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Climate feedbacks generally become smaller in magnitude over time
under CO2 forcing in coupled climate models, leading to an increase
in the effective climate sensitivity, the estimated global-mean surface
warming in steady state for doubled CO2. Here we show that the evo-
lution of climate feedbacks in models is consistent with the effect
of a change in tropospheric stability, as has recently been hypothe-
sized, and the latter is itself driven by the evolution of the pattern of
sea surface temperature response. The change in climate feedback
is mainly associated with a decrease in marine tropical low cloud
(a more positive shortwave cloud feedback) and with a less negative
lapse rate feedback, as expected from a decrease in stability. Smaller
changes in surface albedo and humidity feedbacks also contribute to
the overall change in feedback, but are unexplained by stability. The
spatial pattern of feedback changes closely matches the pattern of
stability changes, with the largest increase in feedback occurring in
the tropical East Pacific. Relationships qualitatively similar to those
in the models among sea surface temperature pattern, stability, and
radiative budget are also found in observations on interannual time
scales. Our results suggest that constraining the future evolution of
sea surface temperature patterns and tropospheric stability will be
necessary for constraining climate sensitivity.

climate sensitivity | climate feedbacks | clouds | satellite observations

How much Earth will warm in response to future green-
house gas emissions is a fundamental question in climate

science. Accordingly, a widely-used metric for the evaluation
and comparison of climate models is the equilibrium climate
sensitivity (ECS), the steady-state global-mean surface temper-
ature change for a doubling of CO2 concentration relative to
the pre-industrial state. A common method to estimate ECS
involves assuming the climate system response to a radiative
forcing F to be proportional to global-mean temperature T ,
according to ⁄ = (N ≠ F )/T where ⁄ < 0 (1). Here N denotes
the net downward radiative imbalance, N ≠ F is the radiative
response, and ⁄ is the proportionality constant between ra-
diative response and global-mean warming. Because its value
depends on climate feedback processes involving changes in the
atmospheric lapse rate, water vapor concentration, cloud prop-
erties, and surface albedo with warming, the proportionality
constant ⁄ is usually referred to as the climate feedback pa-
rameter. Assuming ⁄ stays constant in time, we may estimate
ECS by extrapolating the relationship between N ≠ F and
T to the temperature at which N = 0, i.e. radiative balance
is restored: ECS = ≠F/⁄, if F represents the forcing of a
doubling of CO2.

Although convenient, the assumption of a constant propor-
tionality factor ⁄ between radiative response and global-mean
warming does not hold perfectly in climate models. Indeed,
in most climate models ⁄ decreases in magnitude as time
passes following an increase in CO2 concentration, leading

to an increase in the “e�ective” climate sensitivity over time
(2–13). However, the mechanisms of this evolution are cur-
rently not understood. Targeted climate model experiments
have pointed to the role of evolving patterns of sea surface
temperature (SST) increase in driving the evolution of climate
sensitivity and feedbacks (9, 14–17), which may alternatively
also be interpreted as changing patterns of ocean heat uptake
(5, 18–20). Two distinct hypotheses have been proposed to
link the evolution of SSTs to climate feedbacks over the course
of the transient response to CO2 forcing:

1. Feedbacks are assumed to scale linearly with local temper-
ature, but are fixed in time. Global-mean feedback varies
only as a result of evolving surface warming patterns,
causing the spatial weighting of local feedbacks to change
as time passes (7).

2. The SST evolution favors a decrease in tropospheric sta-
bility, resulting in less free-tropospheric warming per unit
surface warming. This stability decrease reduces the abil-
ity of the atmosphere to cool radiatively to space from the
upper troposphere (a less negative lapse rate feedback;
17), and acts to decrease low cloud cover in subsidence re-
gions, enhancing the absorption of solar radiation (a more
positive cloud feedback; 15–17). Under this hypothesis,
feedbacks may vary locally in time.

Here we show that the evolution of climate feedbacks during
the transient response to increased CO2 in current coupled
climate models is consistent with the e�ects of changes in
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Fig. 1. Multi-model mean difference in patterns of (a) SST and (b) EIS change. The patterns of change are first calculated separately for each model for the early (years 1–20)
and late (21–150) periods by regressing local annual-mean SST or EIS against global-mean annual-mean surface temperature; then the difference is calculated as late minus
early period. The patterns of change in the early and late periods are shown in Fig. S1. Numbers in the top left corner of each panel denote global-mean values. Hatching
denotes a multi-model mean absolute anomaly larger than one standard deviation across models.

tropospheric stability, following hypothesis 2 above. Further-
more, we demonstrate that observed interannual relationships
between SST pattern, tropospheric stability, and the radiative
budget qualitatively support the relationships found in cli-
mate models. Our results therefore suggest that constraining
climate sensitivity will require constraints on the long-term
evolution of SST and tropospheric stability.

Results

Changes in the evolution of SST and tropospheric stability.
We first consider the SST evolution during the first 150 years
following a quadrupling of CO2 concentration in a set of 15
coupled climate models (Materials and Methods; Table S1).
The changes over the course of the simulations are defined
as the di�erence in responses between years 1–20 (hereafter
“early period”) and years 21–150 (“late period”). As the
planet warms, the pattern of SST response per unit global
warming evolves towards enhanced warming in the tropical
East Pacific, in the Southern Ocean, in the North Atlantic,
and to a lesser extent in the Northeast Pacific, while the
tropical West Pacific, Northwest Pacific, tropical Atlantic,
and much of the Indian Ocean experience reduced warming
relative to the global average (Fig. 1a). The global-mean
di�erence between patterns of SST change is very close to
zero. (The global-mean di�erence between patterns of surface
temperature change, including land areas, would be exactly
zero by construction.) The overall spatial structure of the
SST evolution is reasonably robust among models (hatching
in Fig. 1a). The characteristics of the SST evolution are also
similar to those found in previous studies using di�erent sets
of climate models (7, 9, 21). The delayed warming in the
East Pacific and in the Southern Ocean is broadly consistent
with the e�ects of upwelling (22, 23), but additional coupled
ocean-atmosphere processes likely contribute to the evolution
of the SST pattern (22, 24).

We now provide evidence that the evolution of the SST
warming pattern favors a decrease in tropospheric stability.
As a stability metric, we use the estimated inversion strength
(EIS; 25), a measure of the strength of the inversion at the top
of the boundary layer based on the di�erence in potential tem-
perature between the surface and 700 hPa. EIS accounts for
the temperature dependence of the moist adiabat to quantify
the e�ective stability of the lower troposphere, and is tradition-

ally defined over ocean regions only. In observations, EIS is
strongly correlated with marine low cloud cover in subsidence
regions (25), consistent with the notion that a stronger inver-
sion is more e�ective at trapping moisture in the boundary
layer.

How to do we expect the SST pattern to a�ect tropospheric
stability? At any point in space, the stability change depends
on the relative change in surface and free-tropospheric temper-
ature. In the tropics, free-tropospheric temperature is largely
set by the evolution of SST in warm, convective regions, such
as the West Pacific warm pool, where the lapse rate is pegged
to a moist adiabat owing to moist convection (26, 27). This
constraint implies that the warmest regions should always
remain nearly neutrally stable. Away from warm convective
regions, however, the stability response will roughly depend
on the ratio of local SST change to SST change in the warm
pool (15). If local SST increases more than in the warm pool,
stability will decrease because the free-tropospheric tempera-
ture will increase less than predicted by a local moist adiabat;
the opposite would be true if local SST increased less than
in the warm pool. While strictly speaking the constraint on
free-tropospheric temperature applies to the tropics only, ex-
tratropical free-tropospheric temperature should be influenced
by SST changes in warmer convective regions, so that a similar
argument can be applied to qualitatively interpret extratropi-
cal stability changes. Although we argue that the SST pattern
is the main control on the time evolution of tropospheric sta-
bility in our model simulations, additional processes can also
a�ect stability as quantified by EIS – for example land-sea
temperature contrasts and CO2 concentrations (28).

The di�erences in stability response between the early and
late periods in Fig. 1b are consistent with the above reasoning.
The EIS di�erence in the warm pool around the Maritime
Continent is small. Because the warm pool is warming less
than average, the EIS response becomes more negative in most
other regions; the larger the relative warming, the larger the
stability decrease. This yields a global-mean decrease in the
response of tropospheric stability to warming. It is noteworthy
that the global-mean EIS response becomes more negative as
time passes in all models included in this analysis (Fig. S2a).

Changes in climate feedbacks. We will now show that the evo-
lution of climate feedbacks is consistent with the changes in
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tropospheric stability over the course of the transient response
to CO2 forcing. Figure 2 shows the changes in global-mean
feedback parameter decomposed into the contributions of tem-
perature, water vapor, surface albedo, and clouds (using radia-
tive kernels; Materials and Methods). On average, the total
feedback increases by 0.50 W m≠2 K≠1 (≠1.38 to ≠0.88 W
m≠2 K≠1), consistent with previous findings (9). Consequently,
the estimated ECS increases by 0.57 K on average (2.83 to
3.40 K; Fig. S2b). The change in feedback is primarily due to
the e�ect of clouds (0.21 W m≠2 K≠1), followed by the lapse
rate feedback (0.14 W m≠2 K≠1), with smaller contributions
of changes in surface albedo (0.09 W m≠2 K≠1) and relative
humidity (0.06 W m≠2 K≠1). The increase in cloud feedback
is almost entirely due to a change in shortwave reflection (0.20
W m≠2 K≠1). Since the mean residual is near zero, it does
not contribute to the change in total feedback parameter.

The results in Fig. 2 are thus consistent with the expected
e�ect of a stability decrease following hypothesis 2: a decrease
in low cloud amount (causing a more positive shortwave cloud
feedback), and a less negative lapse rate feedback, these two
e�ects jointly accounting for most of the increase in feedback
parameter and climate sensitivity. While changes in factors
other than stability – particularly local SST, subsidence, and
free-tropospheric humidity – may also a�ect the evolution
of the cloud response to global warming (29, 30), previous
evidence from climate model experiments suggests that the
stability e�ect dominates the cloud response to evolving tropi-
cal SST patterns (15). In further support for this conclusion,
the relationship between tropospheric stability and feedbacks
broadly holds across models: a larger stability decrease is as-
sociated with a larger increase in feedback parameter (Fig. S3,
Text S1–S2). Stability changes account for less than half
of the inter-model spread in net feedback changes, however
(r2 = 0.40, Fig. S3a), indicating that e�ects other than stabil-
ity must also contribute to this spread (Text S2).

The joint e�ect of cloud and lapse rate feedbacks accounts
for about 70% of the change in net feedback in our set of mod-
els, leaving part of the change unexplained. We have calculated
how much of the evolution in global feedback parameter can
be ascribed to a change in spatial weighting of local feed-
backs as the warming pattern evolves, following hypothesis
1 (Fig. S4). The result suggests that the increases in surface
albedo and relative humidity feedbacks are in part associated
with the evolution of the warming pattern (0.05 and 0.04 W
m≠2 K≠1 respectively; Text S3). While the increase in sur-
face albedo feedback is consistent with the evolution towards
enhanced high-latitude warming (Text S3; 7), the mechanisms
of change in global relative humidity feedback (via either of
the hypotheses or alternative mechanisms) remain unknown.

The linkage between climate feedbacks and tropospheric
stability is particularly striking when considering the spatial
distribution of the changes. Generally speaking, the feedbacks
become more positive in regions where the EIS response de-
creases (compare Figs. 1b and 3), and vice-versa. The largest
increase in feedback parameter occurs in the tropical Central
and East Pacific, where the EIS response becomes substan-
tially more negative as the planet warms. Although the EIS
change over the Southern Ocean is comparable or larger in
magnitude, the local change in cloud feedback is generally
small; this may be because processes unrelated to tropospheric
stability dominate the cloud response to warming at high
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Fig. 2. Global-mean feedback parameter, calculated by the Gregory method (1),
decomposed into contributions from uniform vertical warming (Planck feedback), non-
uniform vertical warming (lapse rate), and changes in relative humidity, surface albedo,
and clouds. The cloud term is further broken down into shortwave and longwave
changes. “Total” refers to the sum of the feedbacks; the residual is the difference
between the sum of the kernel-derived feedbacks and the actual feedback based
on net top-of-atmosphere radiation (Materials and Methods). Shown are (a) the
feedbacks calculated separately for the early (years 1–20) and late (21–150) periods,
and (b) the difference taken as late minus early period. Blue, red and gray circles
denote individual models (Table S1), while black circles are mean values.

southern latitudes. Comparing panels (c) and (d) in Fig. 3
confirms that the feedback decomposition accurately captures
the actual evolution of changes in top-of-atmosphere net radi-
ation, so that the spatial feedback patterns are not artifacts
of the methodology.

Observed relationship between tropospheric stability and ra-
diative budget. We have shown the existence of a relationship
between SST pattern, tropospheric stability, and the radiative
budget in climate models. Can a similar link be observed
in the real world to confirm the realism of the modeled re-
sponses? Reliable satellite observations of the Earth’s radiative
budget are too short to allow for meaningful trend calcula-
tions. However, the proposed relationship between long-term
changes in stability and radiative balance may also hold in the
context of interannual variations. Climate models show quali-
tatively similar interannual relationships between SST, EIS
and the radiative budget in the context of unforced variability
to those found at decadal time scales under abrupt CO2 qua-
drupling (compare Figs. 1, 3, and S5). In the following, we will
demonstrate from observations that real-world year-to-year
fluctuations in tropospheric stability are associated with SST
and radiative anomalies consistent with the evolution of these
variables in climate models.

Figure 4 shows the patterns of SST, EIS, cloud-radiative
e�ect (CRE, defined as all-sky minus clear-sky net down-
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Fig. 3. Multi-model mean spatial patterns of changes in climate feedback, calculated as late (years 21–150) minus early (1–20) period. The total feedback in (c) is the sum of the
kernel-derived feedbacks (Materials and Methods), while (d) shows the actual feedback based on the regression of net top-of-atmosphere radiation onto global-mean surface
temperature. Numbers in the top left corner of each panel denote global-mean values. Hatching denotes a multi-model mean anomaly larger than one standard deviation.

ward top-of-atmosphere radiation), and net downward top-of-
atmosphere radiation, all regressed onto annual- and global-
mean EIS anomalies, using 16 years of gridded observational
and reanalysis data (note that global-mean EIS excludes re-
gions poleward of 50¶; Materials and Methods). Since the
regression coe�cients would represent changes consistent with
a 1-K global-mean EIS increase, we multiply the coe�cients
by the multi-model mean change in the derivative of EIS with
respect to global-mean surface temperature (≠0.16 K K≠1;
Fig. 1b), to obtain observed anomalies comparable in sign and
magnitude with the model ensemble. Note that the impact
of any changes in global-mean surface temperature has been
regressed out (Materials and Methods), to minimize the con-
tribution of the Planck response to the global-mean radiative
anomalies. The observed SST pattern associated with an EIS
decrease features positive SST anomalies in the tropical and
subtropical East Pacific (Fig. 4a). Although no substantial
cooling is observed in the warm pool, the anomalous east–west
SST gradient across the tropical Pacific is in broad qualitative
agreement with the di�erence between patterns of SST change
in climate models (Fig. 1a), causing a decrease in stability in
the East Pacific (Fig. 4b).

Consistent with observed relationships between EIS and
low cloud, the EIS decrease coincides with a region of positive
CRE anomaly, which is reflected in the net top-of-atmosphere
radiative change (Fig. 4c–d). The net observed global radiative
anomaly (0.62 W m≠2 K≠1) is larger than the multi-model-
mean radiative response associated with a ≠0.16 K K≠1 EIS
change (0.50 W m≠2 K≠1); however, considering the di�er-
ences in observed SST and EIS patterns relative to the forced
climate change signal in models (compare Fig. 1 with Fig. 4a–
b), and given the relatively low signal-to-noise ratio in the

short observational record of 16 years, the agreement between
observations and models should be interpreted qualitatively,
rather than quantitatively. In further support of our findings,
similar relationships between tropical SST pattern and low
cloud amount have been observed in the context of decadal
trends over the 1983–2005 period (15).

CRE anomalies can be a�ected not only by changes in
clouds, but also by non-cloud anomalies in temperature, mois-
ture and surface albedo. By adjusting the CRE anomalies
for non-cloud factors (Materials and Methods), we confirm
the contribution of clouds to the stability-induced interannual
radiative anomalies in observations and models (Figs. S6a,
S7a). Decomposing the stability-induced radiative changes
into individual components using kernels, we find that lapse
rate changes also contribute to the positive radiative anomalies
in the East Pacific and in the global mean (Figs. S6b, S7b),
but note that the total kernel-derived radiative changes overes-
timate the actual observed radiative anomalies by about 13%
(Fig. S6c–d). Di�erences between kernel-derived and observed
anomalies could be associated with errors in reanalysis temper-
ature and moisture data, inaccuracies in the radiative kernel
method (31, 32), or errors in satellite radiances (33). Despite
these limitations, our observational analysis does qualitatively
support the notion that decreasing tropospheric stability pro-
motes a decrease in radiative cooling to space through changes
in clouds and tropospheric lapse rate, consistent with the evolu-
tion towards higher e�ective climate sensitivity in CO2-forced
climate model experiments.

Summary and Discussion

Climate models predict that, as the planet warms, the response
of tropospheric stability to global warming will gradually be-
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373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

Ceppi et al.



DRAFT

a  SST
0.03 K K−1

b  EIS
−0.16 K K−1

−2.00
−1.50
−1.00
−0.50
−0.20
0.20
0.50
1.00
1.50
2.00

c  Net CRE
0.49 W m−2 K−1

d  Net TOA radiation
0.62 W m−2 K−1

−7.0

−5.0

−3.0

−1.5

1.5

3.0

5.0

7.0

Fig. 4. Anomalies of (a) SST, (b) EIS, (c) net CRE, and (d) net top-of-atmosphere radiation regressed onto global- and annual-mean EIS anomalies, for the period December
2000–November 2016 based on global gridded observational and reanalysis datasets (Materials and Methods). The regression coefficients are rescaled by a factor of ≠0.16 K
K≠1 EIS change, to aid comparison with the results in Figs. 1 and 3. Numbers in the top left corner of each panel denote global-mean values. Hatching indicates a statistically
significant regression coefficient at the 5% level.

come more negative, in a manner determined by the evolution
of SSTs. The change in stability favors a decrease in low
cloud cover (a positive shortwave cloud feedback) and a less
negative lapse rate feedback. Although these e�ects dominate,
part of the increase in net feedback (mainly due to changes in
surface albedo and humidity) cannot be simply explained by
the change in stability; these additional contributions result
either from a change in the spatial weighting of local feedbacks
(7), or from other unexplained mechanisms. The evolution
of climate feedbacks exhibits a spatial structure that closely
matches the distribution of stability changes, being most pro-
nounced in the tropical East Pacific, a region characterized by
relatively low SST, stable conditions, and extensive marine low
cloud. We further show that qualitatively similar relationships
between SST pattern, tropospheric stability, and the radiative
budget are found in observations on interannual time scales.
Therefore, to the extent that future patterns of SST change
resemble those of past variability, observational evidence is
consistent with the evolution towards a higher e�ective climate
sensitivity during the transient response to CO2 forcing in
climate models.

Further work is needed to fully understand the implications
of SST anomaly patterns for tropospheric stability and the
Earth’s radiative budget. In particular, the relative impor-
tance of anomalous zonal SST gradients within the tropics
versus anomalous meridional gradients between tropics and
extratropics remains unknown. While our results suggest a
crucial role for zonal gradients within the tropical Pacific,
previous work has suggested that anomalous meridional SST
gradients (or relatedly, anomalies in the meridional gradient
of ocean heat uptake) could have large impacts on climate

feedbacks (18–20). Further model experiments with idealized
(18, 19) and realistic (14, 15, 19, 34) SST anomaly patterns
will provide additional insight into the relationships between
global anomalies in SST, stability, and the radiative budget.

Materials and Methods

Model data. The evolution of SST, EIS, and climate feedbacks is an-
alyzed in Coupled Model Intercomparison Project phase 5 (CMIP5)
climate model output during the 150 years following abrupt quadru-
pling of atmospheric CO2 concentrations starting from pre-industrial
conditions (the “abrupt4xCO2” experiment). We analyze monthly-
mean values of temperature, specific humidity, surface albedo, and
upward and downward radiative fluxes at the top of atmosphere
(TOA) for both all- and clear-sky conditions. The 25 models with
available data are listed in Table S1. To remove any potential model
drift, anomalies are calculated by subtracting the pre-industrial (pi-
Control) integration from the corresponding parallel abrupt4xCO2
integration. Only the first ensemble member is used for each model.

Feedback analysis. The contributions of temperature, moisture, sur-
face albedo, and clouds to changes in TOA radiation are diagnosed
separately for each month of the abrupt4xCO2 integration using
radiative kernels (31, 32). Kernels are partial derivatives of the TOA
radiative flux relative to temperature, water vapor mixing ratio, and
surface albedo at each model grid point. Multiplying the kernels
by the changes in each of these variables provides an estimate of
their contributions to TOA flux changes. Water vapor changes are
partitioned into changes consistent with constant relative humidity
(included in the temperature feedbacks), and changes in relative
humidity (35). The kernels are also used to adjust cloud-radiative
e�ect (CRE) anomalies for changes in non-cloud e�ects to obtain
an estimate of the radiative changes due to clouds only (31). In this
study we use kernels calculated with the Community Atmospheric
Model version 5 (36).
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The kernel-derived contributions to TOA flux anomalies are
aggregated into annual-mean values for each model, and converted
to feedbacks by regressing the radiative flux time series onto global-
mean surface air temperature (1, 37). Ordinary least-squares re-
gressions are calculated separately for years 1–20 and 21–150 of the
abrupt4xCO2 experiment (9). We verify the accuracy of the kernel-
derived feedbacks by a clear-sky linearity test (32, 37), whereby we
compare the kernel-based sum of clear-sky TOA feedbacks with the
actual clear-sky feedback obtained by regressing clear-sky net TOA
radiation onto global-mean surface temperature. In our results we
only include the 15 models for which the error in kernel-based clear-
sky feedback is less than 15% of the actual value in both regression
periods (bolded model names in Table S1; 37). (Since CRE anoma-
lies are based on model output, testing the kernel decomposition
with clear-sky feedbacks ensures that only kernel-derived quantities
are used in the test (32).) The results of the feedback analysis
remain qualitatively unchanged if we include models with clear-sky
errors larger than 15% in the calculations (Table S1), or if we use an
alternative set of radiative kernels (31). The feedback residuals are
computed as actual minus sum of kernel-derived feedbacks (where
the actual feedback is the regression slope of net TOA radiation
against global-mean temperature). ECS values (Fig. S2b) are cal-
culated as the x-intercepts of the least-squares fits over years 1–20
and 21–150.

Effect of EIS variations. The impact of year-to-year variations in tro-
pospheric stability on the radiative budget is assessed by regression
analysis in observations and pre-industrial model integrations (using
50 years of data for each model). As a simple measure of large-scale
stability changes, we use global-mean EIS, but excluding grid points

poleward of 50¶; including those grid points tends to emphasize
high-latitude changes at the sea ice margins in climate models, likely
related to sea ice variability. Since global-mean surface temperature
anomalies associated with EIS variability will not generally be zero,
a component of the associated radiative changes will be due to a
Planck response that is not a direct result of the stability-driven
cloud and lapse rate responses. Therefore, the fields are jointly
regressed onto annual global-mean temperature and EIS anomalies
to isolate the EIS e�ect, and we present results for the regression
slopes associated with EIS only.

Observations. We use Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) monthly gridded global satellite observations of all-
and clear-sky TOA radiative fluxes during December 2000 – Novem-
ber 2016. Prior to analysis the values are detrended at each grid
point by removing a linear trend estimated by least-squares re-
gression. To estimate the relationship between SST, EIS, and the
observed radiative budget, we use ERA-Interim (38) reanalysis fields
of surface and atmospheric temperature, with which we compute
annual detrended SST and EIS anomalies. In addition to reanalysis
temperature, we also use moisture and surface albedo reanalysis
values in combination with radiative kernels to decompose the TOA
radiative flux anomalies, and to adjust the CRE anomalies for
non-cloud e�ects.
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Text S1: Change in global feedback versus change in global
EIS response. In our calculation of the relationships between
the changes in cloud feedback and the changes in global EIS
response per unit warming, one model, MIROC-ESM, clearly
stands out as an outlier (red circles in Fig. S3). This model
features both the most positive change in EIS response, and
the most positive change in shortwave and net cloud feedback.
In a previous analysis of the relationships between shortwave
cloud-radiative e�ect and meteorology in tropical subsidence
regions, MIROC-ESM was the only CMIP5 model to simulate
a substantial positive relationship between shortwave cloud-
radiative e�ect and EIS (30, their Figs. 2b and S1), consistent
with Fig. S3d and contrary to observational evidence.

We have therefore excluded MIROC-ESM from the cal-
culation of the slopes and correlation coe�cients in Fig. S3.
Including MIROC-ESM would result in a much weaker corre-
lation coe�cient between change in cloud feedback and change
in EIS response (r = [≠0.34, ≠0.18] for the shortwave and net
components, respectively).

Finally, note that the positive relationship between long-
wave cloud feedback changes and changes in EIS response
(Fig. S3e) is not inconsistent with our reasoning, considering
that shortwave and longwave cloud feedbacks are generally
anticorrelated. The shortwave impact of stability changes dom-
inates the spread in net cloud feedback (Fig. S3f), consistent
with our understanding that the inter-model spread in cloud
feedbacks is mainly associated with low clouds.

Text S2: Inter-model spread in climate feedback changes.
The relationships in Fig. S3 suggest that inter-model di�er-
ences in the evolution of tropospheric stability (as quantified
by EIS) contribute to di�erences in the evolution of the climate
feedbacks. However, the substantial scatter in Fig. S3 indicates
that global-mean stability changes cannot fully account for
the inter-model spread in feedback changes. Here, we briefly
discuss other possible contributions to the spread in feedback
changes.

First, the sensitivity of climate feedbacks to stability
changes is expected to vary from model to model. This applies
particularly to cloud feedbacks, since the sensitivity of low
clouds to stability changes varies considerably among CMIP5
models (e.g., 30, their Fig. 1). Hence, even if the cloud feed-
back changes were driven entirely by changes in tropospheric
stability in all climate models, we would not obtain a perfect
linear relationship in Fig. S3.

Second, processes unrelated to stability must contribute to
the evolution of climate feedbacks. For example, the spread in
albedo feedback changes is large in our set of models (Fig. 2b)
and it is unrelated to the global-mean EIS change index used
in Fig. S3 (r = ≠0.02). The evolution of albedo feedbacks is
likely related to the evolution of the local SST response per

degree global warming in di�erent models, as suggested by
Fig. S4. Cloud responses are controlled by a variety of environ-
mental factors other than stability (e.g., 29). Furthermore, as
discussed in the main text, the mechanisms of the evolution of
the relative humidity feedback remain unknown; the spread in
relative humidity feedback change is only marginally related
to the EIS index considered here (r = ≠0.27).

Text S3: Climate feedbacks based on the local feedback per-
spective. One hypothesis for the evolution of the feedback
parameter is based on the idea that the spatial pattern of
warming determines the relative contributions of local feed-
backs to the global-mean radiative budget; consequently, a
change in the spatial warming pattern will cause a change
in the global feedback parameter if the local feedbacks vary
in space (7). In this perspective, the increasing global-mean
feedback in global warming simulations as time passes results
from the evolution of the surface warming pattern towards
enhanced warming in regions of relatively positive local feed-
backs. In this section, we demonstrate that this perspective
cannot adequately explain the time evolution of the global
feedback parameter seen in CMIP5 experiments.

In the local feedback perspective, climate feedbacks are
assumed to be constant in time, but spatially varying (i.e. they
depend on geographical location x). The e�ective global-mean
feedback ⁄e� can then be understood as a spatial average of
local feedbacks ⁄(x) weighted by the local contributions to
global-mean warming:

⁄e�(t) = ⁄(x)P (x, t), [1]

where P (x, t) is the normalized warming pattern (defined as
local surface warming per unit global warming) and over-
bars denote spatial averages. Under the assumption of time-
independent local feedbacks, any temporal variations in the
e�ective global-mean feedback parameter must arise from vari-
ations in P (x, t).

We first derive the local feedbacks ⁄(x). Since they are
assumed constant, we may calculate them using any part of the
experiment; we compute them by taking the mean of the last 20
years of the abrupt4xCO2 integrations, minus the mean of the
first 10 years. This ensures that rapid adjustments are excluded
from the calculation, while maximizing the warming-induced
signal. We divide the time-mean kernel-derived radiative
anomalies at each point (for each of the components shown in
Fig. S4) by the time-mean local surface temperature anomaly.
This procedure yields better results than regressing the local
radiative anomalies against local warming, because the low
signal-to-noise ratio in local radiative anomalies means that
the regression slopes are noisy and not robust. Note that
for some models, the surface temperature response may be
near zero in some regions, resulting in large, unphysical local
feedback values when dividing the radiative anomalies by the
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temperature anomalies. However, we have verified that these
unphysical values have relatively little impact on the global-
mean feedback values, and similar results are obtained if these
grid points are excluded from our calculations.

E�ective global-mean feedbacks are then calculated for
years 1–20 and 21–150 following Eq. 1. The warming patterns
P (x, t) are calculated by regressing local surface air tempera-
ture onto global-mean surface air temperature over each of the
two periods. As shown in Fig. S4, the total e�ective global feed-
back derived assuming constant local feedbacks only weakly
increases in time (0.05 W m≠2 K≠1 in the multi-model mean).
This means that a change in spatial weighting of constant local
feedbacks can only play a secondary role for the evolution of
the relationship between global-mean radiative imbalance and
global-mean temperature; this evolution must result primarily
from changes in the local feedbacks, rather than from changes
in the spatial pattern of warming.

The results do suggest, however, that a linear dependence

of feedback processes on local temperature may partly explain
the evolution of the surface albedo feedback (0.05 W m≠2

K≠1). This is unsurprising, since the warming pattern evolves
towards enhanced high-latitude warming over time (Fig. 1; 7).
We have not investigated the mechanism for the weak increase
in relative humidity feedback obtained assuming constant local
feedbacks (0.04 W m≠2 K≠1). We also note that changes in
the spatial weighting of local feedbacks may account for a
substantial fraction of the increase in global feedbacks in a
few of the models (Fig. S4b).

Note that even though Fig. S4 indicates that the hypoth-
esis of constant local feedbacks cannot capture the increase
in global cloud feedback over time, it may still explain the
evolution of cloud feedback in some regions, where the cloud
feedback processes are mainly controlled by local temperature
rather than by remote factors – for example phase change
feedbacks in high-latitude regions (39).
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Table S1. List of Coupled Model Intercomparison Project phase 5 (CMIP5) climate models with their feedback values (in W m≠2 K≠1) cal-
culated over years 1–20 and (in parentheses) years 21–150. The 15 models listed in bold typeface were used in the analysis (Materials and
Methods). The residual represents the difference between the actual feedback (calculated by regressing net top-of-atmosphere radiative
anomalies against global-mean temperature) and the sum of radiative kernel-derived feedbacks (Materials and Methods).

Model name Planck Lapse rate RH Albedo Cloud LW cloud SW cloud Total Residual

ACCESS1.0 -1.84 (-1.85) -0.26 (-0.01) -0.01 (-0.01) 0.37 (0.59) 0.41 (0.48) 0.63 (0.31) -0.22 (0.17) -1.33 (-0.80) 0.25 (0.23)
ACCESS1.3 -1.85 (-1.85) -0.18 (-0.03) -0.10 (-0.02) 0.50 (0.54) 0.37 (0.78) 0.27 (0.16) 0.10 (0.62) -1.27 (-0.59) 0.10 (0.10)
BCC-CSM1.1 -1.87 (-1.87) -0.12 (0.11) -0.07 (-0.06) 0.41 (0.64) 0.20 (0.28) 0.54 (0.36) -0.34 (-0.08) -1.44 (-0.89) 0.09 (0.03)
BCC-CSM1.1(m) -1.86 (-1.87) -0.14 (0.06) -0.12 (-0.07) 0.45 (0.55) 0.27 (0.45) 0.27 (0.45) -0.00 (-0.00) -1.40 (-0.88) 0.03 (0.01)
BNU-ESM -1.87 (-1.85) -0.04 (0.03) 0.01 (0.07) 0.64 (0.65) 0.17 (-0.08) 0.47 (0.36) -0.31 (-0.44) -1.08 (-1.19) 0.12 (0.06)
CanESM2 -1.86 (-1.85) -0.22 (-0.07) 0.03 (-0.00) 0.38 (0.46) 0.52 (0.49) 0.90 (0.69) -0.38 (-0.20) -1.15 (-0.98) -0.05 (0.08)
CCSM4 -1.85 (-1.87) -0.12 (0.12) -0.04 (-0.01) 0.51 (0.64) -0.02 (0.28) 0.44 (0.28) -0.46 (0.01) -1.51 (-0.84) -0.05 (-0.07)
CNRM-CM5 -1.86 (-1.85) 0.00 (-0.12) -0.01 (-0.10) 0.67 (0.42) 0.13 (0.17) 0.40 (0.27) -0.27 (-0.09) -1.08 (-1.47) 0.03 (0.24)
FGOALS-s2 -1.87 (-1.87) -0.10 (-0.06) 0.06 (0.06) 0.50 (0.69) 0.02 (0.03) 0.34 (0.53) -0.32 (-0.50) -1.39 (-1.15) 0.48 (0.41)
GFDL-CM3 -1.84 (-1.85) -0.30 (-0.12) -0.15 (-0.13) 0.44 (0.45) 0.73 (0.96) 0.45 (0.27) 0.28 (0.69) -1.12 (-0.69) -0.01 (0.09)
GFDL-ESM2G -1.84 (-1.84) -0.34 (-0.07) 0.08 (0.02) 0.25 (0.47) -0.09 (0.60) 0.92 (0.34) -1.01 (0.26) -1.93 (-0.83) 0.36 (0.10)
GFDL-ESM2M -1.83 (-1.83) -0.33 (-0.12) 0.01 (0.02) 0.38 (0.40) 0.07 (0.28) 0.88 (0.26) -0.80 (0.03) -1.70 (-1.25) 0.34 (0.12)
GISS-E2-H -1.85 (-1.85) -0.18 (0.02) 0.11 (0.19) 0.40 (0.38) -0.22 (-0.07) 0.66 (0.62) -0.88 (-0.69) -1.74 (-1.33) -0.16 (-0.14)
GISS-E2-R -1.84 (-1.86) -0.35 (0.04) 0.15 (0.26) 0.32 (0.33) -0.43 (0.05) 0.80 (0.63) -1.23 (-0.58) -2.14 (-1.19) -0.24 (-0.14)
HadGEM2-ES -1.85 (-1.85) -0.14 (-0.04) -0.00 (0.03) 0.47 (0.52) 0.34 (0.81) 0.59 (0.41) -0.24 (0.40) -1.18 (-0.52) 0.37 (0.18)
INMCM4 -1.87 (-1.84) -0.05 (-0.13) -0.05 (0.18) 0.53 (0.29) -0.05 (0.42) 0.27 (0.49) -0.32 (-0.07) -1.49 (-1.07) -0.17 (-0.15)
IPSL-CM5A-LR -1.84 (-1.84) -0.28 (-0.23) -0.04 (0.00) 0.33 (0.35) 1.08 (1.22) 0.51 (0.58) 0.57 (0.64) -0.76 (-0.50) -0.11 (-0.08)
IPSL-CM5B-LR -1.85 (-1.85) -0.12 (-0.04) -0.03 (0.03) 0.40 (0.36) 0.39 (0.74) 0.16 (0.48) 0.24 (0.26) -1.20 (-0.76) -0.00 (-0.03)
MIROC-ESM -1.85 (-1.84) -0.20 (-0.31) -0.05 (-0.15) 0.71 (0.40) 0.28 (1.19) 0.65 (0.24) -0.37 (0.96) -1.10 (-0.70) 0.04 (0.06)
MIROC5 -1.86 (-1.83) -0.21 (-0.17) -0.07 (-0.00) 0.47 (0.59) -0.08 (0.08) 0.26 (0.48) -0.34 (-0.40) -1.76 (-1.34) 0.03 (0.14)
MPI-ESM-LR -1.85 (-1.84) -0.27 (-0.18) -0.15 (-0.07) 0.41 (0.58) 0.43 (0.54) 0.57 (0.70) -0.14 (-0.16) -1.43 (-0.98) 0.10 (0.07)
MPI-ESM-MR -1.85 (-1.85) -0.24 (-0.12) -0.14 (-0.06) 0.41 (0.65) 0.33 (0.53) 0.48 (0.61) -0.15 (-0.08) -1.49 (-0.85) 0.09 (0.03)
MPI-ESM-P -1.85 (-1.85) -0.35 (-0.14) -0.12 (-0.07) 0.27 (0.57) 0.43 (0.48) 0.63 (0.65) -0.20 (-0.17) -1.62 (-1.00) 0.12 (0.08)
MRI-CGCM3 -1.86 (-1.84) -0.17 (-0.06) -0.10 (-0.06) 0.37 (0.52) 0.28 (0.36) 0.02 (-0.06) 0.26 (0.42) -1.48 (-1.07) -0.06 (0.01)
NorESM1-M -1.86 (-1.87) -0.14 (0.07) -0.00 (0.03) 0.40 (0.61) -0.05 (0.35) 0.32 (0.28) -0.37 (0.06) -1.66 (-0.81) 0.02 (-0.02)

Mean (15 models) -1.85 (-1.85) -0.19 (-0.05) -0.06 (-0.01) 0.41 (0.51) 0.31 (0.52) 0.43 (0.44) -0.12 (0.08) -1.38 (-0.88) -0.00 (0.00)

Mean (all models) -1.85 (-1.85) -0.19 (-0.06) -0.03 (0.00) 0.44 (0.51) 0.22 (0.46) 0.50 (0.41) -0.28 (0.04) -1.42 (-0.95) 0.07 (0.06)
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a  SST years 1−20
0.85 K K−1

b  EIS years 1−20
0.04 K K−1

−1.00
−0.75
−0.50
−0.25
−0.10
0.10
0.25
0.50
0.75
1.00

c  SST years 21−150
0.88 K K−1

d  EIS years 21−150
−0.13 K K−1

−1.00
−0.75
−0.50
−0.25
−0.10
0.10
0.25
0.50
0.75
1.00

Fig. S1. Multi-model mean normalized changes in SST and EIS during years 1–20 (a,b) and 21–150 (c,d), calculated by regressing annual-mean SST and EIS against
global-mean temperature during the respective periods. Numbers in the top left corner of each panel denote global-mean values.
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Fig. S2. Changes in annual-mean global-mean EIS (a) and ECS (b) during years 1–20 (blue), years 21–150 (red), and the difference between the two periods (gray). Each
colored circle represents a model, and black circles denote multi-model means. EIS changes are calculated by regressing global-mean EIS onto global-mean temperature
during each period. See the Materials and Methods section for the ECS calculation.
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Fig. S3. Change in feedback parameter versus change in global-mean EIS response per unit warming. Shown are changes in (a) net feedback based on TOA radiation, (b) the
sum of kernel-derived feedbacks, (c) lapse rate feedback, (d)–(f) shortwave, longwave, and net cloud feedback. The changes are calculated as late (years 21–150) minus early
(1–20) period. Black lines denote ordinary least-squares regression slopes. Black circles denote the 15 models used in the analysis; the red circle represents an outlier model,
MIROC-ESM, excluded from the calculation of the regression slopes and correlation coefficients (Text S1); and gray circles represent the remaining 9 models (Table S1). The
correlation coefficients are calculated for all models, minus MIROC-ESM. Note that regions poleward of 50¶ are excluded from the global-mean EIS calculation (Materials and
Methods).
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Fig. S4. As in Fig. 2 but showing feedback values calculated following the local feedback perspective of Armour et al. (7). See Text S3 for details of the calculation method.
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a  SST
0.00 K K−1

b  EIS
−0.16 K K−1

−2.00
−1.50
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c  Net CRE
0.30 W m−2 K−1

d  Net TOA radiation
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Fig. S5. As in Fig. 4, but using pre-industrial control data in the 15 models used in the analysis. Shown are the multi-model mean regression patterns, rescaled to yield
anomalies consistent with a ≠0.16 K K≠1 global-mean EIS change to aid comparison with Figs. 1 and 3. Hatching denotes a multi-model mean anomaly larger than one
standard deviation. Note that the effect of changes in global-mean surface temperature has been regressed out (Materials and Methods).
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a  Cloud
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Fig. S6. Contributions to stability-induced top-of-atmosphere radiative anomalies in observations by (a) clouds, (b) lapse rate changes, and (c) the sum of all the components
(Planck, lapse rate, water vapor, surface albedo, and clouds). Panel (d) shows the actual net radiative anomalies (as in Fig. 4d) for comparison with (c). The radiative anomaly
decomposition in (a)–(c) was calculated with radiative kernels (Materials and Methods). All the anomalies are scaled for a ≠0.16 K K≠1 change in global-mean EIS for
comparison with climate model results (cf. main text and Fig. 4). Hatching indicates a statistically significant regression coefficient at the 5% level.
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Fig. S7. As in Fig. S6, but for the interannual stability-induced radiative anomalies in climate models (cf. Fig. S5). Shading represents multi-model mean results, and hatching
denotes a multi-model mean anomaly larger than one standard deviation across models.
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