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Abstract. In this paper, system design methodologies for optimizing 
heterogenous power devices in electrical engineering are investigated. The con-
cept of Integrated Optimal Design (IOD) is presented and a simplified but typi-
cal example is given. It consists in finding Pareto-optimal configurations for the 
motor drive of an electric vehicle. For that purpose, a geometric optimization 
method (i.e the Hooke and Jeeves minimization procedure) associated with an 
objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the 
NSGA-II) are compared. Several performance issues are discussed such as the 
accuracy in the determination of Pareto-optimal configurations and the capabil-
ity to well spread these solutions in the objective space.  

1 Introduction 

The determination of innovative industrial solutions for complex energetic systems 
requires the improvement of design tools and methodologies. In particular, systems 
should be considered in their globality to ensure optimal performances. In effect, the 
local optimization of system elements independently taken, does not guarantee the 
optimality of the whole. In most cases, couplings existing between the elements direct-
ly affect the global efficiency. On the other hand, several aspects have to be consid-
ered at the same level in the design process such as the choice of the system architec-
ture, the element sizing and the energy management strategy. These features are 
strongly coupled to global performances. Integrated Optimal Design (IOD) aims at 
simultaneously optimizing the architecture, the element sizing and the energy man-
agement in heterogeneous power systems. IOD necessarily leads to complex mixed 
variable optimization problems with multiple constraints which require the use of 
direct optimization methods to be solved. Therefore geometric optimization methods 
or stochastic approaches (such as Mutiobjective Genetic Algorithms) are suitable for 
this kind of problems.   

In this paper, we illustrate the efficiency of these methods for solving an IOD 
problem. The considered case is simple but typical of this issue.  
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The paper is organized as follows. In the first part, the concept of IOD is devel-
oped and the main features are given. The second part is devoted to direct 
multiobjective optimization methods with a particular attention to the Hooke and 
Jeeves procedure and the Non-Dominated Sorting Genetic Algorithm (NSGA-II). The 
third part presents a simple example of IOD problem consisting in the optimization of 
motor drives for electric vehicle. Finally, the fourth part illustrates the comparison of 
the investigated optimization methods on this problem. 

2 Integrated Optimal Design in Electrical Engineering 

2.1   The Issue of Energetic System Design 

The design of electrical energetic systems represents a societal challenge. The increas-
ing demand in terms of energetic needs and efficiency requirements for energetic 
systems has to be fulfilled. Instead of current devices which are generally oversized in 
relation to their power needs, innovative systems should be now designed as accurate-
ly  as possible to avoid energetic wastes. The difficulties related to the optimization of 
such systems are related to several features:  
– these systems are characterized by a high level of complexity, being composed of 

multiple subsystems whose architecture and dimensioning have to be determined 
to reach optimal performance, 

– these systems are strongly heterogeneous and multi-domain composed of elements 
of different physical nature (electric, mechanic, thermal) and multi-time scaled 
models. This leads the designer to raise the question of the level of representation 
for the system elements and the type of the corresponding models (analytical, nu-
merical such as algebra-differential equations or finite element models…) in rela-
tion to a compromise associated with accuracy and computational costs.   

Because of these main difficulties, the design process was generally simplified in the 
past using a sequential approach consisting in: 
– finding the most suitable architecture for the system, 
– optimizing element sizing, 
– finding an optimal energy management strategy for the system. 
However, couplings existing between these factors and their influence on global sys-
tem efficiency require evolution toward a global optimization approach. We name this 
approach as Integrated Optimal Design (IOD) since it aims at concurrently optimizing 
in parallel, architecture, element sizing and energy management in a given system.   

2.2   Electric Vehicle Example  

Pure electric vehicles are typical examples of complex heterogeneous energetic sys-

tems. They are composed of several elements including the frame and the electrical 

traction device itself constituted by an energy supply (battery) and a static power 
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converter which controls the electrical motor. Power is transferred to the wheel 

through a reducer and a mechanical transmission line. Note that the architecture of the 

electrical traction device can be more complicated in the case of hybrid vehicles and 

multi-motor solutions (i.e. one motor per wheel for example).  

The electric vehicle designer is confronted with choices related to traction device 
architecture, element type and size (i.e. batteries, static converters, electrical motors). 
These choices are strongly coupled with geometrical and mechanical characteristics of 
the vehicle (i.e. mass and volume of the frame, drag coefficient) and to its capabilities 
to fulfill typical operating cycles (i.e. urban, road or highway cycles). This example is 
illustrated in Fig. 1.  

 

 
 

Fig. 1. Example of coupling elements in an electric vehicle 

2.3   Integrated Optimal Design 

IOD can be carried out thanks to global optimization techniques. The corresponding 
optimization problems resulting from this approach are rather complex and difficult. 
In particular, they are usually characterized by:  

− an important number of design variables which can be discrete (e.g. the combina-
torial parameters related to the system architecture or the type of the constitutive 
elements or materials) and/or continuous (typically, sizing parameters and energet-
ic variables), 

− multiple constraints intrinsic to each subsystems or related to the association com-
patibility between elements in the system, 

− several objectives to optimize, typically energetic criteria (efficiency, consump-

tion, losses), sizing factors (volume, mass) or economic costs.  

Note that IOD leads to multiobjective optimization problems with mixed variables 

subject to several constraints.  
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3 Multiobjective Optimization Approaches 

3.1   Multiobjective Optimization and Decision Making 

Multiobjective optimization techniques aim to provide to the designer one or multiple 
Pareto-optimal solutions. They can be separated into three different classes [1], [2] in 
relation to the decision making process associated to the optimization procedure.  

 A priori approaches: the Decision Maker combines the different objectives into a 
global quality function. Thus, the multiobjective problem is transformed into a 
standard scalar optimization problem which can be solved using traditional opti-
mization methods. This approach includes aggregation based methods such as 
weighting-sum or fuzzy logic techniques, –constraint procedure and goal attain-
ment method. Although they have been widely used in the past, a priori techniques 
suffer from various drawbacks. In particular, in one optimization run, they provide 
a single Pareto-optimal solution. Moreover, this solution is very sensitive to the 
scalarization of the objectives and the choice of decision parameters (e.g. weight-
ing coefficients, target values) associated with the preferences of the Decision 
Maker. 

 Progressive and sequential approaches: the optimization process and the Deci-
sion Making are intertwined. Preferences of the Decision maker are sequentially 
updated in function of the result of the optimization process. Note that a priori ap-
proaches can be iteratively used as progressive approaches as well as traditional 
techniques such as lexicographic method.  

 A posteriori approaches: these approaches provide in a single optimization run a 
set of Pareto-optimal solutions to the Decision Maker who can choose among that 
set. They essentially include population based optimization methods such as Mul-
tiobjective Evolutionary Algorithms [2], [3], [4], [5], [6] or Multiobjective Particle 
Swarm Optimization techniques [7], [8], [9]. 

 
All these approaches require one or multiple optimization steps to obtain at least 

one Pareto-optimal solution. For that purpose, several minimization methods can be 
used (see Fig.2). However, for IOD problems, direct methods have to be preferred to 
avoid the hazardous computation of constraint and objective gradients in numerical 
models. Consequently, two different approaches have been investigated and compared 
as indicated in Fig.3.   

3.2   The Hooke and Jeeves Procedure 

The principle of Hooke and Jeeves algorithm [10] involves two successive steps : 

 exploration step : From an initial parameter vector X0 (i.e. the reference point in 
the design variable space), the algorithm processes an exploration search, displac-
ing each parameter one by one with an increment (+i) while other parameters 
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Fig. 3. Investigated Approaches 

remain fixed. If the objective function is decreased the new value of the parameter 
is preserved. On the contrary, if the objective function is degraded, a negative in-
crement (-i) is proposed to move this parameter; if increments (+i and -i) do 
not offer any improvement of the objective function, each parameter remains un-
changed. At the end of the process, each component of the parameter vector has 
been moved at least one time and the objective function must be either decreased 
or unchanged. In this latter case, the process is reiterated with a smaller increment 
(typically i/2).  
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 extrapolation step : when the exploration step is successful (i.e the objective func-
tion has been decreased by one positive or negative increment i) a new point Xe is 
obtained and used with the last reference point to define the new reference point as 
follows:  

 00 2 XXX  e  (1) 

These steps are iterated until all increments i have reached a given accuracy set 

by the designer. 

Note that this deterministic procedure is a local method which is usually used for 

single optimization. It can be applied on multiobjective problems by means of an 

aggregative approach (typically objective weighted sum).  

3.3 The Non-Dominating Sorting Genetic Algorithm 

Elitist Mutiobjective Genetic Algorithms (MOGAs) based on Pareto approaches 
have become more and more popular because of their capabilities to approximate the 
set of optimal trade-offs in a single run [3], [4], [5], [6]. Among all algorithms of this 
class, the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-

II) has become a solid reference. NSGA-II determines all successive fronts in the 

population (the best front corresponding to the non-dominated set). Moreover, a 

crowding distance is used to estimate the density of solutions surrounding each indi-

vidual on a given front. In a tournament, if individuals belong to the same front, the 

selected one is that with the greater crowding distance. This niching index is also used 

in the clustering operator to uniformly distribute the individuals on the Pareto front. 

More details about the implementation of the algorithm can be found in [4].  

4 Integrated Optimal Design of Pure Electric Vehicles 

The synoptic of the traction device for the electric vehicle is described in Fig. 4. The 
design variables associated with each part of system are defined in Table 1. The trac-
tion device should be optimized in order to minimize the total energetic losses and the 
vehicle mass.   

Table 1. Design variables characteristics 

Design Variables Range 
Battery Voltage E  [20, 500]  [V] 
Filter Inductance Lf  [10-5, 0.005]  [H] 
Filter Capacitor Cf  [10-4, 0.003]  [F] 

Converter Switching Frequency fswitch  [500, 10 000]  [Hz] 
Motor Core Radius  r  [0.05, 0.2]  [m] 

Motor Length l  [0.05, 0.4]  [m] 
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Fig. 4. Synoptic of the electric vehicle model 
 
We will not detail the entire model of the vehicle which is rather complex and spe-

cifically belongs to the field of electrical engineering. The reader can refer to earlier 
publications for a complete description [11], [12], [13], [14]. However, we briefly 
mention in the following some of its features.  

4.1   The Electric vehicle model  

The driving mission. An urban mission has been chosen to optimize this system (see 
Fig. 5). The wheel speed reference corresponds to a vehicle speed of 50 km/h. This 
elementary cycle has to be 90 times repeated to ensure 1 hour of autonomy, which 
corresponds to a minimum embedded energy of 15 kWh.  
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Fig. 5. Characteristics of the urban mission 

 
The battery. Being the most commonly used in electric vehicles, a pack of 160 Ah 
lead acid battery is considered and its corresponding characteristics are given in 
Fig. 6. One simplification hypothesis deals with the internal resistance which can be 
considered as constant if the discharge depth is limited to 75%. Based on the vehicle 
autonomy requirement, 20 kWh of energy involves a minimum of 57 elementary cells. 
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Given that an integer number of cells must be placed in a serial/parallel architecture, a 
variable DC voltage causes a non-linear variation of the cell number. Joule losses in 
the battery can be deduced from the simulating model and the battery mass is evaluat-
ed from the mass of an elementary cell and the total number of cells.  
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Fig. 6. Characteristics of the battery cells 
 

The input filter. The input filter aims at reducing current ripples provided by the 
Voltage Source Inverter (VSI) which controls the electrical motor. If the conventional 
circuit model of the filter is rather simple, the sizing of its elements is complex when 
variable switching frequency, DC voltage and current have to be automatically han-
dled during the optimization process. On one hand, a constraint on the natural fre-
quency of the filter in relation to the VSI switching frequency must be fulfilled to 
avoid the instability of the system. On the other hand, two additional constraints must 
be introduced to provide a minimum voltage ripple on the filter capacitor as well as a 
minimum current ripple in the filter inductance. The input filter losses and its mass are 
neglected.  

 

The static converter. The static converter is a classical VSI which controls a perma-
nent magnet synchronous motor with trapezoidal electromotive forces. This kind of 
motor is largely used in traction applications due to its simplicity and its efficiency. In 
such a structure 120° rectangular currents must be imposed by the control unit. An 
average model of the converter is considered to reduce the computation time and a 
classical cascade speed-current control is implemented to provide motor torque and 
speed references required by the circulation cycle. Note that four technological con-
straints are related to the VSI and its control dynamics. Switching and conduction 
losses in the VSI are estimated with reference to data sheets associated to the power 
semiconductors. Note that the switch class is changed in relation to the DC cur-
rent/voltage evolution during the IOD process. The inverter mass is neglected.  

 

The permanent magnet synchronous motor. A sizing model of the permanent mag-

net synchronous motor associated with its reducer allows us to characterize the elec-

tro-mechanical behavior of the vehicle. It is defined in relation to three design varia-

bles (i.e. the motor length, the stator core radius, and the electrical voltage). The mass 

of the motor is evaluated from its geometrical characteristics and from the mass den-

sity of its elements (copper, iron and magnet). Joule losses are computed during the 

simulation of the vehicle on its course from the motor current and an additional mod-
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el estimates iron losses from the motor frequency and the maximum motor flux densi-

ty. Note that a thermal model of the motor is used to assess the temperature on the 

copper windings. This temperature must be lower than 150°C.   
 

The vehicle dynamic. A mechanical model simulates the efforts imposed on the 

vehicle (i.e. vehicle weight, drag force, acceleration force) and provides torque and 

speed references to the electrical motor drive during the circulation cycle. Note that 

mechanical losses are deduced from this model.  

4.2   The global design objectives and the constraint handling strategies  

Two objectives have to be considered in the IOD process:  

 the total losses in the vehicle during its course including Joule losses in the battery, 
switching and conduction losses in the VSI, iron and Joule losses in the permanent 
magnet motor and mechanical losses, 

 the vehicle mass including a frame mass of 650 kg, the battery and motor masses.  
Moreover, twenty constraints must be fulfilled to ensure feasible solutions. Twelve 

are related to design variables bounds, three concern the input filter (limitation of 

current and voltage ripple, compatibility of the filter natural frequency with the VSI 

switching frequency), four are associated with the control dynamics and the VSI 

voltage limitation, the last one depending on the maximum temperature of the copper 

windings in the motor. A strategy for each investigated optimization approach has 

been used to take these constraints into account. The HJ procedure employs for all 

constraints a classical exterior penalty method with fixed penalty coefficients. In the 

NSGA-II, constraints related to design variable bounds are implicitly fulfilled by the 

initialization process and the use of crossover and mutation operators which set the 

design variables in their nearest bound in case of violation. The other constraints are 

integrated by modifying the Pareto-dominance rule (see [14], [16] for more details).  

5 Comparative Results 

Pareto-optimal configurations for electric vehicles are determined with the HJ proce-

dure and with the NSGA-II in association with a self-adapting recombination scheme 

[15]. The single objective function used in the HJ procedure is defined as the 

weighted sum of the two objectives. The weighting coefficients associated with the 

total loss objective and the vehicle mass are respectively loss and mass. Fourteen 

minimization runs are carried out with the HJ procedure using different weighting 

coefficients and the same feasible initial configuration for the vehicle. Note that 

boundary solutions of the front (run 1 and run 14 in Table 2) are first determined to 

normalize in the following runs mass and loss objectives by the corresponding maxi-

mum deviation. The number of objective function evaluations (neval) required in each 

run to reach the optimum is given in Table 2. The total number of objective function 

evaluations to obtain 14 Pareto-optimal solutions is about 18 000. 



 10 

Table 2. Set of optimization runs for the HJ procedure 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
mass 0.0 0.03 0.06 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
loss 1.0 0.97 0.94 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 
neval 1297 1281 1257 1345 1301 1352 1317 1340 1218 1276 1216 1239 1337 1386 

 

The stochastic nature of the evolutionary algorithm requires performing the same 

optimization problem several times to assess the reproducibility of the results. For one 

optimization run, the number of objective function evaluations must be shared among 

the individual number (Nind) and the generation number (Ngen). Consequently, the total 

number of objective function evaluations for Ntest independent runs is Ntest×Nind×Ngen. 
Thus, the tuning parameters of Table 3 have been selected for the NSGA-II leading to 
17 500 objective function evaluations for a fair comparison with the HJ procedure.  

Table 3. NSGA-II tuning parameters 

Number of independent runs (Ntest)  5 
Population size (Nind)  50 

Generation number (Ngen) 70 
Mutation rate for m design variables 1/m 

Mutation rate for the crossover X-gene (see [15]) 5% 
 

Fig. 7 shows that both methods converge to the same Pareto-optimal front. Note 
that the NSGA-II Pareto-front plotted in this figure corresponds to a concatenation of 
the five Pareto-fronts obtained from the five independent runs. However, these runs 
have provided similar results. Therefore, NSGA-II requires 50×70=3500 objective 
function evaluations to obtain fifteen Pareto-optimal solutions on this design problem. 
With the same number of objective function evaluations, the HJ procedure only offers 
two Pareto-optimal solutions. This confirms the greater exploration capability of the 
MOGAs in comparison with local optimization methods.  

The efficiency in the determination of the boundary solutions was almost equiva-
lent with both investigated methods since the minimum loss solution has been found 
by the NSGA-II while the HJ procedure has detected the minimum mass solution. 

The performance of both optimization methods was also characterized by two 

quantitative criteria. The  spacing factor used in [4], [14] has been evaluated in each 

case to assess the quality in terms of distribution homogeneity along the Pareto-

optimal front. This criterion is based on consecutive distances among the solutions of 
the Pareto-optimal front. It characterizes the capability of the optimization method to 
distribute its solutions uniformly along the Pareto-optimal front. A value of zero for 
this metric indicates all non-dominated solutions found are equally spaced. Concern-
ing the solution accuracy, the coverage index used in [3] was considered to compare 
NSGA-II and HJ efficiency.  
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Fig. 7. Pareto-optimal solutions compared 
 
The comparative results for both performance criteria are summarized in table 4. 

They show that NSGA-II ensures a better spread of Pareto-optimal solutions along the 
Pareto-optimal front thanks to the efficiency of its clustering operator. On the contra-
ry, HJ procedure is characterized by a bad spread as a reason of a non-linear relation 
between weighting coefficients and Pareto-optimal solution distribution. Low cover-
age indexes indicate that NSGA-II and HJ fronts are non-covered. Most solutions 
found by the two different approaches are non-dominated. Consequently, the accuracy 
in the determination of Pareto-optimal solutions on this IOD problem was almost 
similar. 

Table 4. Performance criteria compared 

Performance criterion NSGA-II HJ 
Spacing  0.744 1.219 

Coverage index (see [3]) C(NSGA-II/HJ) = 0.07  C(HJ/NSGA-II) = 0.08 

6 Conclusion 

In this paper, the Non-dominated Sorting Genetic algorithm and the Hooke and Jeeves 
procedure have been applied for solving IOD Problems. Both methods have been 
investigated on a simplified but typical IOD problem which consists in determining 
optimal configurations of motor drives for pure electric vehicles. The performance of 
each approach has been analyzed in terms of convergence, accuracy and diversity. 
With the same number of objective function evaluations, results have shown the 
NSGA-II superiority concerning the exploration capability and its tendency to find 
well spread Pareto-optimal solutions. Moreover, the NSGA-II accuracy was compara-
ble with the well-known efficiency of the HJ deterministic procedure.   
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