995 research outputs found

    Dynamic traffic assignment: model classifications and recent advances in travel choice principles

    Get PDF
    Dynamic Traffic Assignment (DTA) has been studied for more than four decades and numerous reviews of this research area have been conducted. This review focuses on the travel choice principle and the classification of DTA models, and is supplementary to the existing reviews. The implications of the travel choice principle for the existence and uniqueness of DTA solutions are discussed, and the interrelation between the travel choice principle and the traffic flow component is explained using the nonlinear complementarity problem, the variational inequality problem, the mathematical programming problem, and the fixed point problem formulations. This paper also points out that all of the reviewed travel choice principles are extended from those used in static traffic assignment. There are also many classifications of DTA models, in which each classification addresses one aspect of DTA modeling. Finally, some future research directions are identified.postprin

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics

    Get PDF
    In recent years, academics, regulators, and market practitioners have increasingly addressed liquidity issues. Amongst the numerous problems addressed, the optimal execution of large orders is probably the one that has attracted the most research works, mainly in the case of single-asset portfolios. In practice, however, optimal execution problems often involve large portfolios comprising numerous assets, and models should consequently account for risks at the portfolio level. In this paper, we address multi-asset optimal execution in a model where prices have multivariate Ornstein-Uhlenbeck dynamics and where the agent maximizes the expected (exponential) utility of her PnL. We use the tools of stochastic optimal control and simplify the initial multidimensional Hamilton-Jacobi-Bellman equation into a system of ordinary differential equations (ODEs) involving a Matrix Riccati ODE for which classical existence theorems do not apply. By using \textit{a priori} estimates obtained thanks to optimal control tools, we nevertheless prove an existence and uniqueness result for the latter ODE, and then deduce a verification theorem that provides a rigorous solution to the execution problem. Using examples based on data from the foreign exchange and stock markets, we eventually illustrate our results and discuss their implications for both optimal execution and statistical arbitrage

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.

    Risk Management using Model Predictive Control

    Get PDF
    Forward planning and risk management are crucial for the success of any system or business dealing with the uncertainties of the real world. Previous approaches have largely assumed that the future will be similar to the past, or used simple forecasting techniques based on ad-hoc models. Improving solutions requires better projection of future events, and necessitates robust forward planning techniques that consider forecasting inaccuracies. This work advocates risk management through optimal control theory, and proposes several techniques to combine it with time-series forecasting. Focusing on applications in foreign exchange (FX) and battery energy storage systems (BESS), the contributions of this thesis are three-fold. First, a short-term risk management system for FX dealers is formulated as a stochastic model predictive control (SMPC) problem in which the optimal risk-cost profiles are obtained through dynamic control of the dealers’ positions on the spot market. Second, grammatical evolution (GE) is used to automate non-linear time-series model selection, validation, and forecasting. Third, a novel measure for evaluating forecasting models, as a part of the predictive model in finite horizon optimal control applications, is proposed. Using both synthetic and historical data, the proposed techniques were validated and benchmarked. It was shown that the stochastic FX risk management system exhibits better risk management on a risk-cost Pareto frontier compared to rule-based hedging strategies, with up to 44.7% lower cost for the same level of risk. Similarly, for a real-world BESS application, it was demonstrated that the GE optimised forecasting models outperformed other prediction models by at least 9%, improving the overall peak shaving capacity of the system to 57.6%

    Dynamics of Information Diffusion and Social Sensing

    Full text link
    Statistical inference using social sensors is an area that has witnessed remarkable progress and is relevant in applications including localizing events for targeted advertising, marketing, localization of natural disasters and predicting sentiment of investors in financial markets. This chapter presents a tutorial description of four important aspects of sensing-based information diffusion in social networks from a communications/signal processing perspective. First, diffusion models for information exchange in large scale social networks together with social sensing via social media networks such as Twitter is considered. Second, Bayesian social learning models and risk averse social learning is considered with applications in finance and online reputation systems. Third, the principle of revealed preferences arising in micro-economics theory is used to parse datasets to determine if social sensors are utility maximizers and then determine their utility functions. Finally, the interaction of social sensors with YouTube channel owners is studied using time series analysis methods. All four topics are explained in the context of actual experimental datasets from health networks, social media and psychological experiments. Also, algorithms are given that exploit the above models to infer underlying events based on social sensing. The overview, insights, models and algorithms presented in this chapter stem from recent developments in network science, economics and signal processing. At a deeper level, this chapter considers mean field dynamics of networks, risk averse Bayesian social learning filtering and quickest change detection, data incest in decision making over a directed acyclic graph of social sensors, inverse optimization problems for utility function estimation (revealed preferences) and statistical modeling of interacting social sensors in YouTube social networks.Comment: arXiv admin note: text overlap with arXiv:1405.112

    Multi-asset optimal execution and statistical arbitrage strategies under Ornstein--Uhlenbeck dynamics

    Get PDF
    In recent years, academics, regulators, and market practitioners have increasingly addressed liquidity issues. Among the numerous problems addressed, the optimal execution of large orders is probably the one that has attracted the most research works, mainly in the case of single-asset portfolios. In practice, however, optimal execution problems often involve large portfolios comprising numerous assets, and models should consequently account for risks at the portfolio level. In this paper, we address multi-asset optimal execution in a model where prices have multivariate Ornstein--Uhlenbeck dynamics and where the agent maximizes the expected (exponential) utility of her Profit and Loss (PnL). We use the tools of stochastic optimal control and simplify the initial multidimensional Hamilton--Jacobi--Bellman equation into a system of ordinary differential equations (ODEs) involving a matrix Riccati ODE for which classical existence theorems do not apply. By using a priori estimates obtained thanks to optimal control tools, we nevertheless prove an existence and uniqueness result for the latter ODE and then deduce a verification theorem that provides a rigorous solution to the execution problem. Using examples based on data from the foreign exchange and stock markets, we eventually illustrate our results and discuss their implications for both optimal execution and statistical arbitrage

    Dynamics of Social Networks: Multi-agent Information Fusion, Anticipatory Decision Making and Polling

    Full text link
    This paper surveys mathematical models, structural results and algorithms in controlled sensing with social learning in social networks. Part 1, namely Bayesian Social Learning with Controlled Sensing addresses the following questions: How does risk averse behavior in social learning affect quickest change detection? How can information fusion be priced? How is the convergence rate of state estimation affected by social learning? The aim is to develop and extend structural results in stochastic control and Bayesian estimation to answer these questions. Such structural results yield fundamental bounds on the optimal performance, give insight into what parameters affect the optimal policies, and yield computationally efficient algorithms. Part 2, namely, Multi-agent Information Fusion with Behavioral Economics Constraints generalizes Part 1. The agents exhibit sophisticated decision making in a behavioral economics sense; namely the agents make anticipatory decisions (thus the decision strategies are time inconsistent and interpreted as subgame Bayesian Nash equilibria). Part 3, namely {\em Interactive Sensing in Large Networks}, addresses the following questions: How to track the degree distribution of an infinite random graph with dynamics (via a stochastic approximation on a Hilbert space)? How can the infected degree distribution of a Markov modulated power law network and its mean field dynamics be tracked via Bayesian filtering given incomplete information obtained by sampling the network? We also briefly discuss how the glass ceiling effect emerges in social networks. Part 4, namely \emph{Efficient Network Polling} deals with polling in large scale social networks. In such networks, only a fraction of nodes can be polled to determine their decisions. Which nodes should be polled to achieve a statistically accurate estimates

    Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers

    Full text link
    Call centers' managers are interested in obtaining accurate point and distributional forecasts of call arrivals in order to achieve an optimal balance between service quality and operating costs. We present a strategy for selecting forecast models of call arrivals which is based on three pillars: (i) flexibility of the loss function; (ii) statistical evaluation of forecast accuracy; (iii) economic evaluation of forecast performance using money metrics. We implement fourteen time series models and seven forecast combination schemes on three series of daily call arrivals. Although we focus mainly on point forecasts, we also analyze density forecast evaluation. We show that second moments modeling is important both for point and density forecasting and that the simple Seasonal Random Walk model is always outperformed by more general specifications. Our results suggest that call center managers should invest in the use of forecast models which describe both first and second moments of call arrivals
    corecore