462,916 research outputs found

    Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget

    Get PDF
    Climate feedbacks generally become smaller in magnitude over time under CO2 forcing in coupled climate models, leading to an increase in the effective climate sensitivity, the estimated global-mean surface warming in steady state for doubled CO2. Here, we show that the evolution of climate feedbacks in models is consistent with the effect of a change in tropospheric stability, as has recently been hypothesized, and the latter is itself driven by the evolution of the pattern of sea-surface temperature response. The change in climate feedback is mainly associated with a decrease in marine tropical low cloud (a more positive shortwave cloud feedback) and with a less negative lapse-rate feedback, as expected from a decrease in stability. Smaller changes in surface albedo and humidity feedbacks also contribute to the overall change in feedback, but are unexplained by stability. The spatial pattern of feedback changes closely matches the pattern of stability changes, with the largest increase in feedback occurring in the tropical East Pacific. Relationships qualitatively similar to those in the models among sea-surface temperature pattern, stability, and radiative budget are also found in observations on interannual time scales. Our results suggest that constraining the future evolution of sea-surface temperature patterns and tropospheric stability will be necessary for constraining climate sensitivity

    Interannual size changes of adult Aurelia sp.5 medusae stage in the Marine Protected Area of Mljet Island South Adriatic

    Get PDF
    Aurelia aurita s.l. is the most widespread scyphozoan jellyfish that recurrently appear "en mass" and forms large aggregations mainly in coastal waters, embayments and estuaries. Beside anthropogenic factors controlling jellyfish populations climate change may play an important role. The aim of this study was to assess whether climate-related factors in absence of other anthropogenically induced stressor influence medusae size. We investigated seasonal and interannual changes in the size of Aurelia in a "jelly lake" in the National Park of Mljet Island (Croatia) where minimal human impact on the environment makes the Veliko Jezero a natural mesocosm for understanding the impact of climate change on the Aurelia population. The observed changes suggest Aurelia medusa population response to changing environment, in particular to enhanced temperature, by reduced body sizes. Comparison of Aurelia population dynamics from different regions in the Mediterranean Sea revealed the unique feature of the Veliko Jezero population. Despite the similarity of the environmental windows of medusae occurrences in the Veliko Jezero and regions in the Mediterranean Sea, medusae in the Veliko Jezero are present all year round. It seems that the lake bathymetry enables medusae to vertically migrate to deeper and cooler water layer, avoiding the limiting temperatures developed in the upper layer during the summer. These conditions may prolong the Aurelia medusae life span and together with continuous strobilation support the stability of the Aurelia medusae population all year round

    Atlantic Salmon Fishery in the Baltic Sea – A Case of Trivial Cooperation

    Get PDF
    This paper analyses the management of the Atlantic salmon stocks in the Baltic Sea through a coalition game in the partition function form. The signs of economic and biological over-exploitation of these salmon stocks over the last two decades indicate that cooperation among the harvesting countries, under the European Union's Common Fisheries Policy, has been superficial. Combining a two-stage game of four asymmetric players with a comprehensive bioeconomic model, we conclude that cooperation under the Relative Stability Principle is not a stable outcome. In contrast, the equilibrium of the game is non-cooperation. The paper also addresses the possibility of enhancing cooperation through more flexible fishing strategies. The results indicate that partial cooperation is stable under a specific sharing scheme. It is also shown that substantial economic benefits could have been realised by reallocating the fishing effort.Atlantic salmon, bioeconomic model, coalition formation, partition function, sharing rules, stability analysis, Research and Development/Tech Change/Emerging Technologies,

    SEA LEVEL CHANGE ALONG THE TYRRHENIAN COAST FROM EARLY HOLOCENE TO THE PRESENT

    Get PDF
    In any discussion of the evolution of a river basin, the history of sealevel change is important since river gradients and delta developments are strongly influenced by local sea level. Also, sea level provides a reference for inferring past vertical tectonic stability from the geological record. Hence it is appropriate that the discussion on the Tiber basin starts with sea level change along the Tyrrhenian coast during the Holocene. The past evidence for sea level comes from inferences of the position of the sea surface with respect to the present. Hence it is a relative measure; a function of both the changing position of the ocean surface and of the land surface or an integrated measure of changes in ocean volume, land movement and redistribution of water within the ocean basins. The observation therefore contains information on all the processes that change these surfaces: on geophysical, glaciological and oceanographic processes

    SEA LEVEL CHANGE ALONG THE TYRRHENIAN COAST FROM EARLY HOLOCENE TO THE PRESENT

    Get PDF
    In any discussion of the evolution of a river basin, the history of sealevel change is important since river gradients and delta developments are strongly influenced by local sea level. Also, sea level provides a reference for inferring past vertical tectonic stability from the geological record. Hence it is appropriate that the discussion on the Tiber basin starts with sea level change along the Tyrrhenian coast during the Holocene. The past evidence for sea level comes from inferences of the position of the sea surface with respect to the present. Hence it is a relative measure; a function of both the changing position of the ocean surface and of the land surface or an integrated measure of changes in ocean volume, land movement and redistribution of water within the ocean basins. The observation therefore contains information on all the processes that change these surfaces: on geophysical, glaciological and oceanographic processes

    Chapter 09: Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change

    Get PDF
    Climate change will have an enormous influence on the intertidal wetlands of the Great Barrier Reef (GBR). Increases in atmospheric carbon dioxide (CO2) concentrations and associated increases in air and sea temperatures, rising sea level, changes in oceanic circulation, rainfall patterns and frequency and intensity of storms are highly likely to affect the physiology, ecology and ultimately the stability of wetland habitats. The intertidal position of mangroves, salt marshes and salt flats makes them particularly vulnerable to changes in sea level, although other climate change factors will also exert a strong influence on wetland communities. Past rises in sea level have led to increases in the area of mangroves in northern Australia. However, past climate change has occurred with limited human modification of the coast compared to current levels of development. Human activities have resulted in loss of wetlands, disruption to connectivity, enhanced availability of nutrients, changed sediment dynamics and the creation of structures that will prevent landward migration of wetlands with sea level rise (eg roads, berms, bunds and sea walls). Many of these human impacts will reduce the resilience of intertidal wetlands to climate change. To conserve the intertidal wetlands of the GBR and the ecosystem services they provide, we will need to manage the coastal zone in a way that enhances the resilience of mangroves, salt marshes and salt flats during climate change.This is Chapter 9 of Climate change and the Great Barrier Reef: a vulnerability assessment. The entire book can be found at http://hdl.handle.net/11017/13

    A Bayesian network to predict coastal vulnerability to sea level rise

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research 116 (2011): F02009, doi:10.1029/2010JF001891.Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (−1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions.Funding for this work was provided by the USGS Coastal and Marine Geology and Global Change Research programs

    The impact of climate change on the archaeology of New Zealand’s coastline

    Get PDF
    Abstract: With rising sea levels, changes in precipitation patterns and an increased incidence of severe weather events being predicted as a result of global climate change, the Department of Conservation commissioned a study to determine the potential impacts of these effects on New Zealand’s archaeological sites, which are mostly located near the coast. A Geographic Information System (GIS)-based case study examined the distribution of archaeological sites in the Whangarei District and assessed the risk to the archaeological resource primarily from sea level rise associated with future climate change.The results of the analysis are fairly conclusive. Currently, the major threats to archaeological sites in coastal areas are erosion, flooding and ground instability, and some sites are at risk from more than one of these threats. Approximately one-third of the recorded site locations in the Whangarei District are potentially threatened by these hazards, regardless of any future climate change effects. Climate change will exacerbate existing coastal hazards, and increase the likelihood and severity of impacts on archaeological sites. An additional 2.5–10% of archaeological sites might be affected by increased threats due to predicted changes in climate, including rising sea levels. The types of sites that are most likely to be affected in the Whangarei District are coastal midden and small habitation sites relating to Māori occupation. Although these could be affected by all three of the major hazards identified, they are particularly susceptible to coastal erosion. Land stability issues and flooding are likely to affect a greater range of sites, including larger sites such as pā and sites relating to early European settlement. It is not possible to quantify the risk to sites from increased land instability as a result of global climate change, but it is noted that any increase in extreme weather events would not be confined to coastal areas. These sites potentially hold significant information relating to the history of both the district and New Zealand. The implications of the study are that coastal sites are already under considerable threat, and that important archaeological information is being lost at a rate that may increase significantly in the future. Action is needed now to protect or retrieve the information from significant sites under threat in coastal areas before these sites disappear completely

    Peering Forward, 10 Years After: International Policy and Consumer Credit Regulation

    Get PDF
    A key change since the financial crisis of 2008 is the internationalization of interest in consumer finance. International institutions monitor household credit because of its impact on financial stability and market expansion. Macroprudential concerns drove this interest, resulting in a sea change in approaches to consumer credit regulation in many jurisdictions. This article critically analyses the emerging international policy paradigm, contrasting pre-and post-crisis regulatory approaches and highlighting continuing tensions about key policy choices. It then uses two recent sites of contestation, debt adjustment and the regulation of high-cost credit to demostrate the persistence of conflict over the positioning of consumers within an emergent stability focused paradigm of financial consumer protection
    • …
    corecore