1,771 research outputs found

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Barzilai-Borwein Descent Methods for Multiobjective Optimization Problems with Variable Trade-off Metrics

    Full text link
    The imbalances and conditioning of the objective functions influence the performance of first-order methods for multiobjective optimization problems (MOPs). The latter is related to the metric selected in the direction-finding subproblems. Unlike single-objective optimization problems, capturing the curvature of all objective functions with a single Hessian matrix is impossible. On the other hand, second-order methods for MOPs use different metrics for objectives in direction-finding subproblems, leading to a high per-iteration cost. To balance per-iteration cost and better curvature exploration, we propose a Barzilai-Borwein descent method with variable metrics (BBDMO\_VM). In the direction-finding subproblems, we employ a variable metric to explore the curvature of all objectives. Subsequently, Barzilai-Borwein's method relative to the variable metric is applied to tune objectives, which mitigates the effect of imbalances. We investigate the convergence behaviour of the BBDMO\_VM, confirming fast linear convergence for well-conditioned problems relative to the variable metric. In particular, we establish linear convergence for problems that involve some linear objectives. These convergence results emphasize the importance of metric selection, motivating us to approximate the trade-off of Hessian matrices to better capture the geometry of the problem. Comparative numerical results confirm the efficiency of the proposed method, even when applied to large-scale and ill-conditioned problems

    Variable Metric Method for Unconstrained Multiobjective Optimization Problems

    Full text link
    In this paper, we propose a variable metric method for unconstrained multiobjective optimization problems (MOPs). First, a sequence of points is generated using different positive definite matrices in the generic framework. It is proved that accumulation points of the sequence are Pareto critical points. Then, without convexity assumption, strong convergence is established for the proposed method. Moreover, we use a common matrix to approximate the Hessian matrices of all objective functions, along which, a new nonmonotone line search technique is proposed to achieve a local superlinear convergence rate. Finally, several numerical results demonstrate the effectiveness of the proposed method

    The Quasi-Newton Method for the Composite Multiobjective Optimization Problems

    Full text link
    In this paper, we introduce several new quasi-Newton methods for the composite multiobjective optimization problems (in short, CMOP) with Armijo line search. These multiobjective versions of quasi-Newton methods include BFGS quasi-Newnon method, self-scaling BFGS quasi-Newnon method, and Huang BFGS quasi-Newnon method. Under some suitable conditions, we show that each accumulation point of the sequence generated by these algorithms, if exists, is both a Pareto stationary point and a Pareto optimal point of (CMOP).Comment: 16 pages. arXiv admin note: text overlap with arXiv:2108.0012
    • …
    corecore