1,168 research outputs found

    A Static Optimality Transformation with Applications to Planar Point Location

    Full text link
    Over the last decade, there have been several data structures that, given a planar subdivision and a probability distribution over the plane, provide a way for answering point location queries that is fine-tuned for the distribution. All these methods suffer from the requirement that the query distribution must be known in advance. We present a new data structure for point location queries in planar triangulations. Our structure is asymptotically as fast as the optimal structures, but it requires no prior information about the queries. This is a 2D analogue of the jump from Knuth's optimum binary search trees (discovered in 1971) to the splay trees of Sleator and Tarjan in 1985. While the former need to know the query distribution, the latter are statically optimal. This means that we can adapt to the query sequence and achieve the same asymptotic performance as an optimum static structure, without needing any additional information.Comment: 13 pages, 1 figure, a preliminary version appeared at SoCG 201

    Data structures

    Get PDF
    We discuss data structures and their methods of analysis. In particular, we treat the unweighted and weighted dictionary problem, self-organizing data structures, persistent data structures, the union-find-split problem, priority queues, the nearest common ancestor problem, the selection and merging problem, and dynamization techniques. The methods of analysis are worst, average and amortized case

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Adaptive content mapping for internet navigation

    Get PDF
    The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database

    A static optimality transformation with applications to planar point location

    Full text link
    Proceedings of the 27th {ACM} Symposium on Computational Geometry, Paris, France, June 13-15, 2011info:eu-repo/semantics/publishe

    Wavelets and sparse methods for image reconstruction and classification in neuroimaging

    Get PDF
    This dissertation contributes to neuroimaging literature in the fields of compressed sensing magnetic resonance imaging (CS-MRI) and image-based detection of Alzheimer’s disease (AD). It consists of three main contributions, based on wavelets and sparse methods. The first contribution is a method for wavelet packet basis optimisation for sparse approximation and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser, with a cost function designed specifically for compressed sensing. It is tested on MR images available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The second contribution consists of evaluating and comparing several sparse classification methods in an application to detection of AD based on positron emission tomography (PET) images of the brain. This comparison includes univariate feature selection, feature clustering and classifiers that automatically select a small subset of features due to their mathematical or algorithmic construction. The evaluation is based on PET images available from ADNI. The third contribution is proposing an extension of wavelet-based scattering networks (originally proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension is evaluated as a feature representation in an application to detection of AD based on MR images available from ADNI. There are several possible extensions of the work presented in this dissertation. The wavelet packet basis search method proposed in the first contribution can be improved to take into account the coherence between the sparse approximation basis and the sensing basis. The evaluation presented in the second contribution can be extended with additional algorithms to make it more comprehensive. The three-dimensional scattering networks that are the core part of the third contribution can be combined with other machine learning methods, such as manifold learning or deep convolutional neural networks. As a whole, the methods proposed in this dissertation contribute to the work towards efficient screening for Alzheimer’s disease, by making MRI scans of the brain faster and helping to automate image analysis for AD detection. The first contribution is a method for wavelet packet basis optimisation for sparse approximation and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser, with a cost function designed specifically for compressed sensing. It is tested on MR images available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The second contribution consists of evaluating and comparing several sparse classification methods in an application to detection of AD based on positron emission tomography (PET) images of the brain. This comparison includes univariate feature selection, feature clustering and classifiers that automatically select a small subset of features due to their mathematical or algorithmic construction. The evaluation is based on PET images available from ADNI. The third contribution is proposing an extension of wavelet-based scattering networks (originally proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension is evaluated as a feature representation in an application to detection of AD based on MR images available from ADNI. There are several possible extensions of the work presented in this dissertation. The wavelet packet basis search method proposed in the first contribution can be improved to take into account the coherence between the sparse approximation basis and the sensing basis. The evaluation presented in the second contribution can be extended with additional algorithms to make it more comprehensive. The three-dimensional scattering networks that are the core part of the third contribution can be combined with other machine learning methods, such as manifold learning or deep convolutional neural networks. This dissertation contributes to neuroimaging literature in the fields of compressed sensing magnetic resonance imaging (CS-MRI) and image-based detection of Alzheimer’s disease (AD). It consists of three main contributions, based on wavelets and sparse methods. The first contribution is a method for wavelet packet basis optimisation for sparse approximation and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser, with a cost function designed specifically for compressed sensing. It is tested on MR images available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The second contribution consists of evaluating and comparing several sparse classification methods in an application to detection of AD based on positron emission tomography (PET) images of the brain. This comparison includes univariate feature selection, feature clustering and classifiers that automatically select a small subset of features due to their mathematical or algorithmic construction. The evaluation is based on PET images available from ADNI. The third contribution is proposing an extension of wavelet-based scattering networks (originally proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension is evaluated as a feature representation in an application to detection of AD based on MR images available from ADNI. There are several possible extensions of the work presented in this dissertation. The wavelet packet basis search method proposed in the first contribution can be improved to take into account the coherence between the sparse approximation basis and the sensing basis. The evaluation presented in the second contribution can be extended with additional algorithms to make it more comprehensive. The three-dimensional scattering networks that are the core part of the third contribution can be combined with other machine learning methods, such as manifold learning or deep convolutional neural networks. As a whole, the methods proposed in this dissertation contribute to the work towards efficient screening for Alzheimer’s disease, by making MRI scans of the brain faster and helping to automate image analysis for AD detection.Open Acces

    An approximate dynamic programming approach for improving accuracy of lossy data compression by Bloom filters

    Get PDF
    Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data

    Data structures

    Get PDF
    We discuss data structures and their methods of analysis. In particular, we treat the unweighted and weighted dictionary problem, self-organizing data structures, persistent data structures, the union-find-split problem, priority queues, the nearest common ancestor problem, the selection and merging problem, and dynamization techniques. The methods of analysis are worst, average and amortized case

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    corecore