19,622 research outputs found

    Nitric oxide regulates skeletal muscle fatigue, fiber type, microtubule organization, and mitochondrial ATP synthesis efficiency through cGMP-dependent mechanisms

    Get PDF
    Aim: Skeletal muscle nitric oxide–cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. Results: GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1−/− muscle. Functional analyses of GC1−/− muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA–IIX fiber balance. Force deficits in GC1−/− muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. Innovation: GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. Conclusions: These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency

    What determines growth potential and juvenile quality of farmed fish species?

    Get PDF
    Enhanced production of high quality and healthy fry is a key target for a successful and competitive expansion of the aquaculture industry. Although large quantities of fish larvae are produced, survival rates are often low or highly variable and growth potential is in most cases not fully exploited, indicating significant gaps in our knowledge concerning optimal nutritional and culture conditions. Understanding the mechanisms that control early development and muscle growth are critical for the identification of time windows in development that introduce growth variation, and improve the viability and quality of juveniles. This literature review of the current state of knowledge aims to provide a framework for a better understanding of fish skeletal muscle ontogeny, and its impact on larval and juvenile quality as broadly defined. It focuses on fundamental biological knowledge relevant to larval phenotype and quality and, in particular, on the factors affecting the development of skeletal muscle. It also discusses the available methodologies to assess growth and larvae/juvenile quality, identifies gaps in knowledge and suggests future research directions. The focus is primarily on the major farmed non-salmonid fish species in Europe that include gilthead sea bream, European sea bass, turbot, Atlantic cod, Senegalese sole and Atlantic halibut

    Cosmotic, Aquatic. Exploring the potential of computational design in the preservation of aquatic ecotones

    Get PDF
    This paper looks at the possible role of computational design ecologically in the fight against the loss of the aquatic Ecotone. As climate change keeps altering all the natural aspects of our planet, and as our kind continues to sabotage its ecologies, coral reefs come in focus. Aquatically, coral reefs count as a fertile zone for biodiversity. Usually being the Ecotone between land and sea, these barriers host many species and riches. However, due to the excessive abuse caused by human activity be it world-wide pollution or direct human contact, these reefs are constantly bleaching and breaking. In 2016, the Architecture Association gathered a group of international architecture students and professionals in a visiting school in Jordan titled “Hyperbolic Reefs” looking at the possibility of recruiting new computational methods to preserve and possibly regenerate the Ecotone. It was considered that new simulation techniques along with parametric design could contribute into the assessment and prevention of the catastrophic results. The two-week event was divided into chapters and was initiated by a series of lectures and discussions conducted by worldwide leading architects and experts who presented an important material to build upon. Then, the participants underwent a site visit to the coral reef of Al-Aqaba, collecting data, samples and media and recording insights and local testimonies. The third step of the experience was to assimilate the material and data and discuss openly the ways that computation could lead to a better coral life. Several software and tools were assigned to produce a design that would help attenuate the compromise of the coral reef through computation. An archive of data was produced and exhibited to the public. The results of this brief exercise was a number of suggestions and future aspirations triggered solely towards revitalizing the Ecotone. Issues such as the abundance of irresponsible snorkeling and diving, many governments’ indifferent policies towards the coral reefs, global warming, climate change, coral bleaching and aquatic architecture were confronted through parametric projects ranging from purely architectural to abstract human capsules. Computational tools allowed the reproduction of the whole system digitally, the precise tracing of the corals’ patterns, dimensions and colors, simulation software predicted the role of light and heat in certain zones, and parametric programs provided an incomparable flexibility in the designing process, going completely in sync with the fragile and intricate aspect of a coral unit. 3D printing was also an integral factor in the presentation and study of the presented models. This study’s scope was to expand the use of computation in a theoretical way to reach new and creative prospects, and to raise awareness to the situation of the coral reef and the risks facing its degradation

    A new automated workflow for 3D character creation based on 3D scanned data

    Get PDF
    In this paper we present a new workflow allowing the creation of 3D characters in an automated way that does not require the expertise of an animator. This workflow is based of the acquisition of real human data captured by 3D body scanners, which is them processed to generate firstly animatable body meshes, secondly skinned body meshes and finally textured 3D garments

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 125

    Get PDF
    This special bibliography lists 323 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1974
    corecore