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Abstract

This dissertation contributes to neuroimaging literature in the fields of compressed sensing magnetic

resonance imaging (CS-MRI) and image-based detection of Alzheimer’s disease (AD). It consists

of three main contributions, based on wavelets and sparse methods.

The first contribution is a method for wavelet packet basis optimisation for sparse approximation

and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The

proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser,

with a cost function designed specifically for compressed sensing. It is tested on MR images

available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The second contribution consists of evaluating and comparing several sparse classification methods

in an application to detection of AD based on positron emission tomography (PET) images of

the brain. This comparison includes univariate feature selection, feature clustering and classifiers

that automatically select a small subset of features due to their mathematical or algorithmic

construction. The evaluation is based on PET images available from ADNI.

The third contribution is proposing an extension of wavelet-based scattering networks (originally

proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension

is evaluated as a feature representation in an application to detection of AD based on MR images

available from ADNI.

There are several possible extensions of the work presented in this dissertation. The wavelet

packet basis search method proposed in the first contribution can be improved to take into account

the coherence between the sparse approximation basis and the sensing basis. The evaluation

presented in the second contribution can be extended with additional algorithms to make it more

comprehensive. The three-dimensional scattering networks that are the core part of the third

contribution can be combined with other machine learning methods, such as manifold learning or

deep convolutional neural networks.

As a whole, the methods proposed in this dissertation contribute to the work towards e�cient

screening for Alzheimer’s disease, by making MRI scans of the brain faster and helping to automate

image analysis for AD detection.
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CHAPTER 1

Introduction

Imaging technology has had a remarkable impact on medical research and clinical

practice in recent decades. Modern imaging tools, such as ultrasonography, magnetic

resonance imaging (MRI), computed tomography (CT) and positron emission tomo-

graphy (PET) provide the means to produce detailed maps of the internal structure

and function of living organisms. This wealth of information allows researchers and

practitioners to diagnose diseases more accurately and monitor their progression in

unprecedented detail while avoiding many invasive tests.

The development of medical imaging has also prompted interest of computer vision

researchers in designing algorithms that derive qualitative and quantitative met-

rics from medical images. Within the medical image analysis community, research-

ers have proposed numerous algorithms to solve problems such as image registra-

tion (estimating spatial correspondence between two or more images), segmentation

(partitioning an image into anatomical or functional regions) and computer-aided

diagnosis. These tools automate tedious manual tasks, making it easier for medical

research to be done e�ciently and on a large scale.

In its first part, this introductory chapter covers the basic principles of the medical

imaging technologies that were used to acquire the images used in this dissertation:

magnetic resonance imaging (MRI) and positron emisson tomography (PET). The

second part of this chapter covers some basic background on Alzheimer’s disease,

which is important because much of this dissertation is concerned with applying ma-

chine learning algorithms to detection of Alzheimer’s disease. Finally, this chapter

also enumerates the contributions to the literature made by this dissertation and

presents an outline of the remainder of it.
15



16 1. INTRODUCTION

1.1. Medical imaging modalities

Imaging techniques can be categorised into modalities according to the physical

process used to produce the images. Modern imaging modalities can produce three-

dimensional tomographic images mapping specific physical properties of tissues

across space and each modality has its own specific advantages and disadvantages.

Perhaps the most important characteristic describing a modality is whether it uses

ionising radiation or not. This is important because ionising radiation poses a health

risk. Table 1.1.1 lists several tomographic medical imaging modalities of ionising and

non-ionising types.

The remainder of this section presents in some detail the physics of two imaging

modalities that were used to acquire the images studied in this dissertation: mag-

netic resonance imaging and positron emission tomography.

Table 1.1.1: Selected tomographic medical imaging modalities.

Non-ionising Ionising

Magnetic resonance imaging (MRI) Computed tomography (CT)
Ultrasond imaging Positron emission tomography (PET)

Photoacoustic imaging Single positron emission computed
tomography (SPECT)

1.1.1. Magnetic resonance imaging. Although quantum mechanical in nature,

the physics behind magnetic resonance imaging can be explained in a simplified way

using classical principles [109]. The following introduction is based on[179].

MRI relies on a phenomenon called nuclear magnetic resonance. Atomic nuclei with

an odd number of protons or neutrons have a property called spin, which can be

thought of as associating a tiny magnet with each nucleus. MRI typically focuses

on the 1H (hydrogen-1) nucleus which appears in water and organic molecules.

In the presence of an external magnetic field the spins precess about the axis of this

field in analogy to the motion of a gyroscope. The direction of alignment is either
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parallel or antiparallel to the direction of field lines, with a small net surplus of spins

aligned in parallel, due to the lower energy of this state.

� �

Figure 1.1.1: Precession of a spin can be viewed as similar to the motion of a
spinning top.

The frequency of precession is proportional to the strength of the applied magnetic

field, according to the Larmor equation:

Ê
0

= “B
0

where Ê
0

is the precession frequency (Larmor frequency), “ is the gyromagnetic ratio

and B
0

is the magnetic field. The gyromagnetic ratio of 1H is 42.58 MHz/T, so at

magnetic field strengths generated by main magnets of MR scanners (typically 1.5T

or 3T, or in some cases 7T) its Larmor frequency is in the radio frequency (RF)

range.

If the nuclei are excited with an RF pulse tuned to the Larmor frequency, the

precessive motion of their spins tips away from the direction of the magnetic field.

The energy absorbed from the pulse is then re-emitted in the form of radio waves as

the spins return to their low-energy state where they are aligned with the field. These

radio waves are picked up by a receiver coil and recorded for further processing. The

process follows an exponential decay curve and is characterised by a time constant

referred to as T
1

. The variation of T
1

between di�erent types of tissue can be used

as a source of image contrast.

The RF pulse not only causes the spins to tip away from the external magnetic field

lines, but also synchronises the phases of their precessive motion [179]. However,
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this synchrony gradually decays as the individual rates of precession are a�ected by

the electromagnetic interactions between the spins. As a result, the signal at the

receiver coil also decays. This process follows an exponential decay curve too, with

the time constant T
2

associated with it. The di�erences in T
2

between tissues can

be used as an alternative image contrast mechanism.

Spatial encoding in MRI is achieved with additional magnetic field gradients super-

imposed on the field generated by the main magnet. These additional gradients are

generated with gradient coils installed inside the scanner (shown in figure 1.1.2).

Three types of spatial encoding techniques are used to produce three-dimensional

images: slice encoding, frequency encoding and phase encoding.

x

y

z

Figure 1.1.2: Gradient coils and the MRI coordinate system (radiological conven-
tion). The patient is surrounded by three sets of coils (simplified in this diagram)
designed to generate magnetic fields in three directions: x, y and z (red, green and
blue, respectively). The ends of the scanner bore are marked with light blue dashed
circles.

Slice encoding is achieved by applying a field gradient during the RF excitation

pulse. This gradient causes Larmor frequency to vary spatially with field strength,

so it is possible to excite a thin slice of the sample by shaping the excitation pulse

to contain a narrow range of frequencies.
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Spatial encoding in the plane of the slice is achieved by the means of frequency

encoding and phase encoding.

Frequency encoding consists of applying a field gradient (orthogonal to the slice

selection gradient) during slice readout, resulting in a proportional variation of Lar-

mor frequency across the slice. This means that di�erent temporal frequencies in

the signal emitted by the sample represent di�erent locations in space. The signal

amplitudes at di�erent temporal frequencies can be recovered from the MR signal

with the Fourier transform, giving a one-dimensional distribution of signal in the

imaged sample. In other words, the temporal MR signal corresponds to the image

in the spatial frequency space (k-space).

Phase encoding relies on applying an additional magnetic field gradient (orthogonal

to both the slice selection gradient and frequency encoding gradient) between fre-

quency encoding gradients. The e�ect of this gradient is to introduce an additional

phase shift in the gyration of the spins across the slice, hence the name phase en-

coding. This is equivalent to starting a frequency encoding readout along the phase

encoding direction k
y

but interrupting it mid-way through k-space at some kÕ
y

, so

that now an ordinary frequency encoding readout along k
x

will capture a part of

k-space with k
y

= kÕ
y

. By repeating the process with di�erent kÕ
y

, a complete two-

dimensional representation of k-space is acquired and this signal is then processed

with a two-dimensional Fourier transform to give the spatial image of the slice.

Sweeping through k-space via frequency encoding and phase encoding requires chan-

ging the magnetic field within the scanner, which is done by switching currents in the

gradient coils. Stronger gradients with rapid switching can in principle give faster

scans but also cause problems with peripheral nerve stimulation [54, 122]. This

limits the rate at which slices can be acquired, making it di�cult to obtain multi-

slice images when the patient is moving, e.g. in cardiac imaging or fetal imaging

[31, 144].



20 1. INTRODUCTION

Figure 1.1.3: A brain MRI image (left) and its k-space representation (right).

The T
1

and T
2

properties change from tissue to tissue, allowing di�erent tissues

to be distinguished. In addition, MRI can be adapted for imaging of di�usion of

water molecules (which contain protons) by di�usion weighted imaging (DWI) [14].

Di�usion tensor imaging (DTI) [160] is a related MRI technique that measures the

di�usion of water in specific directions. Since water tends to di�use along the fibers,

DTI can be used for tracing neural fibers in the brain [16]. MRI can also be adapted

for blood oxygenation dependent (BOLD) contrast, which enables detection of blood

flow, which in turn allows for functional imaging [178].

MRI has several advantages as a medical imaging modality. It is non-ionising, which

makes it safer than ionising modalities such as CT (which relies on X-rays) and PET

(which relies on radioactive tracers). It produces high-resolution images and it o�ers

many useful contrast mechanisms.

The main disadvanage of MRI is the high cost of the scanner and its supporting

infrastructure. Additionally, there are dangers associated with imaging patients

with metallic implants, which can be subject to large forces and cause damage in

the presence of strong magnetic fields, or heat up due to absorbing RF energy.
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MRI scans are used in clinical and scientific applications to study nearly all systems

in the human body and they stand out particularly in neuroimaging. With clear

contrast between grey matter and white matter, structural T1 scans can be used

to study diseases a�ecting brain structure, including neurodegenerative disease such

as Alzheimer’s disease (AD). Di�usion imaging can be used to study the structural

connections within the brain and functional MRI can map the brain’s response to

sensory stimuli and its functional connectivity.

1.1.2. Positron emission tomography. Positron emission tomography relies

on radioactive decay of positron-emitting atomic nuclei to produce images that rep-

resent the spatial distribution of these nuclei. When one of these nuclei decays, the

emitted positron travels a short distance through the surrounding tissue, losing kin-

etic energy due to Coulomb scattering [109]. Once it slows down, it annihilates with

an electron, which produces two gamma ray photons emitted in opposite directions

[109].

A PET scanner detects gamma ray photons with a ring of gamma ray detectors

placed around the patient. The detector ring is equipped with electronics that

register events where two detectors receive a gamma ray photon at the same time.

When such event occurs, it likely means that the simultaneous detection is due to

a positron decaying somewhere on the straight line between those two detectors

(called the line of response). These events are counted and their number for each

line is recorded. The data is then formatted as a matrix called a sinogram: each row

corresponds to a di�erent angle and each column to a di�erent o�set from the centre.

An image is reconstructed from the sinogram with the filtered back-projection or

maximum likelihood expectation maximisation (MLEM) [109].

In order to image a patient with PET, positron-emitting radionuclei are embedded

in molecules involved in the biological processes under study and then introduced

into the patient’s body. For example, 18F-fluorodeoxyglucose (FDG) is commonly
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of an event determines a path across the detector, known as the line of response, along which

the two photons were emitted, as shown in Figure 1.5 (a). Parallel lines of response are grouped

together to form projections for every possible orientation of the ring, as illustrated in Figure

1.5 (b). The number of events recorded along each line of response in a single projection

forms one row of a data matrix called a sinogram. The complete sinogram therefore contains

information recorded from all projections in a single ring, as shown in Figure 1.5 (c).

(a) Line of response (b) Ring orientations (c) Sinogram

Figure 1.5: Stages of PET image acquisition, showing (a) an annihilation event and the cor-
responding line of response, (b) the grouping of parallel lines of response to form projections,
and (c) the construction of a sinogram.

Photon attenuation in tissue

At energies around 511 keV, the dominant interaction of photons with tissue is by Compton

scattering from outer-shell electrons. This results in both a loss of energy and deflection from

the original path. Data must be corrected for errors occuring due to this attenuation, as

well as other e�ects, before an image can be reconstructed. The probability that a photon

undergoes no interactions as it travels through tissue along a line l is known as its survival

probability. The survival probabilities of the pair of photons produced as shown in Figure

1.5 (a) are independent. The combined probability that neither photon interacts may therefore

be expressed as

PC = exp

�
�

� b

a

µ(x)dx

�

Offset from centre

Angle

0

180°

90°

0°

Counts
per line of
response

(a) (b) (c)

Figure 1.1.4: PET image acquisition. Left to right: (a) line of response due to
positron-electron annihilation, (b) parallel lines of response corresponding to the same
angle, and (c) sinogram constructed by grouping detection counts by angle and line
of response. Images (a) and (b) from [109], used with permission; image (c) based on
[109], with changes.

used in neuroimaging as an indicator of cerebral metabolic rate of glucose (CMRgl)

[109].

The main advantage of PET as a functional imaging technique is that a radiotracer

can be designed to target a specific biochemical process by including a positron-

emitting isotope in a molecule involved in that process or a chemically similar mo-

lecule. In particular, FDG targets glucose metabolism, which makes it useful in the

study of diseases which involve either increased or reduced glucose metabolism. The

disadvantages of PET include potential harm due to ionising radiation, low signal

to noise ratio (SNR) and high cost.

PET can be used scientifically to study a variety of biochemical processes in the

body, depending on the specific radiotracer used. In neuroimaging FDG-PET is

used for imaging of Alzheimer’s disease patients because reduced metabolism in

specific brain regions was found to be an indicator of AD [155, 195]. Another type

of PET scan useful in AD studies uses Pittsburgh compund B (PiB) as radiotracer,

which binds to amyloid plaques associated with AD [109].
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1.2. Alzheimer’s disease

Alzheimer’s disease (AD) is the most common type of dementia, accounting for an

estimated 60% to 80% of cases [10]. Its distinctive characteristic is the presence of

amyloid beta (Ab) plaques outside neurons and protein tau tangles inside neurons

[10]. The loss of neural cells results in shrinkage of the brain [10].

AD may begin up to 20 years before symptoms appear and progress slowly without

causing any e�ect noticeable to the patient or other people [10]. First symptoms to

be noticed often include short-term memory problems and at this stage a person may

be diagnosed with mild cognitive impairment (MCI) [10]. Patients diagnosed with

MCI have an increased risk of developing AD and other types of dementia, although

some of them remain stable or even improve [10]. Probable Alzheimer’s disease

is often diagnosed when further decline in memory and cognitive function starts

to impair a person’s daily life. In addition to impaired memory, AD symptoms

include apathy and depression, problems with language, confusion with time and

place, and behavioural changes [10]. Patients with advanced AD lose their ability

to communicate, fail to recognise family members and become completely reliant

on others for the simplest daily activities and eventually bedbound [10]. A definite

diagnosis of AD requires examination of brain tissue samples [109].

1.2.1. Neuroimaging in Alzheimer’s disease. Neuroimaging is used extens-

ively in the scientific study of AD. The most established modalities for this applica-

tion include structural MRI, FDG-PET and fibrillar Ab PET. In addition, functional

MRI, DTI, and several other techniques were also used to learn more about the dis-

ease [216].

Structural MRI is used to study the brain atrophy observed in AD. The hippocampus

and entorhinal cortex of AD patients have reduced volume, gray matter and cortical

thickness [216]. Many other cerebral regions are also a�ected [216]. Meanwhile,

sulcal and ventricular volumes are larger in AD [216]. The presence of these changes
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in asymptomatic subjects and higher rate of their progression indicate an increased

risk of developing MCI or AD [216].

FDG-PET is used to map CMRgl across the brain. In AD patients CMRgl is

reduced in the posterior cingulate, precuneus and parietotemporal regions [155].

More advanced AD also a�ects CMRgl in the frontal cortex and the rest of the brain

[216]. These changes correlate with disease severity and they also have predictive

value [216].

AD patients Normal controls

M
R

I(
T

1)
FD

G
-P

ET

Figure 1.2.1: MR T1-weighted (top) and FDG-PET (bottom) images of AD patients
(left panel) and cognitive normal controls (right panel).

Fibrillar Ab PET is used to study the deposition of amyloid beta plaques in the brain

[216]. This technique was used to confirm Ab deposits in the brains of a�ected

patients, particularly in the precuneus, posterior cingulate, parietotemporal and

frontal regions [216]. In addition, these studies suggested that fibrillar Ab PET

levels are already near saturation in patients with MCI [216]. Fibrillar Ab PET is

expected to play an important role in evaluation of potential AD treatments that

aim to clear Ab deposits or prevent their accumulation [216]. These tests will also

help to further investigate the role of Ab deposits in AD [216].
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The Alzheimer’s disease neuroimaging intiative (ADNI) is a longitudinal observa-

tional study of a large group of Alzheimer’s disease patients, MCI patients and a

matched group of cognitively normal controls [197]. ADNI is a multisite collab-

oration with subjects receiving regular, standardised MR and (for some of them)

PET scans, in addition to neuropsychologic, genetic and cerebrospinal fluid testing

[197, 135, 137]. Anonymised data can be accessed by researchers as a unified

database. The goals of ADNI are to develop standardised imaging protocols for AD

and MCI studies, collect structural and metabolic imaging data, validate imaging

biomarkers against standard clinical and cognitive measures, compare biomarkers

with respect to their utility for AD and MCI diagnosis and tracking of e�ects due

to treatment, and to create a generally accessible data repository [197]. ADNI data

was used in a large number of scientific papers and the success of the initiative

prompted its extension to ADNI-GO and ADNI2 stages [262].

1.3. Contributions

The contributions of this dissertation include applications of wavelets, sparse rep-

resentations and machine learning to the problems of compressed sensing MRI re-

construction and image-based classification of Alzheimer’s disease.

• The contribution to compressed sensing consists of adapting the wavelet

packet best basis search algorithm [55, 56] for application to MR image re-

construction from undersampled data. An optimised basis is learned from a

set of brain MR images from the ADNI database. This basis is shown to rep-

resent both training images and unseen brain images in a more sparse way

than standard wavelets. The optimised basis is also compared to standard

wavelets in reconstruction of brain MR images from simulated compressed

sensing data. In the context of the rest of this dissertation, compressed

sensing can be used to accelerate MRI scans for detection of AD, allowing
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for more patients to be examined. This work was presented at the 2012

MICCAI Workshop on Sparsity Techniques in Medical Imaging [217].

• The first contribution to image-based classification consists of comparing

several dimensionality reduction methods for AD detection based on FDG-

PET data. Several feature selection and clustering algorithms are tested

with a range of di�erent classification algorithms to evaluate the poten-

tial benefits of feature selection in FDG-PET based AD detection. The

algorithms are compared with respect to their classification performance as

well as the distribution of selected features throughout the brain.

• The second contribution to image-based AD detection consists of extending

the invariant scattering convolution network architecture proposed recently

by Bruna and Mallat [27] to three-dimensional tomographic images and

applying this image representation to the problem of AD detection based

on MR images. The problems due to the very large dimensionality of 3D

scattering data are addressed by applying the fast Johnson-Lindenstrauss

transform introduced recently by Ailon and Liberty [5] as a form of data

compression. The classifiers are learned and applied in the compressed

domain, enabling e�cient learning and classification in a situation where

practical challenges would appear with learning from full-dimensional data.

As a whole, the work presented in this dissertation is aimed at making AD screening

and prediction more accessible, by improving the e�ciency of brain MRI scanning

and developing tools for computer-assisted diagnosis of AD and detection of its early

signs.

1.4. Thesis outline

The remainder of this dissertation is organised as described in the following.

Chapters 2 and 3 introduce the relevant background. Chapter 2 covers wavelet

representations in signal processing as well as sparse representations and compressed
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sensing. Chapter 3 presents an overview of the machine learning techniques that

are used in subsequent chapters.

Compressed sensing MRI with optimised wavelet packet representations is discussed

in chapter 4. The wavelet packet basis search algorithm [55, 56] is adapted for

finding an optimally sparse wavelet packet basis for a set of images. This algorithm

is then evaluated by fitting a wavelet packet basis to a set of brain MR images

and measuring the sparsity of representations of other brain MR images in this

basis. The adapted basis is also compared with wavelets in an application to MRI

reconstruction from compressed sensing k-space data.

Sparse algorithms for image-based classification of Alzheimer’s disease are discussed

in chapter 5. Feature selection steps are added to several classification algorithms

and these composite classifiers are evaluated on FDG-PET brain images of Alzheimer’s

disease patients and cognitive normal (CN) subjects. Those trained classifiers are

also evaluated on the task of predicting whether an MCI patient will progress to AD

or remain stable.

In chapter 6 scattering networks introduced by Bruna and Mallat [27] are extended

to three-dimensional tomographic images. In addition, a fast Johnson-Lindenstrauss

transform introduced by Ailon and Liberty [5] is proposed as a method to reduce the

dimensionality of scattering network output to make application of machine learning

more practical. These algorithms are then evaluated on MRI data from ADNI by

classifying between AD patients and controls and in addition making predictions of

whether MCI patients will progress to AD or remain stable.

Chapter 7 presents the outlook for the topics discussed in previous chapters, with a

discussion of potential extensions of the work presented.

Chapter 8 presents a summary of the whole dissertation and general conclusions.





CHAPTER 2

Wavelets, sparsity and compressed sensing

In signal and image processing it is common to represent signals as sums of simple

elements often referred to as atomic signals or simply atoms. Those representations

make it possible to extract features of signals that may not be immediately appar-

ent, or ones that appear salient to a human observer but di�cult to distinguish

automatically with an algorithm. Perhaps the most widely known example of this

is the Fourier representation which models signals as sums of sinusoids or complex

exponentials [187].

2.1. Wavelets

The sinusoids used as atomic signals in Fourier analysis have the benefit of distin-

guishing frequencies with high resolution but they are unable to localise the features

of a signal in time (or space for spatial signals such as images). This has prompted

the development of alternative representations which can localise signals in time (or

space) at the expense of loss of some frequency resolution.

Wavelet transforms describe signals as sums of scaled and shifted versions of an

atomic waveform known as the “mother wavelet”. Large-scale atoms can provide a

rough approximation of a signal. Meanwhile, compactly supported atoms add detail

near discontinuities, such as edges in images. Large values of wavelet coe�cients in

the small scales appear near edges [187] while uniform regions have small coe�cients

at those scales, which enables e�cient image compression.
29



30 2. WAVELETS, SPARSITY AND COMPRESSED SENSING

Some basic concepts from wavelet theory are presented in the following. Since the

subject of wavelets is very broad, this discussion is limited to the topics that are

relevant to the algorithms discussed in further chapters.

2.1.1. Continuous wavelets in one dimension. A continuous wavelet ana-

lysis can be defined by choosing a mother wavelet, i.e. a function Â (t) such that´Œ
≠Œ |Â (t)|2 dt = 1 and

´Œ
≠Œ Â (t) dt = 0 [187] where the second condition means

that the wavelet averages out to zero over its support. The “daughter wavelets” at

scale s œ R+ and translation u œ R are then derived from the mother wavelet as

follows [187].

Â
u,s

(t) = 1Ô
s

Â
3

t ≠ u

s

4

A function f (t) œ L2 (R) is transformed into its wavelet representation F
Â

(u, s) as

follows [187].

F
Â

(u, s) = Èf, Â
u,s

Í =
ˆ Œ

≠Œ
f (t) Âú

u,s

(t) dt

The following theorem shows that the signal f (t) can be reconstructed from F
Â

(u, s)

( Â̂ (Ê) denotes the Fourier transform of Â (t)).

Theorem 1. (Calderon, Grossman and Morlet. This version quoted from [187])

“Let Â œ L2 (R) be a real function such that

(2.1.1) C
Â

=
ˆ Œ

0

|Â̂ (Ê) |2

Ê
dÊ < Œ.

Any f œ L2(R) satisfies

(2.1.2) f(t) = 1
C

Â

ˆ Œ

0

ˆ Œ

≠Œ
F

Â

(u, s) 1Ô
s

Â
3

t ≠ u

s

4
du

ds

s2

and

(2.1.3)
ˆ Œ

≠Œ
|f (t)|2 dt = 1

C
Â

ˆ Œ

0

ˆ Œ

≠Œ
|F

Â

(u, s)|2 du
ds

s2

.”
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In other words, under a mild condition (equation 2.1.1) on the wavelet function,

the continuous wavelet transform is invertible (with the inverse given by equation

2.1.2), and preserves signal energy up to a constant factor (as shown by equation

2.1.3).

The constant C
Â

ensures that reconstruction with equation 2.1.2 returns the original

f (t) rather than its scaled version.

Note that the condition in equation 2.1.1 (called the wavelet admissibility condition

[187]) implies that it is necessary that Â̂(0) = 0. In other words, this explains why

the average of the wavelet over its support must be zero [187].

The theory discussed so far explains how to transform continuous functions of time

(or space) into wavelet representations that are continuous in time (or space) and

scale. These results are important from a theoretical perspective but in computa-

tional applications the function to be transformed and the wavelet representation

must both be discrete. The simplest way of addressing this problem is to sample

the signal and its wavelet representation. The sampling rate of the signal is chosen

so as to ensure that no information is lost due to aliasing. The sampling rate of the

wavelet transform is often chosen so that the scale is on a logarithmic grid and the

time intervals are matched to each scale individually. More specifically, [105]

(2.1.4) s = 2d, u = n2d, n œ Z, d œ Z

where d controls scale and n controls translation.

The Gabor wavelet is a commonly used wavelet defined as a continuous function. It

consitsts of a complex exponential modulated by a Gaussian window [187]:

Â
G

(t) = 1
(‡2fi)1/4

exp (iÊ
0

t) exp
A

≠ t2

2‡2

B

.

This function is not a wavelet in the strict sense because it does not average out to

zero. However, this problem can be addressed by a simple adjustment, giving the
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Morlet wavelet [27]:

Â (t) = – (exp (iÊ
0

t) ≠ —) exp
A

≠ t2

2‡2

B

where — is chosen so that
´

Â (u) du = 0 [27]. The Morlet wavelet is shown in figure

2.1.1.

Figure 2.1.1: Morlet wavelet (real part in solid blue, imaginary part in dashed red).

2.1.2. Discrete wavelets in one dimension. An alternative way to define

wavelet transforms is to start with multirate filter banks and scaling functions.

The structure of a filter bank implementing the discrete wavelet transform (DWT)

and the corresponding reconstruction filter bank are shown in figure 2.1.2. The

filters h
0

[n], h
1

[n], g
0

[n] and g
1

[n] are chosen to ensure perfect reconstruction

(y [n] = x [n]).

Figure 2.1.2: Discrete wavelet decomposition (left) and reconstruction (right).

The perfect reconstruction condition leaves some freedom to the designer of the filter

banks, allowing other objectives to be met. For example, compact support of the
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filters (i.e. finite length of their impulse responses) is a convenient property because

it allows a very e�cient implementation with Mallat’s multiresolution analysis al-

gorithm [188]. The filters can be designed to be orthogonal, so that the wavelet

transform is also orthognal [187].

Daubechies wavelets [66] are a commonly used family of orthogonal, compactly

supported wavelets. The Daubechies family consists of a wavelet for each integer

number of vanishing moments of the filter g [n], with a minimal support length for

that number of vanishing moments, allowing these wavelets to represent polynomials

very e�ciently [187].

A multi-level discrete wavelet decomposition is obtained by iterating the filter bank

in figure 2.1.2 on the low-pass branch. For example, the filter tree in figure 2.1.3

decomposes its input into two detail bands and one approximation band. The corres-

ponding reconstruction filter tree is shown in 2.1.4. Mallat’s multiresolution analysis

algorithm uses these filter trees to implement a fast wavelet transform [188].

Figure 2.1.3: Multi-level discrete wavelet decomposition.

Filter banks used for a discrete wavelet transform can be used to derive a continuous

wavelet and the associated scaling function (the basis function associated with the

approximation band) using an iterative refinement algorithm [66, 30]. The db4

scaling function, wavelet and the filters h
0

[n] and h
1

[n] are shown in figure 2.1.5.
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Figure 2.1.4: Multi-level discrete wavelet reconstruction.

Figure 2.1.5: The db4 scaling function, wavelet and decomposition filters h

0

[n] and
h

1

[n].

Discrete wavelet transforms can easily be expressed as matrix multiplication of a

transform matrix and a signal vector [30]. The transform matrix is formed from the

basis vectors of the wavelet representation as rows, and both single-level and multi-

level transforms can be represented in this way. In computational applications the

direct implementation of filter banks is much faster but the matrix representation

is helpful in the analysis of theoretical aspects of the discrete wavelet transform.
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Unless the signals are of infinite duration, both continuous and discrete formulations

of wavelets have to handle boundary conditions. Some extension (padding) of the

signal has to be assumed at the start and end of the signal. Periodic padding (i.e.

concatenating a copy of the signal before its start and after its end) is elegant from

a mathematical point of view because the associated transform matrix is circulant

and with orthogonal filter banks it is also orthogonal. The disadvantage of this

approach is that it often introduces a discontinuity at the point of concatenation.

An alternative apprach is symmetric padding, where a reversed version of the signal

is concatenated at both of its ends. This avoids the discontinuity but orthogonality

is lost.

2.1.3. Image processing with wavelets. Discrete wavelet transforms for im-

ages are computed by applying the filters h
0

[n] and h
1

[n] to all rows of an image

individually and then to the columns of the resulting representation. After down-

sampling, this gives four frequency bands: approximation, horizontal detail, vertical

detail and diagonal detail. Alternatively, the frequency bands can be computed by

pre-computing a two-dimensional kernel for each frequency band and convolving it

with the image, followed by downsampling.

An example of a single-level two-dimensional wavelet decomposition is shown in

figure 2.1.6. A multi-level decomposition for images is obtained by iterating the

single level decomposition on the approximation band.

This definition of a wavelet transform for images is easily extended to three-dimensional

tomographic images by applying a third pair of filters along the z-direction. A multi-

level decomposition is then derived analogously by iterating the filter bank on the

approximation band.

An alternative way of applying wavelets to images is to define a set of directional

filters with di�erent orientations. The filters have a band-pass profile along their

longitudinal axis and low-pass profile along the transverse axis (or axes in case of
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Figure 2.1.6: Single-level 2D wavelet decomposition. The source image (left) is the
standard “Cameraman” test image. To the right, the approximation and directional
detail bands. Note that the intensities of the images on the right were individually
rescaled to cover the grayscale colour range, i.e. they are not directly comparable in
terms of coe�cient size.

3D), which makes this method useful for detecting edges (in 2D) or surfaces (in 3D).

There are several transforms of this type, including wedgelets [76], bandelets [161],

curvelets [40] and shearlets [154, 115].

2.2. Sparse representations

Since wavelet atoms are localised and separate data into di�erent scales, they can

approximate images in a sparse way. The low-pass bands are su�cient to recon-

struct smooth regions in an image with good accuracy so the detail bands in the

corresponding regions are close to zero and their ommision would have little e�ect

on the quality of the image. This can be seen e.g. in figure 2.1.6, where only a small

proportion of coe�cients in the detail bands are significantly far from zero. Figure

2.2.1 shows the decay of coe�cients in the wavelet representation of the “Camer-

man” image with three levels of decomposition. When the image is reconstructed

from approximately 10% of its largest wavelet coe�cients, the result (figure 2.2.2)

is very close to the original.
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Figure 2.2.1: Decay of weavelet coe�cients. The plot shows absolute values of wave-
let coe�cients for the “Cameraman” image, with three levels of wavelet decomposition.
Note logarithmic vertical axis.

Figure 2.2.2: Left: sparse wavelet image reconstruction of the “Cameraman” image
(shown in figure 2.1.6) from approximately 10% of its wavelet coe�cients with largest
absolute values. Right: error map of this reconstruction.

Sparsity in the strict sense can be defined as follows.

Definition 2. (Tropp, [251]) s-sparse vector

A vector x is said to be s-sparse if ÎxÎ
0

Æ s where Î.Î
0

is a function that returns

the number of non-zero components of its argument.
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2.2.1. Optimising for sparsity. Orthogonal transforms provide unique rep-

resentations for signals, so optimal approximations for di�erent sparsity-accuracy

trade-o�s are easily obtained by setting the smallest coe�cients to zero until the

rquired level of sparsity is reached. However, non-orthogonal dictionaries require

more advanced algorithms to find optimal sparse approximations.

Consider the representation equation x = D“ where x œ Rm is the vector represent-

ing the (discrete) signal, D œ Rm◊n is the matrix representing the dictionary, with

atoms as columns, and “ œ Rn is the vector of representation coe�cients. With an

overcomplete dictionary this system is underdetermined, with no unique solution.

This means that there is some freedom in choosing a representation. This problem

can be written as [251]

(2.2.1) min
“œRn

Î“Î
0

s.t. x = D“

where Î“Î
0

is the ¸
0

pseudonorm, i.e. the nomber of non-zero components of the

vector “.

It turns out that the problem in equation 2.2.1 is very di�cult to solve compu-

tationally. Some algorithms such as matching pursuit (MP) [189] and orthogonal

matching pursuit (OMP) [202] can find solutions that are typically suboptimal (but

these algorithms are fast). Alternatively, under some conditions ([78, 77]; also see

the discussion on compressed sensing below) it is possible to solve an ¸
1

version of

the problem in equation 2.2.1, i.e.

(2.2.2) min
“œRn

||“||
1

s.t. x = D“
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and with large probability get a solution that is also optimal for 2.2.1. The problem

2.2.2 is known in signal processing as basis pursuit [45]. It is a linear optimisation

problem that has been studied extensively by mathematical optimisation researchers

and a number of e�cient algorithms are known that can be used to find a solution,

as discussed by Tropp and Wright [251].

The discussion so far focused on the problem of sparse representation, i.e. finding a

combination of atoms that represents a signal exactly. However, in reality this might

not be the right problem to solve because the model with all signals composed of

a small number of atoms each is an idealised one. A more realistic approach is to

allow a trade-o� between sparsity and aproximation error, which gives the following

optimisation problem.

(2.2.3) min
“œRn

1
2 ÎD“ ≠ xÎ2

2

+ ⁄ Î“Î
1

This problem is known as basis pursuit denoising (BPDN) [45]. It can also be

written in two alternative forms, as follows.

min
“œRn

Î“Î
1

s.t.
1
2 ÎD“ ≠ xÎ2

2

Æ ‘2(2.2.4)

min
“œRn

1
2 ÎD“ ≠ xÎ2

2

s.t. Î“Î
1

Æ ·(2.2.5)

Both of those two problems can be transformed into the form in equation 2.2.3

using the method of Lagrangian multipliers. The BPDN problem can be solved

computationally with several types of algorithms, which are discussed in detail by

Tropp and Wright [251].

In statistics the problem in equation 2.2.5 is also referred to as least absolute shrink-

age selection operator (LASSO) [246].
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2.2.2. Adpative sparse dictionaries. Sparse representations can also be con-

structed adaptively, by matching the dictionary of atomic signals to a particu-

lar image or set of images. This problem is referred to as dictionary learning

[198, 152, 3, 141, 88, 269, 29, 165, 250, 213]. It can be formulated math-

ematically as

(2.2.6) min
DœRm◊n

,“œRn

31
2 Îx ≠ D“Î2

2

+ ⁄ Î“Î
1

4

which is essentially the same problem as the one in formula 2.2.3, except that the

minimisation is over D in addition to “, making it much more di�cult to solve.

Dictionary learning literature was reviewed by Tosic and Frossard [250]. The K-

SVD algorithm [3] is worth mentioning in particular. It alternates between sparsely

representing an image in a set of atoms and optimising the atoms, with e�cient

implementations for both of these steps.

Dictionary learning algorithms are usually applied to small image patches [198,

3, 86, 141, 185, 186, 87, 220, 165], rather than whole images which is the

case with wavelets. Therefore, sparsity in dictionary learning is accomplished in

the sense of individual patches being sparse in the learned dictionary of patch-size

atoms. Olshausen and Field [198] found that the atoms in a dictionary optimised

(with a cost function slightly di�erent from the one in equation 2.2.6 and a di�erent

optimisation algorithm) for patches of natural images resembled directional wavelets.

The sparsity of wavelet transforms can be improved with adaptive wavelet packet

representations [55, 56]. Wavelet packets are an extension of discrete wavelets

where filter banks are iterated on the high-pass branches in addition to low-pass

branches. An adaptive wavelet packet representation is then built by choosing the

point in each branch where the iteration should stop. In contrast to the dictionary

learning algorithms discussed above, a wavelet packet basis is normally optimised

for a whole image or set of images instead of image patches. Wavelet packets are

discussed in detail in chapter 4.
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2.3. Compressed sensing

Compressed sensing (or compressive sensing) [36, 38, 42, 82], abbreviated as CS,

is a mathematical signal processing technique that can be used to reconstruct sparse

signals from a reduced number of linear measurements. A compressed sensing system

can be modeled with the equation

(2.3.1) y = A“

where y œ Rm is the vector of measurements, A œ Rm◊n is the sensing matrix and

“ œ Rn is the sparse vector that is being measured. We can think of “ as being in

the “sparse representation space” and y as being in the “sensing space”.

This model can easily accommodate the case where we are trying to reconstruct a

data vector x in a “human readable space” which is not itself sparse but can be

represented sparsely in another basis, i.e. when x = D“ as discussed in section 2.2.

In this case we have

y = �D“

where � is the “physical” sensing matrix that transforms an object from its natural

representation (e.g. pixels or voxels) to compressive measurements. This reduces

to 2.3.1 when A = �D, i.e. when we consider the system as a whole to be taking

direct linear measurements of the sparse representation.

The structure of the matrix � depends on the particular sensing system under con-

sideration. For example, in magnetic resonance imaging � is a matrix constructed

from a subset of rows of the Fourier transform matrix.



42 2. WAVELETS, SPARSITY AND COMPRESSED SENSING

2.3.1. Restricted isometries. Intuitively, to enable reconstruction of sparse

signals, it is necessary for the matrix A to transform di�erent sparse vectors “ into

di�erent measurement vectors y. Otherwise, if there were sparse vectors “
1

and “
2

such that y = A“
1

= A“
2

, it would be impossible to distinguish “
1

and “
2

based

only on their measurement vectors with any method. More formally, we define

the restricted isometry property, which is characterised by the restricted isometry

constant of a matrix.

Definition 3. (Originally Candes and Tao [38], this version from [34]) Restricted

isometry constant

For each integer s, the restricted isometry constant ”
s

of a matrix A is the smallest

number such that

(1 ≠ ”
s

) Î“Î2

2

Æ ÎA“Î2

2

Æ (1 + ”
s

) Î“Î2

2

holds for all s-sparse vectors “.

Essentially, this definition formalises the requirement that the transformation A

only distorts the square of the ¸
2

norm of any s-sparse vector to a degree limited by

”
s

.

If we consider two s-sparse vectors “
1

and “
2

, the ¸
0

pseudo-norm of their di�erence

is at most 2s. Therefore, the restricted isometry constant ”
2s

places a limit on the

degree to which the pairwise distances between s-sparse vectors can be distorted by

the transformation A [39].

Intuitively, it makes sense to have a matrix A with ”
2s

that is as close to 0 as pos-

sible, since this results in Euclidean distances between sparse vectors only becoming

distorted to a small degree by the transformation defined by A. In order for A to

encode s-sparse vectors unambiguously, it is necessary that ”
2s

< 1, which ensures
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that there are no 2s-sparse vectors in the null space of A and thus that reconstruc-

tion by ¸
0

minimisation has a unique solution [39]. Matrices with good restricted

isometry constants can be generated using random matrix constructions (with high

probability) [15, 34] or deterministically [74].

2.3.2. Noiseless compressed sensing recovery. Returning to the model in

equation 2.3.1, the signal “ usually is not sparse in the strict sense but a sparse

approximation can be constructed with a small number s of its components with

the largest magnitude. Let us denote this approximation as “
s

. As already discussed

in section 2.2, such approximations can be very accurate even when s is small relative

to the dimension of “ if the right representation is chosen (see figure 2.2.1 for the

wavelet example). The aim of compressed sensing recovery is to reconstruct “
s

from

y.

Compressed sensing reconstruction essentially consists of using a sparse coding al-

gorithm to find the sparsest vector “ı that is consistent with the measurements seen

in y. In particular, when ¸
1

minimisation is used as the reconstruction algorithm,

the following theorem states the requirements for exact reconstruction of “
s

.

Theorem 4. Noiseless recovery [34]

If y = A“ and the matrix A has the restricted isometry constant ”
2s

<
Ô

2 ≠ 1 and

“ı

is the solution to

min
“̃œRn

Î“̃Î
1

s.t. A“̃ = y

then

Î“ı ≠ “Î
1

Æ C
0

Î“ ≠ “
s

Î
1

and
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||“ı ≠ “||
2

Æ C
0

||“ ≠ “
s

||
1Ô

s

for some constant C
0

. In particular, if “ is s-sparse, the recovery is exact.

This theorem means essentially that if the sensing matrix transformation does not

distort the pairwise distances between s-sparse vectors too much, then ¸
1

minim-

isation recovers an s-sparse vector exactly. In addition, if the vector “ is only

approximately sparse, then the reconstruction error is bounded by the error of the

s-sparse approximation multiplied by a constant. This is important because it es-

tablishes that compressed sensing with ¸
1

reconstruction is still e�ective when signal

representations are only approximately sparse [39].

2.3.3. Noisy compressed sensing recovery. In reality the model 2.3.1 with

approximate sparsity is still somewhat idealised in the sense that it does not include

noise in the system. The model of a noisy compressed sensing system is

y = A“ + z

where z is the noise term.

The following theorem then puts a bound on reconstruction error for reconstruction

with ¸
1

minimisation.

Theorem 5. Noisy recovery [34]

If y = A“ + z and the matrix A has the restricted isometry constant ”
2s

<
Ô

2 ≠ 1

and ÎzÎ
2

Æ Á and “ı

is the solution to

min
“̃œRn

Î“̃Î
1

s.t. Îy ≠ A“̃Î
2

Æ Á
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then

(2.3.2) Î“ı ≠ “Î
2

Æ C
0

Î“ ≠ “
s

Î
1Ô

s
+ C

1

Á

for some constants C
0

and C
1

. In particular, if “ is s-sparse, the recovery is exact.

The constants C
0

and C
1

are quite reasonable: for example, when ”
2s

= 0.2, the

error in 2.3.2 is bounded by 4.2Î“≠“sÎ1Ô
s

+ 8.5Á [34].

Theorem 5 establishes that reconstruction error of ¸
1

recovery scales linearly with

both sensor noise and approximation error of the sparse signal model. Therefore,

compressed sensing with ¸
1

recovery is robust, which is important for practical ap-

plications of this theory.

2.4. Applications to neuroimaging

Wavelets and sparse methods have found many applications in neuroimaging. Sev-

eral authors applied wavelet analysis to the problem of statistical testing of activ-

ation maps in fMRI analysis [23, 222, 71, 196, 92, 28, 258, 146, 201]. These

methods are an alternative to conventional statistical parametric mapping (SPM)

[103]. Wavelets are useful in fMRI analysis because of their denoising property:

piece-wise smooth signals can be approximated closely by a relatively small number

of large coe�cients while noise is distributed evenly, so wavelet shrinkage tends to

improve signal quality [81, 80]. Since wavelet analysis eliminates the requirement

of image smoothing with Gaussian filters to reduce noise, these wavelet methods can

map brain activity with higher resolution [196].

Voxel-based morphometry (VBM) [9], which allows SPM to be applied to struc-

tural brain images, was extended with wavelets by Canales-Rodriguez et al. [33].
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Classification of Alzheimer’s disease using structural MRI and the dual-tree com-

plex wavelet transform was proposed by Hackmack et al. [117]. Lao et al. [156]

proposed a method for morphological classification of brain images that uses the

discrete wavelet transform to enable e�cient reduction of data dimensionality.

Dictionary learning was applied in the neuroimaging context to fMRI analysis [163,

255, 85], hippocampus segmentation [248], lesion segmentation [263] and brain

atlas construction [229].

Neuroimaging is also an important application of compressed sensing. MRI was

used as an example application in early work on CS by Candes et al. [36] and a

complete CS-MRI system was soon built by Lustig et al. [183, 181], using the

discrete wavelet transform and image instensity variation for sparsifying structural

MR images. Extensive literature on compressed sensing MRI is available, with a

recent review by Hollingsworth available in [132]. Compressed sensing was also

combined with dictionary learning for MR imaging [211, 236]. Chapter 4 starts

with a more detailed discussion of compressed sensing MRI techniques that represent

images with adaptive sparse dictionaries.

2.5. Conclusions

This chapter introduced some basic concepts in wavelets, sparsity and compressed

sensing. The discrete wavelet transform is a prerequisite for wavelet packets which

chapter 4 is focused on. Morlet wavelets are used in chapter 6 as a building block

of scattering networks. Sparsity is important in chapter 5 where classification al-

gorithms with ¸
1

regularisation are evaluated alongside other methods. Next chapter

introduces basic concepts in machine learning, including several classification al-

gorithms.



CHAPTER 3

Machine learning

Machine learning (ML) is the study of algorithms that adapt to data, with par-

ticular emphasis on algorithms that detect nontrivial patterns or make predictions

about future or missing data. The field of machine learning is closely related to

computational statistics and those two fields intersect and inspire each other.

Machine learning problems can be divided into supervised learning and unsupervised

learning. Supervised learning is concerned with problems where the reference values

of the target variables (“ground truth”) are available for the instances in the train-

ing set. Supervised learning models learn by adjusting their internal variables so

that their outputs predict target variables based on input variables (predictors). Su-

pervised learning can be categorised into regression (predicting a continuous-valued

target variable) and classification (predicting a discrete-valued label).

Unsupervised learning is concerned with problems where reference values of the

outputs are not available but patterns are still sarched for. Clustering, where one

seeks to group data into clusters of similar samples, is an example of an unsupervised

learning problem.

3.1. Classification

Classification is a type of supervised learning where the goal is to predict a discrete-

valued label. For example, one may be interested in predicting based on an MR

image if a patient would be diagnosed as healthy, su�ering from MCI or from AD

(three possible labels). This section is intended to provide the background on the
47



48 3. MACHINE LEARNING

three classification algorithms that are used later in this dissertation: logistic re-

gression, support vector machines and random forests.

3.1.1. Logistic regression. Logistic regression relies on the logit transforma-

tion to build a model that predicts class probabilities for each feature vector x. A

fitted logistic regression model can be used for classification by selecting the label

that has the highest predicted probability for a given vector of predictors.

For the case of two classes, the predicted class probabilities are as follows [123].

Pr (Y = 1|X = x; —) =
exp

1
—T x

2

1 + exp (—T x)

Pr (Y = 0|X = x; —) = 1
1 + exp (—T x)

where (X, Y ) œ Rp+1 ◊ {0, 1} is a random variable that represents data points and

their labels. We use (x
i

, y
i

) , i œ [1, . . . , n] to denote a specific sample. It is assumed

that the feature vector x has a “1” prefixed to allow for an intercept in the model

(i.e. x =
5

1 x
1

· · · x
p

6
) and — is a vector with the same dimension as x. The

semicolon is used to separate variables from model parameters.

Given a set of training data (x
i

, y
i

) , i œ [1, . . . , n], a logistic regression model is

fitted by maximising the log-likelihood of the data in the following way (derivation

based on [123]).

The log-likelihood of the data given the model is

¸ (—) =
nÿ

i=1

log Pr (Y = y
i

|X = x
i

; —)

which can be written as

¸ (—) =
nÿ

i=1

[y
i

log Pr (Y = 1|X = x
i

; —) + (1 ≠ y
i

) log Pr (Y = 0|X = x
i

; —)]
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which ensures that when y
i

= 1 we take log Pr (Y = 1|X = x
i

; —), and when y
i

= 0

we take log Pr (Y = 0|X = x
i

; —). After substituting the logistic regression probab-

ility model and simplifying, this becomes

¸ (—) =
nÿ

i=1

Ë
y

i

—T x
i

≠ log
1
1 + exp

1
—T x

i

22È
.

The derivative with respect to — is

ˆ¸ (—)
ˆ—

=
nÿ

i=1

x
i

S

Uy
i

≠
exp

1
—T x

i

2

1 + exp (—T x
i

)

T

V .

This expression can be used to find the maximum with gradient descent or alternat-

ively the Hessian can also be derived to enable solution with the Newton-Raphson

method [123].

3.1.2. Overfitting and regularisation. If the number of features available

for building a machine learning model such as logistic regression is large enough

then it is possible to fit the data in a near-perfect way. However, the data available

for training in most cases only represents a limited number of samples at a limited

number of points in the feature space. In addition, data often contains noise, such

as imperfect measurements or incorrect labels. The source of the the data may also

be probabilistic in nature, with labels depending on features in a way which is to

some degree random. These issues can lead to a problem called overfitting, where

the model fits the training data very well but fails to generalise to new data.

The problem of overfitting can be alleviated by including a regularisation term in

the cost function. Most commonly, regularisation is based on ¸
1

or ¸
2

norm of the

weight vector — (excluding the intercept —
0

).

The ¸
1

version is fitted by solving the following optimisation problem [123].

max
—

Q

a
nÿ

i=1

Ë
y

i

—T x
i

≠ log
1
1 + exp

1
—T x

i

22È
≠ ⁄

nÿ

j=2

|—
j

|
R

b
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The ¸
2

version is similar, with the following optimisation problem.

max
—

Q

a
nÿ

i=1

Ë
y

i

—T x
i

≠ log
1
1 + exp

1
—T x

i

22È
≠ ⁄

nÿ

j=2

—2

j

R

b

These are maximisation problems, so the norm has to be included with negative

sign so that smaller values of the norm are preferred.

Regularisation biases the solution towards smaller weights, reducing model variance.

If the weight of the regularisation term is adjusted well then the reduction in variance

outweighs the bias introduced and generalisation performance improves relative to

the unregularised model.

The regularisation term treats the coe�cients associated with all predictors (ex-

cept for the intercept) equally, so it is common to normalise the predictors be-

fore applying regularised logistic regression [123]. Algorithms for solving regular-

ised logistic regression problems computationally were proposed by several authors

[283, 284, 145, 102, 273, 247].

If there are more than two classes, the logistic regression model can be extended to

accommodate that requirement, although this results in more mathematical com-

plexity. Alternatively, it is possible to use a two-class version in a one-vs-rest frame-

work. In this case a classifier is built for each class that can distinguish that class

from all other classes combined in one set. The class label prediction is then assigned

as the class with the highest probability as computed by its own vs-rest classifier.

Another alternative framework for multi-class classification is one-vs-one, where a

classifier is trained to distinguish between each pair of classes and the class label

prediction is the class with the most pairwise tests resolved in its favour.

3.1.3. Support vector machines. The idea of support vector machines (SVM)

[254] is to find a hyperplane that separates data points so that the two classes are on

opposite sides of the hyperplane and there is a maximum possible margin between
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the hyperplane and any of the points. The derivation of the SVM optimisation

problem below is adapted from [123].

Figure 3.1.1: Classification problem with samples from two groups (marked with
di�erent colours). The separating hyperplane is marked with a solid line. The dashed
lines bound the maximum margin. The samples at the edges of the margin (marked
with larger circles) are the support vectors. (Image generated with Scikit-learn ex-
ample code.)

A hyperplane is defined by the equation

xT — + —
0

= 0

where x œ Rp is a point on the hyperplane, — œ Rp is the normal vector of the

hyperplane and —
0

œ R is a scalar. The signed distance of an arbitrary point x from

this plane is [123]

d = 1
Î—Î

2

1
xT — + —

0

2

The sign of d is of particular interest because it indicates on which side of the

hyperplane the point x lies. The problem of finding a separating hyperplane that

maximises the margin can then be written as

(3.1.1) max
—,—0

M s.t. z
i

1
Î—Î

2

1
xT

i

— + —
0

2
Ø M, i = 1, . . . , n

where M is the margin and z
i

œ {≠1, 1} are the respective labels for the training

instances x
i

, ≠1 for one class and 1 for the other. As argued in [123], “since for any
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— and —
0

satisfying these inequalities, any positively scaled multiple satisfies them

too, we can arbitrarily set Î—Î
2

= 1/M”. Thus, 3.1.1 is equivalent to

min
—,—0

Î—Î
2

s.t. z
i

1
xT

i

— + —
0

2
Ø 1, i = 1, . . . , n

which in turn is equivalent to

min
—,—0

1
2 Î—Î2

2

s.t. z
i

1
xT

i

— + —
0

2
Ø 1, i = 1, . . . , n

Often it turns out that there is no hyperplane that can separate the classes perfectly.

In this case it is possible to add slack variables that allow points to be on the wrong

side of the hyperplane at some cost, giving the following optimisation problem.

min
—,—0

1
2 Î—Î2

2

s.t. z
i

1
xT

i

— + —
0

2
Ø 1 ≠ ›

i

, ›
i

Ø 0,
nÿ

i=1

›
i

Æ constant, i = 1, . . . , n

With Lagrange multipliers, this can be written as [123]

min
—,—0

1
2 Î—Î2

2

+ C
nÿ

i=1

›
i

s.t. ›
i

Ø 0, z
i

1
xT

i

— + —
0

2
Ø 1 ≠ ›

i

, i = 1, . . . , n

which removes the constant and introduces the Lagrange multiplier C. This optim-

isation problem is a convex cost function with linear constraints, so it can be solved

with e�cient convex optimisation algorithms [21]. By adding further Lagrange

multipliers –
i

and µ
i

the following Lagrangian form can be obtained [123].

L
p

= 1
2 Î—Î2

2

+ C
nÿ

i=1

›
i

≠
nÿ

i=1

–
i

Ë
z

i

1
xT

i

— + —
0

2
≠ (1 ≠ ›

i

)
È

≠
nÿ

i=1

µ
i

›
i

The SVM cost function has the following dual [123] (see Appendix for the definition

of the dual function).

(3.1.2) L
D

=
nÿ

i=1

–
i

≠ 1
2

nÿ

i=1

nÿ

j=1

–
i

–
j

z
i

z
j

xT

i

x
j

The vector —̂ can then be reconstructed as [123]

(3.1.3) —̂ =
nÿ

i=1

–̂
i

z
i

x
i
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and the classification rule is [123]

g (x) = sign
1
xT —̂ + —̂

0

2

which by substituting equation 3.1.3 becomes

(3.1.4) g (x) = sign
A

nÿ

i=1

–̂
i

z
i

xT x
i

+ —̂
0

B

.

It follows from equations 3.1.2 and 3.1.4 that the computation of the vector —̂ is not

necessary if the –̂
i

are computed instead, and also that knowing the vectors x
i

is not

necessary as long as there is a way of computing the products xT

i

x
j

. This becomes

even more important if an additional transformation h (x) is applied to the input

vectors before taking inner products. Equations 3.1.2 and 3.1.4 then become [123]

L
D

=
nÿ

i=1

–
i

≠ 1
2

nÿ

i=1

nÿ

j=1

–
i

–
j

z
i

z
j

Èh (x
i

) , h (x
j

)Í

g (x) = sign
A

nÿ

i=1

–̂
i

z
i

Èh (x
i

) , h (x)Í + —̂
0

B

This means that it is not necessary to be able to compute h (x) as long as there is a

way of computing the kernel function Ÿ (x
i

, x
j

) = Èh (x
i

) , h (x
j

)Í, which should be

symmetric positive semi-definite [123].

The support vectors can be identified in the dual representation of the SVM classifier

as those vectors x
i

that have non-zero –̂
i

associated with them. Equation 3.1.4 shows

that the support vectors, along with their respective z
i

and –̂
i

, and —̂
0

are su�cient

to reconstruct the decision function [123].

For a practical example of a non-linar kernel, the radial basis function (RBF) kernel

is Ÿ (x
i

, x
j

) = exp
1
≠“ Îx

i

≠ x
j

Î2

2

2
[123]. Kernel SVM with a non-linear kernel

corresponds to a non-linear decision boundary in the feature space (figure 3.1.2

shows decision boundaries for SVM with three di�erent kernels) [123].
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Figure 3.1.2: SVM with di�erent kernels (left to right): linear, polynomial and
RBF. Solid lines represent decision boundaries in the feature space. Support vectors
marked with larger circles. Dashed lines represent level sets of the decision functions
(not classification margins). (Images generated with Scikit-learn example code.)

As with logistic regression, the predictors used with SVM are usually standardised

as a pre-processing step to ensure that all predictors are in a similar range of values.

3.1.4. Classification trees and random forests. Compared to the linear

classsifers discussed above, classifcation trees [25] are a very di�erent concept. An

instance is classified by traversing a tree, starting from its root node. At each internal

node a condition on the instance is tested and, depending on the result of the test,

the tree is traversed towards one of the child nodes. This process is repeated until

one of the leaf nodes is reached. Each leaf node has a label assigned to it and that

label is returned by the algorithm as the prediction. An example classification tree

is shown in figure 3.1.3.

Figure 3.1.3: Classification tree example. Starting at the root, a comparison is made
at each internal (white) node to decide which direction to follow. Once a leaf node
is reached, the label of the leaf node becomes the classifier output. In this example
green arrows are followed and the output is the blue label.
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The choice of decision rules at internal nodes depends on the type of predictors

available (discrete-valued or continuous-valued). In the continuous case usually one

of the components of x is compared to a threshold value and depending on the result

of the comparison we move towards either of the two child nodes.

Given a set of data with labels {x
i

, y
i

} , x
i

œ Rp, a classification tree is learned by

recursively partitioning the data into two subsets. The partition of a node m into

two children is defined by a feature index rı

m

and a threshold tı

m

. One child node is

assigned those samples for which the rı

m

-th feature is less than or qeual to tı

m

and

the other child node is assigned the remaining samples. The parameters rı

m

and tı

m

are chosen to maximise the reduction in some measure of node impurity (discussed

below), weighted by the number of samples assigned to each node.

Let us define S
m

to be the set of samples at node m, with cardinality N
m

, and

ŷ
m

to be the most common label among the samples at node node m. Also let

us define q
mk

to be the fraction of samples at node m that have the label k, i.e.

q
mk

= 1

Nm

q
xiœSm

I (y
i

= k) with I (·) the indicator function. Then the following are

definitions of some common measures used for deciding node partitions [123].

Misclassification error : 1
N

m

ÿ

iœSm

I (y
i

”= ŷ
m

) = 1 ≠ q
mŷm

Gini index :
ÿ

k ”=k

Õ
q

mk

q
mk

Õ =
Kÿ

k=1

q
mk

(1 ≠ q
mk

)

Cross ≠ entropy : ≠
Kÿ

k=1

q
mk

log (q
mk

)

The parameters rı

m

and tı

m

for each node m are computed by exhaustive search as

follows. For each admissible feature index r
m

the algorithm selects a threshold by

iterating over the values of the r
m

-th feature for all samples available at node m and

choosing the value that results in the lowest weighted node impurity of the children

of m. Then rı

m

is selected as the index of the feature which results in the lowest
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weighted node impurity of the children of m, with its optimal threshold, and this

optimal threshold becomes tı

m

[123].

The main weaknesses of classification trees include di�culty in capturing additive

structure and instability (small changes in the training data can lead to very di�erent

trees) [123]. In order to reduce overfitting, trees can be regularised in several ways,

such as limiting the depth of the tree, setting a minimum number of instances that

must be available at a node so that it can be partitioned, or setting a maximum

number of leaf nodes [225].

A random forest [24] consists of a collection of trees learned with randomised selec-

tion of samples and predictors. Each tree is learned from a random subset of available

training samples. In addition, each node splitting rule can only have its decision

variable chosen from a random subset of predictors (these subsets are sampled in-

dependently for each node of each tree). The decision of the whole forest is taken

as the vote among all its trees.

Typically the size of the set of predictors randomly chosen at each node to search

for an optimal (with respect to this random subset) partition is pÕ = Ô
p. If the

number of predictors is very large and Ô
p π p, it may happen that the most

valuable predictors are rarely selected and performance is poor. In this case it may

be beneficial to increase pÕ.

The technique of randomly sampling “new” datasets from the training data is known

in statistics as bootstrapping [123]. When outputs of models built on multiple

bootstrap samples are used in combination, this is referred to as bootstrap averaging,

or “bagging” for short. In the case of classification, averaging means a majority vote.

Random forests rely on bootstrapping and in addition they select from randomised

subsets of features when searching for best node partitions [123]. Those two methods

work in tandem to decorrelate the trees, increasing diversity and reducing the risk

of overfitting which is a problem when only a single decision tree is used. [123].
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Increasing the number of trees in a random forest is generally beneficial in terms of

accuracy, but there is a point where adding more trees only has a small e�ect. The

problem of selecting a near-optimal forest size was addressed by Latinne et al. [157]

who propose a methodology where the McNemar test is used to decide when to stop

adding more trees. Oshiro et al. [199] tested several forest sizes on a collection of

machine learning problems, giving an indication of how much forest size has to be

increased for a significant di�erence in performance to be observed.

3.2. Dimensionality reduction

When fitting high-dimensional models, as is the case with imaging data, model over-

fitting becomes a concern, as discussed in sub-section 3.1.2. As an alternative to

regularisation methods discussed there, another approach to minimising overfitting

is to reduce feature spaces to more relevant sets and build models from reduced

features. Guyon [116], Saeys [223] and Bolon-Canedo [20] provide systematic over-

views of these methods and their relative merits. In the following, a summary of

algorithms relevant to this dissertation is presented.

3.2.1. Feature selection. Feature selection is a process of filtering the feature

set to retain only a subset, while keeping the features in their original form. At

its simplest, this can be done by examining the features individually and deciding

whether they contain useful infomation about the prediction target. More soph-

isticated methods consider correlations between features or reduce the feature set

with feedback about the performance of the classification model. The latter can be

done either by an explicit mathematical formulation of the model cost function or

algorithmically. Feature selection methods can be divided into three groups: filter,

wrapper and embedded [116, 223, 20].

Filter methods. These methods process the features without any feedback from

the classification algorithm [20]. A simple, mass univariate approach of this type
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consists of applying a separate statistical test to each feature to decide whether

the feature has di�erent distributions depending on the label of the image. The

ANOVA method [113], where the F -statistic is computed for each feature and used

to rank the features, allowing a subset of most relevant features to be selected, is an

example.

Saeys et al. [223] discuss several filter-type feature selection methods (alongside

wrapper and embedded methods), including univariate statistical tests, correlation-

based feature selection (CFS) [120], fast correlation-based feature selection (FCBF)

[274] and the Markov blanket filter (MBF) [149]. Bolon-Canedo et al. [20] compare

the performance of a large number of filter methods (alongside wrapper and embed-

ded methods), including CFS [120], the consistency-based filter [65], the INTER-

ACT algorithm [282], information gain [121], ReliefF [150], minimum redundancy

maximum relevance (mRMR) [204] and the M
d

filter [227]. The main advantage

of filter methods is their e�ciency and scalability [223]. The main drawback is that

this approach ignores interaction with the classifier [223].

Wrapper methods. This subset consists of algorithms that select features based

on performance of the classification algorithm. It is usually not feasible to fit the

classifier to all possible combinations of features so a greedy search strategy is often

used, either by forward selection (starting with an empty set and iteratively adding

the most promising features) or by backward elimination (starting with all features

and iteratively eliminating the least useful ones) [116]. Saeys et al. [223] list

several more sophisticated methods, including “plus q take-away r”, beam search,

simulated annealing, randomised hill climbing, genetic algorithms and estimation of

distribution algorithms.

Embedded methods. This subset comprises methods designed to perform feature

selection as part of the classifier fitting process. In particular, it includes regularisa-

tion methods based on adding a sparsity-inducing norm as a term in the classifier’s

cost function.
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For example, sparsity-inducing ¸
1

regularisation can be applied to logistic regression

[102] or substituted for the standard ¸
2

regularisation in support vector machines

[285]. ¸
0

regularisation, which su�ers from poor tractability, can be approximated

with methods such as the one proposed by Westion et al. [265]. Since these methods

select features simultaneously while fitting the model, they can detect interactions

between features. However, one disadvantage is that ¸
0

or ¸
1

regularisation can

lead to overly simplistic models, where only one feature from each set of correlated

features is selected, mislading the analyst into concluding that its correlates are

unimportant. One way of addressing this problem is to use mixed ¸
1

-¸
2

regularisation

(Elastic Net) [288].

Random Forests can also be used for feature selection by computing feature im-

portance scores during the fitting process. For each individual tree, the out-of-bag

(OOB) instances, which were not used to build that particular tree, are classified

and classification accuracy is recorded. To compute the importance of a specific

feature, the values of this feature are randomly permuted across the OOB samples,

the OOB samples are classified again and accuracy is recorded. The decrease in ac-

curacy due to random permutation, averaged over all trees, is a measure of feature

importance (variable importance) [24, 123].

The problems with regularisation methods can also be addressed to some extent

with stability selection, proposed by Meinshausen and Buhlmann [191]. Stability

selection fits a regularised model many times with randomisation (achieved with

repeated sub-sampling of the data), and features are selected based on how often

they appear in the resulting models [191]. Stability selection o�ers some interesting

theoretical guarantees [191]. The main problem is the increased computational cost

of fitting a large number of randomised models.

3.2.2. Feature agglomeration. Feature agglomeration is an alternative to

feature selection. It relies on clustering correlated features together and then trans-

forming each cluster into an agglomerate feature. Several such methods have emerged
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in the field on natural language processing, where they were applied to bag-of-words

models [75]. Any standard clustering algorithm (e.g. K-means or hierarchical

clustering [123]) can in principle be adapted for feature agglomeration by simply

transposing the data matrix before feeding it to the algorithm, so that features are

clustered instead of samples. Once clusters of features are identified, feature ag-

glomeration merges each cluster into a single feature with a pooling operation, such

as summation or averaging (averaging was used in this dissertation).

In the context of image classification, if the pixels (or voxels) are thought of as

features then image segmentation can be thought of as a type of feature cluster-

ing. This means that for image classification tasks the library of feature clustering

methods can be extended with suitable segmentation algorithms.

K-means clustering. One of the possible formulations of the clustering problem

is minimum sum-of-squares clustering (MSSC) [6], which is defined by the following

cost function [123].

(3.2.1) W (C) =
Kÿ

k=1

N
k

ÿ

C(i)=k

Îx
i

≠ x̄
k

Î2

2

where C (i) is the cluster assignment function that returns the cluster to which i-th

sample is assigned, N
k

is the number of samples in k-th cluster and x̄
k

is the mean

of the k-th cluster.

The K-means clustering algorithm, which finds a local minimum of 3.2.1, is initial-

ised with a set of points that are an initial guess of cluster means, often chosen as

randomly selected samples from training data [123]. Then the algorithm alternates

between two steps:

(1) Compute the mean of each cluster

(2) Reassign each observation to the nearest cluster (using Euclidean distance).

This algorithm converges to a local minimum of the cost function 3.2.1, but the

result may di�er from the global minimum [123]. Therefore, starting K-means
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repeatedly with di�erent random initialisations and choosing the solution with the

lowest cost function is recommended [123]. Finding a global minimum directly is

infeasible, since the problem of minimising the cost function 3.2.1 is known to be

NP-hard [6].

Choosing a suitable value for K is also an important part of the problem. It can

be addressed by plotting the optimal value of the cost function for successive values

of K and looking for a “kink” point where further increasing K gives only a small

reduction in the cost function [123].

Agglomerative clustering. Agglomerative clustering starts with each observation

as its own cluster and iteratively searches for a pair of clusters that are the most

beneficial to merge according to some predefined criterion and merges them. With

each iteration the number of clusters decreases by one and the process results in a

tree-like hierarchy of clusters, with individual observations as leaves and the whole

data set combined at the root (figure 3.2.1) [123]. In this dissertation the criterion

used for selecting pairs of clusters to merge is minimising the increase in the sum of

within-cluster variances as a result of merging these clusters, as originally proposed

by Ward [142].

��

��

��

��

��

��

��

�	

Figure 3.2.1: Agglomerative clustering. Initially each feature is considered a separ-
ate cluster (left) and clusters are iteratively merged (moving towards the right). The
dotted vertical line indicates the solution for four clusters.



62 3. MACHINE LEARNING

When feature agglomeration algorithms are applied to imaging problems, one may

want to avoid clustering together voxels that are spatially distant from one another.

To address this issue, spatial distances between clusters should be considered as

well as their statistical similarities, making the algorithm spatially aware. Spatial

neighbourhood constraints may also help to reduce the problems associated with

multiple testing: if for each cluster only its neighbours are considered for merging,

then false cluster assignments would seem less likely than when evaluating pairs of

clusters from the whole image. A spatially aware Ward-type feature agglomeration

algorithm was proposed by Michel et al. for fMRI analysis[192].

Chapter 5 describes two feature agglomeration algorithms in detail: one based on

agglomerative clustering with spatial constraints (a simplified version of [192]) and

one based on SLIC, which is an image segmentation algorithm. They are both

evaluated, in combination with classification algorithms, on an image classification

task.

3.2.3. Principal component analysis and manifold learning. Principal

Component Analysis (PCA) computes a transformation that represents the data in

a new basis. The vectors of this new basis are ordered in a sequence such that the

first one is the direction of maximum sample variance in the feature space and each

subsequent vector is the direction of maximum sample variance “subject to being

orthogonal to the earlier ones” [123].

In PCA each instance x
i

œ Rp, i = 1, . . . , n is represented by a vector ⁄
i

œ Rq such

that an approximation to x
i

is constructed as [123]

x̃
i

= x̄ + V
q

⁄
i

.

where x̄ is the mean of the instances [123]:

x̄ = 1
n

nÿ

i=1

x
i

.
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Figure 3.2.2: PCA example. Principal component analysis of data generated from
a multivariate Gaussian distribution. The arrows are the two principal components.

The matrix V
q

and the vector ⁄
i

are computed as follows. First the data are mean-

centered and arranged in a matrix X
c

œ Rn◊p such that each row of X
c

is xT

i

≠ x̄.

Then the singular value decomposition (SVD) of X
c

is computed [123]:

X
c

= UDVT .

Then for each q, the matrix V
q

is constructed from the first q columns of V. The

vectors ⁄
i

are the rows of the matrix U
q

D
q

œ Rn◊q [123].

Manifold learning [253] is a family of non-linear dimesionality reduction methods.

Manifold learning algorithms reproduce in a low-dimensional space the local struc-

ture of the data in the original high-dimensional space.

For example, the Isomap algorithm [245] first constructs a neighbourhood graph G,

connecting each point to its k nearest neighbours in the high-dimensional space, with

edge weights representing pairwise distances. Then it computes pairwise distances

for all points using a shortest-path algorithm over G. Finally, it optimises the

distribution of data points in the low-dimensional space so that pairwise Euclidean

distances are an optimal approximation of the shortest paths over G. A variety of

manifold learning algorithms is reviewed and compared by van der Maaten in [253],
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including Isomap, Laplacian Eigenmaps [17, 18] and Locally Linear Embedding

(LLE) [219], among other methods.

3.3. Randomised projections

The Johnson-Lindenstrauss lemma [140] shows that a set of vectors can be embed-

ded into a space of su�ciently large dimension in a way such that pairwise distances

between these vectors are only distorted to a very small degree.

Theorem 6. (Johnson and Lindenstrauss [140], citing from Baraniuk, Davenport,

DeVore and Wakin [15]).

“Let ‘ œ (0, 1) be given. For every set Q of # (Q) points in RN

, if n is a positive

integer such that n > n
0

= O (ln (# (Q)) /‘2), there exists a Lipschitz mapping

f : RN ‘æ Rn

such that

(1 ≠ ‘) Îu ≠ vÎ2

¸

N
2

Æ Îf (u) ≠ f (v)Î2

¸

n
2

Æ (1 + ‘) Îu ≠ vÎ2

¸

N
2

for all u, v œ Q.”

The notation f (n) = O (g (n)) is defined as follows.

Definition 7. Big-O notation (citing from Constantinides [58]).

“Let f and g be functions from the set of integers or the set of reals to the set of

reals. The function f (x) is O (g (x)) if and only if

÷c œ R+÷k œ R+’x ((x > k) ∆ (|f (x)| Æ c |g (x)|)) .”

A Lipschitz function is defined as follows.

Definition 8. Lipschitz function (citing from [127])
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“A function f : A æ Rm, A µ Rn, is said to be L-Lipschitz, L Ø 0, if

|f (a) ≠ f (b)| Æ L |a ≠ b|

for every pair of points a, b œ A. We also say that a function is Lipschitz if it is

L-Lipschitz for some L”

The Johnson-Lindenstrauss lemma proves the existence of a mapping but it does

not say how it can be constructed. Several researchers have proposed construc-

tions of randomised projections that can be shown to have similar bounds on dis-

tortion [101, 134, 2, 64, 15]. These contributions also include more precise

bounds on n. In particular, Dasgupta and Gupta [64] derived the bound n Ø

4 ln (# (Q)) / (‘2/2 ≠ ‘3/3) for matrices that implement projections onto random

subspaces.

The main disadvantage of projections with unstructured random matrices is that the

computation of such projections is still O (nN) for each input vector. This can be

improved with the fast Johnson-Lindenstrauss transform (FJLT) proposed by Ailon

and Chazelle [4] and further simplified by Ailon and Liberty [5]. This transform

can be written as

f (x) = �Dx

where the rows of � are drawn uniformly at random from a Hadamard matrix and

D is a diagonal matrix with each diagonal element drawn from the set {≠1, 1} with

a uniform probability distribution (D is generated only once and used for all input

vectors).

The main advantage of this method over PCA is that each feature vector can be

processed individually, without inspecting any other instances. Only the overall

number of instances has to be known in advance, in order to decide a suitable

dimension for the reduced feature space. The computational complexity of the fast

Johnson-Lindenstrauss transform is dominated by the Hadamard transform, which
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can be computed in O (N log N) time using an algorithm similar to the Fast Fourier

Transform.

3.4. Measuring machine learning performance

3.4.1. Performance measures. When building machine learning models, it

is important to be able to estimate their performance, compare them and select

the best performing ones. For supervised learning models this is typically done by

estimating the expected error when the model is used to predict its target variable

for new (unseen) data.

For classification models the intuitive performace figure is classification accuracy:

Acc = 1
n

nÿ

i=1

I (y
i

= g (x
i

))

but in some cases accuracy can be miselading. Specifically, this happens when one

label is far more common than the others. In this case, a classifier that always

predicts the most common label can have a very high accuracy.

Restricting the discussion to binary classification with labels “0” and “1”, two ad-

ditional measures that are often quoted are sensitivity and specificity. In order to

define them, let us first introduce the notions of a true positive (TP), true negative

(TN), false positive (FP) and false negative (FN) as shown in table 3.4.1. A true

positive occurs when the true label is “1” and “1” is predicted. A true negative

occurs when the true label is “0” and “0” is predicted. A false positive is the case

when “0” is the true label but “1” is predicted. Finally, a false negative is the case

when “1” is the true label but “0” is predicted.

Table 3.4.1: Definition of true positive (TP), true negative (TN), false positive (FP)
and false negative (FN)

Predicted label
0 1

True label 0 TN FP
1 FN TP
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Sensitivity measures how good the classifier is at identifying positives as such:

Sens = TP

TP + FN

Specificity measures how good it is at identifying negatives as such:

Spec = TN

TN + FP

Some classifiers, such as logistic regression, can output estimated class probabilities

instead of labels. Given these probabilities, it is possible to adjust the probability

threshold for classifying a sample as positive. Each of the possible thresholds is as-

sociated with a pair of values for sensitivity and specificity of the resulting classifier.

If sensitivity is plotted against one minus specificity, the resulting curve is known as

the receiver operating characteristic (ROC). The area under the ROC curve (AUC)

can be calculated and is also a common measure of classifier performance [100]. An

example is shown in figure 3.4.1.

Figure 3.4.1: Receiver operating characteristic (ROC) curve. (Image generated with
Scikit-learn example code.)

3.4.2. Data partitioning and cross-validation. Due to the problem of over-

fitting discussed in sub-section 3.1.2, machine learning error measures computed on



68 3. MACHINE LEARNING

training data tend to be over-optimistic compared to the performance attained on

unseen data [123].

Therefore, in order to have a reasonable estimate of performance, it is necessary to

set a proportion of the available data aside for testing, ensuring that this data is

not used in the training process.

In some cases an estimate of performance is required in order to adjust model para-

meters. In this case a validation set is partitioned out of the training data. A

collection of models learned from the training data are compared with regards to

their performance on the validation set and possibly other metrics such as sparsity.

The final model is selected based on this comparison. In this case it is important

to recognise that validation error is also optimistic, and that a separate test set is

required that is not available in training and valiadation [123].

Often the data available for training, validation and testing is limited. In this

case it is important to use it in the most e�cient way possible. The cross-validation

technique provides a way of doing that. K-fold cross-validation requires partitioning

the data into K equal-sized subsets (called folds). Each fold is then used as a

validation set for a classifier or regressor learned from the combined remaining folds.

This gives K performance figures which can be combined (e.g. by averaging) to yield

a single estimate.

An alternative to cross-validation is to generate a set of independent random parti-

tions of the data into training and test sets. The disadvantage of this method is that

the test sets from di�erent partitions are likely to overlap and some instances may

appear in none of the test sets. This problem does not appear with cross-validation,

where each instance is used for testing exactly once.
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3.5. Conclusions

This chapter is a discussion of the machine learning algorithms that are relevant to

this dissertation. It provides essential background on classification algorithms that

are used in chapters 5 and 6, including logistic regression, support vector machines

(SVM) and random forests. Several methods for dimensionality reduction, which are

used extensively in chapter 5, are also dicussed. The distinction between dimension-

ality reduction methods based on feature selection, feature agglomeration, principal

component analysis and manifold learning is highlighted. Di�erent types of feature

selection methods are compared, including filter, wrapper and embedd methods.

Randomised projections, which are used in chapter 6, are discussed. Methods for

evaluating performance of machine learning algorithms are also discussed, which is

important because data partitioning and cross-validation will be used to estimate

the performance of the proposed algorithms throughout this dissertation.





CHAPTER 4

Wavelet packet basis learning for compressed sensing

An earlier version of this chapter was presented as a workshop paper at the 2012

MICCAI Workshop on Sparsity Techniques in Medical Imaging [217]. The writing

has been revised and extended with additional data for inclusion in this dissertation.ú

4.1. Introduction

Compressed sensing (CS), as discussed in chapter 2, provides a mathematical frame-

work for reconstruction of signals sampled at sub-Nyquist rates, provided that those

signals can be represented sparsely with either an orthogonal transform or a diction-

ary of signals [40, 82, 35]. CS led to recent advances in medical imaging, and in

particular in magnetic resonance imaging (MRI), starting with the work of Lustig

et al. on structural MRI [183, 181, 182]. Lustig et al. showed that CS can be

used to acquire MR images in much shorter times by reducing the full set of phase

encodes to a randomised subset and solving the resulting underdetermined inverse

problem by minimising the ¸
1

norm of the wavelet representation of the image, with

an additional total variation term, subject to the Fourier representation of the image

being consistent with the acquired phase encodes. They also showed that for MR

angiography (imaging of blood vessels) compressed sensing can be used without rep-

resenting images with the wavelet transform since these images are sparse in image

domain.

Compressed sensing MRI (CS-MRI) was extended to dynamic MRI by relying on

Fourier-sparsity of the temporal view of voxels [184, 104] and these methods were

subsequently improved by incorporating motion prediction and correction algorithms
71
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[143, 252]. CS-MRI was also combined with parallel MRI (using spatially sensitive

RF coils) to further accelerate image acquisition [169, 166, 200, 256].

While in most imaging applications wavelets provide accurate sparse approxima-

tions of signals, there is also much interest in finding representations adapted to

particular signals. Examples include patch-based dictionaries [3, 213], as well as

dictionaries adapted specifically for compressed sensing [84]. Patch-based diction-

aries were applied to CS-MRI for static [19, 211, 212, 12, 175, 214, 236] and

dynamic CS-MRI [11, 167, 168, 261, 31, 260].

Similarly, the adaptive signal representation framework of wavelet packets [55, 56]

was applied to CS by Peyre [206, 207]. While patch-based dictionaries and wave-

let packets are similar in that both approaches adapt a set of atoms to e�ciently

represent training signals, they are also very di�erent in other aspects. In particu-

lar, wavelet packets provide a basis for the whole image, rather than small patches.

They also naturally have a multiscale structure and representation coe�cients can be

computed e�ciently using Mallat’s mutiresolution analysis (MRA) algorithm [188].

The work in [206, 207] explores finding the best basis while reconstructing the

undersampled signal, i.e. without learning from prior examples. In contrast, the

algorithm proposed in this work learns an adapted basis from a collection of example

images. The proposed method is based on well-known principles and algorithms for

wavelet packets and approximation in bases [55, 56, 210, 266, 187].

The main contribution of this work consists of designing a basis search cost function

that includes the criteria that are important in compressed sensing. A suitable

algorithm is also selected for optimising this cost function and the proposed method

is tested on images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[197] database.
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4.2. Compressed sensing

To reiterate from chapter 2, a general model of a compressed sensing system can be

written as

(4.2.1) y = Ax + z

where x is the sparse representation vector of the signal, A is the information oper-

ator that transforms signals from the sparse representations to the physical measure-

ments, and z represents random noise inherent in instrumentation. The key property

of compressed sensing is that A has more columns than rows, i.e. the number of

measurements in y is less than the number of components of the sparse representa-

tion vector x. In compressed sensing MRI, typically A = RFD, where D is a basis

(or dictionary) that is used to sparsely represent the image, F is a multidimensional

Fourier transform that models the MRI acquisition process, and R is a matrix that

selects a subset of measurements. The estimate x̂ of x is computed by solving the

problem [39, 35]

(4.2.2) min
˜

xœRn
Îx̃Î

1

s.t. Îy ≠ Ax̃Î
2

Æ Á

where Á2 is an upper limit on the noise energy ÎzÎ2

2

. If A satisfies the restricted

isometry property [37] with an appropriate isometry constant, then the solution x̂

to the problem (4.2.2) is such that [39, 35]

(4.2.3) Îx̂ ≠ xÎ
2

Æ C
0

Îx ≠ x
s

Î
1Ô

s
+ C

1

Á

for some constants C
0

and C
1

, where x
s

is the best s-sparse approximation of x

(best approximation with s non-zero components).

One of the main design goals in compressed sensing is to find a dictionary that

leads to the sparsest representations possible, so that accurate approximations can

be constructed with small s. At the same time, equation (4.2.3) implies that the

modelling error induced by neglecting small coe�cients will degrade the quality of
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reconstruction. The objective of this chapter is to design an algorithm for finding a

wavelet packet basis that minimises the approximation error for a specified level of

sparsity.

4.3. Wavelet packets

Wavelet packets [55, 56] are an extension of wavelets. To reiterate from chapter 2,

a single-level discrete wavelet transform consists of filtering the source signal with

an orthogonal filter bank, followed by downsampling of the resultant sequences. A

multi-resolution analysis (wavelet decomposition) then consists of recursively ap-

plying this process on the lowpass branch of the filter bank, producing a tree-like

structure. With wavelet packets, the filter bank can be applied to the high-pass

branches as well, which means that a variety of filter trees can be built (an example

wavelet packet tree is shown in figure 4.3.1). All possible choices of which branches

to decompose further give rise to a large set of admissible trees [187], or in other

words “a library of bases” [79]. The leaves of each admissible tree define a complete

set of basis vectors.

Wavelet packets bases are a superset of wavelet bases. Therefore, with a careful

choice of basis from a wavelet packet library, one may be able to find sparser ap-

proximations than with the standard wavelet basis. The Coifman-Wickerhauser

(CW) basis selection algorithm [56] can e�ciently find an optimal tree, in the sense

that the associated basis minimises a cost function with respect to the resultant

representation vector, provided that the cost function satisfies the criterion of an

additive information cost function:

Definition 9. Additive information cost function (quoting from [56]):

“A map M from sequences {x
i

} to R is called an additive information

cost function if M (0) = 0 and M ({x
i

}) = q
i

M (x
i

).”
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Figure 4.3.1: A wavelet packet tree. This particular tree di�ers from the standard
wavelet transform by applying an additional iteration of wavelet decomposition to the
high-pass output of the first pair of filters.

The Coifman-Wickerhauser basis selection algorithm consists of two major steps.

(1) The input signal is decomposed into its wavelet packet tree and the data vector

at each node is recorded. (2) The information cost associated with each node is

computed as the minimum of two values: the information cost of its coe�cient

vector and the sum of information costs of its children (computed recursively using

the same rule). If a node’s coe�cient vector has lower information cost than the sum

of information costs of its children, it becomes a leaf node. Otherwise, its children

are included in the optimal tree [56].

4.4. Optimised wavelet packet bases and compressed sensing

4.4.1. Single signal case. The analysis in this section is based on [187] (pp.

450-452, 611-614), adapted for approximation error measured in ¸
1

norm.

Given a vector (signal) y œ Rn, basis search can be expressed as minimising the

following Lagrangian with respect to the wavelet packet basis B
wp

and the vector
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of approximation coe�cients x
�

œ Rn.

(4.4.1) L (y, B
wp

, ·, x
�

) =
...BT

wp

y ≠ x
�

...
1

+ · Îx
�

Î
0

where · is the Lagrangian multiplier. Î.Î
0

denotes the ¸
0

pseudo-norm and AT de-

notes the transpose of matrix A (we consider real-valued images only). A predefined

pair of filters is assumed (low-pass and high-pass) that is used at each branching in

the wavelet packet tree.

The decision to minimise the transform domain ¸
1

error (instead of the more common

¸
2

error) is based on equation (4.2.3), where Îx ≠ x
s

Î
1

appears in the numerator of

one of the terms of the upper bound on the compressed sensing reconstruction error.

Consider the parameter · in eq. (4.4.1). Since B
wp

is orthonormal, each component

of BT

wp

y can be treated independently when searching for an optimal approximation.

If a component’s ¸
1

norm is less than · then the value of the cost function can be

reduced by setting that component to zero because the reduction in the sparsity

term · Îx
�

Î
0

will outweigh the increase in the error term
...BT

wp

y ≠ x
�

...
1

. Therefore,

· is also the threshold at which the entries of x = BT y should be set to zero in x
�

(see [187] pp. 612-613 for a more formal argument with error defined in ¸
2

norm).

Therefore, equation (4.4.1) can be written in alternative form

(4.4.2) L (y, B
wp

, ·) =
ÿ

i

inf (|x [i]| , ·) where x = BT y

where x [i] denotes the i-th component of the vector x.

If · is fixed, the cost function in eq. (4.4.2) is a valid additive information cost

function, so the Coifman-Wickerhauser algorithm can be used for best basis search.

The form of L in eq. (4.4.2) is independent of x
�

. This is a result of the fact that

B
wp

is an orthonormal basis: by fixing · and selecting B
wp

, we implicitly assign

x
�

= fl
·

1
BT

wp

y
2

where fl
·

(a) is an operator that sets to zero all components of the

vector a that are smaller than · .
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The discussion above is concerned with optimal approximations for any given coef-

ficient threshold · but this threshold is di�cult to choose. It is more practical to

specify either the number of coe�cients or the approximation error. A closely re-

lated problem of finding best wavelet packet bases in rate-distortion sense for source

coding applications was considered in [210]. In the following, a similar approach is

applied to the compressed sensing basis search problem.

Consider two solutions to minimising L, with respective thresholds ·
1

< ·
2

. The

basis B
1

, optimised for · = ·
1

, will favour accuracy at the cost of sparsity, while

the trade-o� will move in the opposite direction for the basis B
2

, optimised for

· = ·
2

. Since both bases are optimal at their respective thresholds, we have
...BT

1

y ≠ fl
·1

1
BT

1

y
2...

1

Æ
...BT

2

y ≠ fl
·2

1
BT

2

y
2...

1

and
...fl

·1

1
BT

1

y
2...

0

Ø
...fl

·2

1
BT

2

y
2...

0

. So

if for any value of · the approximation is not sparse enough, · can be increased

and basis search repeated to improve sparsity at the cost of accuracy. Similarly, if

the approximation is not accurate enough, accuracy can be improved at the cost

of sparsity by reducing · and repeating the basis search. Therefore, the optimal

threshold for a required level of sparsity or approximation error can be found by

bisection search.

4.4.2. Extension to multiple signals. In compressed sensing MRI applica-

tions, the signal to be sparsely approximated is not fully known, since we only have

partial Fourier data. Instead, a collection of images of similar anatomy may be avail-

able that can be used as a substitute in the basis search process. In this context,

the objective is to find a basis that minimises the expected value of the information

cost over the training set. Therefore, the cost function is the mean information cost

of the training data, i.e.

(4.4.3)

L̄
1
{y

i

}
i=1,...,N

, B
wp

, ·
2

= 1
N

Nÿ

i=1

1...BT

wp

y
i

≠ fl
·

1
BT

wp

y
i

2...
1

+ ·
...fl

·

1
BT

wp

y
i

2...
0

2
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where y
i

are the training samples and N is the number of signals in the training set.

Since fl
·

1
BT

wp

y
i

2
= (x

�

)
i

, this is the mean of the single-image cost function (4.4.1)

over all training samples. This cost function can be optimised by decomposing each

signal in a full wavelet packet tree, constructing a joint tree [266] where each node

is assigned a cost by taking the average of the same node over all individual image

trees, and then applying the Coifman-Wickerhauser algorithm to the joint tree to

find an optimal basis [266].

Note that the same threshold · is used for wavelet packet decompositions of all

images. It is therefore necessary to ensure that images are pre-processed so that one

value of · is suitable for all of them. A simple approach to solving this problem is to

scale image intensities so that e.g. the 99th percentile of image histograms matches

across the whole dataset (scaling images to match their maximum intensities is

somewhat less robust to outliers).

4.4.3. Compressed sensing reconstruction. The proposed method finds a

sparsifying basis that can be used with standard compressed sensing reconstruction

algorithms. In this work it is integrated with the SparseMRI software [181]. The

main change is replacing the wavelet transform with the optimised wavelet packet

tree transform that was learned from the training data.

4.5. Experiments

Experiments were conducted on a data set consisting of 826 MR images from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [197, 135] (http:

//www.loni.ucla.edu/ADNI). Details of the image acquisition process were de-

scribed by Jack et al. [135]. These images had some pre-processing applied by

ADNI, including GradWarp, B1 non-uniformity correction and N3 intensity cor-

rection, depending on the scanner manufacturer. Some further processing was ap-

plied to these images, as described in the following. The images were resliced to
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1mm voxel size using the tools from J. Shen’s NIFTI toolbox, version 2011-09-21

(http://www.rotman-baycrest.on.ca/~jimmy/NIfTI/), and then either cropped

or zero-padded to 256 ◊ 256 ◊ 256 size. Image intensities were then scaled to make

the 99th percentile of all image histograms match. The experiments were then done

on 2D slices of images pre-processed in this way (one slice from each image), but the

basis search method can be extended to three-dimensional images. Computations

were done using MATLAB (The MathWorks, Natick, MA).

4.5.1. Approximation of brain MR images. The aim of this experiment

was to measure the trade-o� between sparsity and accuracy for an adapted wavelet

packet basis and compare it to a wavelet basis. Performance was tested with ten-

fold cross-validation. For each fold, a basis was trained to best approximate the

out-of-fold data with a specific fraction of coe�cients (values of 25%, 20%, 10%,

5%, 2% and 1% were tested), and the in-fold data was used for testing.

The results were compared to approximations of the same sparsity generated with a

standard wavelet basis. Both wavelet and wavelet packet decompositions were done

to four levels with the db4 filter bank from the Daubechies family of wavelets.

Cross-validation produced ten estimates of approximation accuracy (one for each

fold). These estimates were then averaged to give a single figure for each sparsity

setting. Results are presented in figure 4.5.1.

These results show that compared to wavelets, adapted wavelet packet represent-

ations can improve the accuracy of sparse approximations over a wide range of

sparsities. The basis adapted for 30% sparsity still gives lower ¸
1

approximation

error at 2% of coe�cients, compared to wavelets.

Suprisingly, it can also be observed that the wavelet packet representation adapted

for 30% (or 20%) sparsity also gives more accurate approximations at sparsities

as low as 2% than the wavelet packets adapted for those specific sparsities. This
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Figure 4.5.1: Approximation of brain MR images with wavelet packets (solid blue)
and wavelets (dashed red). N.b. the wavelet basis is the same in all of the cases so
the dashed red lines are also the same.

could be a sign of overfitting but it could also indicate an error in the software

implementation of the proposed method.

Interestingly, for each individual value of target sparsity it was observed that in

the ten-fold cross-validation process the same basis was learned every time. This
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appears to indicate that the proposed method adapts the basis to a specific task,

which was brain imaging in this case.

4.5.2. Compressed sensing reconstruction of brain MR images. In this

experiment, images from fold 1 were reconstructed using the basis learned from

folds 2 to 10. The decision to reconstruct only the images from fold 1 was made

because of the long time required to compute each reconstruction. Undersampling

mask generation and CS reconstruction were done using SparseMRI V0.2 (http:

//www.stanford.edu/~mlustig/SparseMRI.html). Some changes were made to

the original software: the k-space mask generation code was modified to enable

lower sampling densities and the k-space density compensation step was omitted in

the reconstruction process.

The method of [181] uses a combination of wavelet domain sparsity and total

variation (TV) to regularise the reconstruction. The weights of transform domain

sparsity and TV were left at their default values in the SparseMRI package (0.05

and 0.02 respectively) for both wavelet and wavelet packet experiments.

An example image with its wavelet and wavelet packet reconstructions is displayed

in figure 4.5.2. Table 4.5.1 presents the peak signal-to-noise ratio (PSNR) over a

range of configurations. PSNR is computed with the formula 10 · log
10

3
(max(x))

2
1
n Îˆ

x≠xÎ2
2

4

where x is the reference image (represented as a vector of voxel intensities), x̂ is the

reconstruction (also represented as a vector of voxel intensities), n is the number of

components of x, and max (x) denotes the largest component of the vector x.

These results show that substituting the wavelet transform with a pre-trained wave-

let packet transform in compressed sensing reconstruction with sparsity and total

variation regularisation leads to a small improvement in PSNR. This is a somewhat

suprising result given the clear advantage that wavelet packets had in the sparse

approximation experiments.
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Figure 4.5.2: Example reconstructions with wavelets and wavelet packets. Top row
(left to right): original image, wavelet reconstruction from 40% k-space sampling and
the associated error map. Bottom row (left to right): k-space mask for 40% sampling
(sampled frequencies in white), wavelet packet reconstruction from 40% sampling and
the associated error map.

Table 4.5.1: Compressed sensing reconstruction PSNR with wavelets (W) and wave-
let packets (P). The PSNR below are means over the 83 images in fold 1. m/n is the
ratio of the number of k-space samples to the number of pixels in the image. s

ı

n

is the
target sparsity for which the wavelet packet basis was optimised.

m/n W
[dB]

P (sı
n = 0.1)
[dB]

P (sı
n = 0.05)
[dB]

P (sı
n = 0.02)
[dB]

P (sı
n = 0.01)
[dB]

P (sı
n = 0.005)
[dB]

0.4 34.0999 34.3187 34.0599 33.8154 33.7118 33.7118
0.35 31.4394 31.5990 31.3284 31.1503 31.0973 31.0973
0.3 27.4338 27.5222 27.4048 27.2641 27.2068 27.2068
0.25 24.5557 24.6713 24.5758 24.4548 24.4156 24.4156
0.2 23.7575 23.8077 23.7507 23.6528 23.6355 23.6355

These results also seem to show that improved sparsity is not enough to achieve

a visible improvement in the quality of compressed sensing MRI reconstruction.

Indeed, early research in compressed sensing emphasised the importance of another

factor: incoherence between the sparse representation basis and the sensing basis
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[41]. Coherence between two n-dimensional bases � and � is defined as [34]

µ (�, �) =
Ô

n · max
1Æk,jÆn

|È„
k

, Â
j

Í|

where „
k

are basis vectors from � and Â
j

are basis vectors from �. Importantly,

the sensing basis in CS-MRI is the Fourier basis. The longer waveforms of the

wavelet packet representation could be more coherent with the Fourier basis, which

may a�ect CS reconstruction quality. The standard wavelet basis also includes long

waveforms in the low-frequency bands but the variable-density sampling patterns

with dense sampling in the low-frequency region could be the factor that alleviates

the problem in this case by providing more complete information about the lower

frequencies. Explaining this problem is possible topic for future work.

4.6. Conclusions

A method was proposed for learning a wavelet packet basis from a set of images for

compressed sensing applications. The core of the proposed method is the Coifman-

Wickerhauser algorithm and the main contribution of this work is designing a cost

function that balances sparsity and ¸
1

approximation error while also being compat-

ible with this algorithm. The performance of the proposed method was evaluated

in two tasks: approximation and compressed sensing reconstruction of unseen brain

MR images. The results show that a wavelet packet basis learned from example

images can yield more accurate sparse approximations of unseen brain images than

a standard wavelet basis. However, despite this significant improvement, in re-

construction of brain images from partial k-space data the di�erence between the

learned basis and a wavelet basis is small. Further work will be required to explain

this but coherence between the wavelet packet basis used for sparse approximation

and the Fourier sensing basis is likely to be a contributing factor. The next step

after that would be to modify the cost function to include a term which accounts

for this coherence.
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The experiments conducted in this study were focused on 2D slices rather than full

3D images. 3D reconstructions can be done by reconstructing all slices individually

and then combining them into a complete 3D image. Alternatively, the wavelet

packet framework and the proposed method can be extended to 3D signals. The

latter approach is likely to be preferable [181, 182].

The method proposed in this chapter learns the sparse approximation basis from

a set of example images. This means that it can adapt to di�erent tasks. The

examples shown in this chapter are focused on brain imaging, which is the overall

topic of this dissertation, but other applications could be an interesting topic for

future work.

Using example images to learn a sparse approximation basis for reconstruction can

also be viewed as biasing the solution to the reconstruction problem towards the

types of images that are commonly seen in a specific application. This is somewhat

similar to the methods used in CT reconstruction, where regularisation is used to

bias the solution to the type of images seen in CT, for example by penalising total

variation [270].



CHAPTER 5

Sparse classification of AD with FDG-PET images

5.1. Introduction

Medical imaging enables in vivo study of brain structure and function in Alzheimer’s

disease. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [197] imaged a

large number of elderly participants with MRI and PET, creating a database that

can be used by the neuroimaging community to evaluate image analysis tools. The

focus of this chapter is on machine learning techniques that can be used in the con-

text of dementia to distinguish AD patients from normal controls and to predict for

patients with mild cognitive impairment whether they are likely to progress to AD.

These techniques rely on machine learning algorithms with feature vectors produced

by image analysis algorithms. FDG-PET images can be used to derive features by

studying intensities voxel-wise [128, 118, 129, 224, 110, 130, 138, 111], aver-

aging them within anatomical regions [280, 278, 279, 171, 47] or mapping them

onto the cortical surface [193, 235, 275].

Due to large dimensionality of voxel-wise image data, a concern naturally arises

when voxel-wise features are used that the large number of features could lead to

classifier overfitting. Therefore, it may be beneficial to apply feature selection with

the aim of reducing the risk of overfitting and improving prediction performance,

with the additional benefit that models with less variables are easier to visualise and

interpret [116]. Feature selection can be data-driven or based on prior knowledge

of areas a�ected by disease based on previous studies [50].

A study by Salas-Gonzalez et al. [224] found that feature selection with additional

dimension reduction using factor analysis gives very good accuracy, up to 95% in
85
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distinguishing between AD patients and normal controls using FDG-PET images

from the ADNI database. Other methods using feature selection have also been

reported to give state-of-the-art results on both MR and FDG-PET data [130,

278, 279, 139, 170, 287, 286, 241, 171]. However, a study by Chu et al. [50]

of MR images available from ADNI concluded that automatic feature selection does

not improve classification accuracy in classification using voxel-wise grey matter

density features, although extraction of pre-defined anatomical structures can be of

some benefit. They noted that it may be the case that most features are weakly

informative, rather than non-informative. They also remarked that multivariate

patterns may have made it more di�cult to rank features.

In contrast to feature selection, feature agglomeration performs clustering of cor-

related features and combines them in groups to produce a smaller set of features.

This approach has been studied far less than feature selection, but it did receive

some attention from the neuroimaging community. Fan et al. [95] used supervised

watershed segmentation with additional feature selection to build classifiers for MR

images, and their algorithm was subsequently applied to distinguishing MCI patients

from normal subjects using a combination of structural MRI and 15O-water-PET

[94]. Michel et al. [192] used supervised hierarchical clustering with spatial con-

nectivity constraints to build features for analysis of fMRI data.

The aim of this chapter is to compare several classification and dimensionality reduc-

tion algorithms applied to classification of FDG-PET images available from ADNI.

The scope of this comparison includes feature selection as well feature agglomer-

ation, combined with classifiers including linear methods (linear SVM and logistic

regression) as well as the non-linear random forest classifier.

Among many existing feature selection methods, mass univariate F -tests (ANOVA)

and ¸
1

regularisation were evaluated in this chapter. Two algorithms for feature

agglomeration were also evaluated: a method based on Ward clustering with spatial

neighbourhood constraints and another method based on simple linear iterative
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clustering (SLIC) supervoxels [1]. SLIC is an image segmentation algorithm, but

this chapter presents a potentially novel way of using SLIC for feature agglomeration

in image-based classification.

5.2. Background

5.2.1. Classification algorithms. Classification algorithms are discussed in

chapter 3, but there are additional concerns that apply to high-dimensional data.

When choosing an algorithm for an image-based classification problem, it has to be

taken into account that in a typical medical imaging scenario the number of voxels

is much larger than the number of images available for training, and this may still

be the case after applying feature selection. Simple algorithms with strong regular-

isation are often chosen for problems of this type [123] and therefore this chapter

includes two linear classifiers: SVM and regularised logistic regression, with SVM

being very common in Alzheimer’s disease classification studies [60]. In addition,

the non-linear random forest classifier was also evaluated. Random forests com-

pensate for the risk of overfitting in decision trees by combining a large number of

trees through bootstrap and additionally randomly restricting the choice of features

for each branching point in these trees [24, 123]. Random forests were previously

applied to multi-modal classification with FDG-PET and MRI data [110].

5.2.2. Dimensionality reduction algorithms. Dimensionality reduction is

discussed from an overall perspective in chapter 3. In the following, the algorithms

that are used in this chapter are discussed in detail.

5.2.2.1. Mass univariate F -test. The mass univariate F -test method is a filter-

type feature selection algorithm which relies on conducting a separate hypothesis

test for each of the features. In order for this test to be computed, the group

memberships of individual samples have to be known (in this chapter the two groups

are AD patients and healthy controls). The null hypothesis of each of these tests is
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that the mean of the feature is the same for all groups, meaning that the feature is

not informative in a classification setting. The F-statistic is computed as the ratio

of between-group variability to within-group variability [113]:

F = s2

b

s2

w

s2

b

=
q

i

n
i

(x̄
i

≠ x̄)2

m ≠ 1

s2

w

=
q

ij

(x
ij

≠ x̄
i

)2

n ≠ m

where x
ij

is the j-th observation in i-th group, x̄
i

is the sample mean of the i-th

group, x̄ is the sample mean of all data, n
i

is the number of observations in i-th

group, n is the total number of observations and m is the number of groups.

There are several ways of selecting a subset of features based on their individual val-

ues of the F -statistic. One relies on computing the associated p-value for each fea-

ture’s F -statistic and selecting features that have p-values below a specific threshold,

which can be adjusted to control the false positive rate, familywise error or false dis-

covery rate at a specified level. An alternative way is to choose a specified number

of features (or a specified proportion of the total number of features) from the start

of their sequence sorted by p-value increasing. Therefore, all these variations on the

mass univariate F -test method require the value of a parameter to be chosen.

The univariate F -test can also be referred to as one-way ANOVA, where ANOVA

stands for “analysis of variance”. If there are only two groups being compared,

one-way ANOVA is essentially equivalent to the two-tailed, two-sample t-test [218].

5.2.2.2. Ward feature agglomeration. Ward feature agglomeration relies on Ward

clustering [142], a type of agglomerative clustering algorithm (agglomerative clus-

tering was discussed in Chapter 3). The spatially aware Ward feature agglomeration

algorithm used in this chapter was proposed by Michel et al. for fMRI applications

[192]. They also added an additional modification where the Ward tree is pruned in
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a supervised way, but the algorithm used in this chapter is unsupervised and does

not include this modification.

5.2.2.3. Feature agglomeration with SLIC supervoxels. Simple linear iterative

clustering (SLIC) was proposed as a method for segmenting images into superpixels

(or supervoxels in three dimensions) by Achanta et al. [1]. It was soon applied

to 3D electron microscopy, where supervoxels were used as part of a segmentation

algorithm for mitochondria [180].

SLIC is based on the K-means clustering algorithm, which was described in Chapter

3, with some modifications described below.

In SLIC, each pixel (or voxel) is assigned a feature vector which is a concatenation

of colour parameters (colour vector) and spatial coordinates. The cluster centres

are initialised with feature vectors obtained by sampling the image on a regular

grid. These intial values can then be adjusted by searching within a 3 ◊ 3 spatial

neighbourhood of each of the selected points for pixels with the lowest gradient

(this step was omitted in the implementation used for this chapter). Then the

algorithm runs a modified K-means loop on the feature vectors until convergence.

The modifications consist of introducing a spatial window when searching for pixels

to include in each cluster (which makes the algorithm much more e�cient) and also

introducing a compactness factor that balances the influence of spatial distance and

colour distance [1]. Additional post-processing may be applied to ensure spatial

connectivity within each superpixel [1], but it was not applied in this study. If the

input images are RGB colour images, they are transformed into the CIELAB colour

space before running SLIC [1].

A subsequent update to SLIC, named “SLICO” (or “slic-zero”), replaces the global

compactness parameter with a value adjusted adaptively for each individual super-

voxel, although an initial compactness setting is still required for the first iteration

(http://ivrl.epfl.ch/research/superpixels). This improved version of SLIC
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(a) Original image (b) SLICO

Figure 5.2.1: SLICO applied to a 2D slice from an MR image of a human brain.

is used in this chapter. Figure 5.2.1 shows an example of SLICO (without the spatial

connectivity post-processing step) applied to a brain image segmentation task.

In this chapter, SLICO was adapted for feature agglomeration as follows. First, for

each voxel the colour vector was replaced with the vector of image intensities at

this specific voxel for all images. After SLICO segmentation, each supervoxel was

merged into a single feature by averaging its constituent voxels.

5.2.3. Image registration. The work presented in this chapter is based on

images that underwent a process of spatial normalisation and intensity adjustment

as part of the work by Gray et al. [112, 109]. The following brief description

of image registration is intended to provide the background for section 5.3, which

describes the image normalisation process.

Before applying machine learning algorithms in a voxel-wise fashion, it is important

to ensure that the images are spatially aligned to ensure that a voxel indexed with a

particular set of coordinates represents the same anatomical location in all images.

This is achieved by applying a spatial transformation that is estimated with an
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image registration algorithm. Image registration is the task of mapping the points

in one image to the respective points in another image. In the context of medical

imaging, image transformations are often required to include an a�ne component

as well as a non-rigid component to account for deformations due to motion and

anatomical di�erences between patients. The free-form deformation algorithm [221]

is an example of a non-rigid registration method.

Image registration can be based on identifying salient features (keypoints) in the

source and target images and matching them, or alternatively it can seek to align

images in a way that ensures a close match of pixel or voxel intensities between the

transformed source image and the target image [243]. Image cross-correlation is

a simple measure of similarity for intensity-based methods but normalised mutual

information is more commonly used in practice due to its advantages of overlap

invariance and being able to match images from di�erent modalities [238, 221].

Medical image registration is discussed in detail by Hajnal et al. [119] and a recent

review by Sotiras et al. is available in [237].

5.3. Image normalisation

The FDG-PET images studied in this chapter originate from the ADNI database

and were processed into a homogenous data set by Gray et al. for the study in

[110]. The following summary describes the processing steps applied. Full details

are available in [109].

The images available from ADNI were acquired under several slightly di�erent FDG-

PET protocols (30-minute static, 30-minute dynamic or 60-minute dynamic). The

dynamic scans were first converted to a 30-minute static format by aligning (with

rigid registration) every frame of each dynamic sequence to its first frame and aver-

aging [109]. This was done using the IRTK package (https://www.doc.ic.ac.uk/
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~dr/software/) with normalised mutual information as a measure of image similar-

ity. For the 60-minute sequences only the final 30 minutes were used. The reasoning

behind this is that a large majority of scans were 30-minute dynamic scans starting

approximately 30 minutes after tracer injection, whereas the 60-minute dynamic

scans started simultaneously with tracer injection [109].

These FDG-PET images were then registered (using a�ne registration) to their

respective MR images using the tools from IRTK [109].

SPM5 “Segment” module was then used to linearly and non-linearly register the

MR images to the MNI brain template image and the resultant transformation

parameters were used to transform FDG-PET images from their individual MRI

spaces to the common MNI space, completing the process of spatial alignment [109].

The MNI-space FDG-PET images were then smoothed with scanner-specific Gaus-

sian kernels, reducing them to a common spatial resolution of 8mm full-width-at-

half-maximum (FWHM), which was followed by another smoothing step, using a

Gaussian kernel with 8mm FWHM [109]. The aim of this smoothing step was to

reduce noise (which is a common problem in PET), and additionally reduce the

influence of any misalignment due to imperfections in the registration process [109].

This was followed by intensity normalisation, using the reference cluster method of

Yakushev et al. [271], to compensate for the di�erences between subjects in overall

radioactivity [109].

The processed dataset consisted of 287 images taken at baseline (a subject’s first

scan as part of ADNI), including 71 AD patients, 69 cognitive normal (CN) controls

and 147 MCI patients. 73 of the MCI patients later converted to AD, so they were

labeled as progressive MCI (pMCI). The remaining 74 MCI patients did not convert

to AD so they were labeled as stable MCI (sMCI). The total number of subjects

(287) is somewhat smaller than the 315 originally available from ADNI because of
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Table 5.3.1: Numbers of subjects in AD, CN, pMCI and sMCI groups.

AD CN pMCI sMCI
Number of subjects 71 69 73 74

image quality issues in some cases and failure of particular processing steps in others.

The detailed list of excluded images is available in [109].

For the experiments conducted specifically for this chapter, the images provided

by Gray et al. [109] were finally re-sampled, from the original resolution of 2mm

(image size 79 x 95 x 82), by a factor of 2 in each direction, yielding images with

4mm resolution. The re-sampling process did not apply any filtering since the images

were already smoothed twice, including with an 8mm FWHM kernel. The aim of

re-sampling was to reduce the dimensionality of machine learning data (by a factor

of 8), thus enabling a more extensive set of parameter configurations to be covered

in grid search.

5.4. Classification pipelines

This chapter evaluates the following five classification algorithms (described in detail

in chapter 3).

(1) Linear Support Vector Machines (SVM) with ¸
2

regularisation

(2) Linear Support Vector Machines (SVM) with ¸
1

regularisation

(3) Logistic Regression with ¸
2

regularisation

(4) Logistic Regression with ¸
1

regularisation

(5) Random Forests (RF)

The regularisation parameter for logistic regression and SVM was adjusted by cross-

validation in both ¸
1

and ¸
2

regularisation cases.

For random forests the parameter controlling the proportion of features randomly

sampled to search for the best node partition was also adjusted by cross-validation.

A common convention is to set the number of features sampled as the square root



94 5. SPARSE CLASSIFICATION OF AD WITH FDG-PET IMAGES

of the total number of features, but in high-dimensional problems this would cause

only a small proportion of features to be sampled for consideration in each node

partition, due to the very large total number of features. Therefore, if the relevant

features are sparse then there isf a risk of having node partitions where very few or

no informative features appear in the subset available to choose from [123]. This

concern was especially relevant in those cases where no dimensionality reduction

was used, but for consistency the proportion of features sampled was chosen by

cross-validation in all cases.

In general, large numbers of trees are preferable but there are limits with regards to

what is computationally feasible. In this chapter the number of trees in each random

forest was set to 1000 as a value that was manageable with the computational power

available, considering that forests had to be built many times due to cross-validation

requirements.

For each of the above classifiers, the following dimensionality reduction algorithms

were evaluated as pre-processing steps.

(1) No dimensionality reduction.

(2) Feature selection with mass univariate F -test (one-way ANOVA).

(3) Feature agglomeration with Ward clustering, with a spatial neighbourhood

constraint.

(4) Feature agglomeration with SLIC supervoxels, using the SLICO version of

this method.

These dimensionality reduction methods have some parameters that were adjusted

by cross-validation. These parameters are: for ANOVA the p-value threshold below

which features are selected, for Ward agglomeration the number of clusters, and for

SLIC the number of clusters as well.

Logistic Regression with ¸
1

regularisation already incorporates feature selection,

as the ¸
1

norm favours sparse solutions. So in e�ect, four dimensionality reduction
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methods were evaluated specifically for logistic regression. In addition, ¸
1

regularised

Logistic Regression is combined with each of ANOVA, Ward and SLIC methods,

to see if there are any benefits to applying two types of dimensionality reduction

methods in a sequence. Similarly, the SVM classifier is also evaluated in a form with

¸
1

regularisation.

The experiments were done with Python using the Scikit-learn package (http://

scikit-learn.org/stable/) [203] for machine learning algorithms. Scikit-image

(http://scikit-image.org/) was used for SLIC, with modifications to enable

the SLICO version that were later merged into the master branch (see https:

//github.com/scikit-image/scikit-image/pull/864 for details). The Nibabel

package (http://nipy.org/nibabel/) was used to read and write images.

5.5. Evaluation

All classifiers were trained on the data representing subjects diagnosed as Alzheimer’s

disease (AD) or cognititive normal (CN). The trained classifiers were then evaluated

on two classification tasks:

(1) Classify a subject from the {AD, CN} pool as either AD or CN. We also

refer to this task as “AD detection”.

(2) Predict whether a subject from the MCI pool will convert to AD or remain

stable (within a time horizon dependent on the data available).

The approach of using a classifier trained on AD and CN data for prediction of

progression from MCI to AD has been tested before by other authors with good

results [235, 61]. Alternative approaches include combining AD, CN and MCI

subjects in a semi-supervised learning framework [97, 277] or using domain transfer

learning [48, 47].

For each classification pipeline this experiment was repeated 100 times with a strat-

ified random partition of the entire data set into 75% training data and 25% test
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data (the partitioning included MCI subjects even though they were only used for

testing). The parameters for each classification pipeline were selected according to

best results in ten-fold cross-validation on the training subset only, followed by re-

fit (with the selected parameters) to the whole training subset. In other words, the

parameter tuning loops were nested inside the testing loops.

Classification results are summarised in the next section with the standard metrics

of classification accuracy, sensitivity and specificity, as discussed in chapter 3.

5.6. Results

Table 5.6.1 displays means and standard errors of performance metrics: accuracy

(Acc), sensitivity (Sens) and specificity (Spec) for the AD detection and MCI pre-

diction tasks. Figure 5.6.1 shows box plots for classification accuracies.

Best accuracy (86.43%) on the AD vs CN task was achieved by the composition of

ANOVA feature selection and a linear SVM classifier with ¸
2

regularisation. How-

ever, the box plots show that the variations due to di�erent train-test partitions are

of similar magnitude to the di�erences between particular methods. A similar ob-

servation holds for MCI prediction accuracies, but the most accurate method in this

case is SLIC-based feature agglomeration followed by a logistic regression classifier

with ¸
2

regularisation (69.38% accuracy).

Table 5.6.2 displays the numbers of features output by the first stage of each pipeline

and used by the final classifier (n.b. those two numbers may di�er due to some of the

classifiers having their own embedded feature selection, specifically random forests

and the ones with ¸
1

regularisation). The number of features had quartiles that were

scattered over a very wide range, which meant that plots were di�cult to interpret,

so these numbers are only presented in tables.
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Dimensionality reduction appears to have the most pronounced e�ect for ¸
1

-regularised

classifiers, where the number of features is less than 150 in all cases. ANOVA ap-

pears to select (in the median) about one third to a half of the total number of

features. The di�erences in the number of features between ANOVA with di�er-

ent classifiers are probably due to cross-validation selecting di�erent ANOVA sig-

nificance thresholds. This is expected, as each classifier may achieve its optimum

performance with di�erent fature subsets.

Classification pipelines with Ward or SLIC feature agglomeration appear to settle

on much smaller numbers of features than those with ANOVA feature selection. In

addition, Ward agglomeration settles on less features than SLIC agglomeration in

most cases. It is worth remembering that these specific numbers of clusters were

selected through cross-validation, so they are chosen for best performance.

Linear classification pipelines can be visualised by displaying images of classifier

weights assigned to respective voxels or clusters of voxels. Visualisations of linear

classifiers with di�erent dimensionality reduction pre-processing steps are shown in

figures 5.6.2, 5.6.3, 5.6.4 and 5.6.5. Random forests are not suitable for this type

of representation but feature importances (described in chapter 3) can be displayed

instead, showing which voxels are relevant. However, feature importances do not

indicate whether a feature is positively or negatively correlated with AD. Methods

using random forests with di�erent dimensionality reduction pre-processing steps are

visualised in figure 5.6.6. In all cases the following steps were followed to generate

the images.

Voxel weights were averaged over the 100 random training-test partitions of the

data. Since the classifiers were trained on downsampled (4mm resolution) images,

the results were interpolated to 2mm resolution to match the template. Some voxel

weights had very large values, so the intensities were clipped as follows to ensure

better contrast. The individual clipping threshold for each image was chosen as

either the 0.01th or the 99.99thpercentile of the intensity distribution, whichever
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(a) No dim. red. (b) ANOVA (c) Ward (d) SLIC

Figure 5.6.2: Voxel weights for SVM with ¸

2

regularisation and di�erent dimension-
ality reduction pre-processing steps, averaged over 100 random training/test partions
of the data.

had larger absolute value. Values outside the range between this threshold and its

negative were clipped. The problem of very large classifier weights was only an issue

in case of sparse classifiers but clipping was applied to maps of all linear classifiers

for consistency.

Voxel weights were then rescaled in each image individualy to the [≠1, 1] range and

mapped onto a colormap. Voxels in the [≠0.05, 0.05] range were set to transparent.

Finally, these images were overlaid on top of the MNI152lin anatomical template.

5.7. Discussion

5.7.1. Classification accuracy. The main notable feature of these results is

that, surprisingly, there is little di�erence in terms of performance between very

di�erent algorithms. As each subplot in figure 5.6.1 shows, the variation due to ap-

plying di�erent dimensionality reduction methods is relatively small when compared

to the variation of results over the 100 random dataset partitions for each specific

classification pipeline. None of the algorithms appear to particularly stand out from

the rest. Furthermore, using the linear algorithms in their ¸
2

-regularised forms gave
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(a) No dim. red. (b) ANOVA (c) Ward (d) SLIC

Figure 5.6.3: Voxel weights for logistic regression with ¸

2

regularisation and di�erent
dimensionality reduction pre-processing steps, averaged over 100 random training/test
partions of the data.

(a) No dim. red. (b) ANOVA (c) Ward (d) SLIC

Figure 5.6.4: Voxel weights for SVM with ¸

1

regularisation and di�erent dimension-
ality reduction pre-processing steps, averaged over 100 random training/test partions
of the data.

results which appear to be just as good as when using ¸
1

regularisation or any of

the other dimensionality reduction methods evaluated in this chapter.

The lack of benefit from using sparse ¸
1

methods could indicate that FDG-PET

image classification with voxel-wise features is not intrinsically a sparse problem.

Perhaps this is due to correlation between neighbouring voxels in the images, which
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(a) No dim. red. (b) ANOVA (c) Ward (d) SLIC

Figure 5.6.5: Voxel weights for logistic regression with ¸

1

regularisation and di�erent
dimensionality reduction pre-processing steps, averaged over 100 random training/test
partions of the data.

(a) No dim. red. (b) ANOVA (c) Ward (d) SLIC

Figure 5.6.6: Feature importances for random forest classifiers with di�erent di-
mensionality reduction pre-processing steps, averaged over 100 random training/test
partitions of the data. N.b. feature importances only quantify the importance of a
feature, without indicating if a large value makes the image more likely to be classified
as AD or normal.

distributes information across regions. In this case, ¸
1

-regularised methods, which

aim to remove redundant features, would have the disadvantage of not being able to

use redundancy to reduce sensitivity to noise. The images used in this chapter were

carefully processed, with multiple smoothing steps that suppress noise, which could
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explain why sparse models did not show degraded performance (due to excess noise)

either. Smooth and low-noise images could also be an explanation of why feature

agglomeration produced no improvement over classifiers on their own: first, the

noise-suppressing properties of feature aglomeration have no advantage, and second,

due to high autocorrelation within the images, neighbouring voxels are likely to be

treated by the classifier similarly anyway.

Another reason for performance parity between pipelines with and without feature

selection could be that superfluous features do little or no harm to the accuracy of

the classifier, presumably due to being assigned relatively small weights under the

standard ¸
2

regularisation.

One subtle pattern that can be deduced from figure 5.6.1 is that using random

forests as the final classifier gives overall slightly better performance on the AD/CN

task than the linear classifiers (SVM and logistic regression). However, when the

classifiers trained on AD/CN data are used to classify MCI subjects into pMCI

and sMCI categories, pipelines based on random forests are slightly less accurate

than those based on linear classifiers. This could indicate that random forests are

more agile in learning a particular task but perhaps their learning is not as easily

transferable to similar tasks as in the case of linear classifiers. Nevertheless, those

di�erences are still relatively small.

The Ward and SLIC feature clustering algorithms perform similarly but SLIC seems

to be slightly better in most pipelines. This could be due to SLIC’s preference for

more compact clusters, which can be thought of as prior knowledge of probable

cluster shapes.

Table 5.7.1 lists AD/HC classification and pMCI/sMCI prediction accuracies re-

ported in several journal publications using ADNI data where FDG-PET was used

either alone or with other modalities. In comparison, the best results achieved in

this work are 86.43% accuracy for the AD/HC task (achieved with ANOVA feature
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selection and an SVM classifier) and 69.38% for the pMCI/sMCI task (achieved with

SLIC feature agglomeration and a logistic regression classifier with ¸
2

regularisation,

trained on the AD/HC data).

The accuracy achieved in this chapter on the AD/HC task is lower than the state-

of-the-art while the accuracy for the pMCI/sMCI task is comparable to the more

sophisticated multi-modal method of Young et al. [272] and higher than some

of the other methods. However, one should also be careful when comparing the

performance figures reported by di�erent studies, as there are di�erences in the

subsets of ADNI subjects used and evaluation methodologies. Studies of algorithms

for prediction of conversion from MCI to AD also di�er in the time horizon defined

for conversion [272].

Most of the methods listed in table 5.7.1 combine data from multiple modalities. In

contrast, the methods presented in this chapter rely mainly on FDG-PET, with MR

images only used to help with spatial alignment of FDG-PET images. This means

that the results obtained for the methods evaluated in this chapter are not directly

comparable with most of the results presented in table 5.7.1. Including features

derived from MR images as well as genetic and CSF biomarkers would probably

improve the results of this chapter. However, two of the methods listed in table

5.7.1 are based on FDG-PET: the one proposed by Gray et al. [112] and the one

proposed by Salas-Gonzalez et al. [224].

The method proposed by Gray et al. [112] is based on regional features, measur-

ing the strength of the FDG-PET signal per mm3 over individual anatomical brain

regions. The intensities are normalised with a reference cluster method. An SVM

classifier with a radial basis function kernel is then applied to these features. Im-

portantly, their dataset is an earlier version of the one used to generate the results in

this chapter and the testing methodology is also similar, making it easier to compare

the two methods. The classification accuracies presented in this chapter are higher
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than the ones in reported in [112], showing an improvement from treating voxels as

individual features, rather than averaging them within regions.

Salas-Gonzalez et al. [224] used a smaller subset of ADNI FDG-PET images and

reported accuracies of 87% with two-fold cross-validation and 92% with leave-one-

out cross-validation. Their result from two-fold cross-validation is close to the ones

obtained in this chapter. They included voxel selection using the t-test method in

their classification pipeline and additionally they combined and transformed voxel-

wise features into a smaller feature set with factor analysis. They also report a 95.2%

accuracy figure which appears to be the highest test accuracy achieved by adjusting

the number of factors, but generally one should choose parameters by nested cross-

validation, rather than doing it in this way, in order to avoid overfitting.

Methods for AD classification discussed in the literature are complex combinations

of image processing, feature extraction and machine learning steps. Therefore, it

is di�cult to distinguish whether the performance of a particular method is due

to accurate spatial normalisation, well-designed features, e�ective machine learning

algorithms or a combination of these factors.

5.7.2. Spatial distribution of features. Several observations can be made

based on the visualisations of individual classifiers. First, there are only small

di�erences between SVM and logistic regression when these classifiers are used

either directly or with ANOVA feature selection step preceding them. This pat-

tern appears both in case of ¸
2

and ¸
1

regularisation. However, this is not sur-

prising, as logistic regression and SVM cost functions can both be written in a

(loss)+(regularisation) format. For logistic regression the loss term is the binomial

deviance (log
Ë
1 + e≠yf(x)

È
). For SVM the loss term is the hinge loss ([1 ≠ yf (x)]

+

with [.]
+

denoting the positive part). These functions have similar tails, while there

is a di�erence close to the classification boundary [123].
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The visual representations of classification pipelines using Ward feature agglom-

eration appear broadly similar across classification algorithms, although they are

somewhat sparser for ¸
1

-regularised models. Meanwhile, for SLIC the appearance

of the weight maps seems to vary, particularly between ¸
2

and ¸
1

regularisation.

With ¸
1

regularisation, logistic regression and SVM are very sparse when trained on

either raw voxels or ANOVA selected voxels. With only on a small number of voxels,

these classifiers may be su�ciently accurate, but they are not as interpretable as

the more dense ¸
2

-regularised models. In addition, they could be more sensitive to

unusual anatomy not seen in training data, or to noisy images. It may be possible

to combine the benefits of both ¸
2

and ¸
1

approaches by applying the elastic net reg-

ularisation [288, 123] which combines ¸
2

and ¸
1

terms. This could be an interesting

topic for future work.

For all four linear classifiers, the weight maps are noticeably sparser when ANOVA

feature selection is used compared to when these classifiers are applied to all voxels.

This pattern is particularly visible in the case of ¸
2

-regularised classifiers. ANOVA

feature selection in conjunction with ¸
1

regularisation gives the sparsest feature maps

of all the linear models, with similar maps for logistic regression and SVM.

When a random forest classifier is the only stage in the pipeline, or when a random

forest is preceded by ANOVA feature selection, the distribution of feature import-

ances appears to be fairly sparse. When feature agglomeration is applied before a

random forest, the extent of relevant regions seems to be larger, particularly in the

case of Ward agglomeration.

The voxels located in the precuneus seem to be important to all classifiers. This

is consistent with the findings of other studies which found that the precuneus is

one of the brain regions associated with hypometabolism in AD and amnestic MCI

[155, 205, 195].
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5.8. Conclusions

This chapter evaluated a number of dimensionality reduction methods (¸
1

regular-

isation, ANOVA, Ward agglomeration and SLIC agglomeration) in conjunction with

several commonly used classification algorithms (SVM, logistic regression and ran-

dom forests), applied to the task of classifying FDG-PET images as belonging either

to AD patients or cognitively normal (CN) controls. The classifiers trained on AD

and CN images were also used for prediction of whether MCI patients would progress

to AD, based on FDG-PET images of their brains. It was found that there was no

substantial benefit in terms of classification accuracy to applying the dimensionality

reduction methods included in the comparisons. However, the dimensionality reduc-

tion methods evaluated in this chapter were rather simple, and more sophisticated

methods may give better results.

A recent study by Chu et al. [50] investigated feature selection in the context of

AD classification using MR images from ADNI. Their comparison included feature

selection based on mass univariate t-tests, recursive feature elimination (RFE), pre-

defined regions of interest (ROI) based on prior knowledge of regions a�ected by

AD and selection of ROIs based on averaged absolute t-values within them. They

concluded that using prior knowledge to select relevant brain regions improved clas-

sification accuracy but data-driven methods did not bring improvements or even

made accuracies worse. In contrast, this chapter focused on FDG-PET images, only

considered data-driven methods and did not include recursive feature elimination,

while including ¸
1

regularisation and two feature agglomeration algorithms.

However, other algorithms proposed in the literature often include feature selection

and achieve good results [130, 278, 279, 139, 170, 287, 286, 241, 171]. This

could indicate that feature selection is a useful component but not su�cient by itself

to achieve state-of-the-art accuracy. Many of these methods also rely on features

derived from multiple modalities, whereas the methods evaluated in this chapter

are based mainly on FDG-PET features with MR images only used to help with
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alignment of the FDG-PET images. Perhaps augmenting the input data with MRI

features would improve the results. It could also be the case that the relatively simple

dimensionality reduction methods evaluated in this chapter are not as e�ective as

some of the more complex algorithms proposed in the literature on AD detection.

It is a strength of this study that not only the average accuracies of various classifica-

tion methods, but also the variations of these averages across randomised partitions

into training and test data were quantified. This enabled comparisons between

di�erent methods to assess whether any di�erences are substantial relative to the

random variations.

The clustering algorithms used by the feature agglomeration methods evaluated in

this chapter are unsupervised. Perhaps supervised clustering, such as the algorithm

proposed by Fan et al. [95] as part of a method for MRI-based classification or the

algorithm proposed by Michel et al. [192] for fMRI studies (which was only eval-

uated in this chapter in unsupervised form) would give better results. In addition,

feature agglomeration was done using the arithmetic mean as the pooling function.

For the ¸
2

-regularised linear classifiers one large coe�cient is more “expensive” than

a set of proportionally smaller coe�cients distributed over a set of correlated fea-

tures, so the features that were agglomerated may have lost their weight in deciding

the classifier output. Therefore, an alternative pooling may be preferable, such as

summation or summation followed by division by the square root of the cluster size.

This chapter evaluates both ¸
1

and ¸
2

regularisations but not the elastic net which

combines both of them. It may be an intersting topic for future work to extend this

evaluation to the elastic net [288, 123].

Finally, the spatial normalisation methods used to prepare data for this study require

MR images to align the FDG-PET images. This is a weakness relative to methods

that only require FDG-PET images, such as [224].



CHAPTER 6

Detection of Alzheimer’s disease with scattering networks

6.1. Introduction

As already discussed in chapter 5, image-based classification is one of widely studied

problems in medical imaging. A key challenge when developing an image classsi-

fication algorithm is to choose an e�ective feature representation. In this chapter

scattering networks [26, 190, 27] are applied as a feature representation to image-

based classification of Alzheimer’s disease. We start with an overview of feature

representations for AD detection with MR images. Then scattering networks are

discussed in detail and an extension for 3D volumetric images is proposed. The chal-

lenge posed by high dimensionality of scattering representations is addressed with

the fast Johnson-Lindenstrauss transform [5]. The proposed methods are evaluated

in AD detection and prediction tasks on the ADNI data set.

6.2. Feature represenations for structural MRI

In their comparative evaluation, Cuignet et al. [60] distinguished three types of

feature representations for AD detection with structural MR images: voxel-based,

vertex-based and ROI-based.

Voxel-based features are defined on the level of individual voxels. Methods based on

features of this type for structural MRI analysis often rely on voxel-based morpho-

metry (VBM) [9, 108, 68, 228] to map the concentration of grey matter across the

brain. VBM in its basic form starts with aligning all images to a template, in order

to remove large-scale brain shape di�erences. This is followed by tissue segmenta-

tion, which partitions the brain volume into grey matter (GM), white matter (WM)
111
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and cerebrospinal fluid (CSF). The GM probability map is then smoothed, which

compensates for registration errors and makes the data distribution closer to Gaus-

sian. The grey matter concentration map generated in this way is then analysed

using statistical methods [9]. Optimised VBM is a more advanced protocol that

adds several improvements, including more careful preparation of a study-specific

template, spatial normalisation that is optimised for GM and WM, and a modulation

step at the end (but before smoothing) that corrects GM and WM concentration

for expansion or contraction due to spatial normalisation [108]. Voxel-wise VBM

features are used in many Alzheimer’s disease detection and prediction methods

[131, 94, 93, 257, 129, 194, 195, 60, 67, 97, 130, 50, 272, 174, 239]. VBM

can also be used as an intermediate feature representation. For example, Fan et al.

[95] use VBM-like analysis to compute voxel-wise features and then apply a sophist-

icated dimensionality reduction method to obtain features which are subsequently

used for clasification. They also assess the e�ectiveness of their method by training

a classifer to distinguish schizophrenia patients from controls based on brain MR

images.

Tensor-based morphometry (TBM) [52] can be used instead of VBM. TBM also

requires images to be coregistered, but subsequently it relies only on examining the

deformation fields that bring images into (non-rigid) alignment with a template.

The partial derivatives of the deformation field in three directions are used to con-

struct a Jacobian matrix field and the determinants of these matrices represent local

contraction or dilation [9]. TBM is used in several AD classification and prediction

methods proposed in the literature [244, 130, 148, 138].

Vertex-based features can be computed from structural MR images by mapping

cortical thickness onto the cortical surface represented as a vertex mesh [62, 99, 98].

Features of this type are used in a number of image-based AD detection methods

[164, 13, 208, 73, 60, 49, 90].
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ROI-based features encompass features derived by measuring the volume or shape

of specific anatomical structures [57, 53, 106]. In Alzheimer’s disease classification

the hippocampus is of particular interest, since it is known to be a�ected by atrophy

early in AD [136]. Hippocampal volume and shape can be computed by segmenting

an image, with shape represented as a decomposition into spherical harmonics [106].

Ewers et al. [91] investiagated volumes of the hippocampus, the entorhinal cortex

and several other biomarkers as predictors of conversion from MCI to AD dementia.

Longitudinal analysis of hippocampal atrophy was also used by Wolz et al. for AD

detection and prediction of progression from MCI [267].

Several authors have proposed features such as GM volumes computed within a

number of ROIs defined by anatomical segmentation [280, 277, 278, 279, 176,

240, 171, 241, 287]. Suk and Shen [240] developed this idea further by using ROI

features as the input to a stacked autoencoder (a type of artificial neural network),

which learns more advanced features that are then used for classification.

Recently several feature representations based on image patches were also proposed.

Patches can be derived from image intensities directly [59, 249] or from intermediate

features such as tissue density maps [173, 174, 239]. Patches can also be used to

learn more advanced features with deep learning [239].

Wavelet methods for structural brain image analysis were also proposed in the lit-

erature. Lao et al. [156] proposed a wavelet representation of VBM-type images

and applied this method in several settings: simulated atrophy images, classification

between male and female brains, and classification of brain images into age groups.

Canales-Rodriguez et al. [33] proposed a wavelet-based modification of the VBM

pipeline where statistical analysis is done in the wavelet domain and applied it to

a data set where images of one group were modified to simulate cortical thinning.

Hackmack et al. [117] developed a method based on the magnitude representation of

the dual-tree complex wavelet transform [147, 226] for detection of multiple sclerosis

(MS) using structural MR images. They also validated their method using images of
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AD patients and healthy controls. The three-dimensional directional wavelets used

in their work are conceptually similar to those used in this chapter. Chaplot et al.

[44] proposed classifying brain images using the discrete wavelet transform (DWT)

as a feature representation and the support vector machine (SVM) as a classifier.

Finally, some AD detection algorithms proposed in the literature combine di�erent

types of features into hybrid models [177, 268, 264, 275].

6.3. Scattering networks

Scattering networks were recently introduced as a new wavelet technique for signal

processing [26, 190, 27]. A scattering network can be represented as a tree of filter

banks, as shown in figure 6.3.1. Each filter bank consists of a low-pass filter and

several band-pass filters. The output of each low-pass filter constitutes part of the

network’s output, and the complex muduli of the outputs of the band-pass filters are

processed recursively by further filter banks. This construction is continued until a

defined maximum depth of the tree is reached. Filter banks in scattering networks

are typically based on complex Morlet wavelets (figure 6.3.2).

Scattering networks are particularly suitable for defining feature representations in

medical image-based machine learning problems because a network can be designed

with the properties of translation invariance and Lipshitz continuity with respect to

deformations [27]. Rotation invariance can be added with a more complex network

structure [230, 232] and scaling invariance can be included as well [231].

Scattering networks have been applied successfuly in image classfication setings,

with state of the art results for handwritten digits [26, 27] as well as textures

[26, 230, 27, 231, 232]. Other applications include audio classification [7, 8] and

classification of physiological signals [51]. A scattering transform was also defined

on graphs using Haar wavelets [46].
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Figure 6.3.1: A simple scattering network. Each filter bank consists of the filters g
(low-pass), h0 and h1 (both band-pass), which separate the image into di�erent spatial
frequency bands. The low-pass signal is part of the network’s output. The band-pass
signals are further processed with the complex modulus operator, producing inputs
to the next network layer. The number of layers is a pre-defined parameter of the
network.

In the context of medical imaging, scattering networks are particularly interesting

because they construct feature representations that change continuously with im-

age deformations [27]. This means that shapes of anatomical structures can be

represented implicitly, without the need for complex shape modeling.

Scattering networks for tomographic images. Scattering networks have

been designed so far to process one-dimensional signals [7, 8, 51] and two-dimensional

images [26, 230, 27, 231, 232]. However, working with tomographic images re-

quires a scattering network that can process three-dimensional images. This type of

network can be defined by extension from the two-dimensional algorithm of Bruna

and Mallat [26, 27], which is done in the following.
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Figure 6.3.2: Two-dimensional Morlet wavelets with three spatial orientations: ho-
rizontal, vertical and diagonal.

In the 2D case the filter banks are usually built with Morlet wavelets, i.e. complex

exponentials modulated with a Gaussian window and then mean-subtracted to meet

the wavelet admissibility criteria. The filters are directional, with their orientations

distributed evenly on a circle. The forms of the „ (low-pass) and Â
k

(band-pass, with

0 Æ k < K) filters can be written in a vector format, as a function of u = (x, y)T :

„ (u) = C
„

e≠Îu

T
�

≠1
uÎ2

Â
k

(u) = C
Âk

1
eiu·›k ≠ —

k

2
e≠Îu

T
�

≠1
k uÎ2

, 0 Æ k < K
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Figure 6.3.3: Scattering and deformation example. As the circle is deformed, the
local averages and first-order scattering coe�cients change in a gradual way. (The
first-order scattering coe�cients were re-arranged into a matrix for display and do
not correspond spatially to their respective images.)

where C
„

and C
Âk

are normalisation constants and —
k

is adjusted to ensure that

the sum (integral) of Â
k

(u) over its domain is zero1. The parameters � and �
k

(matrices, controlling shapes and spatial extents od the Gaussian envelopes) and ›
k

(vector, peak frequency di�erent for each filter in the bank) have to be chosen as

part of the design process.

With a vector formulation in 2D, the 3D version is a straightforward extension:

re-define u = (x, y, z)T and choose � and (�
k

, ›
k

) , k œ 0 Æ k < K.

1N.b. the imaginary part of a complex exponential is odd and the windowing Gaussian is even, so
the imaginary part of the sum (integral) vanishes. This leaves the real part which is annihalated
with the right choice of —.
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Figure 6.3.4: Three-dimensional Morlet wavelet (left: real part, right: imaginary
part). Two orthogonal cross-sections are shown in each plot.

While it is straightforward to choose any number of filter orientations equidistributed

on a circle, with a sphere (in the 3D case) this is more di�cult. One option is to

use the vertices or faces of Platonic solids, although this only works for up to 20

points (dodecahedron, with 20 vertices, is the Platonic solid with the most vertices).

Alternatively, one can use one of several algorithms (e.g.[72]) that produce points

approximately evenly distributed on a sphere. However, defining a large number

of orientations for the filters is not practical because the computational complexity

of the network grows quickly with the number of orientations (the total number of

filters in the network is Km̄). Therefore, filters oriented towards vertices of Platonic

solids were used in this work. One of the platonic solids (the regular icosahedron)

is shown in figure 6.3.5.

Figure 6.3.5: Regular icosahedron, one of the Platonic solids.
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With the filter banks defined as above, the scattering network is constructed accord-

ing to the standard architecture (figure 6.3.1).

It is worth noting that, as long as only real-valued signals are considered, pairs

of filters oriented towards opposite points on the unit circle (2D) or unit sphere

(3D) give responses with values that are complex conjugates of each other (same as

with Fourier transforms). Therefore, computational requirements can be reduced

by computing the response of only one filter from each pair.

6.4. Fast classifier training on high-dimensional data

Image descriptions generated with scattering networks can capture subtle character-

istcs of shape and texture, but the generated output is extremely high-dimensional.

This is particularly the case for 3D tomographic images where a large number of

directional filters is required to cover the unit sphere. When the number of features

excedes the number of samples in the data set by orders of magnitude, the risk

of overfitting is an important consideration. This means that simple and highly

regularised algorithms are preferred [123]. Therefore, logistic regression with ¸
2

regularisation was chosen for the experiments conducted in this study.

Machine learning algorithms applied directly to scattering features require large

amounts of computer memory and time for training. With a linear classification

algorithm it is natural to consider a linear dimensionality reduction step to make

classifier training faster and more memory-e�cient. Intuitively, as long as the pair-

wise distances between samples in the reduced feature space are close to those in the

original feature space, the distribution of the data is approximately preserved and

the classifiers trained on native and dimensionality-reduced feature vectors should

be in close agreement.
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In the experiments described in this chapter the fast Johnson-Lindenstrauss trans-

form (FJLT) proposed by Ailon and Liberty [5] was used for dimensionality re-

duction. In order to apply this transform to feature vectors with dimensions that

are not powers of two, the Hadamard transform in FJLT was substituted with the

discrete cosine transform (DCT). It is important to note that, to the author’s best

knowledge, the construction based on DCT has not been verified mathematically in

the same way as the Hadamard formulation, although a similar construction based

on the Fourier transform was addressed by Krahmer and Ward [151].

In order to compare the Hadamard-based FJLT and DCT-based FJLT, a simple

experiment was done with sets of vectors generated from Gaussian and exponential

distributions, with each component independent and identically distributed (i.i.d).

For each distribution a dataset D consisting of 1000 randomly generated vectors in

65536 dimensions was generated. These vectors were then reduced to a lower dimen-

sionality with both Hadamard-based FJLT and DCT-based FJLT. The maximum

approximation error was then computed as

max
x,yœD

|Îx
t

≠ y
t

Î
2

≠ Îx ≠ yÎ
2

|
Îx ≠ yÎ

2

where the vectors x, y are in original space and x
t

, y
t

are their transformed versions.

The results are shown in figure 6.4.1.

It appears that in this small experiment the Hadamard-based FJLT and DCT-based

FJLT have nearly identical performance. However, it is also important to note that

real data is unlikely to have independent identically distributed components and

indeed it is likely that the samples will be correlated with each other. Therefore,

this small experiment is not a su�cient replacement for a thorough mathematical

proof.
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Figure 6.4.1: Hadamard-based FJLT and DCT-based FJLT. Both transformations
were computed for two data sets (Gaussian and exponential vectors of i.i.d. random
variables) for a range of target dimensionalities.

It is worth noting that there are several alternatives to the dimensionality-reduced

classification method outlined above. Cannings and Samworth [43] recently pro-

posed a classification algorithm that combines the decisions produced by an arbit-

rary base classifier applied to many random projections of the data, with the set of

random projections pruned to retain only those that produce the smallest estimate

of test error. Fern and Brodley [96] earlier proposed a clustering algorithm that

combines the results of many runs of a base clustering algorithm, each computed on

a random projection of the data. Dasgupta and Freund [63] proposed an algorithm

for hierarchical vector quantization which also relies on random projections. Com-

pressive classification, where the data from a compressive sensor is used directly for

classification was also proposed in compressed sensing literature [124, 69, 83, 215]

and those methods can be used for e�cient classififcation of high-dimensional signals
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by simulating the compressive sensor with a random projection. The technique of

applying machine learning algorithms to data that was dimesionality-reduced with

random projections was also used to address problems including texture classific-

ation [172] and object tracking [281]. In addition, there are similarities between

the proposed compressive classification method and the algorithms used for approx-

imating kernel expansions [209, 159], where randomised projections are used for a

similar purpose.

6.5. Experiments

The data used to evaluate scattering representations for image-based classification

consisted of the following two data sets derived from the ADNI database.

(1) MRI T1-weighted intensity images, taken at baseline.

(2) TBM Jacobian determinant maps of deformation fields generated by re-

gistering 24-month follow-up MR T1-weighted images to baseline MR T1-

weighted images of respective subjects.

Both data sets originate from projects conducted by other researchers [114, 259,

138]. In the following, more detail is given on the processing steps that were used

to generate them.

6.5.1. MR T1 intensities. The data used in these experiments consists of

baseline MR T1-weighted images from the ADNI database. These images were ori-

ginally processed by Guerrero et al. for the work presented in [114]. Processing

applied to images available from ADNI by Guerrero et al. consisted of brain extrac-

tion with “pincram” (pyramidal intra-cranial masking, similar to [126]) and a�ne

alignment to the MNI152 template. These images were then divided into di�erent

categories as follows.
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Patients who reverted from AD to MCI or from MCI to cognitive normal (CN) at

any point were excluded from the analysis because they did not fall clearly into any

of the categories described in the following, and additionally because these patients

may have been cases of misdiagnosis. The subjects who were diagnosed as AD or

CN at baseline were labeled as such. Among the MCI patients, those who were

diagnosed as MCI at month 36 were labeled as stable MCI (sMCI) and those who

were diagnosed as AD at month 36 were labeled as progressive MCI (pMCI). Patients

who were diagnosed with MCI at baseline but had no month 36 scan available were

excluded. Finally, there were several patients with baseline scans missing in the

data set and these patients were also excluded. The final data set consisted of 759

subjects, including 254 AD, 277 CN, 113 pMCI and 115 sMCI.

To apply scattering networks to this data, scattering representations were computed

using Morlet wavelets and then their dimensionality was reduced to 25000 using the

FJLT with DCT as the core transform. Key parameters of the scattering network

(depth, number of scales in the filter banks, and number of directional axes to tune

the filters to) were varied to evaluate their importance for classification performance.

Voxel intensity features were used as a benchmark for evaluating scattering features.

Only the values of voxels falling within a brain mask were extracted from the images

in this case. The dimensionality of these feature vectors was still impractical to work

with, so it was reduced to 25000 in the same way as it was done for the scattering

features.

Scattering features as well as voxel features can be normalised to zero mean and unit

standard deviation before being dimensionality-reduced. Variants with and without

normalisation were both evaluated.

6.5.2. Jacobian determinant maps. This data set was adapted from the

work of Vounou et al. [259] and Janousova et al. [138] and the following summary

is based on the information provided in [259]. The data set consists of 510 subjects
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for whom both baseline and 24 month follow-up MR images were available from

ADNI by October 2010. The follow-up images were non-rigidly registered to their

respective baseline scans using a B-spline registration algorithm [221]. This was

done in a coarse-to-fine progression (20mm control point spacing, then 10mm, 5mm

and finally 2.5mm). The Jacobians of the resultant deformation fields quantify

the voxel-wise expansion or contraction between the baseline and follow-up scan

[22]. Baseline scans were also aligned with the MNI152 template using non-rigid

registration with 10mm control point spacing, giving deformation fields that were

used to warp the Jacobian maps to a common space. This data set was available

complete with labels distinguishing AD, CN, pMCI and sMCI subjects. It consisted

of 510 subjects, including 105 AD, 165 CN, 117 pMCI and 123 sMCI.

Voxel-wise Jacobian determinant maps were processed with scattering networks in

the same way as described above for MR T1-weighted intensity inages. As a bench-

mark, voxel-wise Jacobian determinants were also used directly as features, with

FJLT dimensionality reduction to 25000 dimensions.

Table 6.5.1: Summary statistics of the data sets.

Dataset Number of subjects
AD CN pMCI sMCI Total

MR T1 intensity 254 277 113 115 759
Jacobian 105 165 117 123 510

Both types of features were evaluated with and without feature normalisation (to

zero mean and unit standard deviation) before the dimensionality reduction step.

6.5.3. Classification. Logistic regression with ¸
2

regularisation was used as

the classification algorithm in all experiments reported in this chapter. FJLT ap-

proximately preserves pair-wise distances between data points, so a linear classifier

is suitable for classifying data that was dimensionality-reduced with this method.

The work of Chu et al. [50] has shown that feature selection does not significantly

improve classification accuracy of AD with MR images. This is consistent with the
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results obtained in Chapter 5 of this dissertation for FDG-PET images. Therefore,

no feature selection was applied in the experiments done (with MR images) for this

chapter.

6.5.4. Cross-validation. The set of AD and CN subjects was randomly parti-

tioned into 75% training data and 25% test data, in a stratified way. Training data

was used to train the classifier and test data was used for evaluation. This process

was repeated 100 times to give 100 classifiers with their respective performance fig-

ures on held-out test data. Each one of those 100 classifiers was then also tested

for separating pMCI patients from sMCI patients in the MCI subset, based on their

baseline scans.

6.6. Results

The two data sets (MRI T1 intensity and Jacobian) with two classifier options (with

and without normalisation) resulted in four sets of performance figures. Each of

these sets of results further consists of results for voxel-wise features and scattering

features with di�erent scattering network parameters.

Four performance measures were estimated for each configuration, both for AD vs

CN classification and for pMCI vs sMCI classification: accuracy, sensitivity, spe-

cificity and the area under the ROC curve (AUC). The sample means of all these

metrics estimated from the 100 randomised repetitions of the experiments are presen-

ted in tables. In addition, classification accuracy is visualised with box plots.

Table 6.6.1 and figure 6.6.1 show results for MR T1-weighted images without feature

normalisation. In this case scattering features clearly improve on voxel-wise features,

both in AD vs CN classification and in MCI prediction, regardless of the particular

setting of scattering parameters. Average accuracy in AD vs CN classification for

all scattering configurations is 68.45%, compared to 60.81% for voxel-wise features.

In MCI prediction, average accuracy for all scattering configurations is 57.68%,
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compared to 54.57% for voxel-wise features. Best mean AD vs CN accuracy is

69.26%, achieved with scattering features with D = 2, J = 2 and L = 6. Best mean

MCI prediction accuracy is 58.36%, achieved with scattering features with D = 2,

J = 2 and L = 10. It appears that the particular choice of values for D, J and L

has only a small e�ect on the results.

Table 6.6.2 and figure 6.6.2 show results for MR T1-weighted images with feature

normalisation. It appears that adding feature normalisation makes the results worse,

particularly for the scattering feature representations. However, scattering features

still have higher performance figures than voxel-wise features. Average accuracy

in AD vs CN classification for all scattering configurations is 65.25%, compared to

60.29% for voxel-wise features. In MCI prediction, average accuracy for all scattering

configurations is 56.58%, compared to 53.60% for voxel-wise features. Best mean

AD vs CN accuracy is 66.97%, achieved with D = 2, J = 2 and L = 6. Best mean

MCI prediction accuracy is 57.71%, achieved with D = 1, J = 1 and L = 3.

Table 6.6.3 and figure 6.6.3 show results for Jacobian images without feature normal-

isation. Average accuracy in AD vs CN classification for all scattering configurations

is 77.43%, compared to 72.26% for voxel-wise features. In MCI prediction, average

accuracy for all scattering configurations is 61.95%, compared to 59.95% for voxel-

wise features. Best mean AD vs CN accuracy is 77.87%, achieved with scattering

features with D = 2, J = 2 and L = 3. Best mean MCI prediction accuracy is

62.92%, achieved with scattering features with D = 2, J = 2 and L = 10. The

particular choice of D, J and L appears to have only a small e�ect on the results,

especially in AD/CN classification.

Table 6.6.4 and figure 6.6.4 show results for Jacobian images with feature normalisa-

tion. Average accuracy in AD vs CN classification for all scattering configurations

is 76.70%, compared to 71.53% for voxel-wise features. In MCI prediction, average

accuracy for all scattering configurations is 62.74%, compared to 61.88% for voxel-

wise features. In this case normalisation seems to make classification accuracies
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more widely distributed, both in AD vs CN classification and MCI prediction. Best

mean AD/CN classification accuracy is 79.59%, achieved with D = 1, J = 1 and

L = 3 (the simplest scattering network), and best mean MCI prediction accuracy

is 65.50%, with the same scattering network. Simpler scattering networks seem to

perform better than the ones with more filters or more scattering layers.

Relative to MR T1-weighted images, Jacobian images give much better results,

both in case of scattering features and voxel-wise features. However, these two

datasets are not directly comparable because they have di�erent numbers of subjects

in individual groups. In particular, the Jacobian data set has an uneven balance

of AD and CN subjects (105 AD and 165 CN), which would give a classifier that

always predicts CN expected accuracy of 61.11% on the AD/CN task.

6.7. Discussion

The experimental results presented in the previous section show that transforming

images with scattering networks can improve classification performance. Improve-

ments were observed for spatially normalised T1-weighted images as well as longitud-

inal Jacobian maps. Normalising scattering features led to slightly worse AD vs CN

classification accuracy for both data sets. When the classifiers trained on AD and

CN data were applied to prediction of MCI progression, the classification pipelines

including the feature normalisation step performed slightly worse on T1-weighted

data and slightly better on Jacobian data.

The particular choice of parameters for the scattering network (D, J and L) seems

to have a limited e�ect on classification accuracy. It is surprising that networks with

one layer are so close in performance to networks with two layers. This seems to

indicate that most of the relevant features are computed by the first layer. One could

argue that the features computed by the second layer are disadvantaged because

their amplitide is small relative to the features from the first layer. In that case,

the e�ect should have been eliminated by normalising the features, but in most
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cases there was no benefit from applying such normalisation, as the experiments

have shown. Insensitivity to J and L is more di�cult to comment on, since it is

di�cult to say how these values should be chosen. However, it is an advantage for

an algorithm if it is not particularly sensitive to the parameters. It is also important

to note that these results are from just two closely related data sets. It may be

the case that, for di�erent types of data, more layers could be beneficial or specific

values of J and L could be substantially better than others.

Table 6.7.1 shows results from selected ADNI classification studies found in the

literature. The imaging modalities and types of features used in each study are listed

in addition to performance metrics for AD/CN classification and MCI prediction.

The a�nely aligned MR T1-weighted images used in this chapter were co-registered

by Guerrero et al. for their work in [114], so it is natural to compare our results

to theirs. They achieved 89% AD vs CN classification accuracy and 73% MCI pre-

diction accuracy, compared to 68.45% for AD vs CN and 57.68% for MCI in this

chapter (averaged results for all scattering networks). Their work combined a�nely

aligned images with non-rigidly aligned images, using manifold learning for dime-

sionality reduction. They also combined data from di�erent scanner field strengths

(1.5T and 3T) and from di�erent phases of the ADNI project: ADNI-1, ADNI-GO

and ADNI-2. In contrast, this chapter focuses on a�nely aligned images and only

includes 1.5T images from ADNI-1. Furthermore, the evaluation methodology is

di�erent in this chapter, using a set of random partitions into training and test

data, which is in contrast to the single partition into a training subset and a test

subset used by Guerrero et al. [114]. It would be an interesting topic for future

work to apply the manifold learning methods studied in [114] to the scattering fea-

tures studied in this chapter, to see if the improvements due to replacing voxel-wise

features with scattering features would also be observed with their dimensionality

reduction and classification algorithms.
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The Jacobian data used in this chapter originates from the project of Vounou et al.

[259] and Janousova et al. [138]. They achieved 90.3% accuracy for AD/CN clas-

sification and 82.1% accuracy for MCI prediction, compared to 77.43% and 61.95%

respectively in this work. The main di�erences between their work and the method

presented in this chapter are that first, they applied feature selection to voxel-wise

data (no feature selection was used in this work) and second, they used a Gaussian

kernel SVM classifier trained on selected features (in this work logistic regression was

used for classification). It would be an interesting direction for future work to apply

their feature selection and classification algorithm to scattering representations of

longitudinal Jacobian images, potentially combining the benefits of both methods.

In comparison to other studies listed in table 6.7.1, the classification accuracies

achieved in this work are lower. This seems to indicate that the simple approach of

scattering feature transformation followed directly by classification is not su�cient.

Perhaps combining scattering representations with feature selection, manifold learn-

ing or other methods proposed in the papers listed in table 6.7.1 would improve the

results. In particular, it would be an interesting direction for future work to compute

scattering representations of VBM maps and use them for classification. Addition-

ally, it should be noted that the accuracy of the diagnostic consensus criteria is

about 90% [109], so methods that exceed this accuracy may be su�ering from the

problem of overfitting the (imperfect) diagnosis made by a human.

Bruna and Mallat proposed a method for displaying scattering representations by

partitioning a disk into regions, with each region coloured to represent one scattering

network output [27]. Scattering networks are convolutional and produce a full set of

outputs for each voxel so a grid of disks is required, although in practice the outputs

are down-sampled and disks are displayed on a coarser grid. Extending this visual-

isation technique to three-dimensional tomographic images would require a 3D grid

of balls, each divided into sectors, which would be di�cult to read. Alternatively, it

may be possible to adapt the techniques developed for visualisation of convolutional
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neural networks [162, 89, 158, 233, 276] for scattering networks, but this is not a

straightforward task. Therefore, developing methods for visualisation of classifiers

built with 3D scattering networks remains a topic for future work.

6.8. Conclusions

An extension of scattering networks for analysis of three-dimensional tomographic

images is proposed in this chapter. Since the feature vectors output by these net-

works are of very high dimensionality, a compressive classification method is also

proposed which enables learning classifiers by computing a random projection of the

data and training a linear classifier for the low-dimensional representations.

The proposed 3D scattering networks combined with compressive classification were

evaluated on a medical image classification task. A classifier was trained to distin-

guish pre-processed brain images of Alzheimer’s disease patients from those of cog-

nitive normal (CN) controls. This classifier was then tested on held-out images of AD

and CN subjects, and in addition it was evaluated as a method to predict whether

mild cognitive impairment (MCI) patients would progress to AD. In both tasks

scattering features improved classification accuracy compared to voxel-wise features,

although these results are still short of state of the art reported in the literature.

It may be possible to further improve the results obtained in this chapter by com-

bining the proposed feature respresentations with more advanced machine learning

methods, such as manifold learning or deep neural networks [153, 234, 242, 125].

Combining scattering networks with deep convolutional networks was already sug-

gested by Bruna and Mallat [27].

While the proposed formulation of 3D scattering networks is an intuitive extension

of the two-dimensional version developed by Bruna and Mallat [27], it still requires

thorough theoretical validation. Similarly, the fast Johnson-Lindenstrauss transform

based on the discrete cosine transform also requires mathematical proof. In addi-

tion, visualisation techniques for 3D scattering networks still have to be developed.
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The proposed compressive classification method is also fairly simple, so there may be

scope for improvement in this part, especially by considering elements of other com-

pressive classification algorithms proposed in the literature, as discussed in section

6.4.



CHAPTER 7

Outlook

The contributions presented in this dissertation can be extended further or combined

with methods proposed by other authors, forming part of the basis of future work.

This chapter collects the ideas for extensions that were already discussed in the

conclusions of individual chapters.

The method proposed in chapter 4 for learning an optimised basis for compressed

sensing can be further developed to take into account the coherence between the

learned basis and the sensing basis (which is the Fourier basis in case of MRI).

This would address the weakness which was hypothesised as a possible reason for

only small improvement over standard wavelets in the MRI reconstruction task, and

possibly improve the performance of the proposed method.

The evaluation of sparse methods for AD classification based on FDG-PET images

that was presented in chapter 5 can be improved by adding more algorithms, partic-

ularly some of the more sophisticated methods that were proposed by other authors.

The feature clustering methods discussed in chapter 5 may be possible to improve by

making these algorithms supervised, i.e. by including information about the labels

of individual images. This would make it possible to cluster features not only based

on their pairwise correlations, but also based on their correlations with the labels.

There are several examples of supervised feature clustering for medical imaging in

recent literature [95, 192].

The extension of scattering networks to three-dimensional images that was pro-

posed in chapter 6 still requires thorough mathematical validation. Similarly, the

fast Johnson-Lindenstrauss transform based on the discrete cosine transform also
141
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requires a mathematical proof. The problem of displaying 3D scattering represent-

ations in a legible way also remains unsolved, with a possible source of inspiration

in methods currently used to visualise neural networks [162, 89, 158, 233, 276].

The proposed application to AD classification based on MR images could also be

improved with elements of the methods that are current state of the art in this

field. The high-dimensional features produced by scattering networks can be ana-

lysed with manifold learning methods. Alternatively, they can be fed as inputs

to complex machine learning models, such as deep convolutional networks which

have been used to achieve remarkable progress in computer vision in recent years

[153, 234, 242, 125]. Indeed, this is one of the possible directions suggested for

scattering networks by Bruna and Mallat [27].

Finally, the question of whether compressed sensing MRI can be combined with

scattering representations to improve detection of AD remains open. One could start

the work in this direction by investigating if the types of artifacts specific to CS-MRI

images have any adverse e�ects on classification with scattering representations. If

more e�cient MRI scans could be combined with computer-aided diagnosis, this

would allow for more extensive screening for AD. A long-term objective would be to

optimise image aquisition and reconstruction specifically for classification. Research

is this direction would contribute to the field of application-driven medical imaging

[32, 107, 133, 70].



CHAPTER 8

Summary and conclusion

This chapter summarises the main points of all the previous chapters of this disser-

tation and presents an overall conclusion.

8.1. Summary

Chapter 1 presented the general context of this dissertation by briefly introducing

the physical principles of two relevant medical imaging modalities: magnetic res-

onance imaging (MRI) and positron emission tomography (PET). It also discussed

Alzheimer’s disease (AD) on a basic level and explained the role of MRI and FDG-

PET in AD research. Finally, it discussed the contributions made by this dissertation

and presented an outline of the rest of it.

Chapter 2 discussed a number of mathematical methods related to wavelets and

sparsity, providing the mathematical foundations for the rest of this dissertation.

It started with a definition of continuous wavelets, then discussed discrete wavelets

and showed with an example how wavelet decompositions can be used to represent

images in a sparse way. This was followed by a general discussion of sparse repres-

entations, with algorithms for finding sparse encodings in a given dictionary as well

as for learning dictionaries adapted for sparsely representing a given data set. The

mathematical foundations of compressed sensing (CS) were also discussed. Finally,

this chapter also mentioned some applications of these methods to medical imaging

problems.

Chapter 3 introduced the basics of machine learning and in particular the machine

learning algorithms that are essential to subsequent chapters. A distinction was
143
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made between supervised and unsupervised learning, with classification a particular

example of supervised learning. Several classification algorithms were discussed

next, including logistic regression, support vector machines (SVM) and random

forests. The problem of overfitting was also highlighted and it was discussed how it

can be addressed by regularisation (as is the case with regularised logistic regression)

or averaging over a set of randomised models (as is the case with random forests).

This was followed by a discussion of dimensionality reduction methods, including

feature selection, feature agglomeration, principal component analysis (PCA) and

manifold learning. Randomised projections were also mentioned. Finally, chapter

3 discussed common ways to measure the performance of classification algorithms,

with definitions of standard performance indicators and a brief discussion of cross-

validation.

The main contributions of this dissertation were presented in chapters 4, 5 and 6.

Chapter 4 presented a method for learning a wavelet packet basis for a set of images

with an optimisation criterion selected specifically for compressed sensing. This

method is an adaptation of the algorithm proposed by Coifman and Wickerhauser

[56]. The presented method was tested in two tasks: sparse approximation of brain

MR images and brain MR image reconstruction from compresssed sensing meas-

urements. It was shown that the basis learned with the proposed method can ap-

proximate images more sparsely than a standard wavelet tree. In the compressed

sensing reconstruction task the improvement over the standard wavelet represent-

ation was rather small, which was hypothesised to be due to increased coherence

between the adapted wavelet packet basis and the Fourier basis, compared to the

coherence between the standard wavelet basis and the Fourier basis.

Chapter 5 presented an evaluation of potential benefits of applying dimensionality

reduction to Alzheimer’s disease detection with machine learning based on FDG-

PET images. A number of feature selection and feature clustering algorithms were

each evaluated in combination with common classification algorithms. It was found
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that there was no substantial benefit in terms of classification accuracy to applying

the dimensionality reduction methods included in the comparisons. This finding is at

odds with reports in the literature which proposed and successfully validated sparse

methods for AD classification. It was hypothesised that this could be due to the

relative simplicity of the methods studied in chapter 5 compared to the sophisticated

methods proposed by other authors.

Chapter 6 presented a proposed extension of scattering networks to three-dimensional

tomographic images. Since scattering networks output very high-dimensional feature

vectors, scattering representations were combined with the fast Johnson-Lindenstrauss

transform to enable linear classsification in a reduced-dimension space. This com-

bined method was tested for AD detection based on structural MR images and

tensor-based morphometry maps. It was observed that scattering representations

improved over voxel-wise representation in terms of classification accuracy. How-

ever, the achieved accuracies were still lower than those reported in the literature

for some other methods, which suggests that combining scattering networks with

elements of methods proposed by other authors could improve the results further.

Chapter 7 discussed the potential future directions for the work presented in this

dissertation, summarising the extensions proposed in individual chapters. It also

highlighted the point that an interesting topic for future work would be to invest-

igate how image acquisition and reconstruction with compressed sensing a�ects the

performance of classification algorithms applied subsequently to images reconstruc-

ted in this way.

8.2. Conclusion

This dissertation contributes to the field of medical image computing, and in par-

ticular to the literature on compressed sensing MRI reconstruction and detection of

AD based on tomographic brain images. All of the proposed methods were designed
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for brain imaging and Alzheimer’s disease imaging in particular, but applications

beyond this domain may also be possible.

The proposed methods rely on algorithms and mathematical theory from fields

ranging from wavelet-based signal processing, through sparse methods, to machine

learning. In particular, chapter 7 combines wavelet-based scattering feature repres-

entations with e�cient randomised projections (fast Johnoson-Lindenstrauss trans-

form) and linear classification in a novel way, giving an algorithm that can learn

e�ciently from a very large number of features. This algorithm and its variations

may be applicable to other problems in medical imaging and image processing in

general.



Appendix: Lagrangian multipliers and Lagrange dual

function

The following definition is a summary of the first part of Chapter 5 from [21].

Definition. Lagrange multipliers and Lagrange dual function

Consider the following optimisation problem:

(8.2.1) min f
0
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Y
___]

___[

f
i

(x) Æ 0, i = 1, . . . , m

h
i

(x) = 0, i = 1, . . . , p

where x œ Rn. The domain D = u
m

i=1

dom f
i

fl u
p

i=1

dom h
i

is assumed to be non-

empty and the optimal value is denoted f ı.

The Lagrangian associated with problem 8.2.1 is the function L : Rn◊Rm◊Rp æ R,
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i
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are the Lagrange mul-

tipliers associated with their respective inequality (⁄
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) or equality (‹
i
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The vectors ⁄ and ‹ are referred to as dual variables [21].

The Lagrange dual function g : Rm ◊ Rp æ R is the minimum of the Lagrangian

over x, i.e.
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and it gives a lower bound on the optimal value f ı[21].
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