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Admittance Selection for Force-Guided 
Assembly of Polygonal Parts Despite Friction 
 

Shuguang Huang 
Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI 
J.M. Schimmels 
Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI 
 

Abstract: 
An important issue in the development of force guidance assembly strategies is the specification of an 
appropriate admittance control law. This paper identifies conditions to be satisfied when selecting the 
appropriate admittance to achieve force-guided assembly of polygonal parts for multipoint contact with friction. 
These conditions restrict the admittance behavior for each of the various one-point and two-point contact cases 
and ensure that the motion that results from contact reduces part misalignment for each case. We show that, 
for bounded friction and part misalignments, if the identified conditions are satisfied for a finite number of 
contact configurations and friction coefficients, the conditions ensure that force guidance is achieved for all 
configurations and values of friction within the specified bounds. 
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SECTION I. Introduction 
Admittance control is useful in assembly tasks in providing both force regulation and force guidance. In these 
tasks, the admittance maps contact forces into changes in the velocity of the held body. To achieve reliable 
assembly through force guidance, it is important that an appropriate admittance is selected. For planar motion, 
the linear admittance control law has the form 

𝐯𝐯 = 𝐯𝐯0 + 𝐀𝐀𝐀𝐀 

(1) 

where 𝐯𝐯0 is the nominal velocity (a 3-vector), 𝐀𝐀 is the contact wrench measured in the body frame (a 3-
vector), 𝐀𝐀 is the admittance matrix (a 3×3 matrix), and 𝐯𝐯 is the resulting motion (a 3-vector). 

Others have addressed the use of an admittance for force guidance. Whitney [1], [2] proposed that the 
compliance of a manipulator be structured so that contact forces lead to decreasing errors. 
Peshkin [3] addressed the synthesis of an accommodation (inverse damping) matrix by specifying the desired 
force/motion relation at a sampled set of positional errors for a planar assembly task. An unconstrained 
optimization was then used to obtain an accommodation matrix. Asada [4] used a similar optimization 
procedure for the design of an accommodation neural network rather than an accommodation matrix. More 
recently, Fasse and Broenink [5] and Marcelo et al. [6] provided synthesis procedures based on spatial intuitive 
reasoning. None of these approaches, however, ensures that the admittance selected will, in fact, be reliable for 
a specified range of friction coefficients and part misalignments. 

A reliable admittance selection approach is to design the control law so that, at each possible part misalignment, 
the contact force always leads to a motion that instantaneously reduces the existing misalignment. The 
approach is referred to as force assembly [7]–[8] [9]. 

The description of rigid body motions that reduce misalignment is neither obvious nor unique. The configuration 
space of a rigid body is non-Euclidian; therefore, there is no natural metric for finite error. In [10], several body-
specific rigid body metrics were identified. These metrics are based on the Euclidean distance between one (or 
more) point(s) on the body and its (their) corresponding location(s) when properly positioned. 

Previously, we have considered sufficient conditions on the admittance to ensure planar force assembly 
in frictionless single-point contact [11]. In the study, we considered a measure of error based on the Euclidean 
distance between a fixed point on the held body and its location when properly positioned. The misalignment 
reduction condition of force assembly requires that, at each possible misalignment, the contact force yields a 
motion that reduces the misalignment. Using the point-based measure of misalignment discussed above, this 
condition can be expressed mathematically if we let 𝐝𝐝 (a 3-vector for planar motion) be the line vector from the 
selected point at its proper mated position to its current position. Then, for error reducing motion, the condition 
is 

𝐝𝐝𝑇𝑇𝐯𝐯 = 𝐝𝐝𝑇𝑇(𝐯𝐯0 + 𝐀𝐀𝐀𝐀) < 0 

(2) 

which must be satisfied for all possible misalignments. 



 
Fig. 1. Rigid body constrained by multipoint contact. The contact force at each contact point has normal and 
frictional components. 

Here, we investigate single-and two-point frictional planar contact using the same error measure. We show that, 
by identifying an admittance matrix that satisfies the error-reduction conditions at a finite number of extremal 
contact configurations and at two specified coefficients of friction, the error-reduction requirements are also 
satisfied for all intermediate configurations and for all coefficients of friction within the range specified. The 
friction model considered is “hard” point contact satisfying Coulomb's law [12]. 

In this paper, a description of error-reducing motion for a rigid body in frictional contact is derived in Section II. 
The strategy used to obtain sufficient conditions to impose on the admittance is first presented in Section III. 
Sufficient conditions for error reduction for single-point contact and two-point contact are then obtained 
in Sections IV and V, respectively. These conditions show that an admittance matrix satisfying the error-
reduction conditions at the boundaries of a set of contact configurations and friction coefficients also satisfies 
the error-reduction conditions at all intermediate configurations and all intermediate friction coefficients. A 
numerical example of admittance selection for a planar peg-in-hole problem is presented in Section VI, and a 
brief summary is provided in Section VII. 

SECTION II. Error-Reducing Motion 
In this section, the misalignment-reducing motions of a constrained rigid body in single-point and two-point 
frictional contact are mathematically described. The equation describing the constrained motion of a rigid body 
is first identified. Functions describing error-reducing motions for single-point and two-point contact are then 
obtained. 

A. Constrained Rigid Body Motion 
Consider planar motion of a rigid body in 𝑚𝑚-point contact with another part as shown in Fig. 1. Let 𝐧𝐧𝑖𝑖 be the 
surface normal (unit 2-vector pointing toward the held body) and let 𝐭𝐭𝑏𝑏𝑖𝑖 be a unit 2-vector tangent to the 
surface at the contact point 𝑖𝑖. Then, the direction of friction 𝐭𝐭𝑖𝑖 must be along 𝐭𝐭𝑏𝑏𝑖𝑖, i.e., 𝐭𝐭𝑖𝑖 = ±𝐭𝐭𝑏𝑏𝑖𝑖. Let 𝜙𝜙𝑖𝑖 be the 
magnitude of the contact force at 𝑖𝑖 and 𝜇𝜇𝑖𝑖  be the coefficient of friction. Then the wrench obtained from contact 
at 𝑚𝑚 locations is given by 
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𝐀𝐀𝑖𝑖 = �(𝐀𝐀𝑛𝑛𝑖𝑖 + 𝜇𝜇𝑖𝑖𝐀𝐀𝑡𝑡𝑖𝑖)𝜙𝜙𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 

(3) 

where 

𝐀𝐀𝑛𝑛𝑖𝑖 = �
𝐧𝐧𝑖𝑖

(𝐫𝐫𝑖𝑖 × 𝐧𝐧𝑖𝑖) ⋅ 𝐤𝐤
�

𝐀𝐀𝑡𝑡𝑖𝑖 = �
𝐭𝐭𝑖𝑖

(𝐫𝐫𝑖𝑖 × 𝐭𝐭𝑖𝑖) ⋅ 𝐤𝐤
�

 

and where 𝐫𝐫𝑖𝑖 is the position vector from the origin of the coordinate frame to the point of contact 𝑖𝑖 and 𝐤𝐤 is the 
unit vector orthogonal to the plane. 

If we denote 

𝐖𝐖𝑛𝑛 = [𝐀𝐀𝑛𝑛1, … ,𝐀𝐀𝑛𝑛𝑚𝑚] ∈ ℝ3×𝑚𝑚

𝐖𝐖𝑡𝑡 = [𝐀𝐀𝑡𝑡1, … ,𝐀𝐀𝑡𝑡𝑚𝑚] ∈ ℝ3×𝑚𝑚

𝝁𝝁 = diag(𝜇𝜇1, … ,𝜇𝜇𝑚𝑚) ∈ ℝ𝑚𝑚×𝑚𝑚

𝝓𝝓 = [𝜙𝜙1, … ,𝜙𝜙𝑚𝑚]𝑇𝑇 ∈ ℝ𝑚𝑚

𝐖𝐖 = 𝐖𝐖𝑛𝑛 + 𝐖𝐖𝑡𝑡𝝁𝝁

 

then the total contact wrench is 

𝐀𝐀 = 𝐖𝐖𝝓𝝓. 
 

(4) 

By the control law (1), the motion of the rigid body is given by 

𝐯𝐯 = 𝐯𝐯0 + 𝐀𝐀𝐖𝐖𝝓𝝓. 
(5) 

To maintain contact [13], the reciprocal condition requires 

𝐀𝐀𝑛𝑛𝑖𝑖
𝑇𝑇 𝐯𝐯 = 0 ⟹𝐖𝐖𝑛𝑛

𝑇𝑇𝐯𝐯 = 𝟎𝟎. 
Substituting (5) into this and solving for 𝜙𝜙, we have 

𝝓𝝓 = −[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]−1𝐖𝐖𝑛𝑛

𝑇𝑇𝐯𝐯0. 
(6) 

Substituting this result back into (5) yields the following equation for constrained motion: 

𝐯𝐯 = 𝐯𝐯0 − 𝐀𝐀𝐖𝐖[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]−1𝐖𝐖𝑛𝑛

𝑇𝑇𝐯𝐯0. 
(7) 

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/document/#deqn5


For a given relative configuration of planar bodies, the normal 𝐧𝐧𝑖𝑖 and tangent space base vector 𝐭𝐭𝑏𝑏𝑖𝑖 at the 
contact point are known. The direction of the friction force (𝐭𝐭𝑖𝑖 = 𝐭𝐭𝑏𝑏𝑖𝑖 or 𝐭𝐭𝑖𝑖 = −𝐭𝐭𝑏𝑏𝑖𝑖) is uniquely determined by 
satisfying the following conditions: 1) each component of 𝜙𝜙 in (6) is positive and 2) 𝐯𝐯𝑇𝑇𝐀𝐀𝑡𝑡𝑖𝑖 < 0. Thus, 𝐭𝐭 is known 
for each contact point and the compliant motion can be determined by (7). 

To calculate the motion, the matrix [𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖] must be full rank. Since 𝐀𝐀 is positive definite [7], det[𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖] >
0 for 𝜇𝜇 = 0. In the following sections, we assume that, for 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀], the inequality 

det[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖] = det[𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖𝑛𝑛 + 𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖𝑡𝑡𝝁𝝁] > 0 

(8) 

is satisfied. 

 
Fig. 2. Error-reducing motion for two-point contact. The angular motion of the rigid body is in the same direction 
for all configurations of a given two-point contact state. 

B. Error-Reduction Function for Single-Point Contact 
For single-point contact, 𝐖𝐖𝑛𝑛 = [𝐀𝐀𝑛𝑛] and 𝐖𝐖𝑡𝑡 = [𝐀𝐀𝑡𝑡]. If the compliant motion is error reducing, 
condition (2) must be satisfied for one (or more) specified point(s) on the body. Thus 

𝐸𝐸 =
𝐝𝐝𝑇𝑇(𝐯𝐯0𝐀𝐀𝑛𝑛

𝑇𝑇 − 𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛𝐈𝐈)𝐀𝐀(𝐀𝐀𝑛𝑛 + 𝜇𝜇𝐀𝐀𝑡𝑡)
𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛 + 𝜇𝜇𝐀𝐀𝑛𝑛

𝑇𝑇𝐀𝐀𝐀𝐀𝑡𝑡
< 0. 

(9) 

Due to (8), the denominator in (9) is positive. Therefore, the error-reduction function can be expressed as 

𝐹𝐹1𝑝𝑝 = 𝐝𝐝𝑇𝑇(𝐯𝐯0𝐀𝐀𝑛𝑛
𝑇𝑇 − 𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛𝐈𝐈)𝐀𝐀(𝐀𝐀𝑛𝑛 + 𝜇𝜇𝐀𝐀𝑡𝑡). 

(10) 

Note that error-reducing motion is indicated by the sign of 𝐹𝐹1𝑝𝑝 in (10). 

C. Error-Reduction Function for Two-Point Contact 
For planar motion of a rigid body with two-point contact, if the contact is maintained, the body has only one 
degree of freedom (DOF). The instantaneous motion of the body is a rotation about the body's instantaneous 
center. 

If the instantaneous center is at infinity and contact is maintained, the motion of the body is pure translation. 
This is the simplest admittance design case: error reduction at extremal configurations within the contact state 
ensures error reduction for all configurations within that contact state. 

https://ieeexplore.ieee.org/document/#deqn6
https://ieeexplore.ieee.org/document/#deqn7
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Fig. 3. Configuration variation for the same single-point contact state. Contact state configuration variation is 
illustrated for (a) {𝑒𝑒 − 𝑣𝑣} (edge–vertex) contact and (b) {𝑣𝑣 − 𝑒𝑒} (vertex–edge) contact. 

If the instantaneous center is not at infinity (generic case), it is uniquely determined by the geometry of the 
contact for each configuration within the contact state. Because admittance design of the instantaneous center 
at the infinity case is trivial, the admittance of only this more general (and more difficult) type of two-point 
contact state is addressed. 

As stated previously, the force-assembly error-reduction condition requires that, at any instant, the motion of 
the body must be toward its properly mated position. Consider the two-point contact state shown in Fig. 2. For 
error reduction, the direction of rotation of the body about the instantaneous center 𝑐𝑐𝑖𝑖 must cause the body to 
move toward the properly mated configuration 𝐵𝐵′. Since error reduction must hold for any configuration, the 
angular motion of the body must be in the same direction for all configurations within the same contact state. 
Thus, the error-reducing motion for two-point contact is solely indicated by the angular velocity of the 
constrained body. 

Now consider the angular motion in (7). Let 𝐞𝐞3 = [0,0,1]𝑇𝑇 and 𝐯𝐯0 = [𝑣𝑣𝑥𝑥0, 𝑣𝑣𝑦𝑦0,𝜔𝜔0]𝑇𝑇, then the orientational 
component in (7) is 

𝜔𝜔 = 𝐞𝐞3𝑇𝑇𝐯𝐯 = 𝜔𝜔0 − 𝐞𝐞3𝑇𝑇𝐀𝐀𝐖𝐖[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]−1𝐖𝐖𝑛𝑛

𝑇𝑇𝐯𝐯0. 
(11) 

Let [𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]∗ be the adjugate of [𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖] as follows: 

[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]∗ = �

𝐀𝐀𝑛𝑛2
𝑇𝑇 𝐀𝐀𝐀𝐀2 −𝐀𝐀𝑛𝑛2

𝑇𝑇 𝐀𝐀𝐀𝐀2
−𝐀𝐀𝑛𝑛1

𝑇𝑇 𝐀𝐀𝐀𝐀2 𝐀𝐀𝑛𝑛1
𝑇𝑇 𝐀𝐀𝐀𝐀1

�. 

Then 

[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]−1 =

1
det(𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖) [𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]∗. 

Substituting this into (11) yields 

𝜔𝜔 =
[det(𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖)𝜔𝜔0 − 𝐞𝐞3𝑇𝑇𝐀𝐀𝐖𝐖[𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖]∗𝐖𝐖𝑛𝑛

𝑇𝑇𝐯𝐯0]
det(𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖) . 

(12) 
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Because in (8) we assume that det(𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖) > 0, we now only need to consider the following function: 

𝐹𝐹2𝑝𝑝 = det(𝐖𝐖𝑛𝑛
𝑇𝑇𝐀𝐀𝐖𝐖)𝜔𝜔0 − 𝐞𝐞3𝑇𝑇𝐀𝐀𝐖𝐖[𝐖𝐖𝑛𝑛

𝑇𝑇𝐀𝐀𝐖𝐖]∗𝐖𝐖𝑛𝑛
𝑇𝑇𝐯𝐯0 

which can be expressed as 

𝐹𝐹2𝑝𝑝 = [(𝐀𝐀𝑛𝑛1
𝑇𝑇 𝐀𝐀𝐀𝐀1)(𝐀𝐀𝑛𝑛2

𝑇𝑇 𝐀𝐀𝐀𝐀2)− (𝐀𝐀𝑛𝑛1
𝑇𝑇 𝐀𝐀𝐀𝐀2)(𝐀𝐀𝑛𝑛2

𝑇𝑇 𝐀𝐀𝐀𝐀1)]𝜔𝜔0

−(𝐀𝐀𝑛𝑛1
𝑇𝑇 𝐯𝐯0)(𝐚𝐚3𝑇𝑇𝐀𝐀1)(𝐀𝐀𝑛𝑛2

𝑇𝑇 𝐀𝐀𝐀𝐀2)
+(𝐀𝐀𝑛𝑛1

𝑇𝑇 𝐯𝐯0)(𝐚𝐚3𝑇𝑇𝐀𝐀2)(𝐀𝐀𝑛𝑛1
𝑇𝑇 𝐀𝐀𝐀𝐀2)

+(𝐀𝐀𝑛𝑛2
𝑇𝑇 𝐯𝐯0)(𝐚𝐚3𝑇𝑇𝐀𝐀1)(𝐀𝐀𝑛𝑛2

𝑇𝑇 𝐀𝐀𝐀𝐀1)
−(𝐀𝐀𝑛𝑛2

𝑇𝑇 𝐯𝐯0)(𝐚𝐚3𝑇𝑇𝐀𝐀2)(𝐀𝐀𝑛𝑛1
𝑇𝑇 𝐀𝐀𝐀𝐀1)

 

(13) 

where 𝐚𝐚3 is the third column of the admittance matrix 𝐀𝐀 and 𝐀𝐀𝑖𝑖 is the 𝑖𝑖th column of the matrix 𝐖𝐖. 

Since the function 𝐹𝐹2𝑝𝑝 in (13) indicates the sign of the orientational motion for the body, it is used as the error-
reduction function for the two-point contact case. 

SECTION III. Solution Strategy 
In general, the error-reduction functions 𝐹𝐹1𝑝𝑝 in (10) and 𝐹𝐹2𝑝𝑝 in (13) depend on the geometries of the parts in 
contact. In this section, a strategy to obtain sufficient conditions for error reduction is presented. With this 
strategy, a set of sufficient conditions can be obtained for bounded configurations without explicitly describing 
the specific variation in part configuration within a given contact state. 

A. Contact States 
Polygonal planar bodies in single-point contact have two basic types of contact. One is referred to as “edge–
vertex” contact ({𝑒𝑒 − 𝑣𝑣}); the other is referred to as “vertex–edge” contact ({𝑣𝑣 − 𝑒𝑒}). In “edge–vertex” contact, 
one edge of the held body is in contact with one vertex of the mating fixtured part [Fig. 3(a)]. In “vertex–edge” 
contact, one vertex of the held body is in contact with one edge of its mating part [Fig. 3(b)]. 

Configurations within the same contact state vary. As shown in Fig. 3, 𝛿𝛿 represents a relative position along an 
edge of a body and 𝜃𝜃 represents a relative orientation between the two parts. The ranges for 𝛿𝛿 and 𝜃𝜃 can be 
determined by robot accuracy or by bounds imposed by the contact state. 

The basic types of two-point contact are the various combinations of two single-point contacts. There are three 
types of two-point contact: 1) one {𝑒𝑒 − 𝑣𝑣} and one {𝑣𝑣 − 𝑒𝑒} contact ({𝑒𝑒 − 𝑣𝑣, 𝑣𝑣 − 𝑒𝑒}); 2) two {𝑒𝑒 −
𝑣𝑣} contact ({𝑒𝑒 − 𝑣𝑣, 𝑒𝑒 − 𝑣𝑣}); and 3) two {𝑣𝑣 − 𝑒𝑒} contact ({𝑣𝑣 − 𝑒𝑒, 𝑣𝑣 − 𝑒𝑒}). 

B. Single-Point Contact 
In the following, the contact wrenches for the two basic types of single-point contact are presented. We show 
that, although the body configuration is determined by two variables (𝛿𝛿,𝜃𝜃), the unit contact wrench for each 
type of contact depends on only one of them. 

1) Edge–Vertex Contact Wrenches 
Consider the case for which one edge of the held body is in contact with one vertex of its mating part 
({𝑒𝑒 − 𝑣𝑣} contact state). As shown in Fig. 3(a), the direction of the contact wrench is constant in the body frame 
but the location of the contact varies, thus the unit contact wrench can be expressed as 
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𝐀𝐀𝑛𝑛 = �
𝐧𝐧

(𝐫𝐫 × 𝐧𝐧) ⋅ 𝐤𝐤�

𝐀𝐀𝑡𝑡 = � 𝐭𝐭
(𝐫𝐫× 𝐭𝐭) ⋅ 𝐤𝐤�

 

(14) 

where 𝐫𝐫 = 𝐫𝐫0 + 𝐫𝐫𝑒𝑒𝛿𝛿, and where 𝐫𝐫0 identifies a location on the edge and 𝐫𝐫𝑒𝑒 is the unit vector along the edge 
(both are constant in the body frame). Thus, 𝐀𝐀 is a single-variable function in 𝛿𝛿 for a given {𝑣𝑣 − 𝑒𝑒} contact state. 

2) Vertex–Edge Contact Wrenches 
Consider the case for which one vertex of the body is in contact with one edge of its mating part ({𝑣𝑣 −
𝑒𝑒} contact state). As shown in Fig. 3(b), the direction of the contact wrench 𝐀𝐀 is constant in the global 
coordinate frame and the relative position of the contact location is constant in the body frame. Suppose that 
the relative body orientation changes in angle 𝜃𝜃; then the direction of the contact force also changes in 𝜃𝜃 in the 
body frame. Thus, the unit contact wrench in the body frame can be expressed as 

𝐀𝐀𝑛𝑛 = � 𝐑𝐑𝐧𝐧
(𝐫𝐫 × 𝐑𝐑𝐧𝐧) ⋅ 𝐤𝐤�

𝐀𝐀𝑡𝑡 = � 𝐑𝐑𝐭𝐭
(𝐫𝐫 × 𝐑𝐑𝐭𝐭) ⋅ 𝐤𝐤�

 

(15) 

where 𝐑𝐑 is the rotation matrix associated with 𝜃𝜃 having the form 

𝐑𝐑 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � . 

(16) 

Therefore, in the body frame, w is a single-variable function in 𝜃𝜃 for a specified {𝑣𝑣 − 𝑒𝑒} contact state. 

3) Mathematical Requirement 
If the parts remain in single-point contact, the planar motion of the rigid body has 2 DOF. 

 
Fig. 4. Two-point contact state. In the bounded area, 𝜉𝜉 and 𝜂𝜂 are treated as two independent variables 
regardless of their relation 𝜂𝜂 = 𝑓𝑓(𝜉𝜉). 
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Suppose that the range of 𝛿𝛿 and 𝜃𝜃 are [𝛿𝛿𝑚𝑚𝑖𝑖𝑛𝑛,𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥] and [𝜃𝜃𝑚𝑚𝑖𝑖𝑛𝑛,𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥], respectively, and the bounded area is 𝐌𝐌. 
If in 𝐌𝐌 the error-reduction condition is satisfied, then for any configuration considered, the admittance ensures 
that the error-reduction requirement is satisfied. Mathematically, this requirement can be imposed on the 
admittance using the function 𝐹𝐹1𝑝𝑝 with the following two conditions. 

1. For one point (𝛿𝛿0,𝜃𝜃0) ∈ 𝑀𝑀, the error-reduction condition is satisfied, i.e., 

𝐹𝐹1𝑝𝑝 = 𝐹𝐹1𝑝𝑝(𝛿𝛿0,𝜃𝜃0) < 0. 
(17) 

2. For all points in 𝑀𝑀, 𝐹𝐹1𝑝𝑝 does not change sign. 

C. Two-Point Contact 
Since two-point contact is a combination of the two single-point contact cases, the contact wrench for two-point 
contact is a combination of the two corresponding single-point contact wrenches. 

The error-reduction function for two-point contact calculated using (13) involves two contact 
wrenches 𝐀𝐀1 and 𝐀𝐀2. Since each unit wrench in (14) or (15) is, in general, a function of 𝛿𝛿 or 𝜃𝜃, the error-
reduction function can always be expressed as a function of two variables, i.e., 

𝐹𝐹2𝑝𝑝 = 𝐹𝐹2𝑝𝑝(𝜉𝜉, 𝜂𝜂) 

(18) 

where 𝜉𝜉 and 𝜂𝜂 are 𝜃𝜃 or 𝛿𝛿, depending on the contact state. For example, for the {𝑒𝑒 − 𝑣𝑣, 𝑒𝑒 −
𝑣𝑣} contact, 𝜉𝜉 and 𝜂𝜂 are the two displacement variables along their corresponding edges, 𝛿𝛿1 and 𝛿𝛿2. 

If the parts remain in two-point contact, the planar motion of the rigid body has only 1 DOF. Therefore, the two 
parameters 𝜉𝜉 and 𝜂𝜂 in (18) must be related by the geometry of the parts, i.e., are related by a function 𝜂𝜂 = 𝑓𝑓(𝜉𝜉). 
The error-reduction condition requires that, for all configurations on the curve 𝜂𝜂 = 𝑓𝑓(𝜉𝜉), the orientational error 
of the body is instantaneously reduced by contact. This means that the error-reduction function 𝐹𝐹2𝑝𝑝 has the 
appropriate sign along the curve 𝜂𝜂 = 𝑓𝑓(𝜉𝜉). 

Because this function is geometry-specific and difficult to determine, we consider a set of more conservative 
conditions based on the range of the two variables. Recall that 𝛿𝛿 represents a relative position along an edge of 
a body and 𝜃𝜃 represents a relative orientation between the two parts. The ranges for 𝛿𝛿 and 𝜃𝜃 can be determined 
from bounds on relative misalignment or by bounds determined by the contact state. Therefore, the ranges of 
the two parameters 𝜉𝜉 and 𝜂𝜂 are readily determined. 

Suppose that the range of 𝜉𝜉 and 𝜂𝜂 are [𝜉𝜉min, 𝜉𝜉max] and [𝜂𝜂min, 𝜂𝜂max], respectively. Consider the rectangular 
area 𝑀𝑀 bounded by [𝜉𝜉min, 𝜉𝜉max] and [𝜂𝜂min,𝜂𝜂max], as shown in Fig. 4. If in the bounded area the error-reduction 
condition is satisfied, then for any configuration considered, the admittance ensures that the error-reduction 
requirement is satisfied. Mathematically, this requirement can be imposed on the admittance using 
function 𝐹𝐹2𝑝𝑝 with the following two conditions. 

1. For one point (𝜉𝜉0, 𝜂𝜂0) ∈ 𝑀𝑀, the error-reduction condition is satisfied, i.e., 

𝐹𝐹2𝑝𝑝 = 𝐹𝐹2𝑝𝑝(𝜉𝜉0, 𝜂𝜂0) < 0. 
(19) 

2. For all points in 𝑀𝑀,𝐹𝐹2𝑝𝑝 does not change sign. 
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As such, sufficient conditions for error-reducing motion are established. This conservative approach enables us 
to treat the parameters (𝜉𝜉, 𝜂𝜂) as two independent variables regardless of the geometrical relationship between 
them. 

D. Bounds on Misalignment 
For both single-point and two-point contact cases, the misalignments considered are finite and bounded. The 
extremes of 𝜉𝜉 and 𝜂𝜂 are determined by the robot accuracy and the geometrical constraints of the parts limiting 
part misalignment. In each contact case, the range for each of the variables can be transformed to be centered 
about a local origin, e.g., [𝜉𝜉min, 𝜉𝜉max] ⇒ [−𝜉𝜉𝑀𝑀 , 𝜉𝜉𝑀𝑀] and [𝜂𝜂min,𝜂𝜂max] ⇒ [−𝜂𝜂𝑀𝑀,𝜂𝜂𝑀𝑀] to facilitate subsequent 
analysis. Thus, the two variables (𝜉𝜉, 𝜂𝜂) present a variation from a “central” configuration within the contact 
state. 

In order to obtain sufficient conditions for all configurations, the bounds of 𝜉𝜉 and 𝜂𝜂 should be chosen so that 
they cover all possible misalignments within the contact state. In this paper, the conditions obtained are 
sufficient conditions as long as the local orientational variation from the “central” configuration is 

within [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] which is in the range �− �𝜋𝜋
2
� , �𝜋𝜋

2
��, i.e., 𝜃𝜃𝑀𝑀 ≤ �𝜋𝜋

2
�. This greatly exceeds the orientational 

uncertainty for any conventional robot. 

 
Fig. 5. Edge–vertex contact state. (a) Orientational variation: the contact wrench 𝐀𝐀 is constant in the body frame 
while the error-measure vector 𝐝𝐝 is a nonlinear function of 𝜃𝜃. (b) Translational variation: both the contact 
wrench 𝐀𝐀 and the error-measure vector 𝐝𝐝 are functions of 𝛿𝛿. 

SECTION IV. Conditions for Single-Point Contact 
In this section, single-point contact with friction is considered. For planar polygonal parts, two contact 
states, {𝑒𝑒 − 𝑣𝑣} and {𝑣𝑣 − 𝑒𝑒}, are considered respectively. As shown in Fig. 3, for both contact states, the 
configuration of the body can be described by two variables (𝛿𝛿,𝜃𝜃). The range of 𝜇𝜇 considered is [0, 𝜇𝜇𝑀𝑀]. 

For each contact case, we develop a set of sufficient conditions on a finite number of configurations that 
ensures the mathematical requirement for error-reducing motion presented in Section III-B3. In doing so, more 
“conservative” functions are constructed based on the error-reduction function 𝐹𝐹1𝑝𝑝 in (10) and the extreme 
values of 𝜃𝜃𝑀𝑀 and 𝛿𝛿𝑀𝑀. Then, by evaluating the roots of these functions at the extremal configurations, the 
sufficient conditions are obtained. 

Note that the size of the space of admittance behaviors deemed to be acceptable depends on how conservative 
the sufficient conditions are. If overly conservative, the conditions would eliminate portions of the 𝐀𝐀 space that 
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could actually provide misalignment reduction. We seek a set of conditions that ensures force assembly and yet 
is not overly conservative. 

A. Edge–Vertex Contact State 
As shown in Fig. 3(a), the contact configuration of the body can be determined by two parameters (𝛿𝛿,𝜃𝜃). We 
prove that, if an admittance matrix 𝐀𝐀 satisfies a set of conditions at the configuration “boundary” points for 𝜇𝜇 =
0 and 𝜇𝜇𝑀𝑀, then the 𝐀𝐀 matrix ensures error-reducing motion for all configurations 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀],𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], 
and 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. 

1) Error-Reduction Function 
In order to obtain the error-reduction function, we first express the contact wrench and the error-measure 
vector 𝐝𝐝 in terms of 𝛿𝛿 and 𝜃𝜃. 

For an edge–vertex contact state, as shown in Fig. 5(a), when the held body rotates relative to the fixtured body 
about the contact point, the description of the contact wrench does not change in a body-based coordinate 
frame. When the held body translates relative to the fixtured body, as shown in Fig. 5(b), the description of the 
contact wrench changes in a body-based coordinate frame because the contact point changes (although its 
direction is constant). Thus, the contact wrench depends only on the translational variable 𝛿𝛿. 

As shown in Fig. 5(b), in the body frame, the direction of the surface normal is constant while the position vector 
of the contact point, 𝐫𝐫, varies. For an arbitrary 𝛿𝛿,𝐫𝐫 can be expressed as 

𝐫𝐫𝛿𝛿 = 𝐫𝐫0 + 𝐫𝐫𝑒𝑒𝛿𝛿 

where 𝐫𝐫0 is a vector from the body frame to a center point of the edge (constant) and re is the unit vector along 
the edge. 

By (14), the unit wrench corresponding to the surface normal and friction are 

𝐀𝐀𝑛𝑛 = �
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(20) 

It can be seen that, in the body frame, the directions of 𝐀𝐀𝑛𝑛 and 𝐀𝐀𝑡𝑡 are constant while the last components (the 
moment terms) are linear functions of 𝛿𝛿. 

Let 𝐝𝐝0′  be the error-measure 2-vector at (𝜃𝜃, 𝛿𝛿) = (0,0), then for an arbitrary 𝛿𝛿 with 𝜃𝜃 = 0, the error-measure 
vector 𝐝𝐝′ is 

𝐝𝐝𝛿𝛿′ = 𝐝𝐝0′ + 𝐫𝐫𝑒𝑒𝛿𝛿, 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀, 𝛿𝛿𝑀𝑀] 

where 𝐫𝐫𝑒𝑒 is a unit vector along the contacting edge. Note that 𝐝𝐝0′  is constant in the global coordinate frame, 
while re is constant in the body coordinate frame. Thus, for an arbitrary orientation 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀 ,𝜃𝜃𝑀𝑀] and 𝛿𝛿 ∈
[−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], the error-measure 2-vector 𝐝𝐝′ is a function of 𝛿𝛿 and 𝜃𝜃 having the form 

𝐝𝐝′(𝛿𝛿,𝜃𝜃) = 𝐑𝐑𝐝𝐝0′ + 𝐫𝐫𝑒𝑒𝛿𝛿 

where 𝐑𝐑 is the rotation matrix having the form of (16). 

The line vector associated with 𝐝𝐝′(𝛿𝛿,𝜃𝜃) can be calculated as 
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(21) 

where 𝐫𝐫𝐵𝐵 is the position vector from the body frame origin to point 𝐵𝐵. 

Thus, for any intermediate configuration (𝛿𝛿, 𝜃𝜃), because 𝐀𝐀𝑛𝑛 and 𝐀𝐀𝑡𝑡 in (20) each only contain first-order terms 
in 𝛿𝛿, and 𝐝𝐝(𝛿𝛿,𝜃𝜃) in (21) only contains first-order terms in sin𝜃𝜃 , cos𝜃𝜃 and 𝛿𝛿, the error-reduction 
function (10) can be expressed as a third-order polynomial in 𝛿𝛿 in the form 

𝐹𝐹1𝑝𝑝(𝛿𝛿, 𝜃𝜃) = 𝑓𝑓3𝛿𝛿3 + 𝑓𝑓2𝛿𝛿2 + 𝑓𝑓1𝛿𝛿 + 𝑓𝑓0 

(22) 

where the coefficients 𝑓𝑓𝑖𝑖 have the form 

𝑓𝑓𝑖𝑖 = 𝑎𝑎𝑖𝑖 cos𝜃𝜃 + 𝑏𝑏𝑖𝑖 sin𝜃𝜃 + 𝑐𝑐𝑖𝑖 . 
(23) 

Also note that 𝜇𝜇 appears in the coefficients of 𝐀𝐀𝑡𝑡. Therefore, the coefficients 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐𝑖𝑖 have the 
form (ℎ𝑖𝑖 + 𝜇𝜇ℎ′𝑖𝑖), where ℎ𝑖𝑖 and ℎ𝑖𝑖′ are functions of the admittance 𝐀𝐀. 

2) Sufficient Conditions for Error Reduction 
The error-reduction condition requires that the error-reduction function in (22) must be negative in the range of 
configurations considered. In order to obtain sufficient conditions, we construct two functions 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 by 
replacing the cos𝜃𝜃 terms in (23) with 1 and cos𝜃𝜃𝑀𝑀, respectively, as follows: 

𝐹𝐹0(𝛿𝛿,𝜃𝜃) = (𝑎𝑎3𝛿𝛿3 + 𝑎𝑎2𝛿𝛿2 + 𝑎𝑎1𝛿𝛿 + 𝑎𝑎0)
+(𝑏𝑏3𝛿𝛿3 + 𝑏𝑏2𝛿𝛿2 + 𝑏𝑏1𝛿𝛿 + 𝑏𝑏0) sin𝜃𝜃
+(𝑐𝑐3𝛿𝛿3 + 𝑐𝑐2𝛿𝛿2 + 𝑐𝑐1𝛿𝛿 + 𝑐𝑐0)

𝐹𝐹𝑀𝑀(𝛿𝛿,𝜃𝜃) = (𝑎𝑎3𝛿𝛿3 + 𝑎𝑎2𝛿𝛿2 + 𝑎𝑎1𝛿𝛿 + 𝑎𝑎0) cos𝜃𝜃𝑀𝑀
+(𝑏𝑏3𝛿𝛿3 + 𝑏𝑏2𝛿𝛿2 + 𝑏𝑏1𝛿𝛿 + 𝑏𝑏0) sin𝜃𝜃
+(𝑐𝑐3𝛿𝛿3 + 𝑐𝑐2𝛿𝛿2 + 𝑐𝑐1𝛿𝛿 + 𝑐𝑐0).

 

(24)(25) 

For any (𝛿𝛿,𝜃𝜃) in the range considered, we have 

min{𝐹𝐹0,𝐹𝐹𝑀𝑀} ≤ 𝐹𝐹1𝑝𝑝 ≤ max{𝐹𝐹0,𝐹𝐹𝑀𝑀} . 
(26) 

Thus, if both 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 are negative over the range 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀] and 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], error-reducing motion is 
ensured. 

For a given 𝜃𝜃, both 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 are third-order polynomials in 𝛿𝛿. To obtain conditions on 𝐹𝐹0 and 𝐹𝐹𝑀𝑀, we first 
evaluate the bounds on the coefficients of these two polynomials. 

By (24) and (25), the coefficients of 𝛿𝛿𝑖𝑖 in 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 have the form 
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𝑓𝑓𝑖𝑖0(𝜇𝜇,𝜃𝜃) = (𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖′𝜇𝜇) + (𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑖𝑖′𝜇𝜇) sin𝜃𝜃
𝑓𝑓𝑖𝑖𝑀𝑀(𝜇𝜇, 𝜃𝜃) = (𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖′𝜇𝜇) cos𝜃𝜃𝑀𝑀 + (𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑖𝑖′𝜇𝜇) sin𝜃𝜃

 

where 𝑝𝑝𝑖𝑖,𝑝𝑝′1,𝑞𝑞𝑖𝑖, and 𝑞𝑞′𝑖𝑖 are functions of the admittance A. 

If the range of 𝜇𝜇 is [0, 𝜇𝜇𝑀𝑀], it can be proved that 𝑓𝑓𝑖𝑖0 and 𝑓𝑓𝑖𝑖𝑀𝑀 achieve their maximum and minimum values only at 
the boundary points (0, ±𝜃𝜃𝑀𝑀) and (𝜇𝜇𝑀𝑀 , ±𝜃𝜃𝑀𝑀). This can be verified by evaluating the Hessian matrices 
of 𝑓𝑓𝑖𝑖0 and 𝑓𝑓𝑖𝑖𝑀𝑀. In fact, the Hessian matrix of 𝑓𝑓𝑖𝑖0 with respect to (𝜇𝜇,𝜃𝜃) is 

Hess�𝑓𝑓𝑖𝑖0� = �
0 𝑞𝑞𝑖𝑖′ cos𝜃𝜃

𝑞𝑞𝑖𝑖′ cos𝜃𝜃 −(𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑖𝑖′𝜇𝜇) sin𝜃𝜃�. 

Since det(Hess) = −𝑞𝑞𝑖𝑖′2 cos2 𝜃𝜃 < 0, the Hessian is indefinite, and the function 𝑓𝑓𝑖𝑖0 cannot have a maximum or 
minimum in the interior of the area [0, 𝜇𝜇𝑀𝑀] × [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] [14]. Thus, the maximum (minimum) values of 𝑓𝑓𝑖𝑖0 can 
be chosen from its four values at the four boundary points: (0, ±𝜃𝜃𝑀𝑀) and (𝜇𝜇𝑀𝑀 , ±𝜃𝜃𝑀𝑀). The same property holds 
true for 𝑓𝑓𝑖𝑖𝑀𝑀. 

Denote 

𝑠𝑠𝑀𝑀 = max��𝑓𝑓𝑖𝑖0�, �𝑓𝑓𝑖𝑖𝑀𝑀�, 𝑖𝑖 = 1,2,3�
𝑠𝑠0 = min{|𝑓𝑓00|, |𝑓𝑓0𝑀𝑀|} .

 

(27)(28) 

We prove that if 

𝑠𝑠0
𝑠𝑠𝑀𝑀 + 𝑠𝑠0

> 𝛿𝛿𝑀𝑀 

(29) 

then both 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 have no root for all 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. 

Consider the function 𝐹𝐹0 in (24). For an arbitrary 𝜃𝜃0 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and an arbitrary 𝜇𝜇0 ∈ [0, 𝜇𝜇𝑀𝑀],𝐹𝐹0, 𝐹𝐹0 is a third-
order polynomial in a single-variable 𝛿𝛿 

𝐹𝐹0(𝛿𝛿,𝜃𝜃0) = 𝑔𝑔3𝛿𝛿3 + 𝑔𝑔2𝛿𝛿2 + 𝑔𝑔1𝛿𝛿 + 𝑔𝑔0 

where 

𝑔𝑔𝑖𝑖 = (𝑝𝑝𝑖𝑖 + 𝜇𝜇0𝑝𝑝𝑖𝑖′) + (𝑞𝑞𝑖𝑖 + 𝜇𝜇0𝑞𝑞𝑖𝑖′) sin𝜃𝜃0. 
Let 

𝑔𝑔𝑀𝑀 = max{|𝑔𝑔1|, |𝑔𝑔2|, |𝑔𝑔3|}. 
Then, as shown in [11], a root of 𝐹𝐹0, 𝜉𝜉, must satisfy 

|𝜉𝜉| ≥
|𝑔𝑔0|

𝑔𝑔𝑀𝑀 + |𝑔𝑔0|. 

Since 𝜃𝜃0 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝜇𝜇0 ∈ [0, 𝜇𝜇𝑀𝑀], by (27) and (28), we have 
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𝑔𝑔𝑀𝑀 ≤ 𝑠𝑠𝑀𝑀 , |𝑔𝑔0| ≥ 𝑠𝑠0. 
Therefore 

𝑠𝑠𝑀𝑀
𝑠𝑠0

≥
𝑔𝑔𝑀𝑀
𝑔𝑔0

 

which leads to 

|𝜉𝜉| ≥
|𝑔𝑔0|

𝑔𝑔𝑀𝑀 + |𝑔𝑔0| ≥
𝑠𝑠0

𝑠𝑠𝑀𝑀 + 𝑠𝑠0
> 𝛿𝛿𝑀𝑀. 

Thus, 𝐹𝐹0 has no root in [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀] for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. The same reasoning applies to 𝐹𝐹𝑀𝑀. 
Therefore, the functions 𝐹𝐹0 and 𝐹𝐹𝑀𝑀 do not change sign if inequality (29) is satisfied. By (26), 𝐹𝐹1𝑝𝑝 has no root in 
the same bounded area. Since the sM in (27) and s0 in (28) are functions of the admittance 𝐀𝐀, (29) imposes a 
constraint on 𝐀𝐀. In summary, we have the following. 

Proposition 1 
For an edge–vertex contact state, if at the configuration (𝛿𝛿,𝜃𝜃) = (0,0), the admittance satisfies the error-
reduction condition (2) and condition (29) is satisfied for the configuration boundary points [±𝛿𝛿𝑀𝑀 , ±𝜃𝜃𝑀𝑀] and the 
minimum and maximum values of friction coefficient 𝜇𝜇 = 0, 𝜇𝜇𝑀𝑀, then the admittance will satisfy the error-
reduction conditions for all configurations bounded by these four configurations and friction coefficient 𝜇𝜇 ≤ 𝜇𝜇𝑀𝑀. 

Thus, for an edge–vertex contact state, to ensure that contact yields error-reducing motion for the body, only 
four configuration extremals at two extremal coefficients of friction need be tested. 

 
Fig. 6. Vertex–edge contact state. (a) Orientational variation. (b) Translational variation. 

B. Vertex–Edge Contact State 
As shown in Fig. 3(b), the configuration of the body can be determined by the orientation of the body 𝜃𝜃 and the 
location of the contact point 𝛿𝛿. We prove that, if an admittance matrix A satisfies a set of conditions at a finite 
number of configurations for 𝜇𝜇 = 0, 𝜇𝜇𝑀𝑀, then the 𝐀𝐀 matrix ensures error-reducing motion for all 
configurations 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀 ,𝜃𝜃𝑀𝑀], 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], and all coefficients of friction 𝜇𝜇 ∈ [0,𝜇𝜇𝑀𝑀]. 

In this case, however, the error-reduction function linearly depends on a single configuration parameter when 
considering translational variation separately. As a consequence, a somewhat simpler evaluation is used. To use 
this simpler approach (similar to that used for the frictionless case [11]), we first consider orientational and 
translational variation separately. Then, by combining the two separate variation cases, sufficient conditions for 
all configurations within the contact state are obtained. 
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1) Orientational Variation 
Consider only orientation variation as illustrated in Fig. 6(a). In this case, both the direction of the error-
reduction vector 𝐝𝐝 and the direction of the contact wrench 𝐀𝐀 (in the body frame) are changed by changing the 

orientation. We prove that, for variation 𝜃𝜃𝑀𝑀 ≤ �𝜋𝜋
2
�, if 𝐀𝐀 satisfies a set of conditions at orientation 𝜃𝜃 = 0, then an 

error-reducing motion is ensured for all configurations 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

Consider a rotational variation of the configuration given by an angle change 𝜃𝜃. Let 𝐧𝐧0 and 𝐭𝐭0 be the unit vectors 
in the directions of the normal force and friction force, respectively, when 𝜃𝜃 = 0. Then the unit contact normal 
and friction wrenches calculated using (15) are 

𝐀𝐀𝑛𝑛 = �
𝐑𝐑𝐧𝐧0

(𝐫𝐫 × 𝐑𝐑𝐧𝐧0) ⋅ 𝐤𝐤� ,𝐀𝐀𝑡𝑡 = �
𝐑𝐑𝐭𝐭0

(𝐫𝐫× 𝐑𝐑𝐭𝐭0) ⋅ 𝐤𝐤� 

(30) 

where 𝐫𝐫 is the position vector from the origin of the body frame to the contact point (constant). 

Since all configurations considered correspond to pure rotation about the contact point, the position vector 
of 𝐵𝐵 relative to its properly mated position for an intermediate configuration can be expressed in the body 
frame as 

𝐝𝐝𝜃𝜃′ = 𝐑𝐑𝐝𝐝0′ + 𝐝𝐝′ 
(31) 

where 𝐝𝐝0′  is the position vector from 𝐵𝐵ℎ to the contact point 𝑐𝑐 and 𝐝𝐝′ is the position vector from 𝑐𝑐 to point 𝐵𝐵1. 
Note that 𝐝𝐝0′  is a constant in the global frame and 𝐝𝐝′ is constant in the body frame. Then, the line vector 
identifying the position of 𝐵𝐵 relative to its properly mated position 𝐵𝐵ℎ (expressed in the body frame) is 

𝐝𝐝𝜃𝜃 = �
𝐝𝐝𝜃𝜃′

(𝐫𝐫𝐵𝐵 × 𝐝𝐝𝜃𝜃′ ) ⋅ 𝐤𝐤� 

(32) 

where 𝐫𝐫𝐵𝐵 is the vector from the body frame origin to point 𝐵𝐵. 

Since 𝐝𝐝𝜃𝜃,𝐀𝐀𝑛𝑛,, and 𝐀𝐀𝑡𝑡 each involve first-order terms in sin𝜃𝜃 and cos𝜃𝜃, the error-reduction function (10) can be 
expressed as a third-order polynomial in sin𝜃𝜃 and cos𝜃𝜃. Further, by the relation sin2 𝜃𝜃 = 1 − cos2 𝜃𝜃, the 
function can be written in the form 

𝐹𝐹1𝑝𝑝(𝜃𝜃) = 𝑐𝑐1 cos3 𝜃𝜃 + 𝑐𝑐2 sin𝜃𝜃 cos2 𝜃𝜃 + 𝑐𝑐3 cos2 𝜃𝜃
+𝑐𝑐4 sin𝜃𝜃 cos𝜃𝜃 + 𝑐𝑐5 sin𝜃𝜃 + 𝑐𝑐6 cos𝜃𝜃 + 𝑐𝑐7

 

(33) 

where the 𝑐𝑐𝑖𝑖 's are functions of the admittance matrix 𝐀𝐀 and the friction coefficient 𝜇𝜇 having the form 

𝑐𝑐𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝜇𝜇𝑏𝑏𝑖𝑖 , 𝑖𝑖 = 1, … ,7. 
(34) 
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2) Error-Reduction Conditions 
To achieve error reduction at all other configurations and for any value of friction less 
than 𝜇𝜇𝑀𝑀 considered, 𝐹𝐹1𝑝𝑝(𝜃𝜃) must be negative for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀 ,𝜃𝜃𝑀𝑀] and 𝜇𝜇 ∈ [0,𝜇𝜇𝑀𝑀]. Now consider 𝐹𝐹1𝑝𝑝 as a 
function of (𝜃𝜃, 𝜇𝜇), then 𝐹𝐹1𝑝𝑝(𝜃𝜃, 𝜇𝜇) only contains a first-order term in 𝜇𝜇. In the following, we first obtain error-
reduction conditions for 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] for both 𝜇𝜇 = 0 and 𝜇𝜇 = 𝜇𝜇𝑀𝑀. Then, we prove that the conditions for the 
extremal friction coefficients ensure error-reducing motion for any intermediate 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. 

By an appropriate rearrangement, (33) can be written as 

𝐹𝐹1𝑝𝑝(𝜃𝜃, 𝜇𝜇) = (𝑐𝑐1 cos3 𝜃𝜃 + 𝑐𝑐3 cos2 𝜃𝜃 + 𝑐𝑐6 cos𝜃𝜃 + 𝑐𝑐7)
+(𝑐𝑐2 cos2 𝜃𝜃 + 𝑐𝑐4 cos𝜃𝜃 + 𝑐𝑐5) sin𝜃𝜃 .

 

(35) 

For 𝜇𝜇 = 0, 𝑐𝑐𝑖𝑖 = 𝑎𝑎𝑖𝑖. A conservative “more positive” function 𝐹𝐹0+(𝜃𝜃) for 𝜃𝜃 > 0 is constructed based on (35) by the 
following: 

• if 𝑎𝑎𝑖𝑖 > 0, replace the corresponding cos𝜃𝜃 with 1 (by setting 𝜃𝜃 = 0); 

• if 𝑎𝑎𝑖𝑖 < 0, replace the corresponding cos𝜃𝜃 with cos𝜃𝜃𝑀𝑀. 

As such, 𝐹𝐹0+(𝜃𝜃) has the form 𝐹𝐹0+(𝜃𝜃) = 𝑎𝑎 + 𝑎𝑎+ sin𝜃𝜃.. It can be seen that, for any 0 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑀𝑀, 𝐹𝐹(𝜃𝜃)|𝜇𝜇=0 ≤
𝐹𝐹0+(𝜃𝜃).. 

For 𝜃𝜃 < 0, a conservative “more positive” function 𝐹𝐹0−(𝜃𝜃) is constructed based on (35) by the following. 

• For the terms involving sin𝜃𝜃, if 𝑎𝑎𝑖𝑖 > 0, replace the corresponding cos𝜃𝜃 with cos𝜃𝜃𝑀𝑀; if 𝑎𝑎𝑖𝑖 < 0, replace 
the corresponding cos𝜃𝜃 with 1. 

• For the terms involving only cos𝜃𝜃, if 𝑎𝑎𝑖𝑖 > 0, replace the corresponding cos𝜃𝜃 with 1; if 𝑎𝑎𝑖𝑖 < 0, replace 
the corresponding cos𝜃𝜃 with cos𝜃𝜃𝑀𝑀. 

As such, 𝐹𝐹0− has the form 𝐹𝐹0−(𝜃𝜃) = 𝑎𝑎 + 𝑎𝑎− sin𝜃𝜃.. It can be seen that, for any −𝜃𝜃𝑀𝑀 ≤ 𝜃𝜃 ≤ 0,, we 
have 𝐹𝐹(𝜃𝜃)|𝜇𝜇=0 ≤ 𝐹𝐹0−(𝜃𝜃).. 

Because sin𝜃𝜃 is a monotonic function over [−(𝜋𝜋/2), (𝜋𝜋/2)],𝐹𝐹0+(0) < 0 and 𝐹𝐹0+(𝜃𝜃𝑀𝑀) < 0 ensure that 𝐹𝐹0+(𝜃𝜃) <
0 for all 𝜃𝜃 ∈ [0,𝜃𝜃𝑀𝑀]; 𝐹𝐹0−(0) < 0 and 𝐹𝐹0−(−𝜃𝜃𝑀𝑀) < 0 ensure that 𝐹𝐹0−(𝜃𝜃) < 0 for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀, 0]. Since 𝐹𝐹0−(0) =
𝐹𝐹0+(0), the following set of three inequalities: 

𝑎𝑎 < 0
𝑎𝑎 + 𝑎𝑎+ sin𝜃𝜃𝑀𝑀 < 0
𝑎𝑎 − 𝑎𝑎− sin𝜃𝜃𝑀𝑀 < 0

 

(36)(37)(38) 

ensures that 𝐹𝐹(𝜃𝜃)|𝜇𝜇=0 < 0 for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

Using the same procedure for 𝐹𝐹(𝜃𝜃)|𝜇𝜇=𝜇𝜇𝑀𝑀 , two conservative “more positive” functions 𝐹𝐹𝜇𝜇𝑀𝑀
− (𝜃𝜃) and 𝐹𝐹𝜇𝜇𝑀𝑀

+ (𝜃𝜃) are 
constructed as follows: 

𝐹𝐹𝜇𝜇𝑀𝑀
+ (𝜃𝜃) = 𝑒𝑒 + 𝑒𝑒+ sin𝜃𝜃

𝐹𝐹𝜇𝜇𝑀𝑀
− (𝜃𝜃) = 𝑒𝑒 + 𝑒𝑒− sin𝜃𝜃 . 
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Thus, the following set of three inequalities: 

𝑒𝑒 < 0
𝑒𝑒 + 𝑒𝑒+ sin𝜃𝜃𝑀𝑀 < 0
𝑒𝑒 − 𝑒𝑒− sin𝜃𝜃𝑀𝑀 < 0

 

(39)(40)(41) 

ensures that 𝐹𝐹(𝜃𝜃)|𝜇𝜇=𝜇𝜇𝑀𝑀 < 0 for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. 

Although inequalities (36)–(38) and (39)–(41) are constructed for two friction coefficients 𝜇𝜇 = 0, 𝜇𝜇𝑀𝑀, they are 
sufficient error-reduction conditions for all 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. In fact, since the error-reduction function 𝐹𝐹1𝑝𝑝 contains 
only a first-order term in 𝜇𝜇, then, for any 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀], we have 

min�𝐹𝐹1𝑝𝑝(𝜃𝜃, 0),𝐹𝐹1𝑝𝑝(𝜃𝜃,𝜇𝜇𝑀𝑀)� ≤ 𝐹𝐹1𝑝𝑝(𝜃𝜃, 𝜇𝜇)
≤ max�𝐹𝐹1𝑝𝑝(𝜃𝜃, 0),𝐹𝐹1𝑝𝑝(𝜃𝜃,𝜇𝜇𝑀𝑀)� . 

(42) 

Since the sets of inequalities (36)–(38) and (39)–(41) ensure 𝐹𝐹1𝑝𝑝(𝜃𝜃, 0) < 0 and 𝐹𝐹1𝑝𝑝(𝜃𝜃, 𝜇𝜇𝑀𝑀) < 0, thus, from (42), 
the desired result 𝐹𝐹1𝑝𝑝(𝜃𝜃, 𝜇𝜇) < 0 for 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀] is ensured by these inequalities. 

3) Translational Variation 
Now consider the translational variation of the contact configuration illustrated in Fig. 6(b). In this case, only 
translation along the edge is allowed, and the contact force does not change in the body frame. The 
configuration of the body can be determined by a vector d [Fig. 6(b)]. 

Suppose that, at the two extremal configurations characterized by 𝐝𝐝1 and 𝐝𝐝2, the error-reduction conditions are 
satisfied 

𝐝𝐝1
𝑇𝑇𝐯𝐯0 + 𝐝𝐝1

𝑇𝑇𝐀𝐀𝐀𝐀1 < 0
𝐝𝐝2

𝑇𝑇𝐯𝐯0 + 𝐝𝐝2
𝑇𝑇𝐀𝐀𝐀𝐀2 < 0

 

(43)(44) 

where 𝐀𝐀1 and 𝐀𝐀2 are total contact wrenches at the two locations 𝑐𝑐1 and 𝑐𝑐2. 

For any 𝛼𝛼,𝛽𝛽 ≥ 0, we have 

(𝛼𝛼𝐝𝐝1 + 𝛽𝛽𝐝𝐝2)𝑇𝑇𝐯𝐯0 + (𝛼𝛼𝐝𝐝1 + 𝛽𝛽𝐝𝐝2)𝑇𝑇𝐀𝐀𝐀𝐀 < 0. 
(45) 

At any intermediate configuration, the d vector is expressed as a convex combination of the vectors 𝐝𝐝1 and 𝐝𝐝2, 
i.e., 

𝐝𝐝 = 𝛼𝛼𝐝𝐝1 + 𝛽𝛽𝐝𝐝2 

(46) 

where 𝛼𝛼,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 = 1. 
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Since the contact wrench 𝐀𝐀 is the same in the body frame for all contact configurations, 𝐀𝐀 = 𝐀𝐀1 = 𝐀𝐀2. 
Substituting (46) into (45) yields 

𝐹𝐹1𝑝𝑝 = 𝐝𝐝𝑇𝑇𝐯𝐯0 + 𝐝𝐝𝑇𝑇𝐀𝐀𝐀𝐀 < 0. 

Thus, for translational variation, if at two configurations the error-reduction condition is satisfied, then the 
error-reduction condition must be satisfied for all intermediate configurations bounded by these two 
configurations. 

Note that the contact wrench 𝐀𝐀𝑖𝑖 's in (43) and (44) include friction. Because the coefficient of friction 𝜇𝜇 is linear 
in 𝐹𝐹1𝑝𝑝, satisfying the error-reduction conditions at 𝜇𝜇 = 0, 𝜇𝜇𝑀𝑀 ensures that the same conditions are satisfied for 
all 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. 

4) General Case 
Similar to the frictionless case presented in [11], because of the linear dependence of the error-reduction 
function on the boundary configurations for the translational-only variation, the results presented in Sections IV-
B2 and IV-B3 can be generalized to all configurations within the vertex–edge contact state (i.e., those involving 
both translational and orientational variation). Thus, we have the following. 

Proposition 2 
For a vertex–edge contact state with variation of orientation [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and variation of translation [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀], if 
at the two configurations with different contact boundary locations [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀] the admittance satisfies 
inequalities (36)–(38) and (39)–(41) for 𝜇𝜇 = 0, 𝜇𝜇𝑀𝑀, then the admittance will satisfy the error-reduction condition 
for all configurations bounded by the four configurations, (−𝛿𝛿𝑀𝑀 ,−𝜃𝜃𝑀𝑀), (−𝛿𝛿𝑀𝑀 ,𝜃𝜃𝑀𝑀), (𝛿𝛿𝑀𝑀 ,−𝜃𝜃𝑀𝑀), (𝛿𝛿𝑀𝑀 ,𝜃𝜃𝑀𝑀), for 
all 𝜇𝜇 ∈ [0, 𝜇𝜇𝑀𝑀]. 

Therefore, for an edge–vertex contact state, to ensure that the motion response due to contact is error reducing 
for all configurations considered, function values at only two configuration extremals and two coefficients of 
friction need be tested. 

SECTION V. Conditions for Two-Point Contact 
In this section, sufficient conditions are obtained for each type of two-point contact state. Below, for each type 
of contact: 1) the error-reduction function 𝐹𝐹2𝑝𝑝 is specified; 2) bounds of the coefficients in 𝐹𝐹2𝑝𝑝 are identified; 
and 3) specific conditions for satisfying error reduction are presented. 

Using the notation in Section III-C, we denote the area of bounded configurations as 𝑀𝑀. Since the contact 
force 𝐀𝐀𝑖𝑖 contains only a linear term in the friction coefficient 𝜇𝜇𝑖𝑖, the error-reduction 
function 𝐹𝐹2𝑝𝑝 in (13) contains only linear and quadratic terms in 𝜇𝜇𝑖𝑖. 

A. Conditions for {𝑒𝑒 − 𝑣𝑣,𝑣𝑣 − 𝑒𝑒} Contact 
In this case, the two-point contact wrench is a combination of the two corresponding single-point contact 
wrenches. 

Using the notation developed in Section III-B, the contact wrenches for the {𝑣𝑣 − 𝑒𝑒} and {𝑒𝑒 − 𝑣𝑣} contact are 
obtained by (15) and (14), respectively, as follows: 
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𝐀𝐀𝑛𝑛1 = �
𝐑𝐑𝐧𝐧1

(𝐫𝐫1 × 𝐑𝐑𝐧𝐧1) ⋅ 𝐤𝐤�

𝐀𝐀𝑡𝑡1 = �
𝐑𝐑𝐭𝐭1

(𝐫𝐫1 × 𝐑𝐑𝐭𝐭1) ⋅ 𝐤𝐤�

𝐀𝐀𝑛𝑛2 = �
𝐧𝐧2

(𝐫𝐫2 × 𝐧𝐧2) ⋅ 𝐤𝐤�

𝐀𝐀𝑡𝑡2 = �
𝐭𝐭2

(𝐫𝐫2 × 𝐭𝐭2) ⋅ 𝐤𝐤�

 

where 𝐑𝐑 is the rotation matrix defined in (16) and 𝐫𝐫2 has the form 

𝐫𝐫2 = 𝐫𝐫02 + 𝐫𝐫𝑒𝑒2𝛿𝛿 

where 𝐫𝐫02 and 𝐫𝐫𝑒𝑒2 are constant vectors associated with contact point 2 described in (14). 

Since 𝐀𝐀𝑛𝑛1 and 𝐀𝐀𝑡𝑡1 contain only first-order terms in cos𝜃𝜃 and sin𝜃𝜃, and 𝐀𝐀𝑛𝑛2 and 𝐀𝐀𝑡𝑡2 contain only a linear term 
in 𝛿𝛿, for a given 𝜇𝜇1 and 𝜇𝜇2, the error-reduction function (13) can be expressed as a function of (𝜃𝜃, 𝛿𝛿) in the form 

𝐹𝐹2𝑝𝑝(𝜃𝜃, 𝛿𝛿) = 𝑞𝑞2𝛿𝛿2 + 𝑞𝑞1𝛿𝛿 + 𝑞𝑞0 

(47) 

where 𝑞𝑞𝑖𝑖's are functions of 𝜃𝜃 having the form 

𝑞𝑞𝑖𝑖 = 𝑎𝑎𝑖𝑖 cos2 𝜃𝜃 + 𝑏𝑏𝑖𝑖 cos𝜃𝜃 sin𝜃𝜃 + 𝑐𝑐𝑖𝑖 . 
(48) 

For a given 𝜇𝜇1 and 𝜇𝜇2, if at a given configuration within the range considered error reduction is satisfied: 𝐹𝐹2𝑝𝑝 <
0, then, in order for all 𝜃𝜃 and 𝛿𝛿 within the specified range to satisfy the condition, we need to obtain conditions 
such that 𝐹𝐹2𝑝𝑝 has no root in this range. 

1) Bounds on the Coefficients 
In order to analyze the root of the function 𝐹𝐹2𝑝𝑝 for a given 𝜇𝜇, we evaluate the bounds on the coefficients 𝑞𝑞𝑖𝑖's 
in (48). 

First, consider the term involving cos𝜃𝜃 alone (𝑎𝑎𝑖𝑖 cos2 𝜃𝜃) in (48). If we denote 

𝑝𝑝𝑖𝑖1+ = max{𝑎𝑎𝑖𝑖 cos2 𝜃𝜃𝑀𝑀 ,𝑎𝑎𝑖𝑖}
𝑝𝑝𝑖𝑖1− = min{𝑎𝑎𝑖𝑖 cos2 𝜃𝜃𝑀𝑀 ,𝑎𝑎𝑖𝑖}

 

then for ∀𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝑖𝑖 = 0,1,2, we have 

𝑝𝑝𝑖𝑖1− ≤ 𝑎𝑎𝑖𝑖 cos2 𝜃𝜃 ≤ 𝑝𝑝𝑖𝑖1+ . 
Consider the term involving sin𝜃𝜃 (𝑏𝑏𝑖𝑖 cos𝜃𝜃 sin𝜃𝜃) in (48). Denote 

𝑝𝑝𝑖𝑖2+ = max{0, 𝑏𝑏𝑖𝑖 sin𝜃𝜃𝑀𝑀 , 𝑏𝑏𝑖𝑖 cos𝜃𝜃𝑀𝑀 sin𝜃𝜃𝑀𝑀}
𝑝𝑝𝑖𝑖2− = min{0, 𝑏𝑏𝑖𝑖 sin𝜃𝜃𝑀𝑀 , 𝑏𝑏𝑖𝑖 cos𝜃𝜃𝑀𝑀 sin𝜃𝜃𝑀𝑀} . 

Then, for ∀𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀] and 𝑖𝑖 = 0,1,2, we have 
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𝑝𝑝𝑖𝑖2− ≤ 𝑏𝑏𝑖𝑖 cos𝜃𝜃 sin𝜃𝜃 ≤ 𝑝𝑝𝑖𝑖2+ . 
Thus 

(𝑝𝑝𝑖𝑖1− + 𝑝𝑝𝑖𝑖2− + 𝑐𝑐𝑖𝑖) ≤ 𝑞𝑞𝑖𝑖 ≤ (𝑝𝑝𝑖𝑖1+ + 𝑝𝑝𝑖𝑖2+ + 𝑐𝑐𝑖𝑖). 
If we denote 

𝑞𝑞𝑀𝑀𝑖𝑖 = 𝑝𝑝𝑖𝑖1+ + 𝑝𝑝𝑖𝑖2+ + 𝑐𝑐𝑖𝑖
𝑞𝑞𝑚𝑚𝑖𝑖 = 𝑝𝑝𝑖𝑖1− + 𝑝𝑝𝑖𝑖2− + 𝑐𝑐𝑖𝑖

 

(49)(50) 

then the bounds for 𝑞𝑞𝑖𝑖's are determined as follows: 

𝑞𝑞𝑚𝑚𝑖𝑖 ≤ 𝑞𝑞𝑖𝑖 ≤ 𝑞𝑞𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 0,1,2 

(51) 

where all 𝑞𝑞𝑚𝑚𝑖𝑖's and 𝑞𝑞𝑀𝑀𝑖𝑖's are functions of the admittance matrix (independent of the configuration). 

2) Sufficient Conditions for Given Friction Coefficients 
Since the bounds of 𝑞𝑞𝑖𝑖's are determined, a single-variable polynomial is constructed for which the method used 
for single-point contact case (Section IV-A2) is applied. 

First, the error-reduction condition must be satisfied at one configuration in the range considered [say, 
at (𝜃𝜃, 𝛿𝛿) = (0,0)]. 

To consider all configurations, we construct a polynomial given by 

𝑃𝑃2𝑝𝑝(𝛿𝛿) = 𝑞𝑞𝑀𝑀2𝛿𝛿2 + 𝑞𝑞𝑀𝑀1𝛿𝛿 + 𝑞𝑞𝑚𝑚0 

(52) 

where the coefficients are constants defined in (49) and (50). Denote 𝑞𝑞𝑀𝑀 = max{|𝑞𝑞𝑀𝑀2|, |𝑞𝑞𝑀𝑀1|}.. It is 
proved [11] that if 

|𝑞𝑞𝑚𝑚0|
𝑞𝑞𝑀𝑀 + |𝑞𝑞𝑚𝑚0| > 𝛿𝛿𝑀𝑀  

(53) 

then 𝑃𝑃2𝑝𝑝(𝛿𝛿) has no root in [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀]. Since the coefficients of 𝑃𝑃2𝑝𝑝(𝛿𝛿) are extremal values of 𝑞𝑞𝑖𝑖's in the range 
considered, condition (53) ensures that the function 𝐹𝐹2𝑝𝑝(𝜃𝜃, 𝛿𝛿) in (47) has no root in [−𝛿𝛿𝑀𝑀 , 𝛿𝛿𝑀𝑀] for any given 𝜃𝜃 ∈
[−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀]. In fact, for a given 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀], 𝐹𝐹2𝑝𝑝(𝜃𝜃, 𝛿𝛿) is a polynomial in 𝛿𝛿. As shown in [11], a root 
of 𝐹𝐹2𝑝𝑝(𝜃𝜃, 𝛿𝛿), 𝛿𝛿𝜃𝜃, must satisfy 

𝛿𝛿𝜃𝜃 ≥ max �
|𝑞𝑞0|

|𝑞𝑞1| + |𝑞𝑞0| ,
|𝑞𝑞0|

|𝑞𝑞2| + |𝑞𝑞0|� ≥
|𝑞𝑞𝑚𝑚0|

𝑞𝑞𝑀𝑀 + |𝑞𝑞𝑚𝑚0| > 𝛿𝛿𝑀𝑀  

which ensures that 𝐹𝐹2𝑝𝑝(𝜃𝜃, 𝛿𝛿) has no root in [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀]. Thus, if for a given set of 𝜇𝜇𝑖𝑖  's (53) is satisfied, 
then 𝐹𝐹2𝑝𝑝 does not change sign for all configurations (𝜃𝜃, 𝛿𝛿) within the range 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀 ,𝜃𝜃𝑀𝑀] and 𝛿𝛿 ∈ [−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀]. 
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3) Sufficient Conditions for Arbitrary 𝜇𝜇𝑖𝑖 's 
Now consider arbitrary 𝜇𝜇1 ≤ 𝜇𝜇𝑀𝑀1 and 𝜇𝜇2 ≤ 𝜇𝜇𝑀𝑀2. In order for all 𝜇𝜇𝑖𝑖 's to satisfy the error-reduction condition, 
additional conditions must be considered. As stated previously, 𝐹𝐹2𝑝𝑝 contains only linear and quadratic terms 
in 𝜇𝜇𝑖𝑖. Thus, 𝐹𝐹2𝑝𝑝 can be expressed as 

𝐹𝐹2𝑝𝑝 = ℎ1𝜇𝜇12 + ℎ2𝜇𝜇1𝜇𝜇2 + ℎ3𝜇𝜇22 + ℎ4𝜇𝜇1 + ℎ5𝜇𝜇2 + ℎ6 

(54) 

where ℎ𝑖𝑖's are functions of (𝜃𝜃, 𝛿𝛿) and have the form 

ℎ𝑖𝑖 = 𝑞𝑞2𝑖𝑖𝛿𝛿2 + 𝑞𝑞1𝑖𝑖𝛿𝛿 + 𝑞𝑞0𝑖𝑖  
where 𝑞𝑞𝑗𝑗𝑖𝑖's have the same form as 𝑞𝑞𝑖𝑖's in (48). 

For a given configuration, the shape of 𝐹𝐹2𝑝𝑝 is determined by its Hessian matrix 𝐻𝐻�𝐹𝐹2𝑝𝑝�. Suppose that, at the four 
point (0,0), (𝜇𝜇𝑀𝑀1, 0), (0, 𝜇𝜇𝑀𝑀2) and (𝜇𝜇𝑀𝑀1,𝜇𝜇𝑀𝑀2), the error-reduction function 𝐹𝐹2𝑝𝑝 < 0. Based on the property of 
the Hessian matrix 𝐻𝐻�𝐹𝐹2𝑝𝑝�, sufficient conditions are obtained for the following cases. 

a) Positive Definite 𝐻𝐻�𝐹𝐹2𝑝𝑝� 
In this case, for all 𝜇𝜇1 ∈ [0, 𝜇𝜇𝑀𝑀1] and 𝜇𝜇2 ∈ [0, 𝜇𝜇𝑀𝑀2],𝐹𝐹2𝑝𝑝 < 0. A positive definite 𝐻𝐻�𝐹𝐹2𝑝𝑝� requires ℎ1 > 0,4ℎ1ℎ3 −
ℎ22 > 0.. Note that the ℎ𝑖𝑖's are quadratic in 𝛿𝛿 having the same form of (47), and the bounds of ℎ1 and ℎ2 within 
the range [±𝜃𝜃𝑀𝑀, ±𝛿𝛿𝑀𝑀] can be determined. If we denote 

ℎ𝑖𝑖 = 𝑞𝑞2𝑖𝑖𝛿𝛿2 + 𝑞𝑞1𝑖𝑖𝛿𝛿 + 𝑞𝑞0𝑖𝑖  
where 𝑞𝑞𝑗𝑗𝑖𝑖 has the same form as 𝑞𝑞𝑖𝑖 in (48), then, using the same process for 𝑞𝑞𝑖𝑖 in Section V-A1, the upper and 
lower bounds of 𝑞𝑞𝑗𝑗𝑖𝑖, 𝑞𝑞𝑀𝑀𝑗𝑗𝑖𝑖, and 𝑞𝑞𝑚𝑚𝑗𝑗𝑖𝑖 can be determined by (49) and (50). Consider the values of ℎ𝑖𝑖 when the 
coefficients 𝑞𝑞𝑗𝑗𝑖𝑖 and 𝛿𝛿 take their bound values, then we have a set 𝑆𝑆 with a finite number of elements 𝑆𝑆𝑖𝑖 =
�𝑞𝑞2𝑖𝑖𝛿𝛿𝑀𝑀2 ± 𝑞𝑞1𝑖𝑖𝛿𝛿𝑀𝑀 + 𝑞𝑞0𝑖𝑖:𝑞𝑞𝑗𝑗𝑖𝑖 = 𝑞𝑞𝑀𝑀𝑗𝑗𝑖𝑖, 𝑞𝑞𝑚𝑚𝑗𝑗𝑖𝑖�.. If we denote ℎ𝑀𝑀𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑚𝑚𝑆𝑆𝑖𝑖,ℎ𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑚𝑚𝑆𝑆𝑖𝑖, then, for all configurations 
considered, ℎ𝑚𝑚𝑖𝑖 ≤ ℎ𝑖𝑖 ≤ ℎ𝑀𝑀𝑖𝑖. Thus, the condition 

ℎ𝑚𝑚1 > 0,4ℎ𝑚𝑚1ℎ𝑚𝑚3 − ℎ𝑀𝑀22 > 0 

(55) 

ensures that 𝐹𝐹2𝑝𝑝 does not change sign for all 𝜇𝜇𝑖𝑖 ∈ [0, 𝜇𝜇𝑀𝑀𝑖𝑖] and for all configurations within the range considered. 

b) Negative Definite 𝐻𝐻�𝐹𝐹2𝑝𝑝� 
In this case, the stationary point of 𝐹𝐹2𝑝𝑝 is determined by setting 

∂𝐹𝐹2𝑝𝑝
∂𝜇𝜇1

= 0,
∂𝐹𝐹2𝑝𝑝
∂𝜇𝜇2

= 0. 

By solving the two linear equations, the stationary point of 𝐹𝐹2𝑝𝑝, (𝜇𝜇𝑠𝑠1, 𝜇𝜇𝑠𝑠2), is obtained as follows: 

𝜇𝜇𝑠𝑠1 = 𝑓𝑓1(𝜃𝜃, 𝛿𝛿),𝜇𝜇𝑠𝑠2 = 𝑓𝑓2(𝜃𝜃, 𝛿𝛿). 
Since 𝜃𝜃 and 𝛿𝛿 are bounded, the lower bound for 𝑓𝑓𝑖𝑖 in the considered configuration range can be obtained. 
Let 𝜇𝜇𝑚𝑚𝑖𝑖 be lower bounds of 𝜇𝜇𝑠𝑠𝑖𝑖  for all of the configurations considered. Then, the condition 
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𝜇𝜇𝑚𝑚𝑖𝑖 ≥ 𝜇𝜇𝑀𝑀𝑖𝑖  
(56) 

ensures that 𝐹𝐹2𝑝𝑝 does not change sign for all 𝜇𝜇𝑖𝑖 ∈ [0, 𝜇𝜇𝑀𝑀𝑖𝑖] and for all configurations within the range considered. 

c) Indefinite 𝐻𝐻�𝐹𝐹2𝑝𝑝� 
In this case, for a given configuration, the maximum value of 𝐹𝐹2𝑝𝑝 must occur on the boundary determined 
by [0, 𝜇𝜇𝑀𝑀𝑖𝑖]. Thus, if along the four line segments  

{𝐿𝐿1:𝜇𝜇2 = 0,𝜇𝜇1 ∈ [0,𝜇𝜇𝑀𝑀1]}, {𝐿𝐿2:𝜇𝜇1 = 0,𝜇𝜇2 ∈ [0,𝜇𝜇𝑀𝑀2]}, 

{𝐿𝐿3:𝜇𝜇2 = 𝜇𝜇𝑀𝑀2,𝜇𝜇1 ∈ [0,𝜇𝜇𝑀𝑀1]}, 

{𝐿𝐿4:𝜇𝜇1 = 𝜇𝜇𝑀𝑀1, 𝜇𝜇2 ∈ [0,𝜇𝜇𝑀𝑀2]},𝐻𝐻�𝐹𝐹2𝑝𝑝� 

has no root, then 𝐻𝐻�𝐹𝐹2𝑝𝑝� does not change sign for all 𝜇𝜇𝑖𝑖  for the given configuration. 

Now consider the boundary segment {𝐿𝐿1:𝜇𝜇2 = 0,𝜇𝜇1 ∈ [0, 𝜇𝜇𝑀𝑀1]}. The function 𝐹𝐹2𝑝𝑝 can be expressed as 𝐹𝐹2𝑝𝑝 =

ℎ𝑖𝑖1
′𝜇𝜇12 + ℎ𝑖𝑖2

′𝜇𝜇1 + ℎ𝑖𝑖3′ .. The stationary point of 𝐹𝐹2𝑝𝑝 is determined by 

𝜇𝜇𝑠𝑠1 = −
ℎ′𝑖𝑖2
2ℎ′𝑖𝑖1

. 

If 𝐹𝐹2𝑝𝑝 has the same sign for 𝜇𝜇1 = 0,𝜇𝜇𝑀𝑀1 and 𝜇𝜇𝑠𝑠1 is not in the interval [0, 𝜇𝜇𝑀𝑀1], then 𝐹𝐹2𝑝𝑝 does not change sign 
over [0, 𝜇𝜇𝑀𝑀1]. If we denote ℎ′𝑚𝑚𝑖𝑖 and ℎ′𝑀𝑀𝑖𝑖 as the lower and upper bounds of ℎ′𝑖𝑖2 and ℎ′𝑖𝑖1, respectively, then the 
condition 

�
ℎ′𝑚𝑚𝑖𝑖

2ℎ′𝑀𝑀𝑖𝑖
� > 𝜇𝜇𝑀𝑀1 

ensures that 𝐹𝐹2𝑝𝑝 does not change sign for all 𝜇𝜇1 ∈ [0, 𝜇𝜇𝑀𝑀1] and for all configurations within the range 
considered. Applying the same process to all four line segments, we have the set of conditions 

�
ℎ′𝑚𝑚𝑖𝑖

2ℎ′𝑀𝑀𝑖𝑖
� > 𝜇𝜇𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 1, … ,4. 

(57) 

In summary, we have the following proposition. 

Proposition 3 
For an {𝑒𝑒 − 𝑣𝑣, 𝑣𝑣 − 𝑒𝑒} contact state, if: 1) at a configuration (𝛿𝛿0,𝜃𝜃0) with area 𝑀𝑀, the admittance satisfies the 
error-reduction condition (19) 2) condition (53) is satisfied at the extremal values of friction 
coefficients (𝜇𝜇1,𝜇𝜇2) = (0,0), (𝜇𝜇𝑀𝑀1, 0), (0, 𝜇𝜇𝑀𝑀2), and (𝜇𝜇𝑀𝑀1,𝜇𝜇𝑀𝑀2); and 3) the appropriate conditions in 
either (55), (56), or (57) are satisfied, then the admittance will satisfy the error-reduction conditions for all 
configurations in 𝑀𝑀 and friction coefficient 𝜇𝜇𝑖𝑖 ≤ 𝜇𝜇𝑀𝑀𝑖𝑖. 

B. Conditions for {𝑒𝑒 − 𝑣𝑣, 𝑒𝑒 − 𝑣𝑣} Contact State 
In this case, the two-point contact wrench is a combination of the two {𝑒𝑒 − 𝑣𝑣} contact wrenches. 
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Using the notation developed in Section III-B, the contact wrenches for the two {𝑒𝑒 − 𝑣𝑣} contacts are obtained 
by (14) as follows: 

𝐀𝐀𝑛𝑛𝑖𝑖 = �
𝐧𝐧𝑖𝑖

(𝐫𝐫𝑖𝑖 × 𝐧𝐧𝑖𝑖) ⋅ 𝐤𝐤
�

𝐀𝐀𝑡𝑡𝑖𝑖 = �
𝐭𝐭𝑖𝑖

(𝐫𝐫𝑖𝑖 × 𝐭𝐭𝑖𝑖) ⋅ 𝐤𝐤
�

 

where 𝐫𝐫𝑖𝑖 = 𝐫𝐫0𝑖𝑖 + 𝐫𝐫𝑒𝑒𝑖𝑖𝛿𝛿𝑖𝑖  and where 𝐫𝐫0𝑖𝑖 and 𝐫𝐫𝑒𝑒𝑖𝑖 are constant vectors associated with edge 𝑖𝑖. 

For a given 𝜇𝜇1 and 𝜇𝜇2, the error-reduction function (13) can be expressed in terms of two variables 𝛿𝛿1 and 𝛿𝛿2 as 
follows 

𝐹𝐹(𝛿𝛿1,𝛿𝛿2) = (𝑎𝑎2𝛿𝛿12 + 𝑏𝑏2𝛿𝛿1 + 𝑐𝑐2)𝛿𝛿22 + (𝑎𝑎1𝛿𝛿12 + 𝑏𝑏1𝛿𝛿1 + 𝑐𝑐1)𝛿𝛿2
+(𝑎𝑎0𝛿𝛿12 + 𝑏𝑏0𝛿𝛿1 + 𝑐𝑐0)

 (58) 

where the 𝑎𝑎𝑖𝑖 's, 𝑏𝑏𝑖𝑖's, and 𝑐𝑐𝑖𝑖's are all functions of the admittance matrix 𝐀𝐀. 

Denote 

𝑞𝑞𝑖𝑖(𝛿𝛿1) = 𝑎𝑎𝑖𝑖𝛿𝛿12 + 𝑏𝑏𝑖𝑖𝛿𝛿1 + 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 0,1,2. 
(59) 

Since the 𝑞𝑞𝑖𝑖's are quadratic functions, it is not difficult to determine their extreme values for 𝛿𝛿1 ∈ [−𝛿𝛿1𝑀𝑀 ,𝛿𝛿1𝑀𝑀]. 
In fact, if we denote 

𝑞𝑞𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑚𝑚{𝑞𝑞𝑖𝑖(−𝛿𝛿1𝑀𝑀),𝑞𝑞𝑖𝑖(𝛿𝛿1𝑀𝑀),𝑞𝑞𝑖𝑖(−
𝑏𝑏𝑖𝑖

2𝑎𝑎𝑖𝑖
)}

𝑞𝑞𝑀𝑀𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑚𝑚{𝑞𝑞𝑖𝑖(−𝛿𝛿1𝑀𝑀),𝑞𝑞𝑖𝑖(𝛿𝛿1𝑀𝑀), 𝑞𝑞𝑖𝑖(−
𝑏𝑏𝑖𝑖

2𝑎𝑎𝑖𝑖
)}

𝑞𝑞𝑀𝑀 = 𝑚𝑚𝑎𝑎𝑚𝑚{𝑞𝑞𝑀𝑀1, 𝑞𝑞𝑀𝑀2}

 

then, for all 𝛿𝛿1 ∈ [−𝛿𝛿1𝑀𝑀 ,𝛿𝛿1𝑀𝑀], 𝑞𝑞𝑚𝑚𝑖𝑖 ≤ 𝑞𝑞𝑖𝑖 ≤ 𝑞𝑞𝑀𝑀𝑖𝑖.. By the same reasoning used for the {𝑒𝑒 − 𝑣𝑣, 𝑣𝑣 − 𝑒𝑒} contact case 
addressed in Section V-A2, a similar condition is obtained as follows: 

|𝑞𝑞𝑚𝑚0|
𝑞𝑞𝑀𝑀 + |𝑞𝑞𝑚𝑚0| > 𝛿𝛿𝑀𝑀. 

(60) 

This condition ensures that, for the given 𝜇𝜇,𝐹𝐹2𝑝𝑝(𝛿𝛿1,𝛿𝛿2) has no root for all 𝛿𝛿1 ∈ [−𝛿𝛿1𝑀𝑀 ,𝛿𝛿1𝑀𝑀] and 𝛿𝛿2 ∈
[−𝛿𝛿2𝑀𝑀 ,𝛿𝛿2𝑀𝑀]. 

Now consider 𝜇𝜇𝑖𝑖 ≤ 𝜇𝜇𝑀𝑀𝑖𝑖. Similar to the {𝑒𝑒 − 𝑣𝑣, 𝑣𝑣 − 𝑒𝑒} contact case, 𝐹𝐹2𝑝𝑝 can be expressed as a quadratic 
polynomial in 𝜇𝜇1 and 𝜇𝜇2 having the form of (54). Thus, the same process used for the {𝑒𝑒 − 𝑣𝑣, 𝑣𝑣 − 𝑒𝑒} contact case 
applies to the {𝑒𝑒 − 𝑣𝑣, 𝑒𝑒 − 𝑣𝑣} contact case. Three sets of conditions can be obtained based on the definiteness 
of 𝐻𝐻�𝐹𝐹2𝑝𝑝�. If we use the same notation as used in Section V-A, the three sets conditions have the forms of (55) –
(57) for positive and negative definite and indefinite 𝐻𝐻�𝐹𝐹2𝑝𝑝�, respectively. Therefore, we have the following. 
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Proposition 4 
For an {𝑒𝑒 − 𝑣𝑣, 𝑒𝑒 − 𝑣𝑣} contact state, if: 1) at a configuration [𝛿𝛿0,𝜃𝜃0] with area 𝑀𝑀, the admittance satisfies the 
error-reduction condition (19); 2) condition (60) is satisfied at the extremal values of friction 
coefficient (𝜇𝜇1,𝜇𝜇2) = (0,0), (𝜇𝜇𝑀𝑀1, 0), (0, 𝜇𝜇𝑀𝑀2), and (𝜇𝜇𝑀𝑀1,𝜇𝜇𝑀𝑀2); and 3) the appropriate conditions in 
either (55), (56), or (57) for this contact are satisfied, then the admittance will satisfy the error-reduction 
conditions for all configurations in 𝑀𝑀 and friction coefficient 𝜇𝜇𝑖𝑖 ≤ 𝜇𝜇𝑀𝑀𝑖𝑖. 

C. Conditions for the {𝑣𝑣 − 𝑒𝑒, 𝑣𝑣 − 𝑒𝑒} Contact State 
In this case, the two-point contact wrench is a combination of the two {𝑣𝑣 − 𝑒𝑒} contact wrenches. 

Using the notation developed in Section III-B, the contact wrenches for the two {𝑣𝑣 − 𝑒𝑒} contact are obtained 
by (15) as follows: 

𝐀𝐀𝑛𝑛𝑖𝑖 = � 𝐑𝐑𝐧𝐧𝑖𝑖
𝐫𝐫𝑖𝑖 × 𝐑𝐑𝐧𝐧𝑖𝑖

�

𝐀𝐀𝑡𝑡𝑖𝑖 = � 𝐑𝐑𝐭𝐭𝑖𝑖
𝐫𝐫𝑖𝑖 × 𝐑𝐑𝐭𝐭𝑖𝑖

�
 

where 𝐑𝐑 is the rotation matrix associated with 𝜃𝜃. 

The error-reduction function (13) can be used directly. For a given 𝜇𝜇1 and 𝜇𝜇2, since the wrenches involve only 
one variable 𝜃𝜃, the error-reduction function is a single-variable function in the form 

𝐹𝐹2𝑝𝑝(𝜃𝜃) = 𝑎𝑎1cos4 𝜃𝜃 + 𝑎𝑎2cos3 𝜃𝜃sin 𝜃𝜃 + 𝑎𝑎3cos2 𝜃𝜃sin 𝜃𝜃
+𝑎𝑎4cos 𝜃𝜃sin 𝜃𝜃 + 𝑎𝑎5cos 𝜃𝜃 + 𝑎𝑎6sin 𝜃𝜃 + 𝑎𝑎0

 

where ai is a function of the admittance matrix 𝐀𝐀. 

 
Fig. 7. Example: the four vertices of the body are chosen as the feature points for the error measure. 

If we denote 

𝑝𝑝1(𝜃𝜃) = 𝑎𝑎1cos4 𝜃𝜃 + 𝑎𝑎5cos 𝜃𝜃 + 𝑎𝑎0
𝑝𝑝2(𝜃𝜃) = 𝑎𝑎2cos3 𝜃𝜃 + 𝑎𝑎3cos2 𝜃𝜃 + 𝑎𝑎4cos 𝜃𝜃 + 𝑎𝑎6
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then 𝑓𝑓(𝜃𝜃) can be expressed as 𝐹𝐹2𝑝𝑝(𝜃𝜃) = 𝑝𝑝1(𝜃𝜃) + 𝑝𝑝2(𝜃𝜃)sin 𝜃𝜃.. Since |𝜃𝜃| ≤ 𝜃𝜃𝑀𝑀 ≤ (𝜋𝜋/2), the bounds for the 
single-variable functions 𝑝𝑝1(𝜃𝜃) and 𝑝𝑝2(𝜃𝜃) can be obtained by the approach used for the single-point contact 
case (Section IV-B2). 

Let 𝑝𝑝𝑚𝑚𝑖𝑖 and 𝑝𝑝𝑀𝑀𝑖𝑖 be the bounds of 𝑝𝑝𝑖𝑖, i.e., 

𝑝𝑝𝑚𝑚1 ≤ 𝑝𝑝1 ≤ 𝑝𝑝𝑀𝑀1
𝑝𝑝𝑚𝑚2 ≤ 𝑝𝑝2 ≤ 𝑝𝑝𝑀𝑀2
𝑝𝑝𝑀𝑀 = 𝑚𝑚𝑎𝑎𝑚𝑚{|𝑝𝑝2𝑚𝑚|, |𝑝𝑝2𝑀𝑀|}.

 

Then, it can be proved that the conditions 

𝑝𝑝1𝑚𝑚 − 𝑝𝑝𝑀𝑀sin 𝜃𝜃𝑀𝑀 < 0
𝑝𝑝1𝑚𝑚 + 𝑝𝑝𝑀𝑀sin 𝜃𝜃𝑀𝑀 < 0 

(61)(62) 

ensure that, for all 𝜃𝜃 ∈ [−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀],𝐹𝐹2𝑝𝑝(𝜃𝜃) < 0. 

Similar to the previous two-point contact cases, 𝐹𝐹2𝑝𝑝 can be expressed as a quadratic polynomial in 𝜇𝜇1 and 𝜇𝜇2 in 
the form of (54). Using the same procedure presented in Sections V-A and V-B, three sets of conditions for 
intermediate 𝜇𝜇𝑖𝑖 ≤ 𝜇𝜇𝑀𝑀𝑖𝑖 can be obtained. Thus, we have the following proposition. 

Proposition 5 
For a {𝑣𝑣 − 𝑒𝑒, 𝑣𝑣 − 𝑒𝑒} contact state, if: 1) at a configuration [𝛿𝛿0,𝜃𝜃0] with area 𝑀𝑀, the admittance satisfies the 
error-reduction condition (19); 2) conditions (61)–(62) are satisfied at the extremal values of friction 
coefficients (𝜇𝜇1,𝜇𝜇2) = (0,0), (𝜇𝜇𝑀𝑀1, 0), (0, 𝜇𝜇𝑀𝑀2), and (𝜇𝜇𝑀𝑀1,𝜇𝜇𝑀𝑀2); and 3) the appropriate conditions in 
either (55), (56), or (57) for this contact state are satisfied, then the admittance will satisfy the error-reduction 
conditions for all configurations in 𝑀𝑀 and friction coefficient 𝜇𝜇𝑖𝑖 ≤ 𝜇𝜇𝑀𝑀𝑖𝑖. 

SECTION VI. Numerical Example 
In this section, a numerical example is provided to demonstrate how the obtained sufficient conditions can be 
used in finding an admittance matrix 𝐀𝐀 and to demonstrate the power of the force-assembly approach. 

Consider the peg-in-hole problem illustrated in Fig. 7. The peg is rectangular with length 𝑎𝑎 = 3 and width 𝑏𝑏 = 2. 
The chamfer length is 0.25 and chamfer angle 𝛼𝛼 = 45°. The width of the hole is 2.2. The body frame 𝑂𝑂𝑚𝑚𝑂𝑂 is 
located at the center of the peg with 𝑚𝑚 and 𝑂𝑂 axes parallel to the edges of the peg. The nominal motion of the 
peg is along the body-frame y direction, 𝐯𝐯0 = [0,−1,0]𝑇𝑇. 

The four vertices of the peg, 𝐵𝐵𝑖𝑖(𝑖𝑖 = 1, … ,4), were chosen to be “feature points,” points at which the error-
reduction conditions are imposed. Let 𝐵𝐵ℎ𝑖𝑖 be the location of 𝐵𝐵𝑖𝑖  when the peg is properly mated (as shown in Fig. 
7), and 𝐝𝐝𝑖𝑖  be the position vector from 𝐵𝐵ℎ𝑖𝑖 to 𝐵𝐵𝑖𝑖. By the error-reduction requirement for single-point contact, 
all 𝐝𝐝𝑖𝑖 's must be monotonically reduced, i.e., condition (2) must be satisfied for all 𝐝𝐝𝑖𝑖 's. 

Here, the largest orientation variation considered for both single-point and two-point contact is 10° (i.e., 𝜃𝜃 ∈
[−𝜃𝜃𝑀𝑀,𝜃𝜃𝑀𝑀],𝜃𝜃𝑀𝑀 = 5∘). For single-point contact, the “boundary configurations” are chosen based on the extremal 
locations of the contact point within the contact state and the largest angular variations considered. For 
example, when considering the {𝑣𝑣 − 𝑒𝑒} contact state on the chamfer, the four “boundary configurations” are 
the configurations where the contact points are at the two ends of the chamfer and at the two largest 
orientation variations ±𝜃𝜃𝑀𝑀. For two-point contact ({𝑒𝑒 − 𝑣𝑣, 𝑣𝑣 − 𝑒𝑒} contact state), the variation for 𝛿𝛿 is 1 (i.e., 𝛿𝛿 ∈

https://ieeexplore.ieee.org/document/#deqn54
https://ieeexplore.ieee.org/document/#deqn19
https://ieeexplore.ieee.org/document/#deqn61-62
https://ieeexplore.ieee.org/document/#deqn55
https://ieeexplore.ieee.org/document/#deqn56
https://ieeexplore.ieee.org/document/#deqn57
https://ieeexplore.ieee.org/document/#deqn2


[−𝛿𝛿𝑀𝑀 ,𝛿𝛿𝑀𝑀], 𝛿𝛿𝑀𝑀 = 0.5) and the largest friction coefficients considered at the two contact locations are the same, 
i.e., 𝜇𝜇𝑀𝑀1 = 𝜇𝜇𝑀𝑀2 = 𝜇𝜇𝑀𝑀. 

To ensure force assembly, we need to find an admittance matrix 𝐀𝐀 that: 

1. yields misalignment-reducing motion for any friction coefficient less than the (initially unknown) 
maximum friction coefficient 𝜇𝜇𝑀𝑀; 

2. yields misalignment-reducing motion for all one-point and two-point contact configurations, i.e., 

𝐹𝐹1𝑝𝑝(𝐀𝐀,𝜇𝜇𝑀𝑀) < 0,for all one-point contact
𝐹𝐹2𝑝𝑝(𝐀𝐀,𝜇𝜇𝑀𝑀) < 0,for all two-point contact. 

(63)(64) 

Note that conditions (63) and (64) would have to be imposed on an infinite number of configurations. Using the 
sufficient conditions presented in Propositions 1–5, inequalities (63) and (64) can be replaced by a set of 
inequalities at a finite number of configurations. For example, for an {𝑒𝑒 − 𝑣𝑣} contact case, the conditions 
in Proposition 1 require that inequality (29) be satisfied at four configuration extremals and two extremal 
coefficients of friction. For this contact state, eight inequality constraints are imposed on 𝐀𝐀 for each error-
measure vector 𝐝𝐝𝑖𝑖. Thus, for a single {𝑒𝑒 − 𝑣𝑣} contact, 32 constraints are needed for the four error-measure 
vectors 𝐝𝐝𝑖𝑖. The constraints for all other contact states can be imposed in the same way. Since all constraints are 
inequalities, a standard optimization can be performed. For this problem, conditions are imposed for all possible 
configurations, yielding a total of 296 constraints. 

In the optimization, the design variables are the elements of 𝐀𝐀 and 𝜇𝜇𝑀𝑀. The objective function is defined as 𝐹𝐹 =
𝜇𝜇𝑀𝑀 .. 

The optimization described below was performed using MATLAB and its optimization toolbox: 

1. maximize 𝐹𝐹; 

2. subject to error-reduction constraints at all boundary configurations for single-point and two-point 
contact. 

The maximum value of 𝜇𝜇𝑀𝑀, obtained from the optimization, was 

𝜇𝜇𝑀𝑀 = 0.8314 

and the admittance matrix obtained was 

𝐀𝐀 = �
24.2029 −1.6472 −2.6031
−1.6472 35.7328 0.0004
−2.6031 0.0004 0.5331

�. 

Since the conditions for all one-point and two-point contact cases are imposed simultaneously, for any 𝜇𝜇1, 𝜇𝜇2 ∈
[0, 𝜇𝜇𝑀𝑀], the obtained admittance 𝐀𝐀 ensures error-reducing motion of the peg for all possible part misalignments 
within the range of orientational misalignment of ±5° and translational misalignment of the chamfer width. 
Note that the friction coefficient obtained is higher than the static friction coefficient for clean steel on steel 
(0.58) [15]. 
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SECTION VII. Discussion and Summary 
In this paper, we identified procedures for selecting the appropriate admittance to achieve reliable planar force-
guided assembly for multipoint contact cases with friction. Conditions imposed on the admittance matrix for 
each of the various types of one-point and two-point frictional contact are presented. We show that, for 
bounded misalignments, if the conditions are satisfied for a finite number of contact configurations and friction 
coefficients, the conditions ensure that force guidance is achieved for all configurations and friction coefficients 
within the specified bounds. 

In Section II-A, it was assumed that inequality (8) is satisfied. In fact, due to the continuity of the motion and in 
order to avoid singularity, this inequality is required for determining the constrained motion of the rigid body. As 
such, in selecting an admittance, inequality (8) is used as an optimization constraint. 

In this paper, we used a type of measure of rigid body misalignment based on the Euclidean distance between 
several fixed points on the held body and their locations when properly positioned. The sufficient conditions 
obtained are all based on this measure. If a different type of measure is used, the restrictions on 𝐀𝐀 would be 
different and the results (optimal 𝐀𝐀 and 𝜇𝜇𝑀𝑀) would, most likely, also be different. 

The conditions obtained are sufficient conditions as long as the misalignments are within the user-specified 
bounds 𝛿𝛿𝑀𝑀 and 𝜃𝜃𝑀𝑀. Although the identified conditions have been mathematically proven to be sufficient over a 
large range [−(𝜋𝜋/2), (𝜋𝜋/2)] in orientation), larger values within this range yield more restrictive conditions 
on 𝐀𝐀. Overly conservative estimates of part misalignments yield overly conservative conditions on 𝐀𝐀. Therefore, 
in practice, 𝛿𝛿𝑀𝑀 and 𝜃𝜃𝑀𝑀 should be determined by robot inaccuracy and/or part geometry and not be overly 
conservative. 

In ongoing work, we are extending these results to address the design of the appropriate admittance matrix for 
force assembly of a polyhedral rigid body in spatial motion. However, since the kinematic description of a spatial 
body is significantly more difficult than that of a planar part, a different way to characterize and bound 
misalignments of a spatial part is needed. 
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