified by developmental psychologists like Piaget
as a motivation factor for a child to progress through the various stages of its cognitive
development. This has been also studied in robotics [102].

The cognitive capability of justification is also intimately linked to the meta-cognition
capability and participates to the overall cognitive observability of the system.

Task planning

Symbolic task planning is the ability for a robot to select a sequence of actions in
order to reach a given final state. This capability is closely related to the previously
mentioned projection and legality tasks: for a robot to plan, it must be able to build
hypothetical states of the world that would follow from the successive application
of actions (prediction task), and at each step, select possible, legal actions based on
their pre-conditions (legality task). As already mentioned, these tasks are highly non-
monotonic.

Symbolic task planning in general is a large research field [113]. The so-called
Classical Planning Problem, first, is characterised by a unique known initial state,
durationless deterministic actions which can be taken only one at a time, and a single
agent. STRIPS and PDDL are amongst the commonly used languages for representing
such planning problems.

Planning with nondeterministic durationless actions with probabilities can be repre-
sented as discrete-time Markov decision processes (MDP), and when full observability is
replaced by partial observability, we deal with partially observable Markov decision process
(POMDP).

Hierarchical Task Networks (HTN) are another common formalism for planning prob-
lems, where an initial set of tasks (High Level Tasks, HLA) is decomposed into either
primitive actions or a new set of subtasks.

From the observation that the core reasoning techniques (back and forward chaining)
are shared between planners and reasoners used in knowledge representation systems,
task planning can be considered within the KRS.

Since McCarthy’s Situation Calculus in 1963, numerous knowledge representation
formalisms dedicated to representation and reasoning about actions and situation have
emerged: besides situation calculus, �uent calculus and event calculus are the main
ones. Thielscher [131] recently proposed a unification of these approach in a new action
calculus.

The GOLOG [80] language and its derivatives (like READYLOG [35] and IN-
DILOG [42]) propose implementations of the situation calculus focused on robotic
applications.

It is however also common to rely on external components dedicated to symbolic
task planning (in particular because of the non-monotonicity requirements) with a tight
link to the KRS for domain retrieval and/or resulting plan storage.

Finally, in the context of interaction between several agents, the management of
joint intentions and joint goals [132, 32] are additional aspects that have to be represented
and appropriately handled by the planning subsystem.
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Physics-based reasoning

As embodied entities, robots have to interact with physical entities. Naive physics
reasoning covers all the everyday reasoning the humans unconsciously perform, like
taking into account gravity (“if I drop a ball, it falls down”) or common physical
properties of objects (“a glass may break if dropped”, etc.). Many of the interactions
with our everyday environments are ruled by such laws that are difficult to exhaustively
encode.

Some systems [67] rely on external dedicated physics engine to compute symbolic
facts from on-demand physics simulation. This requires a tight integration between
the symbolic model and a geometric model that carries the geometries and physical
properties of objects.

2.2.5 Acquiring knowledge

D. Acquisition

D.3 Motivation

D.2 Grounding

D.1 Acquisi-
tion and fusion

Knowledge acquisition and modalities fusion

In our context, acquiring knowledge means to build new logical statements from data
sources and to anchor them into the existing knowledge. We consider three possible
sources of data: proprioceptive/exteroceptive sensing, interaction with other agents,
humans or robots, and remote knowledge bases. The acquisition process has generally
two steps: the information acquisition by itself, and the transformation of the information
into knowledge, aligned with the robot existing model (following our terminology for
information and knowledge, as discussed at the beginning of the chapter).

It must be observed that knowledge acquisition is generally not done directly in
the knowledge representation system. External components (often aggregated into
knowledge acquisition pipelines) are usually required to convert percepts into symbolic
facts and to ground them.

While we do not review in this article all these systems, the whole process of
knowledge acquisition is central in cognitive robotic architecture and the design of
knowledge representation systems can influence or be influenced by the approach to
knowledge acquisition.

In particular, complex robotic systems often require multi-modal perception capa-
bilities (for instance, a robot can only interpret an utterance like “this is a plate” if it is
able to understand gestures, understand natural language and merge them in a timely
manner). Multi-modal interpretation can take place at various levels, but in many cases
(especially if the modalities are of very different natures, like in the example above)
merging will require symbolic-level reasoning. The KRS has a direct impact on the
feasibility and ease of such operations.

Let review shortly the three sub-categories of knowledge acquisition.
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D.1 Acquisi-
tion and fusion

D.1.3 Linked Resources

D.1.2 Interaction

D.1.1 Sensing

Sensing From the point of view of knowledge representation, the sensing capability
can be split into proprioceptive sensing (i.e. , sensing of the robot own internal state) and
exteroceptive sensing (sensing of the robot environment). The (physical) introspection
capabilities of the robot relies on the former.

Exteroceptive sensing is the most obvious and largely studied mean of knowledge
acquisition. Traditional sensing devices (IR, cameras, laser-scanners), while still present
and widely used (navigation based on 2D localisation and obstacle avoidance is today
the standard), are being step-by-step replaced by synthetic sensors.

These synthetic sensors include post-processing to provide higher-level percepts
that ease the grounding. The prototypical example of such a device is the Kinect sensor.
At a first level, it replaces traditional stereo vision algorithms by providing a fast, robust
depth map. At a second level, it provides accurate, real-time tracking recognition and
tracking of whole body poses of human.

Other examples of such synthetic sensors exist: face recognition, off-the-shelf perfor-
mant SLAM solutions, automatic cluster segmentation in point clouds (with the PCL
library), etc.

While the progresses of these sensing technologies are remarkable, one field of
perception remain a very difficult challenge: accurate and generic object recognition.
Most of the current approaches to object recognition rely on a mix of point cloud
segmentation and fitting with visual feature recognition (SIFT-like algorithms), but it
remains a slow and fragile task.

Interaction Interaction with other intelligent agents (humans or robots) is another
important source of knowledge acquisition. It relies obviously on some form of sensing
(from speech recognition to gesture recognition) but we distinguish it from the previ-
ous section because interaction implies a form of communication. Communication is
associated to specific functions (as shown on Jakobson’s diagram, figure 1.5, page 8),
and in particular, it implies a shared context (usually implicit) between interactors.

We distinguish between two main interaction channels: verbal and deictic.

D.1.2 Interaction
D.1.2.2 Deic-

tic Interaction

D.1.2.1 Ver-
bal Interaction

The field of verbal interaction processing for robots spans from pattern-based,
constrained sentences recognition to natural, bidirectional, unconstrained verbal com-
munication. A large literature corpus exists on Natural Language Processing (NLP)
which is presented at section 5.1.2, page 97.

NLP is an established research field by itself, and while the robotic community is
still lagging behind on many theoretical aspects, it brings one important aspect: the
embodiment. Because the interactors, both the robot and the human, are establishing a
communication within a shared physical context, the verbal communication channel
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is complemented by deictic channels, back channels and possibly shared physical
experiences: a human can show something to a robot, saying “Give me this”. This is
not possible for a virtual agent.

Several of the knowledge representation systems we present have developed spe-
cific built-in mechanisms or extensions to parse, ground and possibly rebuild natural
language.

Deictic (used in the literal meaning of “display, demonstration, reference”) interac-
tion is also an established field of research in human-robot interaction. Common deictic
forms of communication [81] include attentional focus (via face and gaze tracking) and
joint attention, pointing, emotional expressions (based on face expressions, postures,
emotional gestures).

Like other knowledge acquisition modalities, the recognition and interpretation of
deictic communication is rarely directly included in a KRS, but, as previously men-
tioned, the symbolic representation of such communication acts is relevant and impor-
tant to achieve successful multi-modal interactions.

Linked Knowledge Resources Robots, and in particular service robots, have usually
an access (with possibly security-related constraints) to the World Wide Web and remote
knowledge stores.

The current shift towards the Semantic Web (i.e. structured, annotated data that
are easily machine-processable) makes increasingly easy to have robots to reuse au-
tonomously this knowledge. The DBPedia project, for instance, illustrates well the
tendency: it provides an automatically generated RDF version of the Wikipedia ency-
clopedia.

In its current state, the relevance of the DBPedia project in our context is however
limited: the triples that are extracted are mostly “mechanical” (like the categories of a
term, or factual informations extracted from Wikipedia’s InfoBox), and the vast majority
of the knowledge actually contained in the encyclopedia pages remains out of reach of
automated parsers. Efforts in that direction however exist [99, 34].

Another notable project that seeks at providing large amount of machine-friendly
common-sense knowledge is the MIT’s OpenMind project [119]. The project is designed
to let the general public easily add common-sense statements in semi-controlled natural
language, which is then processed to a publicly available ontology.

Another approach that is easier at short-term to let robots remotely access knowl-
edge repositories consists is building robot-specific shared repositories, with declarative
and/or procedural (i.e. , plan library) knowledge. The RoboEarth [143] project is an
example of such an effort.

Grounding/anchoring strategies

Grounding (also called anchoring when specifically referring to the building of links be-
tween percepts and physical objects [27]) is the task consisting in building and maintaining
a bi-directional link between sub-symbolic representations (sensors data, low-level actu-
ation) and symbolic representations that can be manipulated and reasoned about [44].

Being embodied entities with interaction with other embodied entities as a funda-
mental requirement, robots and robotic is deeply concerned by the grounding issue.
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Figure 2.5: Example of a semantic map, taken from [100].

Being actually implemented on real service robots, all the symbolic knowledge
representation systems that we review in this study have some kind of grounding
process. Numerous approaches exist, like amodal proxies [54], grounded amodal repre-
sentations [3, 91], semantic maps (Figure 2.5, [100, 37, 19]) or affordance-based planing
and object classification [84, 137].

Intrinsic motivation and curiosity

The reasons for a robot to acquire knowledge are diverse, and usually external to
the robot itself. It is often driven by the requirements of tasks that the robot has to
execute. In this case, motivations are managed by the execution controller and are
mostly invisible to the knowledge representation system.

However, motivation can also be intrinsic, driven by the internal state of the robot’s
beliefs, without external pressure or reward. In this case, the

In the context of robotics, Oudeyer notes however that the information that is com-
pared [to compute a level of motivation] has to be understood in an information theoretic
perspective, in which what is considered is the intrinsic mathematical structure of the values of
stimuli, independently of their meaning. [102].

Psychological grounds of motivation are summarized in [102] while the main ap-
proaches to computational motivation, divided into knowledge based models, compe-
tence based models and morphological models, are surveyed in [103].

2.2.6 Practical integration in robotic architectures

E. Integration

E.4 Performances

E.3 Monitoring

E.2 Executive layers

E.1 Sensori-motor

Knowledge representation systems do not mean anything to robots if they are
considered in isolation. This section proposes categories of features related to the
integration of the KRS into a larger software architecture that includes perception
routines, decision-making processes and actuation control.
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We also mention some practical aspects of a real-world system, like performances
and monitoring tools that come along with the KRS.

Integration with sensori-motor layers

We have previously discussed (section 2.2.5) the principles of the grounding process
that aims at establishing and maintaining a connection between percepts (and to a
lesser extend, low-level actions) and symbols.

While every real-world cognitive robot need some kind of grounding, the actual
implementations lead to very different information flows.

The systems can be roughly split into two classes: passive knowledge repositories
that process symbolic facts produced by lower-level sensori-motor layers (push flow);
active knowledge managers that directly query (possibly by polling or on-demand)
low-level layers.

This macroscopic distinction is however mostly a matter of defining the frontiers
of the KRS: some systems like KnowRob [130] encompass geometric reasoning layers
that would be considered as external by other systems like ORO [75] that focus on the
symbolic fact storage and rely on a ecosystem of independent modules to provide and
consume symbolic knowledge.

Other systems do not fit either in such a partition between active and passive systems
because they do not stand as independent modules but exist as diffuse, ubiquitous
knowledge manipulation system (case of the CAST knowledge model [54]), for instance
because they are primarily language [35, 114].

Integration with executive layers

Conversely, the knowledge management module need a tight integration with the
decision-making processes. As for the integration with sensori-motor layers, the borders
of the KRS can be fuzzy and vary from one architecture to another: many consider
symbolic task planning as an integral role of the KRS, while other have dedicated
extensions for planning, some integrate learning as an on-the-flight process that is part
of the KRS, others as an independent deliberative process, etc.

The actual integration techniques vary also widely, from language extensions (like
the integration of CRAM [15] with KnowRob) and client-server architectures, to event-
driven models (SHARY and ORO [3]). Choices at this level have notable consequences
on the whole design of the upper control architecture of the robot, in particular regard-
ing its modularity and the ease of addition of new components.

Monitoring and debugging

It is common to have knowledge representation systems at the heart of a cognitive
robotic architecture, and therefore KRS are easily “buried” in the system.

At the same time, the symbolic model often provides a valuable synthetic view
on the whole state of the robot, furthermore easily understandable by the human
developer (the fact hhuman1 isSitting truei is easier to interpret than the suite of
relative coordinates of each joints of the human skeleton, as provided by the human
tracker, for instance).
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Tools to trace and visualise at run-time the evolution of the knowledge structure
and contents may be available with the KRS, as well as post-processing tools that run
on the trace to analyze a posteriori the cognitive behaviour of the robot.

Evaluation of performances

Benchmarks of symbolic systems for robots are hard to conduct for several reasons:
identifying good metrics for robotic experiments in general is difficult because of the
complex interactions between tenth of modules running in parallel, and isolating one
specific component is difficult. Also, knowledge representation systems are often
tightly coupled to the other modules. To quote Langley [72]:

The conventional wisdom of software engineering is that one should de-
velop independent modules that have minimal interaction. In contrast, a
cognitive architecture offers a unified theory of cognition with tightly inter-
leaved modules that support synergistic effects.

The lack of standard API for knowledge services makes it also hard to switch
between KRS to compare them.

Finally, because service robots are designed to act in rich, dynamic environments,
possibly with humans, building repeatable experiments is challenging, and quantitative
measurements are often not the right metric [72].

We will however present here some quantitative metrics (related to scalability, for
instance), followed by qualitative evaluation approaches, grouped under the term
Cognitive Performances.

E.4 Performance
Evaluation E.4.2 Cognitive

Performances

E.4.1 Raw Per-
formances

Raw Performances The raw performance is evaluated on quantitative benchmarks.
The main metric is the scalability SKRS of the system with the size of the knowledge
base σ = j∆I j (in term of atoms or statements).

We call relaxation timeRM the (averaged) time required by the system after a model
modification of typeM before being available for further interaction, and query time
QM′ the (averaged) time to execute a query of complexity C on the KRS. The typeM of
model alteration is either an ABox modification (addition/removal of an instance) or a
TBox alteration (addition/removal of a class, a class restriction or a rule).

Temporal scalability is defined in term of the nature of the function fM,C(σ) = RM(σ)+
QC(σ) (i.e. the relation of the relaxation time and query time to the knowledge base size).
Space scalability is the relation of memory consumption to the size σ. The scalability is
tightly coupled to the expressiveness of the underlying knowledge model, which need
to be known for the scalability measurement to be meaningful.

Because of coupling and repeatability issues we have mentioned, raw performances
of KRS are often benchmarked with synthetic datasets (which leads to another issues:
how to assess the meaningfulness of the performance of a reasoner on an artificial
ontology? [13]) or “toy” experiments that do not always model the whole complexity
of real-world application [26].
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Cognitive Performances While evaluating the raw performances of knowledge rep-
resentation systems in a relevant manner may be difficult, the cognitive performances
of the robot as a whole can be also evaluated.

Langley et al. [72] propose five such dimensions of evaluation: the generality of
the system (can it adapt easily to new tasks?), the rationality or relevant of the infer-
ence/reasoning/decisions the system take, the reactivity and persistence that evaluates
if the behaviour of a cognitive system is appropriate under unpredicted changes, the
improvability of the system as a function of the knowledge added to it, and finally, the
resulting autonomy of the system.

Cognitive performance can also be evaluated with the support of tools developed
in cognitive psychology. Several standard tests (like False-Belief experiments [77] or
the Token test [31]) have been used to judge the cognitive abilities of robots [91, 21].

2.2.7 Knowledge instantiation

F. Knowledge
instantiation

F.4 Granularity

F.3 Metrics

F.2 Common-sense
and Alignement

F.1 Design Strategy

This last branch of our taxonomy looks at the actual content of the knowledge base:
the knowledge instantiation. Here, instantiation does not only refer to the instantiation
of the knowledge structure (what we have called the ABox), but also includes the
knowledge structure itself (the TBox).

While we have previously mentioned features of knowledge representation systems
that enable the robot to fill its knowledge base with content and alter the knowledge
structure, most of the systems also come with a certain amount of initial knowledge
that often includes common-sense knowledge (i.e. facts that widely known to humans,
and hence often implicit: “to put a cake in the oven, one must first open the oven’s
door”).

The design strategy, the choice to rely on common-sense knowledge or not, the
reuse of standard ontologies, the quantity of a priori knowledge are many parameters
that lead to different knowledge models.

Design strategy

The main challenge of knowledge representation can be summarised as How to model the
real-world state and interactions in a symbolic way, processable by the robot to make decisions.
We have already introduced the term grounding to describe the (bi-directional) process
of binding percepts to symbols.

We have also seen that the instantiation of the knowledge (i.e. , the actual, practical
knowledge available to the robot) comes either from some variant of perception plus
grounding, or from knowledge that the developer considers as already meaningful for
the robot: remote semantic databases or initial (common-sense or situation specific)
knowledge.
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This translates into two main strategies to drive knowledge instantiation: a top-down
design or a bottom-up design.

A bottom-up approach to knowledge instantiation takes the output of sensors as the
primary source of knowledge: instances of objects, agents, and their relations directly
result from what is perceived. No abstract, “from the more generic to the more specific”
process takes place.

Steels [127] considers this approach to be a solved issue, and according to Slo-
man [123] (and his stance against the “Symbol Grounding meme”), since bottom-up
grounding boils down to grounding of somatic concepts (i.e. roughly, the sensori-motor
relationships that the robot learns from its interaction with the world), it constrains in
an unacceptable way the range of concepts accessible to the robot.

Knowledge instantiation can also be approached as a top-down activity: in natural
language grounding, for instance, the robot needs to automatically bind an abstract
representation (a group of words uttered by a human) to an unambiguous, context-
dependent, internal concept. This concept may (or may not) be a priori available to the
robot as a pre-loaded ontology (what we previously called the cultural background of
the robot). In any case, the robot must conduct a cognitive process that leads from an
abstract concept to a concrete entity.

The bottom-up and top-down strategies also reflect how the knowledge structure
itself is constructed: either by successive classification and refinement of percepts, or
from generic categories, typically extracted from standard upper-ontologies.

Common-sense and alignment with standard upper-ontologies

At section 2.2.5 we have presented how remote knowledge bases are a valuable source
of knowledge, including common-sense knowledge, that robot can extract.

Building a priori knowledge with a top-down strategy leads to populate the upper
part of the taxonomy with abstract concepts like Thing, Time, Person, etc. The organ-
isation of the whole knowledge depends on the design of this abstract part of the
common-sense knowledge.

Different knowledge structures at this level can lead to serious misunderstanding:
for instance, if one robot considers the concept of a person as representing some intelli-
gent, possibly disembodied, entity, and another robot represents a person as a subclass
of mammals, their models of the world are likely to be conflicting.

To be able to successfully exchange knowledge with other systems (robots, databases,
natural language parsers, etc.), the common-sense knowledge of robots is thus often
aligned with a standard upper-ontology.

Many such upper-ontologies exist (table 2.3 lists some of them). While CYC and
SUMO are current the main two, many efforts take place to make these ontologies com-
patible with each other (in particular by using the WORDNET thesaurus as intermediate
unambiguous source of semantics).

Metrics and quality criteria

Qualitative and quantitative metrics give an insight on the size, complexity and effec-
tiveness of ontologies used with the robots.
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Project Terms Assertions (triples)

CYC > 300 000 > 3 000 000
YAGO > 10 000 000 > 120 000 000
SUMO 20 000 60 000
DBPEDIA (for English) 1 840 000 385 000 000
OPENMIND Common Sense (for English) 1 000 000

Table 2.3: Raw size of major upper-ontologies.

Table 2.3 gives such metrics for five major upper-ontologies commonly used in the
semantic Web community (taken from [88] and the projects’ respective websites). It is
interesting to note the large variations between projects like DBPEDIA whose content is
automatically generated from Wikipedia, CYC or SUMO, which are both hand written,
but do not adopt the same strategy to select the knowledge to represent.

These metrics do not reflect adequately the expressive complexity, though: in most of
these ontologies with a large amount of terms and assertions, taxonomic relations (isA)
or technical predicates (URI, translations, etc.) account for a large part of the assertions,
at the expense of real semantic relations.

Other metrics that include the type of predicates that are used, or the computed DL
expressiveness, can be more significant (some are presented in table 3.2, page 66).

Qualitative evaluation of ontologies is also a well studied field. In Staab’s Handbook
on Ontologies, Vrande�cić [141] provides a synthesis of qualitative criteria for ontology
assessment. He lists eight of them: accuracy, adaptability, clarity, completeness, computa-
tional efficiency, conciseness, consistency, and organizational fitness. Details and relevant
literature can be found in Vrande�cić’s chapter.

Granularity

Amongst the characteristics of ontologies, knowledge granularity qualifies the level of
details or refinement of the knowledge stored. The level of granularity of a robot’s
ontology hints on the place of the symbolic layer in the whole robotic architecture:
some systems (like OMRKF [128]) go as down as storing SIFT features (i.e. a large
volume of numerical values) in the ontology. The storage of literal values is indeed a
relevant case for robotics. Depending on the representation language, literal values can
be naturally represented and processed (common case in logic programming language)
or not (storing numerical value, let alone matrices, in OWL is cumbersome and not
efficient due to the serialisation to XML).

The issue of the granularity of models can also be partially addressed by splitting
the knowledge representation into a geometric level (where all numerical values are
stored) and a purely symbolic level. The communication between the two layers is
however a complex question.

It must finally be noted that complex robotic systems are likely to use different
level of the knowledge depending on the task to achieve, and the granularity of the
knowledge should probably be considered as a dynamic property.

43



Symbolic Knowledge Representation

2.3 Existing systems for knowledge representation in ser-
vice robotics

Table G.1 lists the knowledge representation systems that we have surveyed.
This section first clarify the inclusion criteria, and then briefly presents each of them.

At chapter 6, we will consider again these systems, this time as a whole, to build a
summary of the fields of knowledge representation that are adequately (or not) tackled
by the existing systems.
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Project Category Authors (Institution) Project homepage Programming lan-
guage

Knowledge model/Logical
Formalism

Main refer-
ence

ARMAR/Tapas Formal Holzapfel, Waibel
(Karlsruhe TH)

TFS (Typed Feature Struc-
tures)

[51]

CAST Proxies Ubiquitous Wyatt, Hawes, Jacobsson, Krui-
jff (Brimingham Univ., DFKI
Saarbrücken)

Amodal proxies [54]

GSM Structural Mavridis, Roy
(MIT MediaLab)

[91]

Ke Jia Project Formal Chen et al.
(Univ. of Science and Technol-
ogy of China)

www.wrighteagle.org/en ASP (Answer Set
Programming)

ASP [24]

KNOWROB Formal Tenorth, Beetz
(TU Munich)

ias.in.tum.de/kb/wiki PROLOG PROLOG + OWL-DL [130]

NKRL Language Zarri et al.
(Paris Est Créteil Univ.)

NKRL [114]

OUR-K/OMRKF Formal Lim, Suh et al.
(Hanyang Univ.)

incorl.hanyang.ac.kr/xe ? DL + Horn Clauses [82, 128]

PEIS KR&R Formal Daoutis, Coradeshi, Loutfi, Saf-
fiotti
(Örebro Univ.)

www.aass.oru.se/~peis C, CYCL CycL (1st and 2nd order
logics, modal logics)

[29]

Table 2.4: List of surveyed systems. Categories are Formal for systems that have a formal underlying knowledge representation, Ubiquitous
for systems where knowledge is fully distributed, Language for languages used as KRS on robots or Structural for KRS where knowledge is
represented as special data structures.
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Survey Inclusion Criteria

Every robotic system has, implicitly or not, some knowledge representation systems.
It may range from a simple state vector to an explicit symbolic knowledge base. This
survey focuses on the right end of this spectrum: symbolic systems, suited for abstract
reasoning.

Besides, we have decided to restraint the set of systems to those actually imple-
mented on robots, and used in semantic-rich environments (i.e. dynamic, partially
unknown environments with a large range of different entities which may have inter-
actions). The typical scenario that would involve such robots is the Brownie Scenario
already presented at section 1.1: a service robot in a human-friendly environment like a
kitchen.

We have limited ourselves to systems that 1. run on service robot (that is, robots that
interact with objects in a semantic-rich environment primarily designed for humans),
2. ground the knowledge in the physical world (physically embedded systems able to
assess their environment), 3. are able to merge different knowledge modalities, 4. are
able of on-line, dynamic knowledge acquisition and reasoning (i.e. not simple static
databases).

These criteria exclude platforms like DYKNOW [49] which are focused on data
fusion and knowledge grounding at lower levels.

We have also chosen not to include the GOLOG language and its derivatives [80, 35,
42] in this survey. While several implementations on robots, including service robots,
do exist, the focus of this language is on representation and reasoning about actions
and situations, and the link with symbolic, abstract knowledge is not explicit.

While classical cognitive architectures like SOAR [73], GLAIR [118] or ACT-R have
declarative knowledge modules [30] and have been recently used on service robots (see
ACT-R/E [60] for instance), they are also absent from this survey because we did not
find much references in the literature on knowledge manipulation and representation
applied to real-world robotic scenarii for these architectures.

A comprehensive reference on (bio-inspired) cognitive architectures is also available
from the BICA Society [126].

2.3.1 ARMAR/Tapas

TAPAS is the name of the knowledge representation system and dialogue manager
found on the ARMAR III robot [51] for the Karlsruhe Institute of Technology.

Knowledge in TAPAS exists as procedural knowledge (plans) and declarative knowl-
edge. The later is split into lexical knowledge, semantic knowledge and a database of
identified objects (with their properties). The lexical knowledge contains lexical and
grammatical informations about the objects. The semantic knowledge is organised into
an ontology relying on typed feature structures (TFS [23], a formalism originating from
the computational linguistics community, and a superset of first-order logic).

TAPAS has a strong focus on natural language grounding. It proceeds by generat-
ing grammars from properties represented in the ontology to parse and understand
dialogue.

Another focus is put on handling unknown words and objects. TAPAS provides
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routines to recognise unknown entities, and propose and interactive and iterative verbal
process to categorise (including adding new categories) those new concepts.

Experiments TAPAS has been used experimentally in a kitchen environment where
naive users had to ask the robot for an object and get information about another object.

2.3.2 CAST knowledge model

CAS (CoSy Architecture Schema) Toolkit [48] is a comprehensive toolkit aimed at building
cognitive architectures for robots through a set of interconnected SA (subarchitectures).
The CAS does not expose a central knowledge base as seen in other works. It represents
instead knowledge as unrooted proxies. Those proxies are formally defined in [54] as
p = hFp, upi where Fp is a set of instantiated features (like φColour

red ) and up a proxies union
that form an equivalence class corresponding to one entity.

A union of proxies forms a global amodal representation of an entity, that can be
explicitly shared and manipulated. Being not centralised, the knowledge model can
be qualified of ubiquitous. Furthermore, knowledge source in the CAS architecture
is tightly bound to the on-line grounding process (be it grounded in perception or
in dialogue). While nothing seems to prevent it, no a priori knowledge (including
common-sense knowledge) is used.

Knowledge sharing is ensured by the event mechanism of CAST: modules can
monitor proxies for alteration by other modules. Jacobsson et al. mention how this can
apply to reinforcement learning: the vision module creates a proxy for an orange object.
This proxy get monitored by a learning module. In parallel, the proxy is bound to an
union by the natural language understanding module that add new a feature like "this
object is a fruit". The learning module is called back, and can add this new information
to its model.

In the presented implementation, the CAST knowledge model does no allow for
effectively representing actions or temporal information.

Knowledge Acquisition Several techniques for knowledge acquisition have been
explored within the CAST framework. Cross-modal knowledge fusion [46] is well
studied, and the interaction with natural language processing [65, 64] is a particular
emphasise of the project.

In [45], Hawes et al. also explore curiosity mechanisms in the context of spatial
representations with the robot Dora.

Experiments CAST has been used in several experiments, including table-top ma-
nipulation (with a focus on language understanding) and more recently on the Dora
robot [45] for indoor exploration.

2.3.3 GSM

GSM (for Grounded Situation Model) [91] is a knowledge representation system primarily
built to “facilitate cross-modal interoperability”, especially in the context of verbal
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Figure 2.6: Simplified hierarchical structure of the Grounded Situation Model, based on [91].

interaction with a robot.
GSM does not rely on any formal language but rather on a layered data structure

(figure 2.6) that organises the surrounding world into agents and relations between
agents. Each agent (any animate or inanimate object) is attached to a physical model
(made of body parts that have properties like their position, color, etc.) and a mental
model (which is a recursively embedded GSM, thus allowing a sort of theory of mind).

Properties are represented in three layers: a stochastic representation, close to
sensory percepts, a continuous single-valued encoding of the stochastic model, and a
discrete, categorical model.

One notable feature of GSM is the bidirectionality of the grounding process: not only
sensor percepts are abstracted into categories suitable for human conversation, but
human utterance (like “There is a red ball in the center of the table”) can also be turned
into property descriptions. This basically enable the knowledge representation system
of the robot to imagine entities.

GSM also features several strategies for managing time and events. Moments are
created by storing timestamped snap-shots of GSM, and event classifiers allow to define
and detect events.

Experiments GSM has mostly been tested on table-top manipulation and interaction
tasks (a “conversational helping hand” as stated by the authors) implemented on
a 7-DOF arm equipped with force feedback, cameras for blob tracking and speech
recognition (Sphinx4). Mavridis and Roy provide in addition an in-depth analysis of
the performance of GSM by the mean of a standard psycholinguistic test, the Token
test [31].
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2.3.4 Ke Jia Project

The Ke Jia project [24] integrates on a mobile platform a knowledge representation
language with natural language processing, task planing and motion planing.

Knowledge representation relies on Action Language C, itself based on Answer Set
Programming (ASP) [38]. These languages, that are syntactically close to Prolog, are
based on stable models of logic programs, and support non-monotonic reasoning. Default
and non-monotonic reasoning has been especially researched within the Ke Jia project
for symbolic task planing [57] and underspecified natural language processing.

Amongst other features, the natural language processing capabilities of the system
support acquisition of new logical rules at run-time.

Experiments The Ke Jia robot has been demonstrated in several tasks involving
human-robot interaction with natural language. These tasks include a task with multi-
ple pick & carry that are globally optimised, naive physics reasoning via taught rules or
more complex scenarii with the robot delivering drinks, taking into account changing
and mutually exclusive preferences of users.

2.3.5 KnowRob

KNOWROB [130] is an integrated knowledge management system developed at the
Technical University of Munich. It is build as a set of modules (figure 2.7 organised
around a core reasoning system written in Prolog. This core module interfaces through
Java/Prolog or C/Prolog APIs with external modules.

Extension modules can plug into the system to provide specialised reasoning ca-
pabilities or interfaces to external data sources, e.g. to read object detections from the
vision system. These modules operate on the level of instances (ABox).

Knowledge model KNOWROB can load OWL ontologies, and the KnowRob-Base
ontology is provided as a common-sense ontology, with a focus on household and
kitchen domains. KNOWROB also store and reason on introspective knowledge through
the Semantic Robot Description Language [68] that allow to represent symbolically the
capabilities of the robot, and is used for planning.

Reasoning Techniques Amongst the notable KNOWROB extensions, PROBCOG [55]
is an effort to provide probabilistic reasoning based on bayesian networks, integration
with naive physics reasoning has been studied [67], automatic parsing of Web resources
in semi-natural language has been also experimented with [99].

Grounding KNOWROB offers a mechanism called computables that allow to evaluate
certain predicates by calling external dedicated functions (for instance, the valuation
of a proposition like hobject1 isOn object2i is computed when required by calling a
specific geometric reasoning module). In combination with Prolog’s lazy evaluation
strategy, this supports a good scalability.

Computables rely on various subsystem to evaluate. In particular, it relies on the CoP
framework [62] and semantic maps [19] for the recognition of objects and environment.
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Figure 2.7: Overview of the KNOWROB framework, taken from [129].

Experiments KNOWROB has been deployed on several scenarii at the Technical Uni-
versity of Munich, on the PR2 robot and on a 2-arm custom mobile manipulator in the
scope of the “assistive kitchen” [16] project. These experiments include retrieval and
automated parsing of recipies from the Web, retrieval and manipulation of various
kitchen tools, cooperation between two robots.

2.3.6 NKRL

NKRL stands for Narrative Knowledge Representation Language. While this language
is developed since a long time by Zarri [147, 148], recent research direction include
application to the robotic field [114]. NKRL is not per-se a knowledge representation
system, as it is primarily a language. However, it is used as the representation and
reasoning mechanism for robots by Sabri et al.

Knowledge representation The NKRL language semantics are stored in two ontolo-
gies: an ontology of concepts Ω and an ontology of events Ψ. The ontology of events is
made of action or situation templates. Templates are a set of predicates (MOVE, PRO-
DUCE, RECEIVE, EXPERIENCE, BEHAVE, OWN and EXIST) associated to thematic
roles. Grounding and reasoning with NKRL is based on template matching.

Experiments The main scenario of development for NKRL-based robots is the Smart
Home and monitoring of eldery people. Knowledge acquisition partially rely on
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Figure 2.8: OUR-K organises knowledge into fives classes, each composed of levels. Figure
based on [82].

ambient intelligence (RFID, pressure sensors in the chairs, etc.). The scenario is still
being implementated.

2.3.7 OUR-K and OMRKF

The Ontology-based Unified Robot Knowledge [82] (OUR-K) framework, successor
of the Ontology-based Multi-layered Robot Knowledge Framework [128] (OMRKF),
is a knowledge representation system based on five inter-related classes of knowledge
(figure 2.8). It proposes a layered approach to knowledge representation that allows
to integrate the grounding process to the knowledge representation process. OUR-K
knowledge model is implemented with a mix of Description Logics for the concept
hierarchies and Horn clauses.

Each level of knowledge is build as three stages of ontological realization: a meta-
concept (the level itself, like “temporal context”, “behaviour” or “object feature”), a
taxonomy of concepts inside this level (for instance cup : Object v tableware : Object)
and an instantiation of the taxonomy (cup1 : cup).

Representation The environment is represented in OUR-K in the spaces : Model
knowledge level as a classical three layers mapping (metric, topological and semantic
maps). Objects (in objects : Model) are localised in spaces : Model through Voronoi
nodes.

The knowledge class Context proposes an explicit statement of spatial context
(mostly geometric relations between objects), temporal context and a more general
high-level context, inferred from spatial and temporal contexts.

Finally, the Activity knowledge class store compound actions in a HTN-like struc-
ture, exploited at run-time by a planner.

Experiments Experiments conducted with OUR-K and OMRKF include finding
kitchen objects and reporting about their state to a human. This experiment also
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shows how OUR-K can deal with objects only partially matched by their descriptor by
introducing a candidate() function.

2.3.8 PEIS KR&R

PEIS ECOLOGY [115] is a software ecosystem that aim to binds autonomous robotics
with ambient intelligence (network of sensors). PEIS stands for Physically Embedded
Intelligent System: every robots or intelligent device in the environment is abstracted as
a PEIS.

Each PEIS physical component is running a PEIS Kernel instance. Communication
between instance relies on a custom P2P communication protocol.

The PEIS architecture allows for adding new abilities through software components
sharing the common tuple space.

We consider here the semantic layer [29], referred as PEIS KR&R, that includes
symbolic representation and reasoning.

Knowledge model The PEIS Knowledge representation system relies on the RE-
SEARCHCYC and CYCL language to represent knowledge. The CYCL language allows
to represent first order logic sentences and has extensions for modal logics and higher
order logics.

As a system relying on CYCL, contexts can be expressed as microtheories: the truth
or falsity of a set of statement depends of the microtheory in which these statements are
evaluated.
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The PEIS KR&R system is deeply integrated to the general PEIS Ecology smart
environment. Figure 2.9 gives an overview of the interactions between PEIS knowledge
processing layers.

Knowledge Acquisition The primary source for knowledge acquisition is perception.
The PEIS ecosystem provides a SIFT-based object recogniser used in conjunction with
ceiling cameras for object localisation. Other perceptual modalities are available (like
human tracking, ambient environment monitoring).

A template-based natural language parsing system may also be used to add new
assertions to the system.

The system can ask the human for help to disambiguate between concept names.

Anchoring Daoutis et al. formalise the issue of anchoring as finding a predicate
grounding relation g � P � Φ�D(Φ), where P is a set of predicate symbols, Φ a set of
percept’s attributes, and D(Φ) the domain of these attributes.

In the current implementation, object category (returned by the SIFT classifier),
color, location, spatial relations (both topological – at, near – and relative to the robot –
left, behind, etc.) and visibility are the five classes of extracted attributes.

Integration in the robot architecture The PEIS framework offers through the PEIS
middleware a practical way to insert a new component into the shared tuple space. Thus,
the KR&R module can be seamlessly integrated into the PEIS ecosystem.

Experiments Experiments involving PEIS take place in a Smart Home environment
(PEIS Home). The implemented case studies explore dialogue-based interaction with
the robot about known objects.

2.4 An interface for knowledge manipulation in robotics

During the preparation of the thesis, discussions with several people involved in
knowledge representation (namely Dominik Jain, Lars Kunze, Michael Beetz) have
led to the draft of a generic API for knowledge access and exchange between robotics
components.

This section presents this effort of standardisation that is (partially) implemented by
the ORO server, presented in the next chapter.

2.4.1 Rationale and general considerations

The original idea comes from the acknowledgement that more and more software com-
ponents for robotics want to store or use symbolic data. Since established international
efforts at defining standard for inter-component communication like ROS have already
proved their usefulness, one single API for different knowledge representation and
management systems could be equally useful.
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The API is designed for robotics (even if probably useful in other contexts): it aims to
be simple and practical for clients by focusing on core knowledge operations (addition
of knowledge, retraction, querying) with consistency constraints; it explicitly supports
uncertain knowledge and multiple models (modality); it makes clear how knowledge
is added or retracted with explicit policies.

We have attempted to design it in a way that do not restrict expressiveness (any
logical sentence that can be expressed in the logic of predicates, with a probabilistic
extension, can be manipulated by the API), and a simple extension mechanism should
permit future evolutions in a backward compatible way.

Besides facilitating exchange of knowledge contents between systems by ensuring
one standard formalism, another outcome of the adoption by several KRS of this API
is that it allows easy switch between semantic engines (and thus benchmarking and
sharing of unit-tests).

This API was developed with Prolog-based knowledge systems, Description Logics-
based knowledge bases and Markov networks in mind, and should cover as well other
systems related to predicate logics (with or without a probabilistic extension).

Besides standard operations on axioms and taxonomy, the API aims to cover:

� probabilities associated to statements

� management of several models

� explicit policies to add, retract or, more generally, alter knowledge (for instance,
to guarantee consistency when adding knowledge)

� specific, implementation-dependent, extensions through the special method.

Implementations are not always expected to cover to whole API, but must have a
predicable behaviour when a part of the API is not implemented. In particular, the API
makes no assumptions on implementations regarding:

� the actual supported expressiveness (the API allows to express general first-order
logics statements, but the underlying implementation may support only a subset,
for instance, Description Logics)

� Closed-world assumption vs Open-world assumption

� Reasoning capabilities

2.4.2 The Knowledge API

The API is divided in five parts:

1. Methods related to service management,

2. Methods related to knowledge alteration,

3. Methods related to knowledge querying,

4. Methods related to models manipulation and finally
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Key Values Meaning

method add (default) the statements are added to the knowledge base,
without ensuring consistency.

safe_add the statements are added only if they (individu-
ally) do not lead to inconsistencies.

retract the statements are removed from the model. As-
sociated probabilities are discarded.

update Updates objects of one or several statements in
the specified model. If the predicate is not in-
ferred to be functional (i.e. , it accept only one
single value), behaves like add.

revision or
safe_update

Updates objects of one or several statements in
the specified model if it does not (individually)
lead to inconsistencies. If the predicate is not
inferred to be functional (i.e. , it accepts only one
single value), behaves like safe_add.

model all (default) all existing models (section C.4) are impacted by
the change.

a valid model id or a
set of valid model id

only the specified model(s) are impacted

Table 2.5: Knowledge revision policies.

5. Methods related to taxonomy walking.

Parts 2 and 3 are the two main parts, involved with knowledge manipulation.

Knowledge Alteration Methods in part 2 are build around the generic revision
method, that takes as parameter a set of logical propositions and a policy.

A policy is represented as a set of (key, value) pairs whose possible values are
presented in table 2.5.

Knowledge Querying The main method that allow for knowledge retrieval is find.
A find query is build as a set of partial statements (i.e. , statements with named or
anonymous unbound terms) that form a pattern. It returns statements matching the
pattern.

“Shortcut” methods are offered by the API for common operations (adding/re-
tracting a statement, checking if a statement exists, etc.). Where relevant, probabilistic
versions of the methods are also defined.

The complete API reference is provided in Appendix C.
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Chapter recap

That concludes the chapter on Symbolic Knowledge Representation for robotics.
In that chapter, we have first discussed a definition of knowledge in our context of

service robotics and human-robot interaction. We have presented several references
from the literature regarding the identification and classification of prominent features
of knowledge representation systems.

We have then introduce a comprehensive typology of such features, that comprises
of about fifty concepts sorted into six main categories: features related to knowledge
expressiveness, features related to representation techniques, features related to rea-
soning, features related to acquisition and grounding of knowledge, features related
to the integration of a KRS into a larger robotic architecture, and finally, features that
characterise the represented knowledge itself. Each of the fifty concepts has been briefly
presented with references to the literature.

Finally, we have surveyed eight systems for knowledge representation in service
robots and underlined their main strengths.

The next chapter introduces ORO, a tenth KRS that we have designed and imple-
mented during the thesis preparation.
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The OpenRobots Ontology Framework

This chapter introduces the OpenRobots Ontology server and its common-sense knowl-
edge base.

We present here the functional description of oro-server, and detail its knowledge
model. Its actual implementation is discussed in the next chapter.

We also present the OpenRobots Common-Sense Ontology that contains most of the
knowledge at hand when the robot starts.

3.1 Functional overview

We have adopted a centralised approach for knowledge management called ORO [75].
The platform is designed as a central knowledge storage service implemented as a
server where the robot components can add or query statements at run-time. Figure G.3
illustrates the main functional components of ORO.

At the core, ORO is build around the OpenJena1 ontology management library,
connected to the Pellet2 reasoner.

A front-end accepts and manages connections to clients. The clients’ requests are
processed by a set of internal modules: basic operations on statements, but also higher
cognitive and human-robot interaction related features are available. External plugins
can also be added via a specific extension mechanism.

Besides acting as a facts database, the ORO platform exposes several functions: oper-
ations on knowledge statements relying on inference (through a continuous first-order
logic classification process), management of per-agent symbolic models, categorisation
of sets of concepts and profiles of memory (that enable the robot to “forget” about some
facts).

ORO also provides an event mechanism that allows components to be triggered
when specific events occur. A component can for instance subscribe to events of kind [
?agent isVisible true, ?agent type Human]. As soon as the perception layer detects
a human in the robot’s field of view and accordingly updates the knowledge base, the
executive layer is triggered. The event framework also takes advantage of the inference

1http://www.openjena.org
2http://clarkparsia.com/pellet
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capabilities of ORO. Thus an event can be indirectly triggered if its triggering conditions
can be inferred to be true.

3.2 The ORO knowledge model

3.2.1 Expressiveness

Unlike systems relying on logic programming, ORO is purely based on Description
Logics: the ORO knowledge model is based on RDF triples (i.e. exclusively binary
predicates). Triples hsubject predicate objecti are the atoms of knowledge for ORO.

Knowledge in the ORO server is represented with OWL2. As already mentioned at
section 2.2.4, the available constructs include:

� inheritance relations, e.g. :

hBottle subClassOf Containeri j= all bottles are containers,

� property axioms

– specification of predicates’ domain and range, e.g. :
hthinksAbout domain IntelligentAgenti j= only intelligent agents can think,

– cardinality constraints (including allValue, someValue, hasValue),
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– property characteristics (symmetry, transitivity, reflexivity, antisymmetry,
etc.)

� class restrictions like:

Bottle � Artifact that (hasShape value cylinderShape)

� set operations like:

Color � unionOf(blue, green, orange, black...)

DL-safe3 SWRL (Semantic Web Rule Language) rules are also supported. For example:
looksAt(?agt, ?obj) ^ pointsAt(?agt,?obj)) focusesOn(?agt, ?obj)

The formal expressiveness of the current version of the ORO common-sense ontol-
ogy (commit 19f1fcf27 in the public repository4) is SROIQ(D), which correspond
to the OWL2 language full expressiveness (the appendix A presents the usual naming
conventions of Description Logics expressiveness).

Table 3.2, page 66 gives quantitative details on the type of axioms used in the ORO
common-sense ontology.

Reification Since RDF triples constrain to binary predicates, reification is often re-
quired to express n-ary relations. For instance, the relation A gives object B to C can
not directly be represented in RDF. This relation is reified as {hact1 type Actioni,
hact1 performedBy Ai, hact1 actsOn Bi, hact1 receivedBy Ci}. As long as the instance
act1 exists in the knowledge base, the original relation A gives object B to C is considered
to hold. This kind of reification is common in the ORO knowledge model.

Reification can also take place at a meta-level (this is the level usually intended
by the term reification): a triple hsubject predicate objecti can be itself reified in
{hstmt1 type Statementi, hstmt1 hasSubject subjecti, hstmt1 hasPredicate predicatei,
hstmt1 hasObject objecti}. This level of reification allows to characterise the knowl-
edge atoms themselves, for instance to specify when the atom was added. The section
on memory management in ORO server, below, gives examples of usage of this meta-
cognition feature.

Note that in traditional logical programming like Prolog, reification is rarely strictly
required since no constraints hold on the arity of predicates. To store the date of creation
of a facts, one could simply add it as a supplementary argument of the predicate5.

Open World Assumption Following the OWL language model and as mentioned at
section 2.2.2, the ORO knowledge model makes the open world assumption.

This allows to easily represent that a fact is unknown (by simply not stating it in the
knowledge base), but also requires to carefully explicit what the entities are and are not.

3In DL-safe rules, variables bind only to explicitly named individuals in the ontology.
4Clonable from http://git.openrobots.org/git/robots/oro.git
5In the case of time representation, however, reification — or, in the case of logic programming,

second order logic — often takes place through the �uents mechanisms, see section 2.2.3
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3.2.2 Special representation techniques

Representation of alternative knowledge models

As pictured in Figure G.3, ORO stores independent cognitive models for each agent
it interacts with. When the ORO server actually identifies a new agent (or infers that
some instance is an agent), it automatically creates a new, separate, in-memory OWL
model for that agent. Then, different robot components, like execution control or
situation assessment, may store the agents’ beliefs in separate, independent models.
All knowledge processing functions in the robot’s primary model are equally available
in every agent’s model, which allows us to store and reason on different (and possibly
globally inconsistent) models of the world.

Each of these models is independent and logically consistent, enabling reasoning
on different perspectives of the world that would otherwise be considered as globally
inconsistent (for instance, an object can be visible for the robot but not for the human.
This object can have at the same time the property isVisible true and isVisible

false in two different models).
We present at section 4.4.1, page 82, a 3D real-time environment, SPARK, that allows

to compute on-line several symbolic properties that are dependent on the perspectives.

Theory Of Mind and contexts By maintaining independent mental states for each
agent it interacts with, we consider the robot to be endowed with a simple theory of
mind [116]: the robot can explicitly model the beliefs of its interactors, it expose them to
the control architecture, and the same set of cognitive abilities are available on these
secondary model as on the main model: reasoning, inconsistencies detection, events,
etc.

Proper false beliefs experiment, similar to the Sally and Ann experiment presented in
the previous chapter, has been recently conducted with ORO by Mathieu Warnier, as
reported in [145]: in this experiment, two humans observe a table with several objects,
then one leaves while the other one moves around some objects. This leads to two
different set of beliefs on the world, which the robot explicitly stores and updates when
necessary (if the human comes back and check the table, for instance).

These multiple models can also be viewed as different interpretive frames, allowing
the robot to interpret the same reality from different points of view. In this sense,
each model carries a context of interaction. In chapter 5, we present how such agent-
dependent contexts are used by a natural language processor to make sense of user
sentences from his/her point of view.

Multi-lingual support

The RDF specification supports internationalisation by the way of language tags: plain
literals may have an optional language tag (taken from the standard RFC-3066) that
tells in which human language the literal is expressed.

ORO benefits from this mechanism, and can be configured to use a specific language
as default. When an language is explicitly selected, the translated labels of concepts
(when available in the underlying ontology) are used instead of the default English
ones.
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white object

thing

moon

spatial thing

animal satellite

white whale

Figure 3.2: Sample taxonomy to illustrate common ancestors algorithms.

Since only the labels (i.e. the human-friendly name of the concepts) are subject to
translation, changing the default language of the ORO server has no semantic impact:
entities in the ontology always refer to same concepts. Same inferences are drawn, same
connections to knowledge sources are made, etc. The strength of semantic approaches
is here well illustrated.

3.2.3 Reasoning techniques

Standard inference services

As explained in the next chapter, we use the Pellet open-source reasoner to reason on the
knowledge base. This enables to expose several standard inference services: consistency
checking, concept satisfiability, classification and realisation (the most specific classes
that an individual belongs to).

In case of inconsistency in one of the knowledge models stored by ORO, an ex-
planation of the inconsistency is proposed, in a human-readable form, for debugging
purposes. The automatic exploitation of the explanation by the robot executive con-
troller is yet to be developed.

Grounding, classification and discrimination algorithms

ORO server implements several algorithms to identify similarities and differences
between concepts (classes or instances) [110]. The main ones are presented in this
section.

Common and first different ancestors The Common Ancestors algorithm (algorithm 3.2.1)
returns the classes that are the “first” common super-classes of the two concepts.

Algorithm 3.2.1: COMMONANCESTORS(concept1, concept2)

{
I  SUPERCLASSES(concept1) \ SUPERCLASSES(concept2)
return (c 2 IjSUBCLASSES(c) \ I = ;)
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Taking the taxonomy in figure 3.2 as example, the common ancestors for the pair
{white whale, moon} are {spatial thing, white object}, i.e. the set of classes
that belong to the intersection of the super-classes of both the concepts and that have
no sub-classes in this intersection.

The common ancestors are useful to determine the most precise class(es) that include
a given set of individuals.

Algorithm 3.2.2: FIRSTDIFFERENTANCESTORS(concept1, concept2)


C  COMMONANCESTORS(concept1, concept2)
S  SUPERCLASSES(concept1) [ SUPERCLASSES(concept2)
return (8c 2 C, DIRECTSUBCLASSES(c) \ S)

The First Different Ancestors algorithm (algorithm 3.2.2) returns the list of direct
sub-classes of the common ancestors. They are intuitively the most generic types
that differentiate the two concepts. In the taxonomy figure 3.2, two instances a and b

of respectively white whale and moon have as first different ancestors the two sets
{animal, satellite} (subclasses of ancestor spatial thing) and {white whale,

moon} (subclasses of ancestor white object).

Clarification Algorithm During interactions with other agents, the robot is often
required to figure out which individual correspond to a description like “red object”,
”a bottle”, ”a book larger than this other one”, etc. This is a key part of the grounding
capability.

Clarification and discrimination algorithms are based on what we call descriptors:
descriptors can be properties of individuals, either acquired by the robot are statically
asserted in a common-sense ontology. They are also the result of other reasoning
algorithms like the Common Ancestors and Different Ancestors algorithms presented
above. We shall see later how symbolic knowledge is first acquired from geometric
reasoning or natural language processing, and we consider in this section that the
clarification process is based on an established ontology, like the sample proposed in
figure 3.3.

Based on this ontology and a given partial (or complete) description of an object (list
of attribute-value pairs), the robot is able to identify the referred object the following
way (Algorithm 3.2.3). First it obtains all objects that fulfil the initial description by
querying the agent model in the knowledge base. Based on the result it either succeeds
(obtains one single object), fails (no object with that description could be found) or
obtains several objects. In this last case, a new descriptor is added (mark 1) to the initial
description and the process starts over again until all possible descriptors have been
added.

Failure occurs hence in two cases: when the description does not match any object
from the robot’s knowledge, either because the robot’s knowledge is incomplete (the
human refers to an unknown descriptor or descriptor value), or when a set of candidates
could not get successfully discriminated with the available descriptors.

Two options are available to add new descriptors: directly asking the human for
more information, or automatically searching a new attribute and ask the human for
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animal

thing

plant

animal1 animal2 animal3plant1

bananagreen

hasColor

white

hasColor eatseatshasColor

grassyellow

type type type type

Figure 3.3: Sample ontology to illustrate the discrimination routines. plant1 is an instance
of Plant and animal[1-3] are instances of Animal.

its value. In the latter case, we need to automatically find the best discriminant for the
current list of objects being evaluated (candidates in the algorithm).

Algorithm 3.2.3: DISCRIMINATION(description, agent)



candidates GETOBJECTFROMDESCRIPTION(description, agent)
if jcandidatesj = 1

then return (candidates[0])

else if jcandidatesj = 0
then output (No object found!)

else

{
description ADDDESCRIPTOR(description, agent) (1)
return (DISCRIMINATION(description, agent))

Finding a discriminant We have implemented a set of semantic categorisation func-
tions in ORO. One of them consists in looking for discriminants, i.e. descriptors that
allow a maximum discrimination among a set of individuals.

We distinguish two types of discriminants. Complete discriminants are those at-
tributes (or properties) that totally discriminate the set of individuals. In other words,
properties whose values can uniquely identify those individuals. However, they are
not always available. First, because two or more individuals may share the same value,
and second, because not all individuals may share the same properties. Thus, partial
discriminants are those that split at best the set of individuals in different subsets based
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on some criteria.

Algorithm 3.2.4: GETDISCRIMINANT(individuals)



P  ONTOLOGY.GETPROPERTIES(individuals)

P̂  ;
for each p 2 P

do


nind  NBINDIVIDUALSWITHPROPERTY(p) (1)
nval  NBDIFFERENTVALUES(p) (2)
if nval > 1

then P̂  APPEND([p, nind, nval]) (3)
RANK(P̂ ) (4)
return (P̂ [0][0])

The algorithm to determine the type of discriminant available (Algorithm 3.2.4) has
the following steps (to better follow it, we base its description on the ontology example
illustrated in figure 3.3). We search a discriminant for the following individuals: plant1,
animal1, animal2 and animal3. First we obtain the direct properties and classes for
all the individuals, i.e. we do not consider all the hierarchy of properties and classes
(in the example, plant1 has two super-classes (Plant and Thing), but we only take
the most direct one (the class Plant)). Next, we compute the number of individuals
per property (mark 1) and the number of different values for that property (mark 2).
For instance, for the property type: all the four instances have a type, nind = 4, and
this property has two possible values (Plant and Animal), nval = 2. If nval > 1 (in other
words, if not all individuals have the same value), then we consider that property as a
potential discriminant (mark 3). Finally, we rank (mark 4) the list of potential properties
following two criteria: the number of individual occurrences (i.e. we maximise the
coverage of that property) and the values occurrences (i.e. the more distinct values, the
better). The best discriminant corresponds to the first element of the sorted list. In other
words, the class with higher number of occurrences and more variety in it. If several
properties are equal, we return all of them.

In our example, the algorithm would return the type as best the partial discriminant.
If we only consider the instances of the class Animal, it would return two properties
equally discriminant: hasColor and eats.

We use this algorithm in particular for interactive concept grounding. We will detail
this approach at chapter 5.

Memory

The ORO server offers a mechanism to mimic simple forms of biological memory.
When new statements are inserted in the knowledge base, a memory profile is optionally
attached to them.

Three such profiles are predefined: short term, episodic and long term.
They each correspond to a different lifetime for the statements (respectively 10 seconds,
5 minutes and no time limit). After this duration, the statements are automatically
removed from the knowledge base.
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Name Example

rdfs:subClassOf hHuman subClassOf Agenti
rdfs:subPropertyOf hhasColor subPropertyOf hasFeaturei
rdfs:domain hthinks domain IntelligentAgenti
rdfs:range hname range stringi
owl:inverseOf hsees inverseOf seenByi
owl:FunctionalProperty hage type FunctionalPropertyi
owl:TransitiveProperty hisAbove type TransitivePropertyi

Table 3.1: Some of the properties and classes defined in RDFS and OWL that allow to define
the semantics and relations of terms within an ontology.

This approach is limited. In particular, episodic memory primarily refers to the
semantics of the statements (that is expected to be related to an event) and not to a
specific life duration. We discuss at the end of this work possible improvements.

Active Concepts We rely however on this short term memory for a particular use-
case: active concept. Some modules, like our natural language processor (described at
chapter 5), use the short term memory profile to mark for a few seconds important
concepts that are currently manipulated by the robot. For example, if a human asks
the robot: “Give me all red objects”, the human, the Give action, and each red objects
that are found are successively marked as active concepts by inserting statements like
hhuman type ActiveConcepti in the short-term memory (which can be considered, in
this case, to be a working memory, as defined at section 2.2.3). We use this feature to
give a (visual) feedback to the users (section 4.3.2)

Knowledge structure alteration and learning

In the ORO server, the knowledge structure (TBox) is purely declarative and asserted
as regular statements (like hLocation subClassOf SpatialThingi), following the RDF
Schema (RDFS) and OWL language constructs.

In complement to the constructs already presented at section 3.2.1, table 3.1 lists the
main properties and classes defined in RDFS and OWL that allow to describe the ontol-
ogy structure. These constructs can all be inserted at run-time to alter the knowledge
model of the server. They are immediately taken into account by all reasoning process
taking place after this point.

While we do not claim to have addressed the issue of learning in general, TBox
alteration coupled with language processing features, enables to implement specific
learning mechanisms. For example, one can teach the robot that cats are animals by
processing a sentence like “Cats are animals” into hCat subClassOf Animali and then
adding it at run-time into the knowledge base. From that points, all entities asserted or
inferred to be cats will be as well inferred to be animals.

The case study Point & Learn (section 6.2.2) presents some experimental results in
this domain.
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Expressiveness SROIQ(D)
Axioms 961 (annotations: 359)
Class count 108
Object property count 78
Data property count 13
Individual count 21
Functional properties 19
Inverse properties 9
Transitive properties 4
Symmetric properties 3

Table 3.2: Statistics on the ORO common-sense ontology.

Fast concept lookup

Because retrieving a concept from its label (for instance, a “location” is the human label
for the concept cyc:SpatialThing-Localized) is a frequent operation, in particular
for language processing application, the ORO server also provides a fast concept look-
up mechanism to search for a concept identifier by its label. This also takes into account
the chosen language (English, German, French...).

3.3 Knowledge instantiation: the OpenRobots Common-
Sense Ontology

The ORO platform is made of the server that we have presented, and a common-sense
ontology, the ORO Common-sense Ontology.

At start-up, the knowledge model of the ORO server is initialised with a configurable
sets of ontologies that build together the initial pool of facts known to the robot: the
common-sense ontology and optional, domain dependent ontologies.

Each time a new model is created (typically when a new agent is detected), it is also
initialised with the same pool of facts. From the point of view of the robot, this ensure
that all the different agents share the same background knowledge.

Usually, the ORO server is started with the common-sense ontology that we present
in this section, and one scenario-specific ontology that usually contains the set of
individuals with relevant properties needed by the experiment.

The table 3.2 gives a first overview of the extend and expressive level of the ORO
common-sense ontology. While the raw numbers of axioms is in no way comparable to
large upper ontologies (as presented at chapter 2), the modeling is also more expressive
(with the use of second order predicates) than the ontologies that are partially or
completely generated automatically.

The ORO common-sense ontology has been designed from two requirements: cov-
ering our experimental needs and conforming as much as possible to the OPENCYC
upper ontology.
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time interval situation

event static situation

action
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obstacle partially tangible thing
opening

purposeful action

Figure 3.4: The upper part of the ORO common-sense TBox. All these concepts belong to
the OPENCYC namespace.

This lead to a bidirectional design process: from bottom-up regarding the choices of
concepts to model, top-down regarding the upper part of the taxonomy. This upper part
of the ontology is pictured on figure G.6. All the classes visible on this figure belong to
the OPENCYC namespace (the cyc: prefix is omitted).

By aligning the upper part of the ontology on OPENCYC (as other KRS, like KNOWROB
or PEIS K&R, did) has multiple advantages. First the design of this part of the on-
tology is generally difficult: it pertains to abstract concepts whose mutual relations
comes to philosophical debates. The upper taxonomy of OPENCYC represents a relative
consensus, at least within the semantic Web community. Then, because it is a well
established project with numerous links to other on-line databases (like Wikipedia
or WordNet), the reuse of important OPENCYC concepts ensures to a certain extend
that the knowledge stored by the robot can be shared or extended with well-defined
semantics. A good example is the concept of Object: In everyday conversation, an object
is a relatively small physical thing, that can be typically manipulated. Normally, a
human is not considered as an object. In CYC, an object has a more precise definition: it
is something partially tangible. That includes obviously the humans, and actually many
other entities that would not be commonly said to be objects (the Earth for instance).
Thus the importance of relying on well-defined and standard semantics to exchange
informations between artificial systems.

This figure G.6 also illustrates the fundamental disjunction in the ORO model
between temporal and spatial entities (formally, (TemporalThing u SpatialThing)I = ;,
with I the interpretation of our model).

The class purposeful action is the superset of all the actions that are voluntarily
performed by the robot (or another agent). Subclasses (like Give, LookAt, etc.) are not
asserted in the common-sense ontology, but are added by the execution controller (in
link with the symbolic task planner) and the natural language processor based on what
is actually performable and/or understandable by the robot at run-time.

The tree of figure G.6 (this subset of the ontology is indeed a tree: this has however
not to be the case in general, and, as a matter of fact, the TBox of the whole ORO
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Figure 3.5: TBox of the specialisations of PartiallyTangible.

common-sense ontology does not form a tree) is not equally developed at lower levels.
We have already briefly mentioned the developments of the actions. The other impor-
tant part is the descendants of the partially tangible thing (what is commonly
called an object). Figure 3.5 gives more details on this part of the ontology.

This excerpt from the ontology makes the bottom-up design process visible: only
few types of partially tangible things appear, and only subclasses relevant to the context
of service robotics in an human-like environment are present.

Lastly, the ORO common-sense ontology contains several rules and class expressions
that encode non-trivial inferences.

The definition of the Bottle is a case in point. We already gave a simplified version,
here the complete definition:

Bottle � Container and Tableware that (hasShape value cylinderShape and
hasCharacteristicDimension only int[>= 0.1, <= 0.3])

If a human informs the robot that a given object is indeed a bottle, the robot can
then infer much more on this object. And if the human affirms that a car is a bottle, the
robot may question this assertion because of the inconsistent size.

Chapter recap

We conclude here this third chapter. This chapter was focused on the functional and
algorithmic presentation of the ORO server, a semantic blackboard where robotic modules
can write and querying pieces of knowledge.

We have mentioned how multiple mental models can be managed by the server,
and we have also presented several active services, like the discrimination algorithms
or the management of the memory.
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Finally, we have presented the ORO common-sense ontology that provide the robot
with an initial background knowledge, shared by all the agents.

The next chapter first gives some implementation and technical details about the
ORO framework, and then present how ORO is integrated with other components
on real robots. In particular, we detail the integration with the geometric reasoning
module and the symbolic task planner.
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Chapter 4

Implementation and Integration on
Robots

4.1 A centralised server-based implementation

The ORO server is a multi-platform command-line application that starts a socket
server to which clients can send requests to store or retrieve symbolic statements.

Figure 4.1 gives an overview of the ORO server architecture. The server is build
on three layers: a front-end, in charge of the communication with external clients, a
set of central modules that either handle incoming requests or provide background
processing (like the event monitoring or the memory management), and a back-end,
that stores the knowledge models in several parallel pools of RDF triples, one per
agent. The back-end provides all the knowledge manipulation features required by the
modules including reasoning.

The ORO server is written in Java 6. This choice is due to widespread use of the
Java language in the semantic Web community that leads to the fact that most of the
RDF/OWL API and reasoners are available as Java libraries. As mentioned previously,
the ORO server relies on the Open Jena API for OWL manipulation and on the Pellet
reasoner for all reasoning tasks. Java was thus the best candidate to glue them in a
robotic-friendly knowledge base.

4.1.1 Front-end

Communication with external components is handled by the server front-end. It was
originally build as a YARP node, but was eventually transformed into a simpler and
more generic socket interface. The socket connector uses a simple ASCII protocol,
presented in figure 4.2. Communication with dedicated robotic middlewares like ROS
or YARP is provided by dedicated external clients. Section 4.2.2 briefly presents them.

When a request is received by the front-end, it is parsed, deserialised and dispatched
to the module providing the requested service.
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Figure 4.1: The software architecture of the ORO server.

method name
[parameter 1]
[parameter 2]
[parameter n]
#end#
(a) Client requests

ok
[return value]
#end#

error
[exception name]
[human-readable error]
#end#

event
event id
#end#

(b) Server answers

Figure 4.2: The ORO server protocol. Elements in square brackets are optional. Note that
the ok and error message are synchronous server answers to client requests while the
event message is produced asynchronously.
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4.1.2 Modules

These modules are initialised and maintained by the server. They provide the actual
features of the server as sets of services (like add, getSubclasses, etc.).

Some modules do not expose any services. They provide instead other form of
knowledge management. For instance, the MemoryModule is in charge of the applica-
tion of the memory policies. It discards old statements depending on the memory class
they belong to (short term memory, long term memory, etc.).

Regular services (i.e. that are actual Java methods) are invoked by the front-end.
They process the request and interact with the knowledge pool via the back-end
interface.

Plugins The server can be easily extended by the mean of plugins. These are JAR
files that are loaded at run-time and have access to the exact same internal APIs as
regular modules like the event module or the categorisation module. ORO comes with
a tool that ease the creation of new plugins by generating customisable templates. The
process is documented in a tutorial available on-line1.

4.1.3 Back-end

The back-end consists in a pair {triples store, reasoner}. For ORO, we make the choice
to rely the open-source OPEN JENA library to store and access the RDF graph, in
combination with the PELLET reasoner. However, due to clean separation, other APIs
(like the MANCHESTER OWL-API) and reasoners (like FACT++ or HERMIT) could be
used with little changes in the back-end API.

Open Jena

JENA [92] is a mature library for the semantic Web, originally developed by Hewlett-
Packard labs, and now under the leadership of the Apache foundation.

As stated on its official website2, the Jena Framework includes:

� an API for reading, processing and writing RDF data in XML, N-triples and Turtle
formats;

� an ontology API for handling OWL and RDFS ontologies;

� its own rule-based inference engine for reasoning with RDF and OWL data
sources;

� stores to allow large numbers of RDF triples to be efficiently stored on disk;

� a query engine compliant with the SPARQL specification

� servers to allow RDF data to be published to other applications using a variety of
protocols, including SPARQL.

1http://www.openrobots.org/wiki/oro-server-plugins
2JENA website: http://incubator.apache.org/jena/
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Pellet

PELLET [120] is a reasoner for Description Logics developed by Clark&Parsia3.
Pellet supports reasoning with the full expressiveness of OWL-DL (SHOIN (D))

and OWL 2 (SROIQ(D)).
Pellet provides all the standard inference services that are traditionally provided by

DL reasoners: consistency checking, concept satisfiability, classification (computation
of all the classes the instances belong to) and realisation (the most specific classes that a
specific individual belongs to). It also supports DL-safe SWRL rule.

The use of a reasoner is completely transparent for the modules: the reasoner
is automatically called when a model changes to classify it. Thus, queries to the
knowledge models always access both the asserted and inferred sets of statements. As
a consequence, the ORO server can be run with no reasoner without any visible API
change for the modules. They will simply manipulate only asserted facts.

4.1.4 API

As of version 0.8, the ORO server API exposes about 50 methods (some of them are
besides polymorphic) organised into seven categories: Base, Agents, Administration,
Concept comparison, Events, Queries and Taxonomy walking.

Partial support for the Knowledge API (section 2.4) has also been added to ORO server
0.8: the newly introduced revise method that takes a revision policy as parameter is
a versatile and generic mechanism that deprecates de-facto several methods currently
exposed by the API.

The details of the current API is provided in appendix D.

4.1.5 Notes on the Java implementation

The ORO server has been developed with modularity in mind, thus most of its structure
relies on clearly defined Java interfaces. Figure 4.3 presents the main ones.

The application entry point is the OroServer class. The class instantiate one front-
end (IConnector), one main back-end (IOntologyBackend) and several modules
(IModule), including plugins that are loaded at run-time.

Modules usually also implement the IServiceProvider interface to expose ser-
vices (IService). These are the actual methods found in the server API. Java methods
that belongs to the API simply need to be decorated with a @RPCMethod Java annota-
tion to be automatically exposed. Extending the server API is thus simply a matter of
annotating almost any Java method4 with @RPCMethod. Listing 4.1 shows one example
of a service annotated in such a way, the add method. This method convert a set of
strings representing triples into IStatements, and add them to the triple store with
the back-end method oro.add.

@RPCMethod(
category=" base " ,

3PELLET website: http://clarkparsia.com/pellet
4The only constraint being the input and output datatypes: currently, primitive types, simple collec-

tions and objects with explicit serialisation/deserialisation methods are supported.
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Figure 4.3: Main Java interfaces and classes of the ORO server.

desc=" adds one or s e v e r a l s ta tements ( t r i p l e s S−P−O) . "
)
public void add ( Set <Str ing > rawStmts , S t r i n g memProfile )
{

Set <IStatement > stmtsToAdd = new HashSet<IStatement > ( ) ;

for ( S t r i n g rawStmt : rawStmts ) {
i f ( rawStmt == null )

throw new I l l e g a l S t a t e m e n t E x c e p t i o n ( " Got a n u l l stmt ! " ) ;
IS tatement s = oro . c rea teS ta tement ( rawStmt ) ;
stmtsToAdd . add ( s ) ;

}

oro . add ( stmtsToAdd , MemoryProfile . fromString ( memProfile ) , f a l s e ) ;
}

Listing 4.1: The add method from ORO BaseModule

As visible on the figure 4.3, the AgentsModule plays a particular role: it manages
the alternative knowledge models of other agents, and store a IOntologyBackend
for each of them. This module also re-export a large part of the services exposed by the
BaseModule (methods for standard knowledge manipulation), but in their multi-agent
versions.

This design issue (duplication of certain basic services) is due to the historical
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development of the ORO server, and should be improved in future versions.

4.2 Bindings to other languages and components

To ensure the integration of the ORO server in existing robotic architectures, we have
developed several idiomatic language-specific bindings, as well as bridges with two
widespread robotic middlewares, ROS and YARP.

4.2.1 Language bindings

The main interaction gate with the ORO server is its socket interface (as presented
above, at section 4.1.1). Sockets are light-weight, platform independent, and supported
by every programming languages. Developing an interface with ORO server in a new
language is hence relatively easy.

For our own needs, and because they are amongst the most widely used languages,
bindings for Python and C++ are available by default with ORO server.

The complete Python and C++ API will not be presented here (their documentations
are available on-line5), but we present two short example that demonstrate how the
knowledge base can be integrated in code in a natural way.

Python

The Python script below (listing 4.2) demonstrates several of the interaction mechanisms
with ORO server: model alteration, queries and events.

1 import time
2 import pyoro
3
4 def onEvent ( evt ) :
5 print ( "God save the queen ! " + evt + " k i l l e d Bond ! " )
6
7 t r y :
8 oro = pyoro . Oro ( )
9

10 oro += [ " Spy r d f s : subClassOf Human" ,
11 " bond rdf : type Spy " ,
12 " bond r d f s : l a b e l \"Bond , James Bond\" " ]
13
14 i f " bond rdf : type Human" in oro :
15 print ( " Alr ight , Bond i s a human" )
16
17 oro += " pr2 rdf : type Robot "
18
19 for ag in oro [ " � rdf : type Agent " ] :
20 print ( " Agent " + ag + " i s here . " )
21

5http://www.openrobots.org/wiki/oro-server-bindings
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22 oro . subscr ibe ( [ " ? a k i l l s bond " ] , onEvent )
23 oro += " pr2 k i l l s bond "
24
25 time . s leep ( 1 )
26 # the event should have been t r i g g e r e d
27
28 except pyoro . OroServerError as ose :
29 print ( ’Oups ! An e r r o r occured ! ’ )
30 print ( ose )
31
32 f i n a l l y :
33 oro . c l o s e ( )

Listing 4.2: Example of interaction with oro-server in Python

At line 8, we establish the connection to the server. We assume here that the server
is launched on the default port and on the local machine.

At line 10, three facts are added to the knowledge base. The first one modifies the
TBox of the ontology (alteration of the knowledge structure) while the two other ones
modify the ABox (a new instance and a new label). Adding (or removing) triples from
the ontology is done naturally with the += and -= operators.

At line 14, we check that a fact holds, either in the asserted model or in the inferred
model (in this case, Bond is inferred to be a human because we added before that spies
are types of humans). Here as well we use a natural idiomatic Python syntax that
creates and executes a SPARQL query behind the scenes.

Line 19 shows another way to execute queries, with a dictionary-like accessor. Both
humans and robots are asserted to be agents in the ORO common-sense ontology, thus
this query returns a list [bond, pr2].

Line 22 shows how events are created. We first subscribe to an event by passing a
pattern (?a kills bond) and a callback (implemented at lines 4-5). Line 23 triggers
the event, and the callback method is then invoked.

We have kept this example simple. The complete Python API allows to describe
more complex events (when a fact can not be inferred, when a new instance of a given
class appears, etc.), to manipulate different models, to walk through the ontology
taxonomy, etc.

C++

The C++ bindings are provided as a library called liboro. The listing 4.3 presents
some examples of its usage.

1 # include <iostream >
2 # include < i t e r a t o r >
3 # include <set >
4
5 # include " l i b o r o /oro . h"
6 # include " l i b o r o / o r o _ l i b r a r y . h" // s t a t i c l i b r a r y of ORO concepts
7 # include " l i b o r o /socket_connector . h"
8
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9 using namespace std ;
10 using namespace oro ;
11
12 c l a s s EventCallback : public OroEventObserver {
13 void operator ( ) ( const OroEvent& evt ) {
14 cout << " Event t r i g g e r e d ! " << endl ;
15 }
16 } ;
17
18 i n t main ( void ) {
19 set < s t r i n g > p a r t i a l _ s t m t s ;
20 set <Concept> r e s u l t ;
21
22 SocketConnector connector ( " l o c a l h o s t " , " 6969 " ) ;
23 Ontology �oro = Ontology : : createWithConnector ( connector ) ;
24
25 //Creat ion of i n s t a n c e s
26 Agent robot1 = Agent : : c r e a t e ( " Nice Robot " , Classes : : Robot ) ;
27 Agent human = Agent : : c r e a t e ( "Young PhD" , Classes : : Human ) ;
28
29 // F i r s t query
30 p a r t i a l _ s t m t s . i n s e r t ( " ? mysterious rdf : type Agent " ) ;
31 oro�>f ind ( " mysterious " , p a r t i a l _ s t m t s , r e s u l t ) ;
32
33 copy ( r e s u l t . begin ( ) ,
34 r e s u l t . end ( ) ,
35 o s t r e a m _ i t e r a t o r <Concept >( cout , "\n" ) ) ;
36
37 p a r t i a l _ s t m t s . c l e a r ( ) ;
38 r e s u l t . c l e a r ( ) ;
39
40 //More statements are added to the knowledge base
41 Object t a b l e = Object : : c r e a t e ( Classes : : Table ) ;
42
43 Object unknown_object = Object : : c r e a t e ( ) ;
44 unknown_object . a s s e r t T h a t ( P r o p e r t i e s : : isOn , t a b l e ) ;
45
46 oro�>add ( Statement ( " oro : isOn r d f s : subClassOf oro : i sAt " ) ) ;
47
48 Agent myself ( " myself " ) ;
49
50 myself . sees ( unknown_object ) ;
51 myself . sees (human ) ;
52
53 //A query involving mult ip le p a r t i a l s tatements
54 p a r t i a l _ s t m t s . i n s e r t ( " ? mysterious isAt ? support " ) ;
55 p a r t i a l _ s t m t s . i n s e r t ( " ? support rdf : type cyc : Table " ) ;
56 p a r t i a l _ s t m t s . i n s e r t ( " myself sees ? mysterious " ) ;
57
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58 oro�>f ind ( " mysterious " , p a r t i a l _ s t m t s , r e s u l t ) ;
59
60 copy ( r e s u l t . begin ( ) ,
61 r e s u l t . end ( ) ,
62 o s t r e a m _ i t e r a t o r <Concept >( cout , "\n" ) ) ;
63
64 //Events
65 EventCallback ec ;
66 Classes : : Human. onNewInstance ( ec ) ;
67 Agent superman = Agent : : c r e a t e ( " Superman " , Classes : : Human ) ;
68
69 s leep ( 1 ) ;
70
71 set < s t r i n g > event_pat tern ;
72 Property f ly ingProp = Property ( " i s F l y i n g " ) ;
73
74 event_pat tern . i n s e r t ( superman . id ( ) + " i s F l y i n g true " ) ;
75 oro�>r e g i s t e r E v e n t ( ec ,
76 FACT_CHECKING,
77 ON_TRUE_ONE_SHOT,
78 event_pattern , " " ) ;
79
80 superman . a s s e r t T h a t ( f lyingProp , " t rue " ) ;
81
82 s leep ( 1 ) ;
83
84 return 0 ;
85 }

Listing 4.3: Example of interaction with oro-server in C++

At lines 22 and 23, the oro object is built as a singleton. This actually connects the
application to the ontology server.

At line 26 and 27, we create two new instances of agents labeled Nice Robot and
Young PhD (the static types Classes::Robot and Classes::Human are generated
from the ontology itself by a script).

A first simple query (line 30 and 31) return a std::set of concept IDs.
At line 41, a new object is created. No label is defined, but the class is set to be

a table. On the contrary, at line 43, we create a generic object (only asserting it is an
instance of Object).

At line 44, we assert a property (here also, the list of available properties is statically
generated from the ORO ontology).

As shown at line 46, we can as well access the ontology at a lower level, directly
adding (or removing) new triples. In this case, we modify the TBox of the knowledge
base.

C++ objects can also be created by using directly the concept IDs, as shown line 48
for the special concept myself (an instance always representing the robot itself).

Some object properties frequently used in the ontology are available as methods, as
seen lines 50 and 51.
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Lines 54 to 58 show a more complex query, involving several partial statements.
Named variables (like ?mysterious or support) are used in the statements to refer-
ence the same entities.

Lastly, lines 65 to 80 show two ways of defining events with a callback functor
(defined at lines 12-16).

To deal with real-world constraints, liboro also provides mechanisms to reconnect
to the ontology server when the connection is lost, and has a built-in buffering system
to increase bandwidth for components that produce a large amount of symbolic facts.

4.2.2 Interface with robotic middlewares

While convenient in certain cases, language-level interfaces do not usually offer the
modularity and loose-coupling required by complex robotic architectures where tenth
of modules, possibly spread over several computers, need to talk together. The ac-
knowledgement of this issue has led to the development over the last ten years of
numerous so-called robotic middlewares that abstract away inter-module communication
(at the transports, protocols and programming interfaces levels).

We provide with ORO server wrappers for two of the main middlewares currently
in use in the robotic community, ROS [108] and YARP [94].

These wrappers use the C++ or Python bindings previously presented to expose the
features of ORO server as a stand-alone ROS/YARP nodes.

4.3 Monitoring and debugging

4.3.1 Logging and debugging tools

The ORO server offers several levels of logging, from almost silent to very verbose. In
verbose mode (debug level), the server outputs exact incoming requests, along with
millisecond accurate timestamps.

Those logs can then be replayed by a special tool written in Python that simulates
the original communication with the server: timestamps are respected and if multiple
clients where connected to the server, the log player forks one thread by client to
simulate parallel access to the server.

Also available to the developer, an explanation of the inconsistencies when they
occur is produced by the server, and helps to retrace the sequence of logical steps that
led to the inconsistency.

4.3.2 Visualisation

Visualisation of ontologies is a difficult task in general because of their complex graph
structure. In order to present anyway the content of the ontology to external observers,
we have developed an OpenGL-based dynamic visualiser called oro-view (figure 4.4).
This application connects to the ORO server and lets the user explore the taxonomy
by simply selecting concepts on the screen. Nodes are then expanded, distributed
in a force-directed layout, and further reveal the structure of the ontology. Because
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Figure 4.4: Two screenshots of the oro-view visualisation tool. On the left one, an
ActiveConcept (in yellow) is visible.

oro-view takes on-demand its input from the server, changes in the ontology (new
facts being added, etc.) are reflected in the viewer when the user refreshes nodes.

oro-view also subscribes at start-up to a special event for active concepts (it monitors
new instances of the ActiveConcept class). Each time an individual is asserted to be an
ActiveConcept, the server triggers back oro-view that creates a visual focus on the
concept (the individual “pops up”). When displayed during experiments, this provides
visual feedback to external observers. In particular, we made use of this feedback
during the public performance of the Roboscopie theatre play (section 6.2.4).

oro-view also provides export to GraphViz dot format for latter reuse of the
ontology graph in publications.

4.4 Integration in the robot architecture

Figure G.5 presents the organisation of the upper software layer (the “decisional” or
“cognitive” layer) of the service robots Jido and PR2 as currently in service at LAAS (this
architecture is described in detail in [3]). The sensori-motor layer (bottom) is abstracted
in SPARK, an intermediate amodal 3D model where geometric (and some temporal)
reasoning take place.

The outcome of the geometric analysis, as well as the result of the dialogue process-
ing module (DIALOGS), are stored in ORO, that plays the role of as a central knowledge
hub. The symbolic knowledge base triggers events that are captured by a top-level
execution controller.

In our architecture, the controller can rely on two specialised planners: MHP, a
geometric motion and manipulation planner [122, 86, 104] and HATP, a symbolic task
planner [4].

The dialogue processing module, as well as the symbolic task planner, also use the
knowledge base to answer questions or initialise the planning domain.

During a typical interaction experiment (such an experiment is describe at chapter 6),
the execution controller decides upon a goal to reach, requires a plan from the task
planner, allocates the actions to the human and the robot, communicates the shared
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Figure 4.5: Software architecture of PR2 and Jido, two service robot interacting with humans
at LAAS-CNRS.

plan to the human, and controls and monitors its execution. The operation continues
until the goal is achieved, is declared unachievable or is abandoned by the human.

In this architecture, only ORO and Dialogs (the dialogue processing module that
we present in the next chapter), as components, are the actual direct outcomes of
this doctoral work. It is however important to present the other one all here as well
since a knowledge base only make sense within a larger architecture, with knowledge
providers and consumers. Furthermore, the approach to knowledge management intro-
duced by this thesis had a strong influence on the design of the communication flows
between all these components. Thus, this section introduces the software components
that have been used in conjunction with ORO (mostly, but not only, on the LAAS
robots), and details how these components produce, exchange and consume symbolic
knowledge.

4.4.1 Acquiring and anchoring knowledge in the physical world: the
SPARK module

Anchoring perceptions in a symbolic model requires perception abilities and their
symbolic interpretation. In this section we present SPARK (SPAtial Reasoning & Knowl-
edge [121]), a situation assessment reasoner that generates symbolic knowledge from
the geometry of the environment with respect to relations between objects, robots and
humans, also taking into account the different perspective that each agent has on the
environment.

SPARK can be seen as an amodal geometric model of the environment that serves
both as basis for the fusion of the perception modalities and as bridge with the symbolic
layer.
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Figure G.4 shows a screenshot of the SPARK environment side-by-side with the real
environment. In this example, objects are identified and localised through 2D barcodes.
The human pose is tracked with a Kinect-like device (assisted by motion capture to
accurately track the head motion, which is required to compute what the human is
looking at).

The geometric model is continuously updated at run-time by the robot.

Building an agent-aware symbolic model of the environment

On Perspective Taking Visual perspective taking refers to the ability for visually
perceiving the environment from other’s point of view. This ability allows us to identify
the objects in situations where the visual perception of one person differs from the other
one. In developmental psychology, one typical example consists of two similar objects
in a room (e.g. . two balls) where both are visible for the child, but only one is visible
for the adult. Thus, when the adult asks the child to hand over “the ball”, the child is
able to correctly identify which ball the adult is referring to (i.e. the one visible from the
adult point of view), without asking [95].

Besides, in order to compute a visual perspective, the actual visibility alone is not
enough. We include not only what the other person sees in a given moment, but also
what he can see with a minimal effort (moving the eyes or the head). To model the
potential visibility of an object we compute a visibility ratio while turning the head of
the agent model towards the object (figure 4.8, page 87).

Spatial perspective taking refers to the qualitative spatial location of objects (or
agents) with respect to a frame (e.g. the keys on my left). Based on this frame of reference,
the description of an object varies [87]. Humans mix perspectives frequently during
interaction. This is more effective than maintaining a consistent one, either because the
(cognitive) cost of switching is lower than remaining with the same perspective, or if the
cost is about the same, because the spatial situation may be more easily described from
one perspective rather than another [136]. Ambiguities arise when one speaker refers
to an object within a reference system (or changes the reference system, i.e. switches
perspective) without informing his/her partner about it [21, 111]. For example, the
speaker could ask for the “keys on the left”. Since no reference system has been given,
the listener would not know where exactly to look. However, asking for “the keys on
your left” gives enough information to the listener to understand where the speaker is
referring to. On the contrary, when using an exact, unambiguous term of reference to
describe a location (e.g. . “go north”) no ambiguity arises.

In this work, we use two types of the frames of reference: egocentric (from the robot
perspective) and addressee-centred (from the human perspective).

Symbolic locations Human commonly refer to the positions of objects with symbolic
descriptors (like on, next to...) instead of precise, absolute positions. These type of
descriptors have been studied in the context of language grounding [101, 89, 109, 59,
18]. In SPARK we focus agent-independent symbolic locations and agent-dependent,
relative locations.
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Figure 4.6: The robot represents at run-time its environment in a 3D model resulting of the
sensors’ inputs fusion (Kinect, motion capture, 2D barcodes tracking).
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Figure 4.7: Spatial relations between two objects: (a) isOn relation, (b) isIn relation, and
(c) isNextTo relation.

Agent-independent locations We can refer to object locations with respect to other
objects in the environment, such as above, next to, in, etc. SPARK computes three main
relations based on the bounding box and centre of mass of the objects (fig. 4.7):

� isOn: computes if an object O1 is on another object O2 by evaluating the center of
mass of O1 according to the bounding box of O2.

� isIn: evaluates if an object O1 is inside another object O2 based on their bounding
boxes BBO1 and BBO2 .

� isNextTo: indicates whether an object O1 is next to another object O2. We cannot
use a simple distance threshold to determine if two objects are next to each
other since the relation is highly dependent on the dimensions of the objects.
For instance, the maximum distance between large objects (e.g. two houses) to
consider them as being next to each other is much larger than the maximum
distance we would consider for two small objects (e.g. two bottles). Thus, the
relation between the dimensions and the distances of the objects are taken into
account.

To ensure the different agent models are up-to-date, all these properties are always
computed on-line, each time the current state of the world changes.
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Table 4.1 lists all the symbolic placement relationships that are currently computed
by the system.

Subject Predicate Object Notes
Location isAt � cyc:objectFoundInLocation Location

! isOn � cyc:above_Touching

! isIn

! isNextTo

Location isAbove � cyc:above-Generally Location inverse of isBelow

isOn) isAbove

Location isBelow Location inverse of isAbove

Table 4.1: List of statements describing spatial relationships between objects. “!” indicates
sub-properties. When existing, the equivalent predicate in the OPENCYC standard (prefix
cyc:) has been added.

SPARK also compute symbolic facts related to agent independent world dynamics.
The predicate isMoving states, for each tracked entity, whether it is currently moving
or not.

Agent-dependent placements While in previous section we listed several absolute
location predicate, many topological relations are directly dependent from the observa-
tion point.

The predicate hasRelativePosition represents spatial locations between agents
and objects that are agent dependent. We compute these spatial locations by dividing
the space around the referent (an agent) into n regions based on arbitrary angle values
relative to the referent orientation. For example, for n = 4 we would have the space
divided into front, left, right and back. Additionally, two proximity values, near and
far, are also considered. The number of regions and proximity values can be chosen
depending on the context where the interaction takes place.

Through perspective taking, SPARK computes for each agent a symbolic description
of the relative positioning of objects in the environment (table 4.2).

Subject Predicate Object Notes
Location hasRelativePosition Location

! behind � cyc:behind-Generally inverse of inFrontOf

! inFrontOf � cyc:inFrontOf-Generally inverse of behind

! leftOf inverse of rightOf

! rightOf inverse of leftOf

Object cyc:farFrom Agent

Object cyc:near Agent

Table 4.2: List of statements describing relative spatial relationships between objects and
agents.
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Building a model of agents

Building a grounded symbolic model of the physical environment does not suffice
in general to fully ground the human-robot interaction, and a model of the current
capabilities of the agents surrounding the robot is also required.

There are a number of common properties for a robot and a human related to their
capabilities in a given situation: they can both reach, grasp, look at, point at, etc.: we
group them in the Agent category, defined as entities that can act in the environment
and manipulate it.

SPARK computes the following capabilities from the perspectives of each agent:

� Sees: An important ability to know about an agent is to predict What can it see?, i.e.
what is within its field of view (FOV). Being able to compute this information, the
robot can reuse it for instance to infers which object a human is searching for (the
one that is not currently visible, otherwise the user would not be searching for it).
In figure 4.8a the field of view of a person is illustrated with a grey cone (broader
one). While he is able to see the two small boxes on the table in front of him, the
big box on his right is out of his FOV, and therefore, he is not able to see it.

� Looks At: this relation corresponds to what the agent is focused on, i.e. where its
focus of attention is directed. This model is based on a narrower field of view,
the field of attention (FOA). Figure 4.8a shows the field of attention of a person
with a green cone (narrower one). In this example only the grey box satisfies the
looksAt relation.

� Points At: verifies whether an object is pointed at by an agent. This relation is
particularly useful during interaction when one of the agents is referring to an
object saying “this" or “that" while pointing at it.

If a larger object occludes a smaller one while an agent is pointing at them, the out-
come of the evaluation will result only in one relation, i.e. hagent_01 pointsAt object_01i
since the small one is not visible to the agent. On the contrary, if the small object
is in front of the big one, then both objects will satisfy the relation, which may
generate an ambiguity (which object the agent refers to?) that is let to be solved
by other discrimination algorithms.

To make recognition more robust, these three first capabilities are filtered with an
hysteresis function at the geometric level.

� Reachable: it allows the robot to estimate the agent’s capability to reach an object,
which is fundamental for task planning. For example, if the user asks the robot
to give him/her an object, the robot must compute a transfer point where the
user is able to get the object afterwards. Figure 4.8b shows different reachability
postures for each object on the table. In the example, the bottle and the box are
both reachable for the human, but the teddy bear is too far. Instead, from the
robot’s perspective, the teddy bear is reachable, while the bottle is not.

While the first three relations (sees, looksAt and pointsAt) are computed through
a model based approach, the latter one is based on the Generalized Inverse Kinematics
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(a) (b)

Figure 4.8: (a) Field of view (FOV) and the field of attention (FOA) of the human. (b)
Different reaching postures for the human.

with pseudo inverse method [96, 12] to find a posture for the agent where its end-
effector is at the centre of the object within a given tolerance.

Tables 4.3 summarises the predicates produced by SPARK during the agent capabil-
ities analysis phase.

Subject Predicate Object Notes
Agent looksAt SpatialThing

Agent sees SpatialThing

SpatialThing isInFieldOfView xsd:boolean via inference:
hmyself sees *i ⇔

h* isInFieldOfView truei
Agent pointsAt � cyc:pointingToward SpatialThing

Agent focusesOn SpatialThing via inference:
looksAt ∧ pointsAt ⇒
focusesOn

Agent seesWithHeadMovement SpatialThing

Agent reaches Object

Table 4.3: List of facts describing the attentional state and the abilities of an agent. looksAt
is interpreted as an object being in the field of attention of an agent. An object is seen if it is
visible for the agent without moving the head (i.e. , in field of view).

Table 4.4 lists the other symbolic facts that are produced and maintained by SPARK
related to the general state of the agent.

4.4.2 Symbolic task planning

Complex human robot interaction also requires reasoning about the actions the agent
can perform: How can they achieve a specific goal? What are the required actions to
achieve this goal? Which actions can be performed by each agent? etc.

In the previous sections, we have seen how symbolic knowledge is produced and
stored from the real physical world. In this section, we present one possible way to use
these symbolic models of the environment and the interacting agents to produce a plan
of actions for a complex goal.
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Subject Predicate Object
Agent hasIn{Left|Right}Hand GraspableObject

Agent hasPosture Posture

Agent currentlyBodilyDoes Action

Table 4.4: List of statements describing the state of an agent in general. Posture can be
either standing or sitting. The currentlyBodilyDoes predicate states the current action of
the agent, be it intentional or not.

Figure 4.9: Screenshot of the HATP console. On the left panel, we see the results of the
requests to ORO, on the bottom right the resulting plan.

In order to devise how a given goal can be accomplished, the robot has to elaborate
a plan,i.e. a set of actions to be achieved by the robot and its human partners. We use
in our architecture the HATP planner [4] (for Human Aware Task Planner, figure 4.9).
HATP is based on a Hierarchical Task Network (HTN) refinement, which performs
an iterative task decomposition into sub-tasks until reaching atomic actions [97]. The
planning domain defines a set of methods describing how to decompose a task and can
be seen as the procedural knowledge of the robot (note that this knowledge in stored in
the own resources of the planner, not in ORO). HATP is able to produce plans for the
robot’s actions as well as for the other agents. It can be tuned by setting up different
costs depending on the actions to apply and by taking into account a set of constraints
called social rules. This tuning aims at adapting the robot’s behaviour according to the
desired level of cooperation of the robot.

Agents and action streams The robot plans not only for itself but also for the other
agents. The planning domain of each agent is instantiated from the agent-specific
model in the ORO server. The resulting plan, called “shared plan” is a set of actions
that form a stream for each agent involved in the goal achievement. Depending on the
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context, some “shared plans” contain causal relations between the agents. For example,
the second agent needs to wait for the success of the first agent’s action to be able to
start its own action. When the plan is performed, causal links induce synchronisation
between agents. Figure 4.10 illustrates a plan with two streams.

TAKE (HUMAN1, 
GREY_TAPE, TABLE)

THROW (HUMAN1, 
GREY_TAPE, Trash1)

TAKE (HUMAN1, 
WALLE_TAPE, TABLE)

THROW (HUMAN1, 
WALLE_TAPE, Trash1)

TAKE (ROBOT, 
WALLE_TAPE, TABLE)

TAKE (ROBOT, 
BLACK_TAPE, TABLE)

THROW (ROBOT, 
BLACK_TAPE, Trash2)

PUTRV (ROBOT, 
WALLE_TAPE, TABLE)

TAKE (ROBOT, 
LOTR_TAPE, TABLE)

THROW (ROBOT, 
LOTR_TAPE, Trash2)

Human

Robot

Figure 4.10: A plan produced by HATP with 2 streams

Action costs and social rules A cost and a duration function is associated to each
action. The duration function provides a duration interval for the action achievement
and is used, in one hand, to schedule the different streams and, in the other hand, as
an additional cost function. In addition to these costs, HATP also takes into account a
set of social rules. Social rules are constraints aiming at leading the plan construction
towards the best plan according to some human preferences. The social rules we have
defined so far deal with:

� undesirable state: to avoid a state in which the human could feel uncomfortable;

� undesirable sequence: to eliminate sequences of actions that can be misinterpreted
by the human;

� effort balancing: to adjust the work effort of the agents;

� wasted time: used to avoid long delays between the actions of the human partner
(figure 4.11);

� intricate links: to limit dependencies between the actions of two or more agents.

TAKE (HUMAN1, 
GREY_TAPE, TABLE)

THROW (HUMAN1, 
GREY_TAPE, Trash1)

TAKE (HUMAN1, 
WALLE_TAPE, TABLE)

THROW (HUMAN1, 
WALLE_TAPE, Trash1)

TAKE (ROBOT, 
WALLE_TAPE, TABLE)

TAKE (ROBOT, 
BLACK_TAPE, TABLE)

THROW (ROBOT, 
BLACK_TAPE, Trash2)

PUTRV (ROBOT, 
WALLE_TAPE, TABLE)

TAKE (ROBOT, 
LOTR_TAPE, TABLE)

THROW (ROBOT, 
LOTR_TAPE, Trash2)

Human

Robot

Figure 4.11: Same plan with minimised wasted time.
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Figure 4.12: Example of graphical scripts produced with the CSLU Toolkit. Behaviours are
programmed by building a network of connected “boxes”.

Several levels of cooperation By tuning its costs and adapting its social rules, HATP
can be used to compute various alternative plans. These plans can be categorised into
several levels of cooperation

� helping the human to achieve his goal by acting for him

� sharing concrete resources by handing some objects

� collaboration of the robot and the human by coordinating their actions towards a
human-robot joint goal.

4.4.3 Execution control

Depending on experimental setups, the ORO server has been integrated with several
distinct execution controllers. We briefly present them here, with some details regarding
the integration knowledge base/controller.

CSLU Toolkit The CSLU Toolkit is a rapid application development framework
developed at Oregon University. It comprise of a suite of tools that enable exploration,
learning, and research into speech and human-computer interaction via a user friendly
graphical interface (figure 4.12). The CSLU toolkit has been employed in several
experiments of the European FP7 CHRIS project (some are presented at section 6.2.2,
others are presented in [70, 71]) to develop scripted verbal interactions with robots.

The CSLU Toolkit can be easily extended with the TCL scripting language, for which
bindings with the ORO server exist. This enable users to graphically design interaction
experiments that take advantage of the knowledge base and its reasoning infrastructure
to add and retrieve concepts.
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CRAM CRAM [15] (Cognitive Robotic Abstract Machine) is a RPL-derived framework
for rapid development of cognitive robot control programs that is developed at the
Intelligent Autonomous Systems at TU Munich.

The integration of ORO is seen as an extension to the robot’s belief state that not
only contains abstract identifiers of the internal object representation used in plans, but
also the semantics and roles of objects in the scenario.

CRAM automatically updates the ORO server whenever an object enters or leaves
the field of view with a perception stack based on the COP framework [62].

The Odd One Out experiment (section 6.2.2) relies on CRAM for the robot control.

SHARY SHARY [144] is a high level robot control system for cognitive robot interact-
ing with humans, based on the OPENPRS environment (an open-source implementation
of PRS Procedural Reasoning System [53]).

A full OPENPRS interface with ORO has been developed, and request and events
mechanisms are heavily used by SHARY to monitor and react to changes in the robot
environment.

SHARY also produces symbolic facts that are added to the ORO server, including
the outcome of actions. This allows to partially expose the internal state of the execution
controller, and enhancing the introspective capabilities of the system.

Finally SHARY can also directly interacts with situation assessment and geometric
layers (like the SPARK module), which indirectly influences the ORO content. For
instance, SHARY can create or delete position hypotheses for currently unperceived
objects, which in turn are converted into (de-facto) hypothetical symbolic beliefs in the
knowledge base.

Section 6.2.3 presents an experiment that demonstrates the integration between
SHARY and ORO.

pyRobots pyRobots is not a real execution controller: it comprise of a set of Python
scripts that ease the construction of complex scripted interaction. pyRobots is based
on actions (high-level tasks like goto, pick or give6) that are combined into plans.

ORO server is integrated in pyRobots via the ORO Python bindings (presented at
section 4.2.1). The action that is currently performed, is maintained up-to-date in the
server, and actions are free to store or retrieve facts (for instance, the pick task add the
fact hmyself hasInRight|LeftHand xi, x being replaced by the ID of the object that is
taken.

Events can also be used by the application designer.

4.4.4 Integration with natural language processors

Figure 4.13 gives a functional overview of components involved in the situated dialogue
grounding.

Verbal interaction with a human is either initiated by the human or by the robot.
In case of human initiated dialogue, two main steps follow: understanding the

direct meaning of the sentence (what does the words mean?), and understanding the

6The complete list is available online: http://www.openrobots.org/wiki/pyrobots.
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Figure 4.13: Schematic view of the integration of a natural language processor in the
architecture

intent of the sentence. The first step usually requires a large amount of queries to the
knowledge base to clarify and disambiguate the meaning of the sentence ; the second
step, depending on the intent (question, desire, assertions), leads to either other queries
(to answer a question) or new assertions.

An interaction initiated by the robot usually follows an event triggered by the con-
troller (or possibly directly by the knowledge base). The dialogue that it initiates then
requires the same interaction capabilities with the knowledge base that we mentioned
in the previous paragraph.

Studying the integration of natural language grounding with a symbolic knowledge
base is one of the focus of the thesis, and the next chapter is entirely dedicated to
DIALOGS, a component for situated natural language processing, and its integration
with ORO.

Chapter recap

This concludes the chapter 4. In this chapter, we have first developed some technical
and implementation-related details, including the software architecture of the ORO
server, examples of integration with the Python and C++ API, and an overview of the
visualisation and debugging tools.

The chapter then focused on the actual integration of ORO server in existing robotic
architecture. We have first presented the software architecture of the decisional layer of
service robots at LAAS. We have introduced the SPARK module for geometric reasoning
and symbolic situation assessment and underline its perspective taking capabilities.

We have finally presented briefly HATP, a symbolic task planner for human-robot
cooperative task planning that takes advantage of the ORO server for planning initiali-
sation, and mentioned four control environment that have been used with ORO.

The next chapter is now dedicated to one specific application of the knowledge base:
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situated natural language grounding.
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Chapter 5

Knowledge Enabled Situated Natural
Language Processing

5.1 Grounding verbal interaction into the robot knowl-
edge

5.1.1 Situated speech acts

A messy kitchen table, covered with knifes, spoons, bowls... Tom is preparing the
brownie, with Robi and Roba, its two robots.

“ – Robi, give me this bowl”, says Tom, looking at the table. The robot smoothly
grasps the bowl, and hands it to the human.

What are the prerequisites for such a human sentence — “Robi, give me this bowl”
— to be understood by the robot, correctly interpreted in the spatial context of the
interaction, and ultimately transformed into an action?

Austin [8] would have at first glance analysed such kind of sentence as a speech act,
comprising of locutionary, illocutionary and possibly perlocutionary acts: First, we want
to understand the direct meaning of the sentence (locutionary act): we must acquire
the sentence, convert it into a useful syntactic form (quite probably by mean of speech
recognition), and understand the semantics of the sentence, i.e. What is referred by
“Robi”? What is “give”? What is “me”? And “this bowl”?

Working in a situated context, we want furthermore to resolve these semantics atoms
(i.e. ground them) in the sensory-motor space of the robot. For instance, “this” is a
demonstrative pronoun that refers in this context to the object the human is focusing
on, whatever focusing means: here, we guess Tom is looking at some bowl, which is
a possible cue. But it could as well point at something or refer to some previously
mentioned concept.

Second, the illocutionary force, i.e. the intent of the utterance as thought by the agent
must be extracted, and understood. In our example, Tom obviously wants an action to
be performed by the robot. The action parametrisation is conveyed by the semantics
attached to the words and the grammatical structures of the sentence. In our example,
the type of action is given by the verb “give”. Assuming the robot has some procedural
knowledge (a planning domain and a planner) attached to this symbol, the action
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Figure 5.1: Asking the robot to hand over a tape on the table.

type can be considered as grounded for the robot. We can as well understand that the
recipient of the action is the human, the performer is the robot itself, and the object
acted upon is the bowl. These are the basic thematic roles that can be extracted from the
sentence that allow to fully ground the action.

Extracting these speech acts and turning them into a content processable by the
robot is a difficult challenge in the general case. We base our approach on three distinct,
inter-related cognitive functions:

1) Physical environment modelling and spatial reasoning (grouped under the term
situation assessment) are in charge of building and maintaining a coherent model of the
physical world. We have presented SPARK in the previous chapter.

2) Knowledge representation and management: we have also already presented the ORO
server in the previous chapters. It endows the robot with an active knowledge base
that provides a logically sound symbolic model of its beliefs on the world, as well as
models for each cognitive agent the robot interacts with.

Used in combination with the situation assessment framework, the robot is thus
able to maintain different models of the world, one per agent. This proves an essential
feature [112, 65] to enable perspective-aware grounding of natural language, as we will
see in next sections.

3) Dialogue input processing, including natural language parsing capabilities, disam-
biguation routines and interactive concept anchoring. We focused our efforts on three
classes of utterance, commonly found in human-robot interaction: statements (i.e. new
facts the human wants to inform the robot), orders (or more generically desires) and
questions on declarative knowledge (whose answers do not require explicit planning). This
would roughly cover the representative (sometimes referred as assertives) and directives
type of illocutionary acts in Searle [117] classification.
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5.1.2 Related work

Processing natural language in situated context is already an established research
field. We have already mentioned Roy and Reiter [112] that propose cross-modal
representation systems, association of words with perceptual and action categories,
modelling of context, figuring out the right granularity of models, integrating temporal
modelling and planning, the ability to match past (learned) experiences with the
current interaction and the ability to take into account the human perspective as the
main challenges of situated dialogue processing.

Kruijff et al. provides in [65] an up-to-date survey of literature on situated human-
robot dialogue, focusing on formal representation systems, bi-directionality of the
interaction and context building. They point as well that, compared to the cognitive
psychology community, the “situated AI” community started only recently to take into
account agents focus, perspective and temporal projection abilities.

Dialogue processing on real robots have been explored by several teams. Scheutz [22]
has contributions regarding natural language processing in an incremental way, and
how this enables instant back-channel feedback (like nodding).

Hüwel et al. [52] propose the concept of Situated Semantic Unit: these meaning
atoms are extracted from sentences and expose semantic links to other units. The
parser tries to satisfy these links and rate accordingly the semantic interpretation of the
sentence. Used in conjunction with ontologies, their approach offers good robustness
to ungrammatical or partial utterances. They validated the approach with an extensive
user-study.

Several other systems, already presented at chapter 2, have tackled the challenge:
the Tapas system, the GLAIR architecture, GSM or the Ke Jia project.

Compared to these previous contributions, our efforts have two foci: (1) integration
between language processing and perception of the environment and the humans,
from several perspectives; and (2) realistic human-robot interactions: real-time process-
ing; open speech; complex, dynamic, partially unknown human environments; fully
embodied autonomous robots with manipulation abilities.

We do not claim however any significant contribution to the field of theoritical
computational linguists (see [65] for a survey of formal approaches to natural language
processing in the robotics field): our main contribution here is the grounding of concepts
involved in the human discourse through the robot’s own knowledge.

Section 5.2 presents the overall grounding process and section 5.3 proposes an
analysis of the processing of three prototypical sentences. Experimental results are
presented in the next chapter on the evaluation.

5.2 The Natural Language Grounding Process

As stated above, we process three categories of sentences: statements, desires and ques-
tions that can be answered from the declarative knowledge present in the robot knowl-
edge base (a choice similar to the Behaviour Cycle in the GLAIR architecture [118]). In
our work, the grounding process of the human discourse consists in extracting either
the informational content of the sentence to produce statements or its intentional content
(i.e. performative value) to collect orders and questions.
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Figure 5.2: The DIALOGS module has four main steps: the parsing, the resolution, the
interpretation and the verbalisation.

As shown in Figure 5.2, the DIALOGS module that we have developed, is composed
of four main blocks. The user’s input is first pre-processed. For instance, I’m constructs
are expanded into I am and then parsed. The parser is a custom-made, rule-based (i.e.
grammar-free) tool that extracts the grammatical structure from the user’s sentence.

Figure 5.3 shows an example of the raw output of the parser for a moderately
complex sentence.

The result of the parsing is then sent to the resolution module. The processing can be
divided again in three steps: (1) pronouns and anaphora are replaced by, respectively,
the correct speaker ID and the ID of the last object spoken about (extracted from the
dialogue history), (2) nominal groups are disambiguated and grounded (noun phrase
resolution), and (3) verbal groups are resolved as well, and their associated thematic
roles are retrieved (verbal phrase resolution). Algorithm 5.2.1 describes the overall
process (with the subroutine GenerateDescription presented in algorithm 5.2.2, page 100).
Next section describes specific examples to show how the noun and verbal phrase
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>> IMPERATIVE
VP: remember (present simple)

SUBSENTENCE (aim: that)
NP: I
VP: want (present simple)

direct objects:
NP: you

secondary VP: give ()
direct objects:
NP: my nice blue bottle

indirect objects:
NP: me

Figure 5.3: Raw output of the DIALOGS parser after processing the sentence: “remember
that I want you to give me my nice blue bottle.” Nominal groups are not grounded yet.

resolution takes place.

Algorithm 5.2.1: RESOLUTION(sentence, currentSpeaker)

G  PARSENOMINALGROUPS(sentence)
for each g 2 G

do



D  GENERATEDESCRIPTION(g) (1)
candidates ONTOLOGY.FIND(D) (2)
if jcandidatesj = 0

then

{
output (Couldn’t resolve the group!)
exit

else if jcandidatesj = 1
then id candidates[0] (3)

else


if ONTOLOGY.CHECKEQUIVALENT(candidates)

then id candidates[0]

else id DISCRIMINATION(candidates, currentSpeaker)
REPLACE(g, id, sentence)

The result of the resolution is then send over to the interpretation module that first
performs a content analysis (what was the intent of the utterance: information, question
or desire) and then translate the original sentence into RDF statements (the statement
building step).

As represented in Figure 5.2, both resolution and interpretation tightly rely on the
communication with the knowledge base. All the concepts the robot manipulates are
stored in the ontology server and retrieved through logical queries, except for the verbs
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that are currently stored in a dedicated library (the action library in the diagram).

Algorithm 5.2.2: GENERATEDESCRIPTION(group)

procedure GENERATEDESCRIPTION(group)
noun GETNOUN(group)

if ONTOLOGY.LOOKUP(noun) 2 (Instances)

{
id ONTOLOGY.LOOKUP(noun)
return (D + h� sameAs < id >i)

else D = D + h� type < noun >i

det GETDETERMINANT(group)
if det 2 (possessives)

then D = D + h� isRelatedTo < possessor >i
if det 2 (demonstratives)

then


if ONTOLOGY.CHECK(h< currentSpeaker > focusesOn �i)

then D = D + h< currentSpeaker > focusesOn �i
else D = D + ANAPHORICMATCHING()

adjs GETADJECTIVES(group)
for each adj 2 adjs

do


if adj ==′′ other′′

then

{
id HISTORY.GETMATCHINGCONCEPT(group)D = D + h� differentFrom < id >i
return (D)

else D = D + h� hasFeature < adj >i

nounCmplts GETNOUNCOMPLEMENTS(group)
for each cmplt 2 nounCmplts

do D = D + GENERATEDESCRIPTION(cmplt)

relativeClauses GETSUBORDINATERELATIVECLAUSES(group)
for each relative 2 relativeClauses

do


G  GETNOMINALGROUPS(relative)
for each g 2 G

do D = D + GENERATEDESCRIPTION(g)

return (D)
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Initial knowledge human_01 Human input
hbanana_01 type Bananai “The yellow banana is big!”
hbanana_01 hasColor yellowi

Generated partial statements Newly created statements
h?obj type Bananai hbanana_01 hasSize bigi
h?obj hasColor yellowi
) ?obj = banana_01

Figure 5.4: First example: content extraction. “)” represents the output of the ontology
server.

Algorithm 5.2.3: HISTORY.GETMATCHINGCONCEPT(group)

procedure HISTORY.GETMATCHINGCONCEPT(group)
comment: Extract resolved nominal groups from sentences stored in the history

H  HISTORY.GETALLPASTIDS()
comment: The adjective "other" is removed before recursively calling this routine

G  ONTOLOGY.FIND(GENERATEDESCRIPTION(group))
candidates H\ G
if jcandidatesj = 0

then

{
output (Couldn’t find another object with the same characteristics!)
exit

else if jcandidatesj = 1
then id candidates[0]
else id DISCRIMINATION(candidates)

return (id)

5.3 Technical analysis

In order to better understand the overall process of the DIALOGS module and its relation
with ORO, we next describe the different steps of the approach based on three examples.
In these examples we assume that some initial facts are present in the knowledge base
(either from initial common-sense knowledge or through run-time acquisition), both in
the robot’s own model and in the model of the human. Since the robot tries to ground a
human utterance, all queries are sent to the human model in order to interpret it from
the human perspective.

5.3.1 Informational Content Extraction

Figure 5.4 shows a first example of human discourse grounding and the extraction of
informational content. We assume that the robot knowledge base only contains two
initial statements in the human model. The user asserts a new one: “The yellow banana
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Initial knowledge human_01 Human input
hbanana_01 type Bananai “Give me the banana.”
hbanana_01 hasColor yellowi

Generated partial statements Newly created statements
h?obj type Bananai hhuman_01 desires sit_a3i
) ?obj = banana_01 hsit_a3 performedBy myselfi

hsit_a3 actsOnObject banana_01i
hsit_a3 receivedBy human_01i

Figure 5.5: Second example: processing an order.

is big!”. We first want to match the nominal group The yellow banana to an already
known concept (algorithm 5.2.1), and second to translate the property is big into a
predicate (hasSize) to state its semantics.

To resolve the nominal group The yellow banana a set of partial statements that
describe the concept is generated based on the grammatical parsing of the sentence
(algorithm 5.2.2). The parsed tree of each nominal group is translated into statements
based on a set of rules. In the example, a banana h?obj type Bananai that is yellow
h?obj hasColor yellowi. Based on these partial statements a SPARQL query is sent
to the ontology server to retrieve possible instances that match the description (algo-
rithm 5.2.1(2)).

In this first simple case, the concept banana_01 is unambiguously matched (since
there is only one possible banana) and returned. and we can add the new information
provided by the human, i.e. the new statement hbanana_01 hasSize bigi, to the human
model in the ontology server.

The translation of yellow to hasColor yellow is not obvious: in the general case,
we associate a adjective to the noun it characterises with the hasFeature predicate
(for instance, The sight is beautiful would translate to hsight hasFeature beautifuli).
But we can also manually set the predicate associated to a category of adjectives: It is
what has been done for the main colours. Another example is the size: for known size
adjectives (big, small, etc.), the hasSize predicate is being used.

5.3.2 Intentional Content Through Verb Resolution

The sentence in the first example is built with the state verb be at indicative. Let us
examine a different example with an action verb at imperative mode (an order): “Give
me the banana". The process is described in Figure 5.5.

In order to capture the intentional content of a sentence (for example, an order) we
need to retain the semantics of the verb and its complements. Thematic roles allow for
semantically linking a verb to its complements. There is no general agreement amongst
linguists on a comprehensive list of thematic roles. The amount and the granularity of
roles varies a lot in the literature [43]. We thus use a small set of them, which matches
the relations the robot can actually make sense of (i.e. that are modelled in the planner
domain). For instance, in the second example, the verb give has three thematic roles:
performedBy, actsOnObject and receivedBy.

The list of actions the robot can plan for (currently take, place, give, show, hide and
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Verb Grammatical Role Thematic Role Predicate Range

get Subject Agent performedBy Agent
Direct object Theme actsOnObject Artifact

put
Subject Agent performedBy Agent
Direct object Theme actsOnObject Artifact
Indirect object Recipient receivedBy PhysicalSupport

give
Subject Agent performedBy Agent
Direct object Theme actsOnObject Artifact
Indirect object Recipient receivedBy Agent

move
Subject Agent performedBy Agent
Direct object Theme actsOnObject Artifact
Indirect object Goal hasGoal Location

show
Subject Agent performedBy Agent
Direct object Theme actsOnObject Location
Indirect object Recipient receivedBy Agent

look Subject Agent performedBy Agent
Indirect object Goal hasGoal Location

Table 5.1: Main action verbs known to DIALOGS and associated thematic roles. Italics
denotes optional roles.

move) along with possible synonyms (for example, to pick and to take are set as synonyms
of to get) and their associated thematic roles are stored in a predefined library of
actions (table 5.1 and figure 5.2). For each action we identify and store: the role of
the subject in the sentence (always performedBy); the role of the direct object (for
instance, actsOnObject); and the role of each of the indirect objects with their optional
prepositions (for instance, receivedBy)1. Moreover, we rely on the ontology to check
that each holder of a role is semantically consistent. For instance, the action Give must
have a manipulable physical item (Artifact) as direct object. Thus, if the concept the
robot finds for the thematic role actsOnObject cannot be inferred to be an artifact, the
robot goes back to the human saying it does not understand.

This second example also shows the pronoun reference resolution: “me” is replaced
by the id of the current speaker, while “you” is replaced by myself (myself always
represents the robot itself). When present, anaphoras (references to previous concepts
like “give me the banana, I like it.”) are also resolved in the same step.

Once the sentence is completely resolved and translated into a formal representation
(a human desire in this example2), we store it in the ontology server. The robot’s
decisional/executive layers can then decide whether to execute the order or not.
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Initial knowledge model of human_01
hbanana_01 type Bananai
hbanana_01 hasColor yellowi
hbanana_02 type Bananai
hbanana_02 hasColor greeni

Human input
“The banana is good.”

Generated partial statements
h?obj type Bananai

) ?obj = [banana_01,
banana_02]

Discrimination process
discriminate([banana_01,

banana_02])
) ?hasColor = [yellow,

green]

Robot output speech
“The yellow one or the green one?”

Human answer
“The green one.”

Extended human input
“The green banana is good.”

Generated partial statements
h?obj type Bananai
h?obj hasColor greeni
) ?obj = [banana_02]

Newly created statements
hbanana_02 hasFeature goodi

Figure 5.6: Ambiguity resolution: in this example, “banana” can refer to the yellow ba-
nana (banana_01) or the green one (banana_02). Discrimination routines handle the
disambiguation process.
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5.3.3 Informational Content Extraction Requiring Clarification

This last example (figure 5.6) shows the resolution of ambiguous concepts. In this case
the user refers to “the banana” while two instances of the Banana class exist in the
ontology. The robot needs to find out to which instance the user is actually referring to.
To this end, disambiguation routines (algorithm 3.2.3, page 63) find differences between
the instances (in the example, one banana is yellow while the other one is green) and
build a sentence through the verbalisation module to ask the user a closed question that
will help clarify the ambiguity: “Is it yellow or green?” The user’s answer is parsed
and merged with the previous sentence. The resulting, augmented, sentence (“The
green banana is good") goes again through all the interpretation steps. This process is
repeated until no ambiguities arise. In the example, the banana_02 is finally returned.

If no differences can be found, an open question (“give me more information”) is
send to the human.

Several other strategies are used in parallel to disambiguate concepts without having
to ask for more information to the human:

� Which objects are currently visible to the human? If only one of them, then it is
probably the one the user is talking about.

� Did a previous interaction involved a specific object that would still be the subject
of the current sentence?

� Is the user looking or pointing at a specific object?

Two cases can alter the way the discrimination routines work:

1. If a sentence starts with Learn that..., failures during discrimination are interpreted
as new concepts, and instead of marking the nominal as not resolved, and new
identifier is created and add to the knowledge base.

2. For questions like Which colour is the bottle?, the discrimination algorithm can not
use the feature colour to identify to bottle. The resolution algorithm pass this kind
of constraints as a parameter of the discrimination routines.

While no examples involving questions have been detailed, factual wh- questions
and polar (yes/no) questions can be processed in a similar way by DIALOGS. For instance,
a question like “What is on the table?” is grounded (to extract the relation isOn and
to find what table refers to) and transformed into the following kind of query: find
?var [h?var isOn table1i]. Answers are converted back to a full sentence by the
verbalisation module, and uttered to the human.

In section 5.3.1, above, we give an example where the human says “the yellow
banana is big”. It is assumed in the example that the robot already knows about
a banana instance that is yellow. In our experiments, this kind of knowledge was

1Note that in example 2, “give me the banana”, the pronoun “me” appears before “banana”, while it
is an indirect complement — “give it to me”. The parser handles these cases, and correctly identify “me”
as an indirect complement.

2Orders are here represented as human desires: the human desires a specific new situation.
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either hard coded in scenario-specific ontologies (e.g. hbanana_01 type Bananaiwhere
banana_01 is the ID of the banana’s tag) or taught to the robot with prescriptive
sentences like “Learn that this is a banana” while pointing at the banana’s tag. It would
be interesting to extend this approach with automatic classifiers (for colour, size, etc.).
If the robot later discovers a yellowish and large object, an utterance like “the yellow
banana is big” could be used to assert that this object is a banana. A similar approach
focused on the combination of visual perception and communication modalities to
achieve visual learning has been developed by [142].

Also, while the examples we develop here (and that we illustrate in experiments
in the next chapter) are all based on symbols that have a physical meaning, the sys-
tem deals equally well with abstract, exo-somatic, concepts like Time, Event or Place.
Demonstrating this in real experiments would be an interesting development.

Chapter recap

This chapter presented the Dialogs module, a custom Python application that parse a
subset of the English language and semantically ground it into the robot’s symbolic
knowledge.

The main algorithms have been introduced, and three examples have illustrated how
affirmative sentences are converted into new assertions and how orders are analysed
with the help of thematic roles.

The processing of ambiguous sentences has also been presented with several disam-
biguation strategies that take into account the interactors perspectives.

Moving slowly towards the conclusion, the next chapter introduce several paths of
evaluation, first from a more theoretical perspective, then through several experimental
results.
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Chapter 6

Evaluation

The evaluation of our work is split in two main sections. First, a formal summary and
analysis of the features of knowledge representation systems that we have presented at
section G.2.2. We will in particular focus on the ORO framework.

Then, we will provide a detailed presentation of the case-studies and experiments
that have been conducted during the four years of the thesis preparation.

These two evaluation facets will naturally lead to the conclusion at the next chapter,
where we will draw scientific and technical perspectives for knowledge representation
in robotics systems.

6.1 State of the knowledge representation in robotics

This section summarises the various approaches that have been surveyed in the chap-
ter 2 to identify the main research trends and draw some research perspectives from
less studied fields.

The table 6.1 sketches the landscape of current research. The main fields of contribu-
tion for the systems we have surveyed are sorted along the different axis, dimensions
of knowledge representation that were identified in chapter 2.
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Category ARMAR [51] CAST [48] GSM [91] KE JIA [24] KNOWROB [130] NKRL [114] OUR-K [82] PEIS [29] ORO [75]

Ex
pr

es
si

ve
ne

ss Logical formalism TFS (none) (none) ASP Prolog NKRL language
(FOL + 2nd order
extensions)

DL + Horn
clauses

CYCL DL (OWL)

OWA/CWA CWA CWA OWA
Modeling uncertainty ++ (stochastic

models)
+++ (ProbCog [55]) + + (candidate en-

tities)
Meta-cognition ++ + (transformation

rules)
++ (reification, taxon-
omy walking)

R
ep

re
se

nt
at

io
n Space Representation ++ ++ (perspective-aware

symbolic locations
[121])

Time representation ++ (snapshots) ++ (event oriented) +
Actions/Events ++ (events classi-

fiers)
++ (action recogni-
tion [17])

+++ (everything is an
event)

+++

Context ++ (template match-
ing)

++ ++ (microtheories)

Modality ++ (recursive
model)

++ (Theory of Mind
[145])

Self-knowledge + (SRDF [68])
Memory models + +

R
ea

so
ni

ng

Standard FOL reasoning +++ +++ + (template match-
ing)

+ ++ ++

Instantiation and structure alteration ++ ++ + (dynamic instantia-
tion)

++ (TBox alteration)

Lazy evaluation +++ (Prolog, com-
putables)

Non-monotonic reasoning ++ [45] +++ [57]
Presupposition accommodation +++
Prediction, projection, diagnosis, ex-
planation

++ + (explanation)

Task planning ++ [57] + + ++ +++ (HATP)
Physics-based reasoning + +++ (naive physics

[67])

A
cq

ui
si

ti
on Cross-modality + (pointing ges-

tures)
++ +++ (amodal

model)
++ (ambient intelli-
gence)

++

NLP +++ +++ [64] +++ +++ + (template-based) +++ (Dialogs [76])
Web Resources +++ (Web content pro-

cessing [99])
Grounding ++ ++ (bidirectional) +++ (semantic maps

[19, 62])
+++ (bottom-
up)

+++ [85] ++ (amodal model [74])

Intrinsic Motivation ++ [45]

In
te

gr
at

io
n . . . with sensori-motor layers + +++ (computables, lo-

cal geometric mod-
els)

+ ++ (tuple space)

. . . with executive layers ++ (ubiqui-
tous events)

+ ++ (language exten-
sions) [15]

++ ++ (tuple space) ++ (semantic events)

Monitoring and debugging + (remote visualisa-
tion)

Performances evaluation ++ [47] ++ (Token test) + + [129]

Table 6.1: Main domains of contribution of current KRS. Italics mean that the feature is implemented as an external module. Main references
are given in the table header. When relevant, feature-specific publications have been provided. An empty cell means that either the system
has no specific focus on this domain or we could not find relevant literature.
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To comment this table, we propose select nine topic based on some of the challenges
that McCarthy and Roy have identified (there are listed at section 2.2.1) on the road to
natural interaction and, to slightly paraphrase McCarthy, “human-level robots”.

6.1.1 Logic formalisms, continuous world

McCarthy underlines the necessity of relying on mathematical logic, as the most fruitful
formalism for machine intelligence. This is largely the case. Almost all the systems
we have surveyed rely on logical formalisms, in several cases as a mix of declarative
languages (often based on Decription Logics) and logical programming languages
(Prolog, of course, but not only).

The two exceptions (the CAST knowledge model and GSM) are however also
interesting: CAST proposes a pervasive model of knowledge that is seducing from the
grounding perspective (but likely suboptimal for deliberative tasks), and GSM encodes
knowledge in an amodal (continuous, geometric) model while preserving features that
are usually specific of symbolic models (like theory of mind or categorical knowledge).

The interleaving of discreet symbolic models with continuous geometric models
remains a major challenge, and techniques vary a lot: besides the CAST proxies and the
GSM amodal model, most systems directly extract physical attributes of the environ-
ment to insert them in the symbolic model (TAPAS, Ke Jia, OUR-K, PEIS), thus skipping
altogether an intermediate geometric model. KNOWROB adopt a top-down approach
where local geometric models are set up on-demand to compute symbolic properties
like relative locations.

In our approach, ORO has tight (but unidirectional) links with SPARK, the compo-
nent in charge of geometric modeling and reasoning. Similarly to the GSM approach,
SPARK is an amodal model of the environment we can manipulate (3D motion planing,
for instance takes place in MHP, the twin brother of SPARK).

6.1.2 Management of uncertainty and approximation

McCarthy also mentions the necessity to deal with approximate concepts and approximate
theories (that includes representing them and reasoning with them).

The most notable attempt at modeling uncertainty down to the knowledge rep-
resentation is PROGCOG, an extension of KNOWROB. The theoretical and practical
performances (including decidability) remain however difficult to overcome.

The challenge of representing and reasoning under uncertainty has not been tackled
in ORO server, at least not within the current ORO server knowledge model. Two rea-
sons explain this absence: the decisional architecture developed at LAAS for the robots
has not consistent approach to uncertainty representation and management, neither at
the symbol production level (i.e. SPARK or DIALOGS) or at the symbol consumption level
(execution control). Thus, no strong incentive pushed us in this direction. Then, the
current tools available from the Semantic Web domain to manipulate and reason about
knowledge do not provide mature support for uncertainty management. Some effort
do exist (like the PRONTO reasoner [63]), but this does not appear to be a major focus in
the currently available tools.
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6.1.3 Non-monotonic reasoning

McCarthy gives a particular importance to non-monotonic reasoning. Systems like Ke
Jia explicitly tackle this issue.

A monotonic system does not theoretically allow for knowledge retraction during
the reasoning, which is an important issue in the robotic context where the world model
is likely to be often altered. However it is a practical issue only if the reasoning process
has to be continuous during the whole robot’s activity lifespan, which is rarely the case.
It is often possible to stop the reasoner, alter the knowledge, and restart the inference
process on a new domain.

Non-monotonicity can also be partially dealt with with appropriate time representa-
tion and reasoning (the reasoner then only takes into account statements that are set as
valid for a given moment).

Finally, probabilistic reasoning also implicitly leads to non-monotonic reasoning, by
relying on a continuous description of the state of the world.

Non-monotonicity is however of broader significance to the knowledge represen-
tation field, in particular for the representation of common-sense knowledge where
default representation is currently sorely lacking.

It is also related to what McCarthy calls elaboration tolerance: the ability to extend on
demand the closed domain of interpretation for a given assertion, to take into account
new contextual knowledge.

6.1.4 Modeling of contexts

Both Roy and McCarthy mention the importance of formalizing and reasoning about
contexts. Many of the KRS we have surveyed mention at some point the context
modeling, but no consistent interpretation, let alone theory, of context management has
clearly emerged.

Several approaches for building contextualized knowledge have been presented in
this thesis: symbolic environment interpretation, perspective taking and independent
mental state for each agent, grounded natural language resolution, self-awareness of
its own activity. Much remains to be done for a robot to actually identify its current
context as well as contexts that may be referred to.

We will further develop this important topic in the conclusion of the thesis.

6.1.5 Reasoning about time, events and actions

While representation of spatial roles (topology, placement, with or without perspective-
taking) is well studied and KRS usually integrate with spatial perception and reasoning
components, time representation and integration in knowledge systems is less uniform.

The two main tasks that require time reasoning are task planing and sequence
recognition (in particular, action recognition). Systems that directly integrate task
planing (like OUR-K, KNOWROB) thus have mechanisms (like fluents in KNOWROB) to
represent time.

Other approaches include storing snapshots of the knowledge state (like GSM), that
is used to move back to past mental states (of the robot or of another agent).
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Integration of these techniques with memory mechanisms (forgetting and reinforce-
ment learning) remains to explore.

Temporal modeling is currently absent of ORO, and symbolic and geometric plan-
ning are accomplished outside of the main knowledge representation layer. As a matter
of fact, knowledge is mostly atemporal in the ORO server: the set of triples stored in the
server represents the beliefs of the robot at the current time. The robot represents knowl-
edge about the here and now. Dealing with time reasoning is delegated to dedicated
tools.

However, ORO does provide a simple implementation of a memory mechanism
that relies on time: when a statement is attached to a memory profile, the statement is
reified and the date of creation is stored. This allows to remove the statement after a
period of time that depends on the memory profile.

Statement reification to store timestamps of creation for all statements is technically
very easy to do in ORO server, but has not been actually enabled because the perfor-
mance hit (each reified statement produces four triples instead of one) was not justified
by any current use case of ORO server.

Regarding events, several systems (GSM, NKRL, ORO) have adopted an event-
oriented architecture where conditions (or templates) are used to trigger decisional and
execution processes.

A side note about how thematic roles and action models are initialized in ORO: The
current implementation relies on a small, predefined set of action verbs that can be
recognised from natural language (section 5.3.2). This constraint does not come from
the resolution algorithm itself, but rather from the difficulty to automatically extract
the thematic roles associated to a verb. An interesting yet easy to implement extension
would consist in binding the dialogue processor with the symbolic task planner. The
task planner could dynamically provide the list of actions that the robot can process, i.e.
actions for which the robot can produce a plan. In certain case, it could also validate
the understanding of a desire by attempting to plan it.

Also, we could exploit on-line resources like VERBNET [61], which provides a large
machine-processable lexicon of English verbs along with their thematic roles.

6.1.6 Grounding in a multi-modal environment

Symbol grounding remains a focus for most of the developers of cognitive architectures
for robots, and all the systems we have surveyed implement grounding strategies (...it
was an inclusion criteria). Most of the systems adapt their grounding strategies to the
sensing modality, so that grounding can not be considered as a single, well delimited
process.

Some systems (ORO, GSM) introduce an intermediate step in the grounding process
by the mean of an amodal model of the environment that aggregates the perceptions
(or suppositions) in a single place. This enables geometric reasoning that takes into
account all the perceptual modalities (typically required for spatial perspective taking:
we need to know where the humans are looking at, and also where are the objects), and
also improve the observability of the system.

We note in addition that the development of what we have called “synthetic sensors”
is simplifying the grounding task. The most obvious example is the human tracking
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system provided by the low-cost Kinect device, and now used pervasively in the
robotics lab. Not only this system segments and computes the pose of humans that
enter its field of view, but it also tracks them (including in case they are partially or
completely occluded). This kind of high level sensing device does not completely
remove the need of grounding one symbolic instance of a human with the physical
human, but the task is ways simpler than it used to be.

Many systems also tackle the difficult question of natural language processing.
The CAST middleware, in particular, has been used in the European CoSy and CogX
projects as knowledge base by linguists [64]. This demonstrates the huge interest for
the grounding of verbal interaction within the cognitive robotics community, and we
are likely to reach important milestones in this field in the coming years.

Merging more modalities (especially, back-channel communication, deictic gestures
and social gazes) also sparks a lot of attention, and is becoming more and more present
as symbolic knowledge available to the control layers.

6.1.7 Common-sense

McCarthy actually starts his list by affirming that intelligent systems must be able
to “operate successfully in the common sense informatic situation”. This question of the
common-sense is probably one of the toughest because what common-sense mean is not
very clear at first place (since, by definition, common-sense is, well, common-sense...).
We feel, however, that it is related to a diffuse cultural background, and one may even
claim that, for a system to acquire common-sense reasoning is equivalent to solve the
strong AI challenge (this is at least more or less McCarthy’s opinion).

Our knowledge representation systems have a pragmatic and potentially very pow-
erful approach to common-sense: reuse knowledge stored on the Web. While not so
many of the systems we have surveyed directly tackle this question (KNOWROB is
the only one explicitly working on common-sense reasoning, through physics-based
reasoning, integration with Web databases or parsing of semi-structured Web docu-
ments), several rely however on Web standards (OWL, OpenCyc) to represent their
knowledge. With the development of initiatives like OpenMind that encode with the
same standards common-sense facts and rules, there is a strong potential for our robot
to gain common-sense knowledge from well-structured online resources in the coming
years.

Table 6.2 lists for the systems we have surveyed the current sources of common-
sense knowledge.

6.1.8 Learning, representation of experience, introspection

Learning has not been addressed in this work. This is a complex, still emerging field,
whose exact meaning and perimeter varies a lot. It was difficult to synthesise in the
KRS taxonomy, and we decided to omit it. We did not either really tackled this question
in ORO, except in term of knowledge structure alteration based on verbal interaction
(this is presented in one case-study, in the next section).

Learning at the level of the knowledge representation system has been explored
in conjunction with visual perception systems (mentioned for instance, in the CAST
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Project Common-sense knowledge source

ARMAR/TAPAS Custom ontology related to the kitchen
CAST Proxies None
GSM Predefined categories
Ke Jia None
KNOWROB OPENCYC, processed web content, custom OWL-DL ontology, physics simulation
NKLR None
OUR-K A priori knowledge structure and axioms, custom set of instances
ORO OPENCYC, custom OWL-DL ontology
PEIS Ecology RESEARCHCYC

Table 6.2: Underlying common-sense knowledge sources for each project.

project, in [?]). KNOWROB, by filling its pool of facts from informations automatically
extracted from the Web ??, can also be considered as a learning system (it autonomously
acquire knowledge). We lack however a formal study of learning strategies and tech-
niques at the knowledge representation level.

Representation and matching of past experience is a related topic. This ability is a
key step for general action recognition, and is of particular importance for the robot to
assess the state of the interaction with the human.

While we already mentioned that several systems are able to reason on past states,
we are not aware of existing implementation of algorithms to reflect on past experiences.

This is itself related to introspection and meta-cognition: the shift towards explicit
knowledge representation exemplified in the nine systems we have presented, has
a major impact on the meta-cognitive capabilities of our robots. They can exhibit,
manipulate and reason on their internal belief state (what we will call in the conclusion
the cognitive observability). We have still to discover all the possibilities that are open by
this important cognitive ability.

6.1.9 Perspective-awareness

Finally, Roy mentions the ability to take into account the human perspective: this cognitive
ability, that relates to the representation of different modalities, is present in ORO and
GSM. ORO explicits the perspectives in different symbolic mental states while GSM
recursively stores models for each agent.

We have already explained how perspective awareness enables advanced cognitive
capabilities like a theory of mind, and this is probably the main contribution of this
thesis regarding techniques for knowledge representation.

6.2 Experimental evaluation

Experimental validation of our work takes several forms that are presented in this
section.
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First, it must be noted that our experiments are largely independent from the
underlying platform. Since our contributions are mainly at the symbolic reasoning
level, we rely on intermediate layers for the back and forth conversion of sensori-motor
data to symbols. These intermediate layers are obviously much more dependant on the
platform.

We present here three distinct experimental frameworks: first, we present the
MORSE simulator (section 6.2.1) that has been developed during the thesis preparation
with several features dedicated to human-robot interaction simulation.

Then, several more “traditional” experiments on different robotic platforms are pre-
sented (sections 6.2.2, 6.2.3 and 6.2.3). Most of these experiments have been conducted
at LAAS-CNRS and in other laboratories involved in the European CHRIS project (Jido,
PR2, ICub and Bert platforms). Experiments have also been conducted at Munich’s IAS
laboratory on the Rosie platform.

Finally, we report in section 6.2.4 on the theater performance Roboscopie that was
presented in 2011 at a large general public audience in Toulouse.

6.2.1 Simulation of HRI interaction

The MORSE simulator

The Modular OpenRobots Simulation Engine (MORSE) [33] (figure 6.1) is a open-source
tool developed for robotics research. It is a domain independent simulator, where
virtual robots can interact with a 3D environment, using sensors and actuators that
behave in the same way as their counterparts in the real world. MORSE relies on
the advanced 3D (OpenGL shaders) and physics simulation (BULLET physics engine)
capabilities of the Blender Game Engine, a real-time 3D runtime integrated to the open-
source Blender modeling toolkit. This allows for semi-realistic simulation of complex
environments.

The MORSE components (sensors and actuators) exchange data with the robotics
software via middleware bindings, using a Software In The Loop (SAIL) architecture.
Middleware supported in the current version include LAAS’ Pocolibs library, ROS and
YARP, as well as a socket-based raw protocol. This design allows in principle to use
the same software in both the real robots and the simulator. Instructions given to the
robot are interpreted in the simulator to provide the control of actuators, such as the
motion of the robot and its arms. The data from simulated sensors is sent back through
the middlewares, e.g. exporting the images from cameras, or the positions of the robot,
human and other objects of interest.

MORSE provides support for several classes of robots out of the box, and allows for
easy customization of those, either by composing individual sensors and actuators with
empty robot structures directly in the MORSE interface, or through a Python-based
script language that permits to conveniently describe robots and simulation scenarii.

Other experiments using simulation have been carried to gather data for HRI [25].
However, these do not involve the actual robot software, and it is another human who
takes the role of the robot.
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Figure 6.1: Screenshot of the MORSE graphical interface (inside Blender).

Contribution While not directly linked to the main topic of this thesis, I have been
deeply involved in the design and development of MORSE: I’m responsible for most of
the original software design, and large parts of the core foundations of the project.

HRI specific features

An interactive human avatar is available in MORSE. It provides a first-person immersing
experience: when started, one can take the role of the human and control it via the
keyboard, a WiiMote or through a Kinect device (Fig. 6.2).

When in first-person mode, the user can interact in several ways with the environ-
ment. He/she can pick and release objects, can open drawers and cupboards. As any
other object, the avatar physically interacts (collision detection) with the surrounding
furnitures. MORSE exports the position and posture of the avatar as a global joint state
to be used by the real software components of the robot.

MORSE also offers a special sensor that exports abstracted informations of objects
visible to the robot (called the semantic camera). This sensor typically exports the
name, type (glass, table, bottle, etc.), color and location of objects. Since human-robot
interaction often involves semantic-rich environments, this abstract sensor simplifies
the experiments on such scenarii, by avoiding the added complexity of processing
camera images to detect the objects of interest and exploiting the inherent knowledge
of the simulated world.

An experimental framework

Due to its nature, MORSE offers two main advantages compared to experiments on
a real robot: light-weight deployment and repeatability. MORSE is already used for

115



Evaluation

Figure 6.2: The experimental setup with the human avatar controlled from a Kinect.

human-robot interaction both at the LAAS-CNRS and at the Technical University of
Munich, Germany.

MORSE is integrated to the LAAS architecture. In particular, both the human
posture and the object features are integrated with SPARK, a module dedicated to
geometric and temporal reasoning. This module is a key component providing a base
of facts such as objects’ relative placements, visibility and reachability by the agents
present in the scene. It additionally provides a stable state of the world to the motion
planners.

6.2.2 Case studies

This section reports on three small experiments conducted in the first half of the PhD
thesis preparation. Each of them illustrate one specific aspect of the knowledge base.

The first experiment, Point & Learn shows how the structure (TBox) of the knowledge
base can be altered (in this case expanded) at runtime through pointing interaction.

The second experiment, Odd One Out shows how the knowledge model can be used
along with the categorisation routines to isolate an “odd" object, given a simple context.

Lastly, the third case study is an implementation of the Spy Game where one of the
player think of an object and the other one must guess by asking questions.

It must be noted that these three experiments have been implemented on three
distinct robotic platforms: the BERT2 robot from the Bristol Robotics Laboratory (a
YARP-based architecture), the Rosie robot from the Technical University of Munich (a
ROS-based architecture) and the Jido robot at LAAS-CNRS (based on the LAAS Pocolibs
middleware).
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Figure 6.3: Teaching the Bert robot new objects

Knowledge acquisition: Point & Learn

We have implemented a Point & learn behaviour on the Bert robot [69] (Figure 6.3): the
user shows an object to the robot, and if the robot sees it for the first time, it will ask for
its name and type.

The object perception module relies on motion capture (VICON system) to identify
and localise objects. A so-called primitive detection module is responsible for updating
ORO with the list of objects currently seen by the robot as well as their state (moving or
not) and their relations to other objects (touching or not). On the other end, a human-
robot interface based on the CLSU Toolkit1 is in charge of speech recognition, speech
synthesis and basic natural language processing.

By querying ORO for moving objects, the interface retrieves the object ID that has
the focus of attention (last moving object), and asks the human for a name and a type if
the object is new. Figure 6.4 reproduces a typical dialog with Bert.

At the end of this sequence, two more RDF statements are added to the robot knowl-
edge base: [5001 rdfs:label "coffee-cup"] and [5001 rdf:type Cup].

Due to the limitation of the speech recognition software, only a predefined set
of names or types could be recognised, thus preventing the robot to add completely
original objects.

Odd one out

The Odd One Out scenario extends the Point & Learn experiment and completes an on-
going experiment at the IAS laboratory where a robot is asked to list missing items on a

1http://cslu.cse.ogi.edu/toolkit/
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bert Initializing... [about 5 sec] ...What’s next?
human [moves an object]

bert [does not know the object] How is it called?
human coffee-cup

bert Did you say coffee-cup?
human yes

bert Ok. Now I know. What kind of object is coffee-cup?
human a cup

bert Did you say cup?
human yes

bert So coffee cup is a cup. What’s next?

Figure 6.4: Transcript of a chat with the Bert robot

table being set, based on probabilistic reasoning on previously recorded observations.
We use ORO to introduce human interactions and common-sense reasoning: the

robot picks an unknown object from the table, shows it to the user, and asks about its
name and type (Figure 6.5). The user continues to describe the object (through concepts)
until a concept known by the robot is given. The learning process starts over again with
another unknown object. Once all objects are learned, the robot tells which objects do
not belong to a typical breakfast table (i.e. objects that are neither food or tableware).
The human interacts with the robot through a dedicated XMPP bridge, allowing to chat
with the robot with a standard Jabber messaging client. Figure 6.6 corresponds to a
chat session with Rosie.

The supervision (CRAM2 [15]) automatically updates the ORO server whenever an
object enters or leaves the field of view (the perception is based on the COP frame-
work [62]). Therefore, the integration of ORO can be seen as an extension to the robot’s
belief state that not only contains abstract identifiers of the internal object representation
used in plans, but also the semantics and roles of objects in the scenario.

By asking in loop the human for the categories of an object until it can connect it
to a concept it already knows, the robot accurately anchors perception in its symbolic
model and it is able to reason about it. At the end of the experiment, the robot identifies
and returns the odd objects for the breakfast table (i.e., in our example, objects that are
neither Tableware or Food).

An unexpected example of what the symbolic reasoning layer brings to more tradi-
tional robotic architectures emerged during the Odd One Out experiment: the perception
routines provided segmented blobs corresponding to objects, along with their colours.
The supervision would then feed ORO with the visible objects. At some point, ORO
suddenly refused to add an object. What seemed at first a communication bug between
modules, was actually the consequence of a consistency check by ORO: Because of bad
light conditions, the color recognition was not very reliable, and the same object was
set to have two different colours at the same time. That was inferred as impossible by
ORO and thus discarded. This kind of logical failure can be used to improve low-level
perception results by “closing the loop” with high-level, symbolic knowledge.

2CRAM (Cognitive Robotic Abstract Machine) is a RPL-derived framework for rapid development of
cognitive robot control programs we currently develop.
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(a) (b)

Figure 6.5: (a) Rosie, looking for objects it may know, and (b) viewed in RViz. The clusters
of point are given an unique identifier by the perception that allow the supervision create
the link between the physical objects and their symbolic representation in ORO.

rosie Servus! The Bavarian robot is up and fit!
rosie What is the name of the WHITE CLUSTER on the TABLE?

human "Rosie’s mug" [Rosie adds hOBJ001 rdfs:label "Rosie's mug"i
stmt]

rosie What kind of object is Rosie’s mug?
human Mug

rosie What is a Mug? [Rosie adds hOBJ001 rdf:type Mugi but it does
not know the Mug concept]

human Tableware [Rosie knows about Tableware - be-
longs to the common-sense ontology. It adds
hMug rdfs:subClassOf Tablewarei]
(...)

rosie What is the name of the BLACK CLUSTER on the TABLE?
human my laptop

rosie What kind of object is my laptop?
human Computer

rosie What is a Computer?
human Artifact

rosie Do you want me to learn more objects?
human no

rosie These objects are odd: my laptop

Figure 6.6: Transcript of a Jabber session with the robot Rosie. Compared to dialog with Bert
(6.4), we see here that the robot anchors the new objects in its already acquired knowledge.

The spy game

This game is based on the traditional children game “I Spy”. The idea is to discover the
object or concept one of the participants is thinking of by asking questions such as: “Is
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(a) (b)

Figure 6.7: Spy game scenario: (a) Real environment and (b) 3D environment model, viewed
in MOVE3D.

it green? Is it a machine? Is it on your left?”, etc. When playing, children exploit their
knowledge about the world while categorising and describing objects through useful
discriminants that allow them to find out the answer as fast as possible while including
perspective taking abilities [95].

The scenario for this game (Figure 6.7) consists on a face-to-face interaction where
the human thinks of an object present in the environment, while the robot queries
the human until either discovering the object or giving up, if no object was found. A
categorisation example is presented in Figure 6.8. The game starts with the human user
giving a first hint (communication is done through a keyboard and screen), allowing
the robot to start the search filtering those objects that fulfill this first description. Based
on this subset, ORO provides a descriptor (or set of descriptors) that allows a maximum
discrimination among objects in the subset. The robot queries the user about the value
of the descriptor (or the most discriminant among the set of descriptors) and with this
new information, the current subset of objects is filtered again. The process is repeated
until either obtaining a single object that fulfills all the descriptor values, or failing (i.e.
no object found).

Artifact

Tableware

Bottle Cup

GameObject Furniture

Table Chair Shelf

Figure 6.8: Example of object categorisation used in the scenario.

We have integrated the game in the LAAS-CNRS Jido robot [2]. Objects are identified
through a tag-based vision approach3 and we use motion capture for human tracking.

3ARToolKit: http://www.hitl.washington.edu/artoolkit/

120

http://www.hitl.washington.edu/artoolkit/


Evaluation

human It is a tableware.
jido [retrieves possible objects: blue-bottle, yellow-bottle, orange-bottle,

cup-with-handle]
[keeps visible objects: blue-bottle, yellow-bottle, cup-with-handle]
[obtains discriminants: type, color.]
Which type of object is: bottle or cup?

human Bottle.
jido [obtains possible objects: blue-bottle, yellow-bottle.]

[obtains discriminants: color.]
What color the object is: blue or yellow?

human Blue.
jido [obtains possible objects: blue-bottle.]

The object is the blue-bottle!

Figure 6.9: Example of the robot playing Spy game.

Their descriptions regarding categories (type of object) and features (color, shape) are
manually given in advance. Spatial relationships (front, back, left, etc, and in, on
and next to) and visibility (only visible objects for both agents can be considered
in the game) are automatically computed on-line by the MHP/MOVE3D geometric
reasoner and planner [87]. Figure 6.9 shows an example of a round game.

6.2.3 Interaction experiments

Three larger experiments have been also conducted. The first two are focused on
knowledge representation and verbal interaction: the “Moving to London” scenario
where the human asks for help to find and pack objects, and the “Aperitif Time” scenario
(that will be only briefly presented) where the robot tries to prepare a tray with the
drinks the human desires. In these experiments, robot actions are limited to simple
motions (like head tracking or predefined pick-and-place).

The third experiment, prepared with Mathieu Warnier and Julien Guitton, involves
the SHARY execution controller and the HATP symbolic task planner besides ORO
and DIALOGS. In this scenario, the human and the robot try to cooperatively remove
objects from a table.

First interaction experiment: “Moving to London” scenario

This first experiment is based on the following daily life situation: Tom and Jerry are
moving to London, so they are packing things in boxes. The scenario takes places in the
living-room, where Jido (our robot) is observing while they move things here and there.
To assess the reasoning abilities of the robot they ask Jido for information (entered
through keyboard). Ideally, the robot should also perform actions when required (e.g.
hand an object when asking “give me...”). However, since it is out of the scope of this
work, we do not include any motion from the robot’s side.

Perception of objects is done through a tag-based system and humans are detected
through motion capture. The robot knowledge base is pre-loaded with the ORO
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Robot’s beliefs about itself (robot’s model):
hvideoTape1 type VideoTapei
hvideoTape1 isOn tablei
hvideoTape1 isVisible truei
hvideoTape2 type VideoTapei
hvideoTape2 isIn cardBoardBoxi
hvideoTape2 isVisible truei

Robot’s beliefs about Tom (Tom’s model):
hvideoTape1 type VideoTapei
hvideoTape1 isOn tablei
hvideoTape1 isVisible truei
hvideoTape2 type VideoTapei
hvideoTape2 isIn cardBoardBoxi
hvideoTape2 isVisible falsei

Table 6.3: Robot’s beliefs about itself and its human partner.

Commonsense Ontology. We next describe in detail two situations where we can follow
the internal robot’s reasoning and the interaction with the users.

Implicit disambiguation through visual perspective taking Tom enters the room
while carrying a big box (Figure 5.1, page 1). He approaches the table and asks
Jido to handle him the video tape: “Jido, can you give me the video tape”. The
DIALOGS module queries the ontology to identify the object the human is referring to:
h?obj type VideoTapei.

There are two video tapes in the scene: one on the table, and another one inside
the cardboard box. Thus, the knowledge base returns both: ) ?obj = [videoTape1,

videoTape2].
However, only one is visible for Tom (the one on the table). Thus, although there is

an ambiguity from the robot’s perspective (since it can see both video tapes), based on
the perspective of its human partner it infers that Tom is referring to the video tape on
the table, and not the one inside the box which is not visible from his view. Therefore,
non-visible objects are removed obtaining: ?obj =[videoTape1].

Since only one object is available, the robot infers that the human refers to it and
would eventually execute the command, i.e. give it to the human. Alternatively, the
robot could first verify with the human if that was the object being referred to or not
before proceeding to execute the action. Table 6.3 lists the robot’s beliefs about itself
and its human partner involved in this situation.

Explicit disambiguation through verbal interaction and gestures In this situation,
Jerry enters the living room without knowing where Tom had placed the video tapes.
So he first asks Jido: “What’s in the box?”. Before the robot can answer the question
it has to figure out which box Jerry is talking about. Similar to the previous situation,
there are two available boxes:
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Figure 6.10: Jerry asks Jido for the content of the box by pointing at it.

h?obj type boxi
) ?obj = [cardBoardBox, toolbox]

However both are visible and the cognitive ambiguity resolution cannot be applied.
The only option is to ask Jerry which box he is referring to: “Which box, the toolbox or
the cardboard box?” Jerry could now simply answer the question. Instead, he decides
to point at it while indicating: “This box” (Figure 6.10). The robot’s perception identifies
the cardBoardBox as being pointed at and looked at by the human and updates the
ontology with this new information using a rule available in the commonsense on-
tology (pointsAt(?ag, ?obj) ^ looksAt(?ag, ?obj) ! focusesOn(?ag,
?obj)) The DIALOGS module is then able to merge both sources of information, verbal
(“this”) and gestural to distinguish the box Jerry refers to.

hJerry pointsAt carboardBoxi
hJerry looksAt carboardBoxi
! hJerry focusesAt carboardBoxi
) ?obj = [cardBoardBox]

Finally, the DIALOGS queries the ontology about the content of the box and the
question can be answered: “Jido-E”. Note that the object’s label is used instead of its ID.
This way we enhance interaction using familiar names given by the users.

h?obj isIn cardBoardBoxi
) ?obj = videoTape2

At this point Jerry wants to know where the other tape is, and that is exactly what
he asks Jido: “And where is the other tape?”. In this occasion, the DIALOGS module
is able to interpret that Jerry is not referring to the video which they were just talking
about, but to the other one:
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Figure 6.11: The “Living room” setup, as represented by the robot during the experiment.

h?obj type VideoTapei
h?obj differentFrom videoTape2i
) ?obj = [videoTape1]

Since there is only one possible “other” video (there are only two videos in the
scene), it can directly answer Jerry: “The other tape is on the table and next to the
toolbox.”

hvideoTape1 isOn tablei
hvideoTape1 isNextTo toolboxi

Second interaction experiment: “Aperitif Time”

A similar experiment has been conducted in the appartment environment (figure 6.11)
of the LAAS-CNRS with the PR2 robot.

This second experiment is focused on verbal interaction, and the perception is
limited to the human tracking with a deported ASUS XTion (similar to the Kinect)
sensor. Contrary to the first experiment, objects in the environment are not detected.
Their positions are predefined. Pick&Place manipulation tasks are not planned either,
and the robot gestures are predefined as well.

Dialogue with the robot goes through a custom Android application running on
a touchpad held by the human. This application relies on the Google Speech API for
text-to-speech recognition, and communicates exchange messages with the robot via
the XMPP/Jabber protocol.

The experiment consists in manipulation of drinks (soda cans, wine minibottles)
by verbal commands that take into account the human perspective, and may require
discrimination (for instance, “Give me the juice” can refer either to the orange juice or
to the apple juice).
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Figure 6.12: This experiment led to a video that can be viewed online: http://www.
youtube.com/watch?v=pLz8ifvtoeQ.

The reasoning and decisional principles are similar to the previous experiment, and
are not detailed here. This experiment can be considered as a more mature version
of the first one: more objects are involved, speech understanding is vastly improved,
the decisional layer is more developed (we use the pyRobots environment, briefly
presented at section 4.4.3, to react to incoming orders), the robot acts (pick & place,
tracking of the human with the head, etc.).

Evaluation The results of these two first experiments is however not fully satisfactory.

� the complexity of the system makes it error prone. Besides, lack of sufficient de-
coupling between the higher-level components can lead to long restart procedures.
In particular, the ORO knowledge base has stability issues (reasoner crashes) that
greatly depend on the ontology content in ways that are difficult to predict. As a
consequence, these experiments are difficult to set-up and reproduce.

� in the first experiment, the tag-based tracking of object is fragile (sensible to
partial occlusions, lighting conditions, etc.), while in the second experiment, the
absence of tracking of objects (due in part to the size of cans, too small to stick a
tag, in part to the desire to avoid altogether perception issues in the system, and
in part to the location of objects, sometimes only partially visible, like the can on
the bottom of the picture G.7) leads obviously to poor robustness of manipulation
tasks.

� the high-level behaviour of the robot is also simple (it waits for a spoken goal,
executes it, and start waiting again). It was however not the focus of these
experiments, and the integration with better high-level control in presented in the
next experiment.
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Figure 6.13: Snapshot of the film of the “Clean the Table” scenario. The physical situation,
the SPARK model, and the current step of the plan can be seen.

It must be also noted that the second experiment has been originally designed as a
user-study: a naive, non-expert user was given a list of drinks to ask the robot to prepare
for the aperitif. The idea was to compare the time required for the task achievement
with several conditions, including use or not of perspective taking. We gave up with
this project because of the lack of good enough resilience of the dialogue system to
non-expert inputs. For instance ill-formed English sentences or elliptic sentences are
not dealt correctly with. A pre-study that was meant to gather example of verbal inputs
and involving about fifty users has been however conducted. It provides a valuable
database to exercise and further develop the dialogue management system.

Third interaction experiment: “Cleaning the Table”

The third experiment involved a more complex decisional layer where the ORO server
was used in conjunction with the HATP symbolic task planner and the SHARY execu-
tion controller (the complete software architecture we deployed for this experiment is
pictured on figure G.5, page 186).

In this scenario (figure 6.13), a human and a robot cooperate to remove objects
from a table. The robot produces symbolic plans for both itself and the human ([3],
see also section 4.4.2) that allow the robot to (verbally) share the task with the human
(like “I take the green box and I put it in the trashbin, you take the black video tape
and you throw it in the trashbin”). Plans are created based on perceived visibility and
reachability of the objects, and the robot also monitors the human activities to track the
advancement of the whole plan (this last aspect is presented in [144]).

Figure 6.14 presents a excerpt of the whole task and shows how the different
components produce and use symbolic knowledge (note that the plan is actually
computed a priori. It appears nevertheless on this diagram for better readability).

This experiment also led to a video that can be viewed online: http://www.
youtube.com/watch?v=IODx50uV_k4.
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Figure 6.14: This diagram shows a simplified version of the “Clean the Table” scenario
timeline.
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Figure 6.15: The PR2 robot at the beginning of the performance.

6.2.4 The Roboscopie performance

The last experimental setup we have been working on is less usual, since it is a theatre
performance, involving one human actor and the PR2 robot.

Theatre with robotic actors is an emerging field, with a few previous published
results [20, 83, 90].

On the 14th of October 2011, we performed for a general public audience (over 300
persons) a 18 min long live theatre play, acted by professional actor Xavier Brossard
and the LAAS/CNRS PR2 robot. The play was created and directed by Nicolas Darrot,
a mixed-media artist from Paris.

The PR2 was programmed in a 2-months course, re-using several software compo-
nents presented in this thesis, including the 3D environment for situation assessment
SPARK, the knowledge base ORO and the natural-language processor DIALOGS.

This section presents the storyline of the play, gives details on the technical side
of the project, and underlines some of the significant outcome from the human-robot
interaction perspective.

Both a short teaser and the full-length version of the performance are available from
a dedicated website, www.laas.fr/roboscopie.
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Storyline

The play discusses how humans and robots can find a common ground for understand-
ing each other, by living in a kind of frontier world, where real objects are replaced by
abstract, disembodied counterparts.

Xavier and PR2 share a white, almost empty, stage. To get the robot to see his world,
Xavier must keep being recognised by the human tracking module that lies on the
wall, and must stick everywhere 2D barcodes, instead of real objects. The robot can
read and identify these barcodes, and while the stage gets covered by the tags, the
robot constructs for itself a 3D world with the right-looking objects: a phone, a lamp, a
hanger...

While Xavier is drawing by hand more and more of these 2D tags, the robot tries to
offer its help. It brings first a bottle of water, then a fan... which blows away all Xavier’s
code. Angry, Xavier leaves, and PR2 remains alone.

The night comes, and the robot decides to explore the stage, scattered with those
barcodes on the ground. On the next morning, Xavier discovers that the robot’s 3D
model is a mess, full of random objects: an elephant, a boat, a van... Xavier resets the
robot model and starts to tidy up the place. The robot decides to help with a trash bin,
but suddenly gives up and a new program starts: a home-training session. Xavier starts
the exercises, but as the program goes along, the robot looks more and more menacing,
up to the point that Xavier shouts “Stop!”.

Xavier eventually shows one after the other the objects to the robot, explaining they
are all fake, and like the robot, we realize that everything was just an experiment.

Technical overview

The PR2 robot was running softwares developed at the LAAS/CNRS. While the per-
formance tries to picture some of the challenges in the human-robot interaction field,
including the needed autonomy of a robot working with humans, the robot was par-
tially pre-programmed for this theatre performance.

Most of the behaviours were coded in Python, relying both on the PR2 ROS middle-
ware and on GENOM, the LAAS own middleware.

What was pre-programmed?

� General behaviour While the real perception routines were running (see next
section), the robot did not have any mean of synchronization with the human
during the play: each sequence was manually started by one of the engineers.

� Predefined positions Places on the stage were hard-coded: for instance, the
position of the table was known to the robot from the beginning, so was the
position of the entrance door, etc.

� Postures and manipulation tasks Manipulation tasks (like grasping the fan or
the paper bin) were much simplified: the robot would simply open its gripper,
and wait for something to be detected in its hand. It would then simply close the
gripper. Likewise, the robot special postures to enter or leave the stage with an
object in hand (required to avoid collision with the door) were all pre-defined.

129



Evaluation

Figure 6.16: The robot build a coherent 3D model of its environment through the SPARK
module

� Speech Understanding At the end of the play, when Xavier talks to the robot
(Stop!, Look at this phone!, Everything is fake, etc.), sentences were manually typed
in the system. We could have used speech recognition as we do in the laboratory,
but converting speech to its textual version is relatively slow and error prone. So
we decided to avoid it on the stage.

While what Xavier said was actually processed by the robot (see next section),
the actions that followed (like looking at the phone, turning the head back to the
audience,...) were manually triggered.

What was autonomously managed by the robot?

� Navigation All navigation tasks were computed live by PR2, using the ROS
navigation stack. The main script just tells the robot to go from the engineer desk
to the center of the stage for instance. The robot would then find a path that avoid
obstacle.

� Modeling of the environment The 3D world that is displayed above the stage
during the show (figure 6.16) is a live capture of the Move3D and SPARK soft-
wares. These softwares are used daily on the robot to compute trajectories,
symbolic locations, visibility and reachability of objects, etc.

However, during the performance, we deactivated the computation of symbolic
facts (like xavier looksAt jacket, RED_PHONE isOn table,...) which is
not reliable enough to be used on the stage.
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The 2D barcodes are actually a key perception mechanism for our PR2. They
are well identified ARTOOLKIT tags used to identify and localise (both for the
position and the orientation) objects surrounding the robot.

Besides, the robot was able to track the human whole-body posture with a Mi-
crosoft Kinect sensor and the OPENNI human tracker. In several occasion, the
robot automatically tracks the human head or the human hands with this system.

� Speech Understanding At the end, Xavier talks to the robot. The textual version
of what he said was fed to the system as it. Natural language understanding is
done by the Dialogs module and used extensively the oro-server knowledge
database to make sense of the word in the current context. The result of the lan-
guage processing was then added back to the knowledge base and automatically
displayed by the oro-view OpenGL ontologies viewer.

Hence, the sentence “look at this phone” get translated into symbolic facts: [human
desires action1, action1 type Look, action1 receivedBy RED_PHONE].
The robot is able to know that <this phone> is indeed the RED_PHONE by taking
into account what the human focuses on.

Since the computation of symbolic facts was deactivated, we had to manually
add several symbolic facts in a so-called scenario-specific ontology.

Significance for HRI

A first noteworthy achievement of this project from the human-robot interaction point
of view is the use and display of the set of research tools developed at LAAS in front of
a general audience: while the show had been precisely scripted and rehearsed, the robot
was running the same software components we use on a daily basis in the laboratory.

By building the performance storyline on the current, actual state of robotic research,
the play also put light on three key questions of today’s human-robot interaction: how
the human and the robot can understand each others (the robot tries to help but remains
intrusive)? how to share and coexist in a common living space? how roles build up
between the human and the robot (who dominates)?

Chapter recap

This chapter was focused on the evaluation, from two different perspectives.
First, we have presented a large table that summarises how the main features and

requirements of knowledge representation systems identified at chapter 2 are matched
by the existing implementations. We have discussed the successes and limits of the
current state of the art based on a list of high-level requirements established from
McCarthy and Roy proposals towards more advanced artificial cognition.
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Amongst the fields that are identified as requiring more research efforts, non-
monotonic representations, explaining of the mental state and the mental processes,
and context representation represent largely open challenges.

Then, we have presented several experimental frameworks and experiments.
MORSE, a simulator with strong HRI capabilities has been briefly presented. Three

case-studies demonstrating the classification and learning capabilities of ORO have
been then introduced. Three larger experiments, involving verbal interaction, task
planning and execution control have been then presented and explained.

Finally, we have mentioned the Roboscopie theatre performance as an unusual
experimental setup, targeted at a general public audience. We see it as a way to
materialize and discuss the relationships between the robots and the humans, and to
address these questions “in the open”, outside of the closed frame of the laboratory.
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Chapter 7

Conclusion: On the Road to the
Knowledge-Enabled Robot

The time has now come to reach a conclusion to this work.
We have first proposed a systematic study, build as a typology, of the knowledge

requirements of modern robotic applications in the context of service robotics and
human-robot interaction. About fifty concepts or features that define altogether what
knowledge representation means for robotics have been proposed,followed by a review
of existing tools and frameworks in the research community.

In a second part, we have presented in depth a particular instantiation of a knowl-
edge representation and manipulation system that we have called ORO. Main features,
inner workings, algorithms, implementation of this system have been exposed, as well
as its integration with several other robot components, for geometric reasoning, task
planning or control.

The third part of the study has been focused on the processing of situated dia-
logue. Our approach and associated algorithms leading to the interactive grounding of
unconstrained verbal communication have been presented and illustrated.

One chapter was then dedicated to evaluation. First in term of abstract features:
based on several challenges that where identified in the artificial intelligence community,
we have examined how the current systems for knowledge management compare.
Then in term of experiments and experimental tools, by presenting six case-studies and
experiments that illustrate how knowledge can take place in our robots.

7.1 The palpable knowledge

When starting this PhD, we were given carte blanche to explore ways to explicit knowl-
edge in our robot architecture, to make it one of the robot’s resources in its own right.

The main goal was to transform the knowledge in the robot from some ubiquitous,
pervasive, multi-modal and, most importantly, mostly undefined feature of the system
into an observable, quantifiable, manipulable resource, what we could call a palpable
feature.

This transformation, both from the technical point of view (the ORO server, the
ontologies, the bindings, etc.), and as a more subtle change in the practises related to
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the development of robotic components, is the main contribution of this thesis.
Knowledge is not an abstract concept anymore: it is a set of statements, in most

cases directly intelligible to the developers, stored in one place. We can export them,
monitor them, review them, question them.

Communication between the robot’s module is now conceived in term of what are
the semantics of the information flows, instead of a simple compatibility of interfaces.
When defining the frontiers of a robotic component, we do not think anymore only
in term of “is the interface complete and self-contained”, but also in term of “is the
semantic complete and consistent?”. This allow a deeper, more correct modularity:
two modules that share the same, well-defined semantic can be confidently exchanged.
When we remove or disable a component (the dialogue processing, the geometric
reasoning, ...), we know precisely what knowledge will not be available anymore.

We call this new property of our robot, that allows for both qualitative and quantita-
tive analysis of the beliefs, its cognitive observability.

It is somewhat related to the idea of cognitive penetrability introduced by Pylyshyn [107]
in 1989, in the context of the study of possible strong equivalences between computa-
tional models and the psychological reality:

[One of the criterion] relies on the assumption that we can identify certain
clear cases of phenomenon that should be accounted for at the knowledge
level, that is, in terms of the representations alone, rather than in terms
of properties of the cognitive architecture. Phenomena that depend in a
rational way on subjects’ goals, beliefs, and utilities are a case in point. For
example in psychophysics we assume that if a measure (such as a threshold)
changes systematically as we change the payoffs (that is, the relative cost of
errors of commission and of omission), then the explanation of that change
must be given at the knowledge level – in terms of decision theory – rather
than in terms of properties of sensors or other mechanisms that are part
of the architecture. In general showing that certain empirical phenomena
are sensitive to goals and beliefs (or what I call cognitively penetrable) is
prima facie evidence that they should not be attributed to properties of the
architecture.

The introduction of an explicit knowledge level in our architecture makes it possible
to effectively assess the cognitive penetrability of the whole robot behaviours (this is
however not new, and traditional BDI architectures would also make this claim).

7.2 Knowledge-oriented architectures

We can give a broader look at the knowledge and the streams of knowledge in our
systems. Based on the experience gained while developing and deploying ORO,
our ontology-based knowledge server, we have presented how symbolic knowledge
could be produced from perception and geometric reasoning in modules like SPARK,
a grounded, perspective-aware, geometric reasoner. We have seen how symbolic
knowledge could be reused by different control systems and task planners like CRAM,
SHARY, PYROBOTS, the CLSU TOOLKIT or HATP and how they take advantage
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of semantic abstractions provided by knowledge base. We have also presented the
bidirectional integration of DIALOGS, a natural language processor for English, with
the knowledge base.

Altogether, these components compose an architecture that we call knowledge-
oriented:

� Knowledge is explicitly stored in one central and consistent repository of facts,
accessible by all modules.

� Knowledge is represented in a strict formalism (OWL statements) and with a
clearly defined vocabulary (stated in the common-sense ontology).

� The first two points enable both a loosely-coupled architecture where modules
can very easily be removed or replaced by other ones as long as they share the
same semantics (modules are defined by the knowledge they produce),

� and a symbolic reactive, event-driven approach to supervision. By managing
events at the same level as the reasoner, we take full advantage of the inference
abilities of ORO to trigger events whose true conditions can be inferred.

� Finally, this architecture allows for the combination of very different knowledge
modalities in a single homogeneous environment, bringing mutual benefits to
components. For instance, the dialogue processing module can perfectly run with-
out any geometric perception, but its disambiguation routines can transparently
benefit from it when available (since richer symbolic descriptions of objects are
then available).

This architecture moves away from standard layered approaches. Interactions
between components are mostly bidirectional and, from the software components point
of view, we do not introduce layers of abstraction (we do, however, have access to the
lower level modules of the robot to execute actions, but all cognition-related modules
reside at the same level). This is especially visible for the dialogue input processing.
This component does not simply act as an alternative perceptual input to the symbolic
database, but also actively queries previously acquired knowledge to disambiguate
and validate the newly created symbolic knowledge.

Our architecture relates but is to be distinguished from Beliefs, Desires, Intentions
(BDI) architectures. BDI architectures are primarily focused on practical reasoning,
i.e. the process of deciding, step by step, which action to perform to reach a goal
(as summarised by Woolridge [146]). The management of the interaction between
knowledge (the beliefs) and task and plan representation and execution (the desires
and the intentions) is central, and aims at selecting at each step the best subgoal. It
becomes then an intention that the robot commits to.

This interaction between knowledge and actions is also central to our approach
(as for any cognitive system), but task representation and task execution is not seen
as a monolithic, central function: it is one of the activities of the robot, actually split
between communication components (that can acquire desires from interaction with
agents, amongst other things) and an execution controller that may decide to take an
incoming desire into account to create its own internal goals. The controller generates
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and controls intentions from these goals with the help of a symbolic task planner, that
has also direct access to the knowledge base.

The architecture is not only focused on this workload, and other activities are
conducted without being explicitly considered as desires: assessment of the situation
and the environment, dialogue (including performative dialogue that can possibly
change the internal state of the robot, but does not lead to the creation of desires,
like question answering or statement assertion), various background monitoring and
recognition tasks, etc.

Regarding the anchoring question, this architecture is bidirectional. The components
we described provide a bottom-up grounding process: SPARK and DIALOGS constantly
build and push new symbolic contents about the world to ORO where it becomes
accessible to decisional layers. In parallel, ORO relies on reasoning in a top-down way
to produce new facts that may trigger in return physical behaviours.

We believe that this knowledge-oriented approach has a strong potential not only to
enable rich human-robot interaction, but also as a broader approach to information
alignment and fusion in complex robotic systems. The versatility of this paradigm
could be illustrated by a simple imaginary scenario with a blind robot and a deaf
robot. The blind robot does not see (no cameras or alike), but someone can verbally
describe a scene to it. On the other hand, the deaf robot has a good vision system, but
cannot process verbal input. Without any changes to the software architecture that we
described, control modules of both robots could equally perform the same tasks since
all the knowledge is abstracted and centralised (note that to actually implement this
imaginary situation, the blind robot would of course need a priori 3D models of objects
talked about to enable planning or pick and place actions, and the deaf robot would
require at least some gesture interpretation to understand orders).

This architecture may also contribute to bring closer robotics and psychology: it
provides clear entry points to implement some classical psychology tests to robots. For
instance, we presented experiments focused on issues related to perspective taking. By
explicitly enabling independent modeling of the beliefs of each agent, our architecture
is especially well suited to set up cognitive and psychological experiments that involve
a theory of mind, such as False-Belief experiments, as recently presented in [145].

Knowledge and embodiement

The the experiments that were presented in the previous chapter all illustrate how the
robot makes use of its embodied nature to establish a meaningful communication with a
human. Mainly, because the robot and the human share the same physical environment
and they perceive each other, we are able to create a mutual context.

Sloman, in [124], worried however that the strong focus on embodiment in the
robotics community has hindered progress towards natural human-robot interaction
by focusing on sub-symbolic physical properties. Our approach has hopefully made
clear that, similar to Beetz et al. [15] and many other researches presented in the thesis,
we do not consider embodiment per se outside of a broader symbolic system, i.e. our
architecture is not bound to the morphology or the low-level sensori-motor capabilities
of a specific agent.

However, we can build a model of the “human point of view” because the robot
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perceives the human, and is able to estimate, at least partially, what the human perceives
or not. We infer that a human focuses on some object because he/she points at it, looks
at it, and besides, the object is visible to him. This relies on the embodied nature of the
interaction. In turn, this allows us to understand the meaning of sentences like “Give
me that”.

We hope that this contribution shows that considering embodiment as the most
challenging and fruitful characteristic of robotics in regards to the whole AI community
does not contradict with a formal, highly symbolic approach of the representation and
decision problems that arise in robotics.

Real-world symbolic reasoning

Where to find milk? Milk is a subclass of dairy which is itself a subclass of a
perishable goods. The usual storage place for perishable goods is the fridge,
so the milk is likely to be found in a fridge.

This example of reasoning, quoted from Moritz Tenorth, is a good example of
simple yet non-trivial reasoning. As a matter of fact, only very few of such reasoning
cases where positively identified in our scenarii and experiments (and consequently
implemented as rules in ORO).

The design choices of our architecture partially explain that fact: first, the planning
task (which is the prototypical reasoning task) is delegated to a dedicated, external
planner. Then, time is not represented in ORO, and consequently no temporal reasoning
takes place at this level: action recognition or monitoring are handled by other layers,
and the underlying reasoning tasks are not implemented as explicit symbolic rules in
the knowledge base.

The experiments we have conducted are also likely to have too simplistic semantics
to let complex reasoning needs to emerge. Scenarii with more complex semantics
would be desirable to better stress the expressiveness and inference abilities provided
by description logics.

Is reasoning at the knowledge level immature or even superfluous, then? Not so:
hundreds of trivial (from a human point of view) inferences are continuously produced
by the system (translating inheritance relations, domain/range constraints, transitivity,
etc.) and encode a large amount of common-sense knowledge that would be tedious, to
say the least, to manually assert. These trivial inferences are all the more important that
an expressive knowledge representation language is used: when a language like OWL
allows to directly represent high-level concepts like partitions, cardinality restrictions,
properties’ ranges and domains, it leads to a more implicit (because more abstract)
description of the vocabulary that in turn requires more underlying reasoning. With the
progress in the understanding of the relations between expressiveness and (tractable)
satisfiability, along with the progress of reasoners, more and more of the inferences do
not need to be explicit anymore, and consequently move behind the scenes.

And we predict that common-sense encoding is likely to remain the main application
of reasoning in our robotic architectures, where reasoning related to decision making
mostly happen outside the knowledge representation system.
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7.3 Towards the next generation of knowledge represen-
tation systems for robotics

In the chapter 6, we have summarised the current state of the art in knowledge rep-
resentation, and we have put it in perspective with some mid- or long-term views
towards intelligent artificial systems, as expressed by McCarthy and Roy.

So, we can now ask the question: what remains to be invented to get the famous
“intelligent” robots we all dream of?

Before writing down the final mark of the thesis, we would like to feed the reflexion
on the future of knowledge and knowledge representation for robots (service/com-
panion robots in particular, because they are the ones with the most obvious need
of symbolic knowledge for living in complex, interactive, semantically rich environ-
ment, but this certainly applies to other robots as well). We will mention three aspects,
amongst many others, that we see as both important and difficult questions.

First, one of the directions that seems both critical and under-studied in our commu-
nity is what we can call context management in a broad sense. Proper context manage-
ment should allow the robot to mentally move around its own experiences to place itself in
the mental situation where the interpretation of an event, an interaction or a situation
makes sense. Cognitive functions like episodic memory, theory of mind, projection,
diagnosis and many other can be seen as special cases of a generic context management
capability.

Managing context means at least two things: recognising contexts and representing
contexts. Depending on what context we talk about, recognising contexts can be
relatively easy (who is talking to me? where am I?) to difficult (what past experience
does my interactor implicitly refers to?). One of the main problem we see with context
identification is that it is a fundamentally multi-scale problem: at any moment, several
temporal, spatial, social, cultural context co-exist and overlap.

This lead to the second aspect, context representation. Contexts are currently often
limited to the current spatial and temporal situation. Some projects model offer the
possibility to jump in the past or to switch to another agent’s perspective, but in
current approaches, selecting a context always basically consists in retrieving a set
of beliefs corresponding to a situation, and temporarily replacing the current beliefs
by those other ones. This misses the fact that at a given moment, not one but many
contexts co-exist at different scales. We do not want to retrieve one monolithic set of
beliefs, but instead carefully craft a context from several atomic contexts. Techniques
for representation of overlapping pools of knowledge largely remain to be developed,
as well as efficient algorithms to retrieve (or discard) such context-related pools of
knowledge.

The ability to explicitly manage contexts and context switches would endow the
robot with a cognitive capability similar to what is known as context-dependent memory
in cognitive psychology. This is also related to Tulving’s autonoetic consciousness [135]:
the ability to reflect upon its own past or future experiences.

From a technical standpoint, proper context management would mean a transition
from a monolithic knowledge base to an more modular architecture, with either mul-
tiple (overlapping) models or facets (one per agent, one per place, one per period of
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time, etc.), or maybe a systematic use of reification to attach to each atom of knowledge
(the atom is usually the statement. It could maybe be extended to a small set of cohe-
sive statements) one or several contexts. The development of modal logic in practical
applications is also an important direction to examine.

Much remain to be done to this regard, starting with a formal analysis of what are
the relevant contexts for our robots.

Proper management of inconsistent knowledge is another point that seems of
particular interest. Inconsistencies are mostly considered today as errors (modeling
issues, perception errors, wrong interpretations of communication, etc.) that prevent,
at best, further reasoning, at worst, the use of the knowledge base.

However, from a cognitive point of view, logical inconsistencies are a very valuable
source of knowledge by themselves. We have previously evoked the role of cognitive
dissonances as an intrinsic motivation factor for knowledge acquisition. This can be
generalised to many sources of inconsistencies: detection of faulty perception and setup
of alternative perception strategies, start of interactions with other agents to fix a wrong
model, etc.

Recognition of inconsistencies between different models (for instance, divergences
between the mental state of two agents) could also be a fruitful motivation for action
and interaction for the robot.

To this respect, technical handling of inconsistencies also require more research
efforts, that include the development of techniques like default logics for robotics.

The systematic study of the relations between symbolic and geometric models are
another broad field open to research. While (discrete) symbolic models are usually
seen as abstractions of a (continuous) geometric model, this link does not need to
be unidirectional. Presupposition accommodation is an example of a priori symbolic
knowledge that may alter a geometric model. Many more of these bidirectional relations
remain to be identified.

One overlooked aspect of these links between symbolic and geometric realms is the
temporal reasoning granularity: one of the challenging task for a robot interacting with
humans relates to action recognition and prediction. While mid- to longterm action
recognition is a well studied field [39, 58, 129], early and fine grained action recognition
(like gesture initiation, back-channel communication – nodding, social gaze, ... –, etc.)
that are important for smooth interaction, requires geometric reasoning at relatively
high temporal resolution that is able to operate within a symbolic context. Viewed from
a slightly different perspective, better temporal resolution in the knowledge stack could
lead the way to programming paradigms that are massively event-oriented and still
semantically grounded.

Our last word will be for the idea embodiment and the research perspectives it
opens: the knowledge-oriented architectures that are being build in many robotic
research lab around the world have a very specific characteristic compared to the
efforts of other research communities working on the question of knowledge by human
systems, like in cognitive psychology, or computer-based systems, like in the semantic
web community: robots are embodied computers. They act and interact in the physical
world, and the physical world plays a key role as a communication support. And at the
same time, they are computers, with unlimited access to remote sources of knowledge
via the Web, either as static database, or through exchanges with other robots.
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This dual essence, both as embodied organism and disembodied agent, places the
robot at the crossing of two fundamental approaches to knowledge management: either
physically and experientially grounded, central, internal to the agent, or on the contrary
ungrounded, distributed, pervasive. The robot has this rare privilege of being an
intelligent entity that can merge and take advantage of both. The research efforts to
achieve this fusion have started, foundations have been laid, much more remains to be
explored.
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Appendix A

Description Logics Semantics

This appendix describes some notations and the naming convention of Description
Logics. The content of this page comes from the Wikipedia page on Descriptions Logics1

and the DL Complexity Navigator [149]. The academic reference on this matter is [9].

ALC Let NC , NR and NO be (respectively) sets of concept names (also known as atomic
concepts), role names and individual names (also known as individuals, nominals or objects).
Then the ordered triple (NC , NR, NO ) is the signature of the language.

Description Logics are implicitely Attributive Concept Language with Complements:
ALC. The set of ALC concepts is the smallest set such that:

� The following are concepts:

– > (top is a concept)

– ? (bottom is a concept)

– Every A 2 NC (all atomic concepts are concepts)

� If C and D are concepts and R 2 NR then the following are concepts:

– C uD (the intersection of two concepts is a concept)

– C tD (the union of two concepts is a concept)

– :C (the complement of a concept is a concept)

– 8R.C (the universal restriction of a concept by a role is a concept)

– 9R.C (the existential restriction of a concept by a role is a concept)

This can be formulated as ALC languages allowing:

� Atomic negation (negation of concept names that do not appear on the left hand
side of axioms)

� Concept intersection

� Universal restrictions
1http://en.wikipedia.org/wiki/Description_logic
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� Limited existential quantification

The expressiveness of ACL languages can be extended, following this naming
convention:

� F for support of functional properties,

� N for cardinality restrictions (owl:cardinality, owl:maxCardinality, implies
F),

� Q for qualified cardinality restrictions (available in OWL 2, cardinality restrictions
that have fillers other than owl:Thing, implies N ),

� E for full existential qualification (Existential restrictions that have fillers other
than owl:Thing),

� U for concept union,

� C for complex concept negation,

� S for role transitivity,

� H for role hierarchy (subproperties - rdfs:subPropertyOf),

� R for complex role inclusion axioms (reflexivity and irreflexivity; role disjointness,
implies S andH),

� O for nominals (enumerated classes of object value restrictions - owl:oneOf,
owl:hasValue),

� I for inverse properties,

� (D) for use of datatype properties, data values or data types.

OWL2 is a SROIQ(D) languages, which can be written in expansed form asALC +
SHRFNQOI(D). This is the expressiveness level of the ORO common-sense ontology.
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Task representation in the ontology

This appendix is a specific study of the representation issues that arise when one tries
to model actions, pre-conditions and post-conditions in ontologies.

B.1 The challenge of task representation

It has already been presented at chapter 2, managing tasks in a robot includes these
kind of cognitive capacities:

1. the ability to infer which tasks could be started at any time,

2. the ability to check that if we do some task, it won’t bring the world in an
inconsistent state,

3. more generally, the ability to predict the state of the world after some task execu-
tion,

4. retrieve tasks that should be started to achieve some result,

5. knowing how long a task lasts.

These capabilities are traditionally deferred to dedicated reasoning systems (plan-
ners) that take into account different constraints (time, current activity, agent’s de-
sires. . . ) to select tasks and build plans.

The ontology, as built by the robot during its lifetime, is a model of the world that
can help the planner. It can efficiently represent some of the knowledge required for
planning and task execution:

� Agents state (like, busy, reading, standing, talking. . . ), desires (short or long term
goals)

� Agents capacities (technically doable actions)

� Physical world state (location of objects,. . . )

� Common-sense knowledge (role, usage of objects. . . )
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Note that this knowledge is mostly declarative. Storing of procedural knowledge is
more difficult. But we’ll come to it later.

Now, what are tasks from the ontology point of view?

1. Tasks are instances of actions that have some purpose. As it, they are instances
of cyc:PurposefulAction

2. The type of action can be further refined by using sub-classes of PurposefulAc-
tion (like cyc:Movement-TranslationEvent, cyc:Reading. . . the robot is
expected to provide - likely at startup - the list of actions it can achieve depending
on its hardware)

3. a cyc:PurposefulAction is cyc:performedBy one (or several) cyc:EmbodiedAgent.

A task may have a specific context as prerequisites and reversely, may imply some
new state of the world as post-condition. Since these two aspects are largely symmetric,
I will only discuss post-conditions.

Post-conditions are difficult to represent, because the new state of the world they
represent may contradict with the current state, thus leading to inconsistencies. It is a
fundamentally non-monotonic process.

Imagine the task: "cracking an egg". To build a model of this task, we need somehow
to encode the post condition: the egg shell is broken [stmt1].

We can as well assume that the state of the egg shell before we crack it is: the egg
shell is not broken [stmt2].

If we add both these statements [stmt1] and [stmt2] in the ontology (i.e. , we
assert them), the ontology becomes inconsistent, and no reasoning is possible.

For people doing planning, there’s no real issue there: that’s precisely the planner
role to replace [stmt2] by [stmt1] when the task is achieved. In this case, the two
statements wouldn’t hold (i.e. , be asserted to be true) at the same time, and everything
remains consistent.

OPENCYC has another powerful way to deal with possible worlds: micro-theories.
Within a microtheory, a certain set of facts must hold. But not necessary outside. To put
it in another way, OPENCYC doesn’t generally requires the set of facts to be consistent.
Only facts asserted in a specific microtheory must be consistent with each others.

In the egg example, it means that statements 1 and 2 can be asserted at the same
time. Two microtheories must be created as well (called cyc:TaskState in this case),
one that would describe the world before the task "cracking an egg" (it would be linked
to the task by the cyc:taskPrerequisites predicate), one that would describe the
world after the task completion (linked with cyc:taskToAchieve predicate).

However the microtheories approach does not belong to the Description Logics (it
is not anymore a first order logic system), and thus considerably reduce the practical
inference capabilities.

Second problem (that is partially a consequence of the first one): none of the standard
semantic tools and languages like OWL, Protege, OWL-API, Jena or Pellet, has a notion
of microtheory.
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B.2 A simple case: the Move task

So in practice, some mitigation must be done.
Since the semantics behind cyc:TaskState, cyc:RealizedTaskState (an ef-

fective, realised state of the world), cyc:taskPrerequisites, cyc:taskToAchieve
and cyc:taskConstraints (that expresses specific constraints applied during task
execution) are still relevant to us, the question is: how to build a cyc:TaskState
without cyc:Microtheory?

A simple yet “real world” example, extracted from the LAAS’ HATP planner task
model, helps to illustrate the problem:

action Move(Agent ag1, Place p1, Place p2)

preconditions

p1 != p2;
ag1.posTopo == p1;

;

effects
ag1.posTopo == p2; ;

Pre- and post-conditions and the relations between entities (ag1, p1, p2) are easy to
understand from this model.

To represent it in the ontology, we can start with the pre-condition P1 != P2. We
want to create a new kind of cyc:TaskState that says: "Two locations are different".

DifferentLocationState subClassOf cyc:TaskState
forLocation hasDomain DifferentLocationState
forLocation hasRange cyc:SpatialThing-Localized

precondition1 rdf:type DifferentLocationState
precondition1 forLocation p1
precondition1 forLocation p2

precondition1 is an instance of the state DifferentLocationState.
Same thing for an IdenticalLocationState and the two instances precondition2

and postcondition1:

IdenticalLocationState subClassOf cyc:TaskState
forLocation hasDomain IdenticalLocationState
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precondition2 rdf:type IdenticalLocationState
precondition2 forLocation ag1
precondition2 forLocation p1

postcondition1 rdf:type IdenticalLocationState
postcondition1 forLocation ag1
postcondition1 forLocation p2

We can then instantiate the task itself:

move1 type Move
move1 performedBy ag1
move1 fromLocation p1
move1 toLocation p2
move1 taskPrerequisites precondition1
move1 taskPrerequisites precondition2
move1 taskToAchieve postcondition1

While this model is valid, we observe two issues:

� DifferentLocationState/IdenticalLocationState conditions, as formalised
above, lack expressiveness: we, as robot designers, decide that DifferentLocation-
State means that the locations must be disjoint, but this rule is not explicit at the
symbolic level. The only explicit constraint is that DifferentLocationState or
IdenticalLocationState involve locations (instances of cyc:SpatialThing-Localized).
But we don’t formally say that these locations must be disjoint or identical.

� The abstract model of the task does not maintain the semantic: it merely says
that a Move task must have two preconditions, one of kind different location, one
of kind identical location and one post-condition of type identical location. But the
fact that explicitly the location p1 and p2 must be different (and not, for instance,
ag1 and p1 or even the moon and the sun) is not kept. We set this semantic at
instantiation time, but it seriously reduces the relevance of such a task description
for anything useful.

As it, it’s difficult to me to see the relevance of such a task model for robotics. The
original task model from HATP is ways simpler and easier to read. But let dig a bit
futher.

B.3 Fluent-based approach

An alternative approach (used at the Technical University of Munich, for instance) is
based on fluents and events.
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The idea is to represent the various states of the world with instances of Holds and
Occurs classes, associated to a fluent and a time (or time interval).

With the egg example, occurs(breaking(egg), 10.2) (which means that the
egg was broken at time 10.2s) would be represented in the ontology as:

event231 rdf:type cyc:BreakingEvent
event231 hasObject egg

state746 rdf:type Occurs
state746 fluent event231
state746 occursAt 10.2

which relies on the reification of events.
This representation matches situation calculus (or variants like event/fluent cal-

culus) theories and takes explicitly into account the time (either time points or time
intervals) and is especially suited for plan representation.

However, causal relations are not addressed in this approach, which limit its practi-
cal use to represent tasks in the ontology.

Another issue is the lack of integration with classical first-order logic reasoners:
fluents are a kind of statement reification and prevent standard reasoners to make infer-
ence on the new state of the world after the conclusion of some action. To put it another
way: when a fluent holds, we can not directly infer the consequences of this fluent.
Even if the fluent BrokenEgg holds, the statement egg rdf:type cyc:Fractured
is not asserted anyhow, and we couldn’t directly query the ontology for the list of
broken objects for instance.

B.4 Rules based representations

The expressiveness issue we had with tasks represented as pure OWL statement can be
partially addressed with rules. The example below, written in SWRL, is rewrites the
IdenticalLocationState condition (DifferentLocationState is similar):

IdenticalLocationState(?state) ^
forLocation(?state, ?p1) ^
forLocation(?state, ?p2) ^
sameAs(?p1, ?p2)
) RealizedTaskState(?state)

We can now create a new class, EligibleAction, that holds all the actions whose
pre-conditions are satisfied.
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//Define our variables
EmbodiedAgent(?ag1) ^
SpatialThing-Localized(?p1) ^
SpatialThing-Localized(?p2) ^

//Bind the Move action
Move(?action) ^
performedBy(?action, ?ag1) ^
fromLocation(?action, ?p1) ^
toLocation(?action, ?p2) ^

//Bind the agent position
hasLocation(?ag1, ?p3) ^

//Check precondition 1
DifferentLocationState(?precondition1) ^
forLocation(?precondition1, ?p1) ^
forLocation(?precondition1, ?p2) ^
RealizedTaskState(?precondition1) ^

//Check precondition 2
IdenticalLocationState(?precondition2) ^
forLocation(?precondition2, ?p1) ^
forLocation(?precondition2, ?p3) ^
RealizedTaskState(?precondition2)

) EligibleAction(?action)

This rule would be triggered by the reasoner if and only if:

1. At least one agent is asserted or inferred (it is bound to ?ag1),

2. Two other, different locations have been asserted of inferred (?p1 and ?p2)1

3. At least on instance of the action Move exists (?action), performed by ?ag1
from ?p1 to ?p2.

4. ?p3 will be successively bound to every current location of ?ag1

5. One instance of a DifferentLocationState state exists with ?p1 and ?p2 as
locations. This state is a realised state (i.e. , it holds).

6. Symmetrically, one instance of a IdenticalLocationState state exists with
?p1 and ?p3 as locations. This state is realised as well.

1Since OWL and SWRL use the Open World Assumption, it means that ?p1 and ?p2 must be
explicitly disjoint
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If all these conditions hold, then the ?action is inferred by the reasoner as an
EligibleAction.

Three important remarks, however:

� One could suggest to factor the code with a rule that would say: "For any Action,
if all pre-conditions are RealizedState, then the action is undertakeable". Some-
think like:

Move(?action) ^
taskPrerequisites(?action, ?state) ^
RealizedState(?state)
) EligibleAction(?action)

This is not possible in OWL because of the Open World Assumption (OWA): there
is not way to be certain that all states are realised because there is no way to know
all the prerequisite states.

� For post-conditions, it’s important to understand that we can not apply the result
of a rule to the ontology (non-monotonicity).

It means that something like that:

Move(?action) ^
SuccessfullyCompleteAction(?action) ^
IdenticalLocationState(?postcondition1) ^
forLocation(?postcondition1, ?p2) ^
forLocation(?postcondition1, ?p3) ^
) RealizedState(?postcondition1)

or even simpler:

Move(?action) ^
SuccessfullyCompleteAction(?action) ^
fromLocation(?action, ?p1) ^
toLocation(?action, ?p2)
) sameAs(?p1, ?p2)
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works as expected, but only as long as the action is considered a SuccessfullyCompleteAction.
It means as well that if we do another movement (move2) but move1 is still a
SuccessfullyCompleteAction, then we are likely to have an inconsistency
(or unwanted inferences): the robot will be at several places at the same time.

And even if we can add somehow new statements, we can not retract statement at
all: it’s not possible for instance to complete the post-condition rule to say that
the agent is not anymore in p1.

� Finally, one could conversely want to use post-condition with rules to know if an
action was successful:

Move(?action) ^
performedBy(?action, ?ag1) ^
hasLocation(?ag1, ?p1) ^
toLocation(?action, ?p2) ^
sameAs(?p1, ?p2)
) SuccessfullyCompleteAction(?action)

This does not prove that the action was successful - or did even occurred at all. It
only says that the world is in a state that match the post-conditions of the action
Move.

At the end, what should we think of rule-based representations of pre- and post-
conditions? We will conclude this study on this question, but for now, it is important to
underline the complexity of writing correct SWRL rules in the Description Logics safe
space. It can however prove useful to check that the current world state is a context
that permit some actions to occur or conversely that matches the expected outcome of
some other actions.

B.5 Towards a conclusion

Our initial questions where:

1. How to express pre- and post-conditions in the ontology? how the knowledge
processing framework could be used to check or enforce them?

2. What abstract model of a task could be formalised in the ontology?

3. How could we rely on the ontology to instantiate tasks?

Can our knowledge representation system help with dealing with pre- and post-
condition? Or, are ontologies and associated reasoning tool relevant for the legality task
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(are tasks performable?) and the temporal projection task (what will be the state of the
world after some tasks are performed?), as described by Levesque?

We have seen that standard OWL semantics does not allow for a satisfying way to
represent the complex semantic and logic of pre- and post-conditions, even in simple
case like the Move action.

However, the rule-based approach allows us to effectively represent the full expres-
siveness of these constraints, at the cost of a complex syntax and lack of generality.
Since rule language like SWRL are actually implemented in current reasoners like Pellet,
such description of task conditions could be actually suitable for checking both that:

� the robot believes the current world state allows a given action to take place,

� the robot believes that it reached a state where the intended results of an actions
are realised (which may mean that either the action was successfully complete or
that some environment changes lead to an equivalent state of the world)

Per se this knowledge is useful for the execution control. But it can not replace the
need for the planner to reason itself on pre- and post-conditions since the reasoning that
the ontology framework provides applies only to the current state of the world. Indeed,
traditional first-order logic reasoners do not offer convenient ways to build hypothetical
world models that would come as the result of some actions (in part because of the
monotonic reasoning paradigm).

Moreover, as we already stated, using such rules for post-condition only allows
to check if the post-conditions are met. It doesn’t prove that the action was achieved.
More importantly, none of the various solutions we presented above allow to apply
post-conditions to the ontology. An external module (likely the execution control) must
take care of updating the ontology according to the consequences of the action, adding
new statements and removing deprecated facts.

It appears that representing certain states of the world as a set of constraints expressed
as rules can be relevant. It would allow the robot to be conscious that a specific situation
occurs. But, to be useful, these cyc:TaskState (which can be viewed indeed as contexts)
must be easy to create "on the fly" by the planner or by the execution controller, either
to describe a context required by a new task or on the contrary to express an expected
situation. It could be useful to develop to this end a library dedicated to SWRL content
generation.

Last aspect: are abstract models of tasks easily and effectively representable in our
current, OWL-based, knowledge frameworks?

Brandon Ibach, one of the Pellet developers, summarises the model of the Move task
this way (for the precondition part):

Place
Agent [ hasPosition(Place) ]
Action

UndertakableAction  EligibleMove ^ NonEmptyMove
Move [ hasAgent(Agent) hasFrom(Place) hasTo(Place) ]

EligibleMove  Move(m) ^ hasAgent(m, a) ^ hasPosition(a, p) ^ hasFrom(m, f) ^
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sameAs(p, f)
NonEmptyMove  Move(m) ^ hasFrom(m, f) ^ hasTo(m, t) ^ differentFrom(f, t)

This can be probably considered as an abstract model of the task. This model mixes
pure OWL statements with SWRL extensions. It’s formally sound, but we doubt of the
practical usability of such a model for the planner.
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The Knowledge API

Refer to section 2.4 for the rationale of the API, as well as a discussion of its limitations.
This presentation of the API is slightly reduced: for brevity, some non-essential

parts and many examples have been omitted.

C.1 Conventions

� Service: we call service the set of all methods defined by this API.

� Method: method refers to one single remote function offered by the service. The
terms function, method, and procedure can be assumed to be interchangeable.

� The Service provider or implementation is a software that implement the API.

� A policy is a (extensible) set of rules that defines in which ways the knowledge
must be altered. It is represented as a dictionary of (keys, values). The section C.3
details the content of these policies.

C.2 Statements, partial statements and rules

C.2.1 Resources and literals

All entities in the knowledge base are either resources or literals. Resources can be
classes, predicates or instances.

Resources must start with a letter and can be comprised of symbols [a-zA-Z0-9_].
They may be prefixed with a namespace prefix (like in rdf:type) or come with a

complete namespace URI. In this case, the full URI (the namespace and the resource
name) must be enclosed between < and >. If no namespace is provided, it is assumed
to be defined in the server default namespace.

Literals should follow the SPARQL syntax for literals1.

1http://www.w3.org/TR/rdf-sparql-query/#QSynLiterals
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C.2.2 Statements

Two syntaxes are admissible to represent a statement (or axiom). The general one is
a string starting with a predicate p followed by a set in brackets of comma-separated
arguments:

p(a1, ..., an)

where n is the arity of the predicate. For instance:

cutsWith(human0, bred0, knife0)

The predicate must be a resource, as well as at least one of the arguments. Other
arguments may be either resources or literals.

Infix syntax As a special case, the infix syntax (subject predicate object) is acceptable for
binary predicates (in this case without commas or brackets):

s p o

For instance:

sky0 hasColor blue

A partial statement is a statement with a least one unbound member. Unbound
members are denoted either by a “*” (an anonymous variable, for instance * isVisible
true. The Prolog’s “_” is also acceptable) or by a string starting with ? (named variable,
for instance {sees(?ag, obj1), ?ag type Human}).

Partial statements are masks or patterns, and used as such in methods like find or
remove.

Note that, as in Prolog, each occurrence of “*” or “_” corresponds to a different
variable; even within a clause, _ does not stand for one and the same object. Wherever
a variable is used only once within a clause, the anonymous variable can (and should)
be used to emphasize this fact.

C.2.3 Rules

Rules syntax is based on the human-readable form of the SWRL syntax2, encapsulated
in a string. Atoms must be separated by either a comma, ˆ (unicode U+005E) or ^
(logical AND, unicode U+2227). The head and the tail of the rule are separated either
by the two symbols -> or by the implication symbol!, unicode U+2192.

For instance:

� Yogurt(?x) -> DairyProduct(?x) asserts that all instances of type Yogurt
are also DairyProduct,

� Tableware(?o), eatsWith(?x, ?o), Yogurt(?x) -> Tablespoon(?o)

� looksAt(?a, ?o) ! isVisible(?o) ^ sees(?a, ?o)

Same rule as above apply for anonymous variables.
2http://www.w3.org/Submission/SWRL/#2.2
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C.2.4 Probabilities

Statements may have a truth probability attached to them, as a float value comprised
between 0.0 (impossible fact) and 1.0 (certain fact). If no probability is specified, a
probability of 1.0 is assumed.

Two syntaxes are possible: either included in the statement string, separated with a
colon:

predicate(a1, ...,an):p

For example: Age(EiffelTower, 300):0.54, which means: the fact that the
Eiffel tower is 300 years old holds with a probability of 54%.

Or as a independent float value:

[predicate(a1, ...,an), p]

For example: [Age(EiffelTower, 300), 0.54]
When using the infix syntax for statements, only the second syntax for probabilities

is allowed:
[human1 holds my_cup, 0.87] (which mean that it is believed with 87% of

certainty that the human holds the cup).
statement always means either a statement alone or a statement with a probabil-

ity.

C.3 Policies

Knowledge content interacts with the knowledge base through the revise method.
This method takes as first parameter a set of statements, and as second parameter, a
policy that specifies what must be done with the statements.

A policy is represented as a set of (key, value) pairs whose possible values are
presented in table C.1.

Several shortcuts for common operations (like addition of knowledge) are defined
and listed below.

C.4 Models

A model is a knowledge container unit (for instance, a RDF tree, a SQL database, etc.).
The service provider may support several models (for instance, one per agent or one for
certain facts, one for uncertain facts, etc.). The actual use and semantic of each model is
left to the client.

Each model is identified by a unique alphanumeric id. Most of the API methods
can take as parameter a model id. If omitted (null) or if the reserved id all is used,
the method is applied on all models (except otherwise noted, this should be strictly
equivalent to call the method on each model separately). Service provider must offer at
least one model called default, denoting the default robot knowledge storage.
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Key Values Meaning

method add (default) the statements are added to the knowledge base,
without ensuring consistency.

safe_add the statements are added only if they (individu-
ally) do not lead to inconsistencies.

retract the statements are removed from the model. As-
sociated probabilities are discarded.

update Updates objects of one or several statements in
the specified model. If the predicate is not in-
ferred to be functional (i.e. , it accept only one
single value), behaves like add.

revision or
safe_update

Updates objects of one or several statements in
the specified model if it does not (individually)
lead to inconsistencies. If the predicate is not
inferred to be functional (i.e. , it accepts only one
single value), behaves like safe_add.

model all (default) all existing models (section C.4) are impacted by
the change.

a valid model id or a
set of valid model id

only the specified model(s) are impacted

Table C.1: Knowledge revision policies.
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C.5 Core API

C.5.1 Service management

� string hello()

– Returns the version number of the service provider. Can be used to check
connection status.

– Params: None

– Return values:

� version number (string)

� load(string path, [string model])

– Loads the content of the specified OWL ontology. If <owl:imports> are
specified, the server is expected to honour them.

– Params:

string the URI of the OWL file. Must be reachable by the server.
� opt. [string] the model ID that receives the OWL content. If omitted, the

content is added to all existing models.

– Return values: None

� save([string path], [string model])

– Saves the model content to an OWL ontology. Each models are stored in
their own namespace (by appending the model id to the default namespace).

– Params:

� opt. [string] the path where to export the OWL file. Must be reachable
by the server. If omitted, a default, unique path, is build (the naming
scheme is implementation dependent). OWL serialization (XML, turtle,
n3. . . ) is implementation dependent.
� opt. [string] the model ID that should be saved. If omitted, all models

are dumped.

– Return values: None

� reset([string model])

– Reset a model to its initial state. Note that the initial state may not be an
empty set of facts if the service provider loads some initial content at model
initialization.

– Params:

� opt. [string] the model ID to reset. If omitted, all models are reset.

– Return values: None

� special(string method, [set<string> parameters])
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– This method enables implementation-dependent extensions.

– Params:

string the name of the method to execute
� opt. [set<string>] method parameters

– Return values: implementation dependent

C.5.2 Managing knowledge

� revise(set<statement> statements, [policy policy])

– Alter the knowledge base with one or several statements, following the
specified policy.

– Params:

set<statement> the set of statements to add.
� opt. [policy] the policy to follow. If omitted, the default policy is applied

(all statements are added to all models, without checking for consis-
tency).

– Return values: None

� add(set<statement> statements, [string model])

– Adds one or several statements to the specified model. Equivalent to revise
with the policy "method":"add".

– Params:

set<statement> the set of statements to add.
� opt. [string] the model ID that receives the statements. If omitted, state-

ments are added to all models.

– Return values: None

� retract(set<[statement|partial_statement]> pattern, [string model])

– Removes one or several statements to the specified model. Equivalent to
revise with the policy "method":"retract".

– Params:

set<statement|partial_statement> the set of statements to remove. If a
partial statement is encountered, all statements matching this pattern
are removed.
� opt. [string] the model ID where the statements must be removed from.

If omitted, statements are removed from each models.

– Return values: None

� update(set<statement> statements, [string model]))
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– Updates objects of one or several statements in the specified model, and
only for functional predicates (ie, predicates that accept only one value).
Equivalent to revise with the policy "method":"update".

– Params:

set<statement> the set of statements to update. If a partial statement is
encountered, all statements matching this pattern are removed.
� opt. [string] the model ID to update. If omitted, statements are updated

in all models.

– Return values: None

–

C.5.3 Knowledge retrieval

� lookup(string concept, [string model]))

– Searches for the given string in the knowledge base, and returns the matching
resources, along with their types.

– Params:

string the string to look for.
� opt. [string] the model ID to look in. If omitted, the string is looked for

in all models.

– Return values: A set of pair [resource_id, [class|instance|object_property|datatype_property]].

� about(string resource, [string model]))

– Returns the list of asserted (and if available inferred) statements which the
resource is part of.

– Params:

string the resource to look for.
� opt. [string] the model ID to look in. If omitted, the resource is looked

for in all models.

– Return values: A set of statements.

� exist(set<[statement|partial_statement]> pattern, [string model]))

– Checks that the given pattern matches content in the ontology. If statements,
returns true if all the statements are present in the knowledge base (asserted
or inferred), if partial statements, returns true if at least one statement match
the conjunction of the partial statements.

– Params:

set<[statement|partial_statement >] the pattern to check.
� opt. [string] the model ID to look in. If omitted, the resource is looked

for in all models.
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– Return values: A boolean.

� check(set<statement> statements, [string model]))

– Checks that the given statements are consistent with the knowledge base.
Statements are not added to the knowledge base.

– Params:

set<statement> the statements to test.
� opt. [string] the model ID to look in. If omitted, the resource is looked

for in all models.

– Return values: A boolean. true if statements do not contradict with the
knowledge base.

� find(set<string> named_variables, set<partial_statement> pattern,
[set<string> constraints], [string model]))

– Retrieves ressources given a set of partially defined statements plus optional
constraints about this resource. Constraints must follow the SPARQL syntax
for filters. named_variables defines the set of variables whose bindings
are looked for. Probabilities can be retrieved as well.

– Params:

string the name of the variable to identify, as used in the statements.
set<partial_statement> pattern build from partial statements.
� opt. [set<partial_statement>] pattern build from partial statements.
� opt. [string] the model ID to look in. If omitted, the resource is looked

for in all models.

– Return values: A set of resources.

� findmpe(string named_variable, set<partial_statement> pattern,
[set<string> constraints], [string model]))

– Retrieves ressources within the Most Probable Explanation (ie the most likely
current state of the world in the given model). For implementation not
supporting probabilistic reasoning, findmpe is strictly equivalent to find.
See find for details about the use of the request.

– Params:

string the name of the variable to identify, as used in the statements.
set<partial_statement> pattern build from partial statements.
� opt. [set<partial_statement>] pattern build from partial statements.
� opt. [string] the model ID to look in. If omitted, the resource is looked

for in all models.

– Return values: A set of resources.
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C.5.4 Managing models

� models()

– Returns the set of current available models. See also models

– Params: None

– Return values: a set of all model ids.

� addmodel(string id)

– Adds a new knowledge model to the knowledge base.

– Params:

string the model ID to add.

– Return values: None.

� removemodel(string id)

– Removes a knowledge model from the knowledge base.

– Params:

string the model ID to remove.

– Return values: None.

� isconsistent([string model])

– Checks that the knowledge base is globally consistent.

– Params:

� opt. [string] the model ID to check. If omitted, all models are checked
and true is answered only if all models are consistent.

– Return values: A boolean. true if the model is consistent.

� addrules(set<string> rules, [string model])

– Add rules to the model. See rules for examples.

– Params:

set<string> a set of rule to add to the model.
� opt. [string] the model ID that receive the rules. If omitted, rules are

added to all models.

– Return values: None.
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C.5.5 Taxonomy walking

� classesof(string instance, [bool direct], [string model]))

– Returns the (asserted and if available, inferred) classes of an instance.
– Params:

string the instance id to look for.
� opt. [bool] if true, only direct types are returned. If omitted, false is

assumed
� opt. [string] the model ID to look in. If omitted, the classes are searched

in all models.
– Return values: A set of resource ids.

� instancesof(string class, [bool direct], [string model]))

– Returns the (asserted and if available, inferred) instances of a class.
– Params:

string the class id to look for.
� opt. [bool] if true, only direct instances are returned. If omitted, false

is assumed
� opt. [string] the model ID to look in. If omitted, the instances are searched

in all models.
– Return values: A set of resource ids.

� subclassesof(string class, [bool direct], [string model]))

– Returns the (asserted and if available, inferred) sub-classes of a class.
– Params:

string the class id to look for.
� opt. [bool] if true, only direct sub-classes are returned. If omitted, false

is assumed
� opt. [string] the model ID to look in. If omitted, the sub-classes are

searched in all models.
– Return values: A set of resource ids.

� superclassesof(string class, [bool direct], [string model]))

– Returns the (asserted and if available, inferred) super-classes of a class.
– Params:

string the class id to look for.
� opt. [bool] if true, only direct super-classes are returned. If omitted,
false is assumed
� opt. [string] the model ID to look in. If omitted, the super-classes are

searched in all models.
– Return values: A set of resource ids.
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oro-server API

This appendix lists the complete API of oro-server as of version 0.8.

Base

� safeAdd(set<string> statements): try to add news statements in long
term memory, if they don’t lead to inconsistencies (return false if at least one stmt
wasn’t added).

� safeAdd(set<string> statements, string): try to add news statements
with a specific memory profile, if they don’t lead to inconsistencies (return false if
at least one stmt wasn’t added).

� check(set<string> statements): checks that one or several statements
are asserted or can be inferred from the ontology

� checkConsistency(): checks that the ontology is semantically consistent

� checkConsistency(set<string> statements): checks that a set of state-
ments are consistent with the current model

� help(): returns a human-friendly list of available methods with their signatures
and short descriptions.

� getLabel(string): return the label of a concept, if available.

� lookup(string): try to identify a concept from its id or label, and return it,
along with its type (class, instance, object_property, datatype_property).

� lookup(string, string): try to identify a concept from its id or label and
its type (class, instance, object_property, datatype_property).

� revise(set, string):

� add(set<string> statements): adds one or several statements (triplets
S-P-O) to the robot model, in long term memory.

� add(set<string> statements, string): adds one or several statements
(triplets S-P-O) to the robot model associated with a memory profile.
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� clear(set<string> statements): removes statements in the given set

� remove(set<string> statements): removes one or several statements
(triplets S-P-O) from the ontology.

� update(set<string> statements): update the value of a functional prop-
erty.

Agents

� checkConsistencyForAgent(string): check the consistency of a specific agent
model.

� safeAddForAgent(string, set<string> statements): try to add news
statements to a specific agent model in long term memory, if they don’t lead to
inconsistencies (return false if at least one stmt wasn’t added).

� safeAddForAgent(string, set<string> statements, string): try to
add news statements to a specific agent model with a specific memory profile, if
they don’t lead to inconsistencies (return false if at least one stmt wasn’t added).

� discriminateForAgent(string, set<string> statements): returns a list
of properties that helps to differentiate individuals for a specific agent.

� findForAgent(string, string, set<string> statements): tries to iden-
tify a resource given a set of partially defined statements in an specific agent
model.

� findForAgent(string, string, set, set): tries to identify a resource
given a set of partially defined statements and restrictions in an specific agent
model.

� getInfosForAgent(string, string): returns the set of asserted and inferred
statements whose the given node is part of. It represents the usages of a resource.

� listAgents(): returns the set of agents I’m aware of (ie, for whom I have a
cognitive model).

� lookupForAgent(string, string): lookup a concept in a specific agent
model.

� addForAgent(string, set): adds one or several statements (triplets S-P-O)
to a specific agent model, in long term memory.

� addForAgent(string, set, string): adds one or several statements (triplets
S-P-O) to a specific agent model associated with a memory profile.

� clearForAgent(string, set): removes statements from a specific agent model.

� removeForAgent(string, set): removes one or several statements. Depre-
cated. Use clearForAgent instead.
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� save(string, string): exports the cognitive model of a given agent to an
owl file. The provided path must be writable by the server.

� updateForAgent(string, set): updates one or several statements (triplets
S-P-O) in a specific agent model, in long term memory.

Administration

� makeHtmlDoc(): returns a list of available methods in html format for inclu-
sion in documentation.

� listMethods(): returns the list of available methods with their signatures and
short descriptions as a map.

� stats(): returns some statistics on the server

� listSimpleMethods(): returns a raw list of available methods.

� reset(): reload the base ontologies, discarding all inserted of removed state-
ments, in every models

� list(string): lists on the serveur stdout all facts matching a given pattern.

� save(): exports the current ontology model to an owl file. The file will be saved
to the current directory with an automaticallygenerated name.

� save(string): exports the current ontology model to an owl file. The provided
path must be writable by the server.

Concepts comparison

� discriminate(set): returns a list of properties that helps to differentiate indi-
viduals.

� getDifferences(string, string): given two concepts, return the list of rele-
vant differences (types, properties...) between these concepts.

� getSimilarities(string, string): given two concepts, return the list of rele-
vant similarities (types, properties...) between these concepts.

Events

� registerEventForAgent(string, string, string, string, List): reg-
isters an event on a specific agent model. Expected parameters are: agent, type,
triggering type, variable, event pattern.

� registerEventForAgent(string, string, string, List): registers an event
on a specific agent model. Expected parameters are: agent, type, triggering type,
event pattern.
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� registerEvent(string, string, string, List): registers an event. Ex-
pected parameters are: type, triggering type, variable, event pattern.

� registerEvent(string, string, List): registers an event. Expected pa-
rameters are: type, triggering type, event pattern.

� clearEvent(string, string): remove one specific event from a specific
model.

� clearEventsForAgent(string): remove all events associated to a specific model.

� clearEvent(string): remove one specific event from the main model.

� clearEvents(): remove all events associated to the main model.

Querying

� find(string, set): tries to identify a resource given a set of partially defined
statements about this resource.

� find(string, set, set): tries to identify a resource given a set of partially
defined statements plus restrictions about this resource.

� getInfos(string): returns the set of asserted and inferred statements whose
the given node is part of. It represents the usages of a resource.

� query(string, string): performs one sparql query on the ontology

� getResourceDetails(string): returns a serialized ResourceDescription object
that describe all the links of this resource with others resources (sub and super-
classes, instances, properties, etc.).

� getResourceDetails(string, string): returns a serialized ResourceDescrip-
tion object that describe all the links of this resource with others resources (sub
and superclasses, instances, properties, etc.). The second parameter specify the
desired language (following rfc4646).

Taxonomy

� getClassesOf(string): returns a map of class name, label (or class name, class
name without namespace is no label is available) of asserted and inferred classes
of a given individual.

� getDirectClassesOf(string): returns a map of class name, label (or class
name, class name without namespace is no label is available) of asserted and
inferred direct classes of a given individual.

� getDirectInstancesOf(string): returns a map of instance name, label (or
instance name, instance name without namespace is no label is available) of
asserted and inferred direct instances of a given class.
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� getDirectSubclassesOf(string): returns a map of class name, label (or class
name, class name without namespace is no label is available) of all asserted and
inferred direct subclasses of a given class.

� getDirectSuperclassesOf(string): returns a map of class name, label (or class
name, class name without namespace is no label is available) of all asserted and
inferred direct superclasses of a given class.

� getInstancesOf(string): returns a map of instance name, label (or instance
name, instance name without namespace is no label is available) of asserted and
inferred instances of a given class.

� getSubclassesOf(string): returns a map of class name, label (or class name,
class name without namespace is no label is available) of all asserted and inferred
subclasses of a given class.

� getSuperclassesOf(string): returns a map of class name, label (or class name,
class name without namespace is no label is available) of all asserted and inferred
superclasses of a given class.
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Main Software Contributions

Preparing a PhD thesis in a robotic laboratory often involved writting quite a lot of
code.

During my four years spanned at LAAS-CNRS and TUM’s IAS laboratory, I have
participated to many projects:

Project (Main) language Total LOC Contribution
(% of total diffs)

ORO

oro-server Java 17.6k 100%
oro-view Python 1.8k 100%
pyoro Python 1.8k 100%
liboro C++ 5.3k 100%
oro-ros Python 100%
oro-yarp C++ 1.0k 100%

NLP

dialogs Python 18.3k 38%
android-robot-cmd Java 0.8k 100%
xmpp-stdio Python 0.2k 100%
gspeett Python 0.3k 100%

CONTROL pyrobots Python 2.6k 90%

MORSE morse Python 28.1k 20%

GENOM pypoco Python 1.5k 100%

The count of lines of code (LOC) includes comments but not the blank lines.
I have also an acknowledged contribution to the ROS meta operating system related

to the support of Python 3.
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Publications and Dissemination
Activities

F.1 Publications as Main Author

F.1.1 International Peer-Reviewed Journals

� Lemaignan, S. and Ros, R. and Sisbot, E. A. Alami, R. and Beetz M., Ground-
ing the Interaction: Anchoring Situated Discourse in Everyday Human-Robot
Interaction, International Journal of Social Robotics, 2011.

F.1.2 Book Chapters

� (in press) Lemaignan, S. and Alami, R. and Pandey, A. K. and Warnier, M. and
Guitton, J. , Towards Grounding Human-Robot Interaction in Bridges between the
Methodological and Practical Work of the Robotics and Cognitive Systems Communities
- From Sensors to Concepts Editors: Amirat, T. and Chibani, A. and Zarri, G. P..
Springer Publishing. 2012.

F.1.3 Conference Articles

� Lemaignan, S. and Ros, R. and Alami, R. and Beetz, M., What are you talking
about? Grounding dialogue in a perspective-aware robotic architecture, RO-
MAN. 2011.

� Lemaignan, S. and Ros, R. and Mösenlechner, L. and Alami, R. and Beetz,
M., ORO, a knowledge management module for cognitive architectures in
robotics, IROS. 2010.

� Ros, R. and Lemaignan, S. and Sisbot, E. A. and Alami, R. and Steinwender, J. and
Hamann, K. and Warneken, F., Which One? Grounding the Referent Based on
Efficient Human-Robot Interaction, ROMAN. 2010. Best paper award.
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F.2 Publications as Co-Author

F.2.1 International Peer-Reviewed Journals

� (in press) Lallée, S. and Pattacini, U. and Lemaignan, S. and Lenz, A. and Mel-
huish, C. and Natale, L. and Skachek, S. and Hamann, K. and Steinwender, J. and
Sisbot, E.A. and Metta, G. and Pipe, T. and Alami, W. and Warnier, M. and Guitton,
J. and Warneken, F. and Dominey, P.F., Towards a Platform-Independent Cooper-
ative Human-Robot Interaction System: III. An Architecture for Learning and
Executing Actions and Shared Plans, IEEE Transactions on Autonomous Mental
Development, 2012.

F.2.2 Conference Articles

� (submitted) Warnier, M. and Guitton, J. and Lemaignan, S. and Alami, R., When
the robot puts itself in your shoes. Explicit geometric management of position
beliefs., ROMAN, 2012.

� (submitted) Warnier, M. and Guitton, J. and Lemaignan, S. and Alami, R., Let's
clean the table together, IROS, 2012.

� Alami, R. and Warnier, M. and Guitton, J. and Lemaignan, S. and Sisbot, E. A.,
When the robot considers the human..., ISRR, 2011.

� Lallée, S. and Pattacini, U. and Boucher J.D. and Lemaignan, S. and Lenz, A. and
Melhuish, C. and Natale, L. and Skachek, S. and Hamann, K. and Steinwender, J.
and Sisbot, E.A. and Metta, G. and Alami, W. and Warnier, M. and Guitton, J. and
Warneken, F. and Dominey, P.F., Towards a Platform-Independent Cooperative
Human-Robot Interaction System: II. Perception, Execution and Imitation of
Goal Directed Actions, IROS, 2011.

� Lallée, S. and Lemaignan, S. and Lenz, A. and Melhuish, C. and Natale, L. and
Skachek, S. and van Der Zant, T. and Warneken, F. and Dominey, P.F., Towards a
Platform-Independent Cooperative Human-Robot Interaction System: I. Per-
ception, IROS, 2010.

F.3 Peer-Reviewed Workshops and Other Dissemination
Activities

F.3.1 2012

� Echeverria, G. and Karg, M. and Lemaignan, S. and Degroote, A., and Lacroix, S.,
MORSE Tutorial, EURON.

� Lemaignan, S. and Gharbi, M. and Mainprice, J. and Herrb, M. and Alami, R., Ro-
boscopie: A Theatre Performance for a Human and a Robot, HRI, peer-reviewed.
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� Lemaignan, S. and Echeverria G. and Karg, M. and Mainprice, M. and Kirsch,
A. and Alami, R., Human-Robot Interaction in the MORSE Simulator, HRI,
peer-reviewed.

F.3.2 2011

� Lemaignan, S. and Ros, R. and Alami, R., Dialogue in situated environments: A
symbolic approach to perspective-aware grounding, clarification and reason-
ing for robots, Grounding Human-Robot Dialog for Spatial Tasks - RSS workshop,
peer-reviewed.

� Lemaignan, S. and Sisbot, E. A. and Alami, R., Anchoring interaction through
symbolic knowledge, HRI Pioneers, peer-reviewed.

F.3.3 2010

� Lemaignan, S., Ontologies et robotique : Quand le robot donne du sens à ce
qu'il perçoit, DocToMe Seminar.

� Lemaignan, S., Knowledge centric architecture for Human-Robot interaction,
TUM/LAAS Joint Winter Workshop.

� Lemaignan, S., Ontologies for HRI, Cotesys ROS Fall School.

� Lemaignan, S., What can we do with ontologies for HRI?, Dagstuhl Seminar on
Human-Robot Interaction.

� Ros, R. and Sisbot, E. A. and Lemaignan, S. and Pandey, A. K. and Alami,
R., Robot, tell me what you know about...?: Expressing robot's knowledge
through interaction, ICAIR, peer-reviewed.

� Lemaignan, S., OpenRobots Ontology: an overview, EURON.

175



176



Appendix G

Résumé détaillé

Ancrer l'interaction : Gestion des
connaissances pour la robotique
interactive

G.1 Introduction : robots, interaction et connaissances

Nao a été aperçu jouant avec des enfants autistes, Justin tapote sur la boite de chocolat
en poudre pour préparer le petit-déjeuner, des robots PR2 nous amènent des bières
et distribuent du popcorn dans les laboratoires, tandis que Rosie s’occupe des crêpes
pour le goûter : si ces expériences récentes, mises en place un peu partout dans les
laboratoires de robotique nous dise une chose, c’est que la robotique de service est en
train de quitter le domaine de la science-fiction, des rêves, des fantasmes et s’apprête à
frapper à la porte de notre quotidien.

Des progrès considérables ont été accomplis au niveau de la perception des ro-
bots : les caméras et les lasers sont agrégés dans des pseudo-capteurs renvoyant des
informations de haut-niveau : reconnaissance de visages, localisation et cartographie
SLAM, posture dynamique des hommes... Permettre à un robot de comprendre son
environnement est aujourd’hui un défi où deux facettes se mêlent : reconstruire en
continu un monde géométrique et dynamique cohérent ; abstraire ce même monde en
une représentation symbolique adaptée au raisonnement logique.

La résolution de ce premier défi, auquel cette thèse tente de contribuer, n’est cepen-
dant pas suffisante pour permettre une interaction entre hommes et robots. Le robot
auquel nous pensons vit dans le monde réel, un monde pour et avec des humains. Notre
robot doit acquérir des compétences sociales, il doit pouvoir considérer les hommes
autour de lui non seulement comme des entités physiques (...sur lesquelles ils ne faut
pas rouler par exemple), mais aussi et surtout comme des entités intelligentes, dotées
d’une individualité propre et unique.

Le robot doit pouvoir non seulement représenter son environnement, représenter
son propre état mental, mais aussi tenter de deviner et de représenter l’état mental, les
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Nao, Justin, PR2, Rosie : les robots jouent avec les enfants, préparent des chocolats chauds,
décapsulent les bières et font sauter les crêpes. Pour l’instant en laboratoire, sans interactions
très avancées avec les hommes. Que leur manquent-ils pour s’inviter dans nos maisons ?

connaissances des autres agents avec lesquels il interagit. Et ces modèles, il faut ensuite
savoir les mettre en œuvre pour donner corps des compétences sociales au premier
rang desquelles se trouve la fonction de communication.

La figure G.1 résume les principaux aspects de l’interaction qui nécessitent d’être
traduit dans des modèles adaptés au robot. Du point de vue du robot, plusieurs
compétences cognitives sont impliquées : traitement du dialogue (verbal et déictique :
regard, posture, gestes...), acquisition et maintient de un ou plusieurs modèles de
l’environnement (non seulement du point de vue du robot, mais aussi des points de
vue de chacun des autres agents), anticipation (quelles sont les intentions de l’humain ?
Puis-je prédire ses actions ?), planification et contrôle (comment puis-je progresser vers
le but ?), suivi des activités des autres agents (est-ce que la coopération est effective ?) et
de l’avancement générale de la tâche.

Chacune de ces capacités cognitives se traduit en contraintes et besoins sur le
système de représentation de connaissances, comme nous allons le présenter un peu
après.

G.1.1 Un programme

Cette brève introduction laisse deviner en négatif le programme de recherche que nous
défendons dans cette thèse, et que nous résumons ici. Nous pouvons essayer d’articuler
les trois défis liés au champ de la représentation des connaissances dans la robotique
de service et robotique-compagnon que nous traitons dans ce travail de doctorat.

Notre premier objectif est en réalité de préciser cette notion de représentation de la
connaissance qui est en réalité mal définie. Depuis l’enfance de l’intelligence artificielle,
depuis l’idée de « l’étage de la connaissance »de Newell, il est admis que les systèmes
intelligents ont besoin de représenter et de manipuler de la connaissance. Mais quoi
au juste ? Il semble nécessaire de poser des fondations théoriques et pratiques solides
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??
Hello!

Multi-modal Dialog

Mutual
Activity

Observation

FIGURE G.1: Le robot est plongé dans une situation. Les source de connaissances sont mul-
tiples : dialogue multi-modal, observation de l’environnement et des activités de l’homme,
capacités internes de planification et de raisonnement symbolique. Le robot raisonne non
seulement de son propre point de vue, mais en se projetant à la place des autres agents.

à cette question sur lesquelles le champ de la robotique cognitive pourrait s’appuyer.
C’est notre premier défi.

Le deuxième défi est plus technique : comment effectivement réaliser un tel robot
cognitif ? quelles sont les spécificités de la robotique (notamment du fait de l’incarnation
physique du robot) ? pouvons nous aujourd’hui construire au moins une instance d’un
système cognitif adapté à l’interaction dans le monde physique ?

Notre troisième défi se concentre sur les aspects liés à l’interaction homme-robot.
Nous affirmons que les robots appartiennent désormais à l’ensemble des individus
sociaux. Qu’est-ce que cela signifie ? quelles conséquences cela a-t’il sur notre modèle
de connaissances ? comment cela se traduit-il en problématique concrète comme la
compréhension du langage naturel ?

Chacune des contributions de cette thèse, résumées ci-dessous, peuvent être rap-
portées à l’un de ces défis, et nous espérons qu’elles contribuent à une meilleure
compréhension de ces problématiques.

G.1.2 Contributions de cette thèse

Le point de départ de cette thèse est le sentiment qu’une meilleure compréhension
des besoins en terme de connaissance des applications robotiques en environnement
humain (c’est à dire, complexe, dynamiques et sémantiquement riche) serait bénéfique
à la recherche en robotique cognitive.

Se basant sur une large revue de la littérature et la formulation de plusieurs scé-
narios d’interaction (dont certains ont conduit a des expériences sur les robots), nous
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avons itérativement affiné la problématique de la connaissance pour l’interaction. La for-
malisation de cette problématique est l’un des principaux résultats de ce travail : nous
avons listé et organisé en une typologie un ensemble de caractéristiques souhaitées des
systèmes de représentation de connaissance pour la robotique de service.

Cette typologie vise à proposer une base complète et cohérente pour évaluer les
systèmes existants et tirer de nouvelles perspectives de recherche. Elle aide aussi à
évaluer les progrès de la communauté scientifique en direction de l’objectif long terme
d’une intelligence artificielle de niveau humain, pour reprendre les mots de McCarthy.

Une autre contribution scientifique de cette thèse est liée au rapprochement des
recherches entre les agents intelligents non-incarnés (virtuel) et incarnés : nous avons
essayé de jeter de nouveaux ponts entre des années de recherche sur les architectures
cognitives désincarnées (aussi bien en informatique qu’en neuropsychologie) et les
contraintes des systèmes réels qui pèsent sur les architectures robotiques. En particu-
lier, nous avons essayé d’identifier un certain nombre de contributions théorique en
sciences cognitives pertinentes pour la robotique cognitive, et nous avons proposés,
pour certaines fonctions cognitives, des implémentations de références sur les robots.

Au niveau architectural, notre travail aide aussi à mieux comprendre les flux de
connaissances dans des architectures de robotique cognitive modernes. En explicitant
la connaissance, nous la rendons en quelque sorte palpable, et nous permettons aux
humains qui conçoivent et programment les robots de discuter et de remettre en
question cette connaissance. Ceci singularise et matérialise des concepts qui étaient
auparavant souvent diffus et ubiquitaires. Cela nous amène à définir et proposer l’idée
d’une architecture orientée connaissance.

Ce travail propose d’autres contributions scientifiques plus focalisées. Ainsi l’ar-
chitecture sémantique que nous proposons est originale, et introduit de nouvelles
techniques pour la représentation et la manipulation de connaissance pour plusieurs
agents simultanément. Ces approches fournissent des outils nouveaux pour l’implé-
mentation de mécanismes cognitifs comme la prise de perspective ou la théorie de
l’esprit chez les robots. Par ailleurs, nous proposons plusieurs contributions à l’ancrage
sémantique du langage naturel en situation. Notre stratégie d’ancrage repose sur une
prise en compte multi-modale (immanente, verbale et déictique) de l’interaction, et
s’appuie sur les outils de représentation symbolique des états mentaux des agents que
nous avons développé.

Cette thèse présente aussi un certain nombre de contributions techniques. La prin-
cipale est le développement de la plateforme ORO (OpenRobots Ontology) : il s’agit
d’un serveur sémantique dédié aux applications robotiques (avec notamment une prise
en compte des contraintes de performance induites par le contrôle des robots) qui
expose une interface symbolique universelle, facilement intégrable dans les différents
composants logiciels du robot.

Le serveur ORO est accompagné d’une ontologie développée durant la thèse pour
les besoins de la robotique de service. Elle fournie une base de connaissances générales
au robot, facilement extensible, et a comme principales caractéristiques d’être alignée
sur le standard OPENCYC et d’avoir été conçue de manière pragmatique pour répondre
aux besoins concrets du contrôle du robot lors de scénarii d’interactions.

L’approche intégrative que nous avons adoptée, et l’ensemble des outils développés
à cette fin, constituent une autre contribution technique de cette thèse. En particulier,
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l’introduction et la généralisation dans les étages de contrôle de nos robots de l’idée
d’évènements sémantiques permet une programmation réactive expressive et abstraite
des contingences de bas-niveau. Par exemple, déclencher un comportement spécifique
lorsqu’un humain observe le robot tout en étant assis s’exprime littéralement sous
la forme de l’évènement subscribe([* type Human, * looksAt myself, *
isSitting true], behaviour_callback()).

Une autre contribution logicielle significative est la conception et le développement
du logiciel DIALOGS. DIALOGS est un composant d’analyse et de résolution de langage
naturel pour l’anglais. En interaction avec ORO, il analyse grammaticalement et séman-
tiquement des phrases en langage naturel non-contraint, propose une interprétation, et
convertit le cas échéant la phrase initiale en une série de nouveaux faits symboliques,
ajoutés à la base de connaissances. Le logiciel inclut des stratégies interactives de désa-
mbiguïsation, et est accompagné d’une interface utilisateur pour téléphone ou tablette
Android.

Une dernière contribution logicielle importante de cette thèse est notre participation
à la conception et au développement du simulateur de robotique MORSE. Nous sommes
en particulier à l’origine d’une large partie de la logique interne du simulateur, ainsi
que de nombreux éléments liés à la simulation d’interaction homme-robot.

G.2 Représentation symbolique des connaissances

Le chapitre 2 de la thèse est consacré à l’étude théorique des besoins en terme de
représentation de connaissances pour la robotique interactive de service.

Nous avons déjà mentionné « l’étage de la connaissance »de Newell [98] : pour lui,
la connaissance est un médium entre des agents et des buts, des actions et un corps. Là où
l’étage symbolique manipule des représentations, l’étage de la connaissance s’intéresse
au langage et à sa sémantique ; là où l’étage symbolique manipule des inférences, l’étage
des connaissances opère des déductions et tire des conséquences.

Dans notre contexte, nous définissons la connaissance de manière plus restreinte,
tout en gardant le lien à l’action : pour nous, la connaissance d’un robot est un ensemble
interconnecté de faits logiques qui font sens pour l’application de supervision du robot. Par faire
sens, nous entendons qui puisse être interprété pour conduire à une action volontaire.

Nous introduisons par ailleurs seconde définition, qui regarde l’idée de connaissance
sous un autre angle, complémentaire du premier : une connaissance pour un robot peut
aussi être vue comme une information interprétée dans le contexte culturel et social du robot.
Nous allons être amenés à discuter cette idée de contextes culturels et sociaux dans
quelques pages.

G.2.1 Une typologie des propriétés des systèmes de représentation
des connaissances

En se basant sur ces définitions, une revue approfondie (section G.2.2) de la littérature,
et des scénarii et expériences menées dans deux environnements de recherche (le LAAS-
CNRS en France, et l’université technique de Munich en Allemagne) , et détaillés dans
le corps de la thèse, nous proposons une typologie et une nomenclature étendue des
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dimensions d’analyse des système de représentation des connaissances pour les robots
(figure G.2).

Nous ne détaillons pas dans ce résumé la cinquantaine de catégories que nous avons
identifié. Elles sont présentés, avec une discussion et un certains nombre de références
bibliographiques, dans la thèse.

Ces catégories appartiennent à six groupes :

� A - Expressivité : couvre les caractéristiques qui qualifient (et dans certains cas,
quantifient) la puissance expressive du système de représentation des connais-
sances. En font partie entre autre le choix du formalisme logique, la capacité de
représenter les incertitudes, ou encore les capacités de meta-cognition.

� B - Représentation : regroupe les propriétés liées aux techniques et choix de
représentations. Comment représenter le temps, les actions ; quel sens donné à
l’idée de contexte ou encore l’utilisation de différentes modalités (au sens de la
logique modale : multiples systèmes de représentation parallèles).

� C - Raisonnement : caractérise les outils permettant au système de raisonner sur
ses connaissances. Capacité de prédire, de mener des inférences non-monotones,
de planifier...

� D - Acquisition : discute des sources de connaissance du système, aussi bien en
terme de technique d’acquisition (via de la perception, de l’interaction,...) qu’en
terme d’ancrage.

� E - Intégration : analyse les propriétés du système vis-à-vis de son intégration
concrète dans une architecture robotique : quelles interfaces avec les couches
basses et hautes, quelles performances, quels outils de débogage, etc.

� F - Instantiation : s’intéresse plus directement à la structure et à la forme de la
connaissance stockée dans le système.

G.2.2 Revue de l'état de l'art

Nous présentons dans la thèse huit systèmes de représentation de connaissances pour
la robotique (table G.1).

Ces systèmes ont été sélectionnés parce qu’ils 1. fonctionnent sur des robots de
services (c’est à dire des robots qui interagissent dans un environnement sémantique-
ment riche, et initialement conçu pour l’homme), 2. ancrent leurs connaissances dans le
monde physique (ce sont des systèmes physiquement incarnés et capable d’analyser
symboliquement leur environnement), 3. sont capable de fusionner différentes modali-
tés de connaissances, 4. sont capable d’acquisition et de raisonnement en ligne (pas de
simple base de faits statiques).

G.3 L'environnement OpenRobots Ontology

Principale contribution logicielle de cette thèse, l’environnement OpenRobots Ontology
(ORO, [75]) est un tableau noir sémantique sur lequel les composants logiciels du robot
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Dimensions
of KRS

A. Expressiveness

B. Representation

C. Reasoning

D. Acquisition
E. Integration

F. Instantiation

A.5. Meta-cognition

A.4. Uncertainty

A.3. OWA/CWA

A.2. Expressive
power

A.1. Logic
formalism

B.5. Memory

B.4. Self-knowledge

B.3. Modality

B.2. ContextB.1. Roles

C.8. Naive
physics

C.7. Planning

C.6. Prediction
and explanation

C.5. Presupposition

C.4. Non-monotonicity

C.3. Lazy
evaluation

C.2. Instantiation and
structural alteration

C.1. Standard
reasoning

D.3 Motivation

D.2 Grounding

D.1 Acquisition
and fusion

E.4 Performances

E.3 Monitoring

E.2 Executive
layers

E.1 Sensori-motor

F.4 Granularity

F.3 Metrics

F.2 Common-sense
and Alignement

F.1 Design
Strategy

B.1.3. ActionsB.1.2. Time

B.1.1. Space

B.1.1.2. Placement

B.1.1.1. Topology

C.6.4 Explanation

C.6.3 Diagnosis

C.6.2 Legality

C.6.1 Projection

D.1.3 Linked
Resources

D.1.2 Interaction
D.1.1 Sensing

D.1.2.2 Deictic
Interaction

D.1.2.1 Verbal
Interaction

E.4.2 Cognitive
Performances

E.4.1 Raw
Performances

FIGURE G.2: Taxonomie des dimensions d’analyses des systèmes de représentation de
connaissance pour la robotique de service.
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Projet Auteurs (institution) Référence

ARMAR/Tapas Holzapfel, Waibel
(Karlsruhe TH)

[51]

CAST Proxies Wyatt, Hawes, Jacobsson, Kruijff
(Brimingham Univ., DFKI Saarbrücken)

[54]

GSM Mavridis, Roy
(MIT MediaLab)

[91]

Ke Jia Project Chen et al.
(Univ. of Science and Technology of China)

[24]

KNOWROB Tenorth, Beetz
(TU Munich)

[130]

NKRL Zarri et al.
(Paris Est Créteil Univ.)

[114]

OUR-K/OMRKF Lim, Suh et al.
(Hanyang Univ.)

[82, 128]

PEIS KR&R Daoutis, Coradeshi, Loutfi, Saffiotti
(Örebro Univ.)

[29]

TABLE G.1: Liste des huit systèmes étudiés.

peuvent écrire et lire des éléments de connaissance. La figure G.3 illustre l’organisation
des principaux éléments du système. ORO est conçu sur le modèle client-serveur, le
serveur abritant une base de faits symboliques sous la forme d’une ontologie OWL
(à travers la bibliothèque OPENJENA), ainsi qu’un raisonneur (PELLET) qui classifie
(c’est à dire, applique l’ensemble des inférences possibles) en continu et de manière
transparente la base de faits.

L’une des particularités importante de ce système est qu’il permet de gérer plusieurs
modèles symboliques en parallèle. Chacun de ces modèles est indépendant et cohérent
d’un point de vue logique, ce qui permet de raisonner en ce plaçant dans des perspec-
tives cognitives différentes sur le monde. Ces perspectives peuvent être globalement
incohérentes : par exemple, un objet peut être visible par le robot, mais invisible pour
l’homme. Cet objet aura simultanément les propriétés isVisible true et isVisible
false dans deux modèles différents.

SPARK (figure G.4) est un environnement 3D temps réel (développé hors du cadre
de cette thèse) qui permet de calculer en ligne plusieurs propriétés géométriques
dépendantes de la perspective de chaque agent (on parle de prise de perspective) et
qui nourrit les modèles abrités par ORO avec ces propriétés symboliques (les faits
effectivement calculés sont présentés au chapitre 4.4.1).

Le fait de maintenir un modèle symbolique indépendant par agent nous permet de
considérer le robot doté d’une théorie de l’esprit [77] simple : le robot devient capable
de représenter les modèles mentaux, éventuellement divergents, des autres agents
intelligents avec lesquels il interagit.

Ces modèles multiples peuvent aussi être vus comme autant de cadres d’interprétation
de la connaissance, et donc comme autant d’éléments de contexte.

ORO propose d’autres outils cognitifs aux modules du robot : outre son rôle de base
de fait (qui inclut, comme nous l’avons brièvement mentionné, l’ajout, la rétractaction,
la mise à jour de faits symboliques, l’interrogation de la base par plusieurs mécanismes
de requêtes, des outils de parcours taxonomique – classes parentes, instances, propriétés
d’un concept, ...), le serveur fournit des mécanismes de classification des concepts (à
partir d’un ensemble de concepts, déterminer la meilleure partition), de discrimination
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Integration avec les autres modules

Noeuds pour ROS,
YARP, OpenPRS

12 def on_human():
13    logger.info("Human detected!")
14    move_head()

Sockets bruts ou 
interfaces vers C++, Python, TCL

Gestion des connaissances et raisonnement

Inférences en logique de description
avec hypothèse monde ouvert

Plusieurs modèles
symboliques simultanés

Modèle de mémoire
bio-inspiré

Discrimination & 
catégorisation

myself

human 1 human 2

<owl-dl>
OpenWorld

t

oro-server
Base OWL :
OpenJENA

Raisonneur :
Pellet

Requêtes       et/ou      Évènements

FIGURE G.3: Aperçu fonctionnel de l’architecture d’ORO.

FIGURE G.4: L’environnement 3D dans SPARK. Dans cet exemple, le logiciel calcule quels
objets sont visible pour l’homme à partir de cônes de visibilité et d’attention.
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(quelles propriétés d’un ensemble de concept permettent de les distinguer de la manière
la plus efficace) ou encore de mémoire (certains faits peuvent être associés à un profil
de mémoire déterminant la durée pendant laquelle ils sont gardés).

Intégration dans les architectures robotiques

ORO a été intégré dans plusieurs architectures robotiques (les expériences présentées
au chapitre 6.2 en témoignent précisément).

D’un point de vue architectural, la principale contribution de notre système est le
mécanisme évènementiel au niveau sémantique qu’il introduit. Un exemple d’évènement
sémantique a déjà été fournit précédemment : les composants de supervision du robot
peuvent demander à être notifiés lorsque certaines conditions logiques sont vérifiées
par ORO (comme la présence d’un fait correspondant à l’exemple [* type Human, *
looksAt myself, * isSitting true] que nous proposions ci-dessus). Le sous-
système s’inscrivant à un tel évènement accède de manière indirecte et abstraite aux
modules de perception (qui détectent la présence d’un homme et sa posture) tout en
bénéficiant le cas échéant et de manière transparente des capacités de raisonnement
symbolique de la base de fait.

Faits symboliques et 
gestion des croyances

Planification de mouv.
et de manipulation
en présence de l'homme

requêtes de
plannification de mouvement

Plannification symbolique
de tâches en présence de
l'homme

plans partagés

Raisonnement géométrique et temporel

Production de 
faits symboliques

Mise à jour du 
modèle du monde

Gestion du modèle géométrique
de l'environnement

modèle du monde
croyances agents

faits
symboliques suivi des actions

et gestion des hypothèses
de position

Gestion des plans et buts
Affinement des actions,

exécution et suivi
Analyse de l'environnement

et gestion du context

Supervision

Actuation
Tête, pince/main, bras, roues

Perception

Tags ARToolKit, Kinect, capture de mouvements

Étage sensori-moteur

modèle du monde
et croyances agents

Traitement du dialogue

Évènements

ancrage du
langage naturel

FIGURE G.5: Schéma de l’architecture logicielle déployée sur les robots PR2 et Jido, deux
robots de services interagissant avec des hommes au LAAS-CNRS. Le serveur ORO apparait
en vert, au milieu.

Comme l’illustre la figure G.5, l’intégration de ORO ne se limite pas aux modules
de supervision. Nous avons déjà mentionné le module de raisonnement géométrique
SPARK qui calcule et fournit un ensemble de fait symbolique issus de l’analyse de
l’environnement du robot. ORO fournit aussi le modèle symbolique du monde et des
croyances des agents au planificateur symbolique de tâche HATP, et joue un rôle clé
dans le traitement de la langue naturelle.
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spatial thing

thing

shape

posture

location

temporal thing

thing with a temporal extend

time interval situation

event static situation

action

spatial enduring thingzone place

obstacle partially tangible thing
opening

purposeful action

FIGURE G.6: Extrait de la partie supérieure de l’ontologie common-sense de ORO. Tous ces
concepts appartiennent à l’espace de nom de l’ontologie mère OPENCYC.

Le traitement du dialogue, longuement détaillé dans le corps de la thèse au cha-
pitre 5, repose sur une interaction forte avec la base de connaissances : ORO sert non
seulement à stocker le résultat de l’analyse de l’interaction verbale (comme l’expression
un désir, ou une nouvelle assertion sur le monde), mais surtout à fournir le modèle de
connaissance nécessaire à l’ancrage sémantique des phrases. Ainsi, une phrase comme
« Apporte-moi le livre »prête à confusion dès que deux livres sont présents dans la
scène. Le module de traitement du dialogue traite l’ambigüité en vérifiant dans ORO
quels objets sont effectivement connus de l’homme, quels sont ceux qui sont visibles, et
le cas échéant, formule une question en se basant sur les propriétés discriminantes de
l’ensemble des livres présents.

Instantiation de la connaissance : l'ontologie OpenRobots Common-
Sense

La plateforme ORO est composée du serveur que nous venons de présenté et d’une
ontologie dite de sens commun (common-sense) qui sert de base de connaissances a priori
au robot.

Cette ontologie a été conçue sur la base de deux principes : couvrir nos besoins
expérimentaux, et se conformer autant que possible à l’ontologie standard OPENCYC
afin de garantir une inter-opérabilité du modèle de connaissance du robot sur le long
terme.

Ceci nous a conduit à un processus de développement bidirectionnel : bottom-up en
ce qui concerne le choix des concepts à modéliser, top-down en ce qui concerne la partie
supérieure de la taxonomie comme illustré dans la figure G.6.

Cette même figure fait par ailleurs apparaitre une disjonction fondamentale dans le
modèle des connaissances induit par ORO entre entités temporelles et spatiales.

Le chapitre G.3 de la thèse entre dans certains détails du modèle de connaissance
que nous n’abordons pas dans ce résumé.
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FIGURE G.7: Expérience d’interaction avec le robot PR2. Cette expérience a menée à l’écriture
d’un petit film visible en ligne : http://www.youtube.com/watch?v=pLz8ifvtoeQ.

G.4 Évaluation expérimentale

Les développements menés dans le cadre de cette thèse ont été déployé expérimentale-
ment sur plusieurs plateformes robotiques (au LAAS-CNRS, sur les robots PR2 et Jido,
à TUM sur le robot Rosie, au BRL à Bristol sur le robot Bert, à l’INSERM de Lyon sur
un iCub, et enfin dans le simulateur MORSE).

Nous présentons dans la thèse trois études de cas démontrant séparément les
fonctions de classification et d’apprentissage guidé.

Trois expériences plus large sont ensuite présentées. Ces expériences (figure G.7)
incluent des interactions verbales plus riche, de la planification de tâche, et des outils
de contrôle d’exécution (supervision) spécifiques. En particulier, nous présentons une
expérience de fausse croyance qui met en avant les capacités du robot à représenter les
modèles de connaissance des agents avec lesquels il interagit.

Nous mentionnons également deux autres cadres expérimentaux un peu particuliers
sur lesquels nous avons travaillé : le simulateur open-source de robotique MORSE1

dans le développement duquel nous avons été fortement impliqué, et, dans un tout
autre registre, la pièce de théâtre Roboscopie, présentée au public à l’automne 2011 dans
le cadre du festival de la vile de Toulouse Novela, et qui a été un support de réflexion
vivant sur la coopération entre hommes et robots.

G.5 Conclusion : la connaissance palpable

Cette thèse a été initiée comme une carte blanche qui m’était donnée pour explorer le
rôle et la matière de la connaissance dans un robot.

1Site Internet : http://morse.openrobots.org
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L’objectif était de transformer cette connaissance qui était omni-présente, multi-
modale, non formelle, et surtout, une propriété mal définie du système en quelque
chose d’observable, quantifiable, une ressource manipulable, en un mot, une grandeur
palpable du robot.

Cette transformation, tant du point de vue technique (le serveur ORO, les ontologies
associées, etc.) que comme un changement plus subtile des pratiques de développement
des composants robotiques, est le principale contribution de cette thèse. La connaissance
devient moins abstraite, elle se matérialise comme un ensemble d’assertions logiques,
dont la sémantique (et donc le sens) est le plus souvent directement intelligible pour
les développeurs.

Pour les développeurs, mais aussi pour le robot : en définissant les échanges entre
composants en terme sémantiques, cela permet aussi de savoir précisément quelle
connaissance est produite par tel ou tel composant, et quelle connaissance manquera si
le composant est défectueux ou enlevé. Ceci participe à ce que nous appelons l’observa-
bilité cognitive du système.

Bien que plusieurs questions reste en suspend (l’identification et la représentation
fine des contextes, une gestion adaptée des conflits cognitifs, le lien complexe entre
connaissance symbolique et connaissance continue – géométrique ou temporelle, pour
en citer quelques unes), nous espérons que l’architecture robotique orientée connaissance
que nous présentons dans cette thèse contribue à préciser et éclaircir certains des enjeux
liés à la connaissance chez les robots, ces systèmes qui on le privilège bien particulier
d’être à la fois être incarné, et système virtuel.
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