3,322 research outputs found

    Perceptual adaptation by normally hearing listeners to a simulated "hole" in hearing

    Get PDF
    Simulations of cochlear implants have demonstrated that the deleterious effects of a frequency misalignment between analysis bands and characteristic frequencies at basally shifted simulated electrode locations are significantly reduced with training. However, a distortion of frequency-to-place mapping may also arise due to a region of dysfunctional neurons that creates a "hole" in the tonotopic representation. This study simulated a 10 mm hole in the mid-frequency region. Noise-band processors were created with six output bands (three apical and three basal to the hole). The spectral information that would have been represented in the hole was either dropped or reassigned to bands on either side. Such reassignment preserves information but warps the place code, which may in itself impair performance. Normally hearing subjects received three hours of training in two reassignment conditions. Speech recognition improved considerably with training. Scores were much lower in a baseline (untrained) condition where information from the hole region was dropped. A second group of subjects trained in this dropped condition did show some improvement; however, scores after training were significantly lower than in the reassignment conditions. These results are consistent with the view that speech processors should present the most informative frequency range irrespective of frequency misalignment. 0 2006 Acoustical Society of America

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Extraction of vocal-tract system characteristics from speechsignals

    Get PDF
    We propose methods to track natural variations in the characteristics of the vocal-tract system from speech signals. We are especially interested in the cases where these characteristics vary over time, as happens in dynamic sounds such as consonant-vowel transitions. We show that the selection of appropriate analysis segments is crucial in these methods, and we propose a selection based on estimated instants of significant excitation. These instants are obtained by a method based on the average group-delay property of minimum-phase signals. In voiced speech, they correspond to the instants of glottal closure. The vocal-tract system is characterized by its formant parameters, which are extracted from the analysis segments. Because the segments are always at the same relative position in each pitch period, in voiced speech the extracted formants are consistent across successive pitch periods. We demonstrate the results of the analysis for several difficult cases of speech signals

    Disentangling the effects of phonation and articulation: Hemispheric asymmetries in the auditory N1m response of the human brain

    Get PDF
    BACKGROUND: The cortical activity underlying the perception of vowel identity has typically been addressed by manipulating the first and second formant frequency (F1 & F2) of the speech stimuli. These two values, originating from articulation, are already sufficient for the phonetic characterization of vowel category. In the present study, we investigated how the spectral cues caused by articulation are reflected in cortical speech processing when combined with phonation, the other major part of speech production manifested as the fundamental frequency (F0) and its harmonic integer multiples. To study the combined effects of articulation and phonation we presented vowels with either high (/a/) or low (/u/) formant frequencies which were driven by three different types of excitation: a natural periodic pulseform reflecting the vibration of the vocal folds, an aperiodic noise excitation, or a tonal waveform. The auditory N1m response was recorded with whole-head magnetoencephalography (MEG) from ten human subjects in order to resolve whether brain events reflecting articulation and phonation are specific to the left or right hemisphere of the human brain. RESULTS: The N1m responses for the six stimulus types displayed a considerable dynamic range of 115–135 ms, and were elicited faster (~10 ms) by the high-formant /a/ than by the low-formant /u/, indicating an effect of articulation. While excitation type had no effect on the latency of the right-hemispheric N1m, the left-hemispheric N1m elicited by the tonally excited /a/ was some 10 ms earlier than that elicited by the periodic and the aperiodic excitation. The amplitude of the N1m in both hemispheres was systematically stronger to stimulation with natural periodic excitation. Also, stimulus type had a marked (up to 7 mm) effect on the source location of the N1m, with periodic excitation resulting in more anterior sources than aperiodic and tonal excitation. CONCLUSION: The auditory brain areas of the two hemispheres exhibit differential tuning to natural speech signals, observable already in the passive recording condition. The variations in the latency and strength of the auditory N1m response can be traced back to the spectral structure of the stimuli. More specifically, the combined effects of the harmonic comb structure originating from the natural voice excitation caused by the fluctuating vocal folds and the location of the formant frequencies originating from the vocal tract leads to asymmetric behaviour of the left and right hemisphere

    Neural Dynamics of Phonetic Trading Relations for Variable-Rate CV Syllables

    Full text link
    The perception of CV syllables exhibits a trading relationship between voice onset time (VOT) of a consonant and duration of a vowel. Percepts of [ba] and [wa] can, for example, depend on the durations of the consonant and vowel segments, with an increase in the duration of the subsequent vowel switching the percept of the preceding consonant from [w] to [b]. A neural model, called PHONET, is proposed to account for these findings. In the model, C and V inputs are filtered by parallel auditory streams that respond preferentially to transient and sustained properties of the acoustic signal, as in vision. These streams are represented by working memories that adjust their processing rates to cope with variable acoustic input rates. More rapid transient inputs can cause greater activation of the transient stream which, in turn, can automatically gain control the processing rate in the sustained stream. An invariant percept obtains when the relative activations of C and V representations in the two streams remain uncha.nged. The trading relation may be simulated as a result of how different experimental manipulations affect this ratio. It is suggested that the brain can use duration of a subsequent vowel to make the [b]/[w] distinction because the speech code is a resonant event that emerges between working mernory activation patterns and the nodes that categorize them.Advanced Research Projects Agency (90-0083); Air Force Office of Scientific Reseearch (F19620-92-J-0225); Pacific Sierra Research Corporation (91-6075-2

    Changes in the McGurk Effect Across Phonetic Contexts

    Full text link
    To investigate the process underlying audiovisual speech perception, the McGurk illusion was examined across a range of phonetic contexts. Two major changes were found. First, the frequency of illusory /g/ fusion percepts increased relative to the frequency of illusory /d/ fusion percepts as vowel context was shifted from /i/ to /a/ to /u/. This trend could not be explained by biases present in perception of the unimodal visual stimuli. However, the change found in the McGurk fusion effect across vowel environments did correspond systematically with changes in second format frequency patterns across contexts. Second, the order of consonants in illusory combination percepts was found to depend on syllable type. This may be due to differences occuring across syllable contexts in the timecourses of inputs from the two modalities as delaying the auditory track of a vowel-consonant stimulus resulted in a change in the order of consonants perceived. Taken together, these results suggest that the speech perception system either fuses audiovisual inputs into a visually compatible percept with a similar second formant pattern to that of the acoustic stimulus or interleaves the information from different modalities, at a phonemic or subphonemic level, based on their relative arrival times.National Institutes of Health (R01 DC02852

    Classification of Malaysian vowels using formant based features

    Get PDF
    Automatic speech recognition (ASR) has made great strides with the development of digital signal processing hardware and software, especially using English as the language of choice. Despite of all these advances, machines cannot match the performance of their human counterparts in terms of accuracy and speed, especially in case of speaker independent speech recognition. In this paper, a new feature based on formant is presented and evaluated on Malaysian spoken vowels. These features were classified and used to identify vowels recorded from 80 Malaysian speakers. A back propagation neural network (BPNN) model was developed to classify the vowels. Six formant features were evaluated, which were the first three formant frequencies and the distances between each of them. Results, showed that overall vowel classification rate of these three formant combinations are comparatively the same but differs in terms of individual vowel classification

    Reconstruction of Phonated Speech from Whispers Using Formant-Derived Plausible Pitch Modulation

    Get PDF
    Whispering is a natural, unphonated, secondary aspect of speech communications for most people. However, it is the primary mechanism of communications for some speakers who have impaired voice production mechanisms, such as partial laryngectomees, as well as for those prescribed voice rest, which often follows surgery or damage to the larynx. Unlike most people, who choose when to whisper and when not to, these speakers may have little choice but to rely on whispers for much of their daily vocal interaction. Even though most speakers will whisper at times, and some speakers can only whisper, the majority of today’s computational speech technology systems assume or require phonated speech. This article considers conversion of whispers into natural-sounding phonated speech as a noninvasive prosthetic aid for people with voice impairments who can only whisper. As a by-product, the technique is also useful for unimpaired speakers who choose to whisper. Speech reconstruction systems can be classified into those requiring training and those that do not. Among the latter, a recent parametric reconstruction framework is explored and then enhanced through a refined estimation of plausible pitch from weighted formant differences. The improved reconstruction framework, with proposed formant-derived artificial pitch modulation, is validated through subjective and objective comparison tests alongside state-of-the-art alternatives
    corecore