1,741 research outputs found

    Admittance Selection for Planar Force-Guided Assembly for Single-Point Contact with Friction

    Get PDF
    This paper identifies procedures for selecting the appropriate admittance to achieve reliable planar force-guided assembly for single-point frictional contact cases. A set of conditions that are imposed on the admittance matrix is presented. These conditions ensure that the motion that results from contact reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reduction conditions at a finite number of contact configurations and a given coefficient of friction /spl mu//sub M/) then the admittance will also ensure that the conditions are satisfied at all intermediate configurations for all coefficients less than /spl mu//sub M/

    Simulation of Mechanical Systems With Multiple Frictional Contacts

    Get PDF
    There are several applications in robotics and manufacturing in which nominally rigid objects are subject to multiple frictional contacts with other objects. In most previous work, rigid body models have been used to analyze such systems. There are two fundamental problems with such an approach. Firstly, the use of frictional laws, such as Coulomb\u27s law, introduce inconsistencies and ambiguities when used in conjunction with the principles of rigid body dynamics. Secondly, hypotheses traditionally used to model frictional impacts can lead to solutions which violate principles of energy conservation. In this paper these problems are explained with the help of examples. A new approach to the simulation of mechanical systems with multiple, frictional constraints is proposed which is free of inconsistencies

    ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact

    Full text link
    We present a differentiable dynamics solver that is able to handle frictional contact for rigid and deformable objects within a unified framework. Through a principled mollification of normal and tangential contact forces, our method circumvents the main difficulties inherent to the non-smooth nature of frictional contact. We combine this new contact model with fully-implicit time integration to obtain a robust and efficient dynamics solver that is analytically differentiable. In conjunction with adjoint sensitivity analysis, our formulation enables gradient-based optimization with adaptive trade-offs between simulation accuracy and smoothness of objective function landscapes. We thoroughly analyse our approach on a set of simulation examples involving rigid bodies, visco-elastic materials, and coupled multi-body systems. We furthermore showcase applications of our differentiable simulator to parameter estimation for deformable objects, motion planning for robotic manipulation, trajectory optimization for compliant walking robots, as well as efficient self-supervised learning of control policies.Comment: Moritz Geilinger and David Hahn contributed equally to this wor

    Admittance Selection for Force-guided Assembly of Polygonal Parts Despite Friction

    Get PDF
    An important issue in the development of force guidance assembly strategies is the specification of an appropriate admittance control law. This paper identifies conditions to be satisfied when selecting the appropriate admittance to achieve force-guided assembly of polygonal parts for multipoint contact with friction. These conditions restrict the admittance behavior for each of the various one-point and two-point contact cases and ensure that the motion that results from contact reduces part misalignment for each case. We show that, for bounded friction and part misalignments, if the identified conditions are satisfied for a finite number of contact configurations and friction coefficients, the conditions ensure that force guidance is achieved for all configurations and values of friction within the specified bounds

    A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints

    Get PDF
    "Available online 19 December 2017"A comprehensive survey of the literature of the most relevant analytical, numerical, and experimental approaches for the kinematic and dynamic analyses of multibody mechanical systems with clearance joints is presented in this review. Both dry and lubricated clearance joints are addressed here, and an effort is made to include a large number of research works in this particular field, which have been published since the 1960′s. First, the most frequently utilized methods for modeling planar and spatial multibody mechanical systems with clearance joints are analyzed, and compared. Other important phenomena commonly associated with clearance joint models, such as wear, non-smooth behavior, optimization and control, chaos, and uncertainty and links’ flexibility, are then discussed. The main assumptions procedures and conclusions for the different methodologies are also examined and compared. Finally, future developments and new applications of clearance joint modeling and analysis are highlighted.This research was supported in part by the China 111 Project (B16003) and the National Natural Science Foundation of China under Grants 11290151, 11472042 and 11221202. The work was also supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio
    • …
    corecore