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Abstract

Forward planning and risk management are crucial for the success of any system or busi-

ness dealing with the uncertainties of the real world. Previous approaches have largely

assumed that the future will be similar to the past, or used simple forecasting tech-

niques based on ad-hoc models. Improving solutions requires better projection of future

events, and necessitates robust forward planning techniques that consider forecasting

inaccuracies.

This work advocates risk management through optimal control theory, and proposes

several techniques to combine it with time-series forecasting. Focusing on applications

in foreign exchange (FX) and battery energy storage systems (BESS), the contributions

of this thesis are three-fold. First, a short-term risk management system for FX deal-

ers is described, in which the optimal risk-cost profiles are obtained through dynamic

control of the dealers’ positions on the spot market. This approach is formulated as

a stochastic model predictive control (SMPC) problem, incorporating elements which

model client flow, transaction cost, market impact, exchange rate volatility, and fluctu-

ations caused by macroeconomic announcements. Second, an evolutionary approach to

non-linear time-series forecasting is proposed. Using context-free grammars (CFG), a

template for combining different steps of feature extraction, model selection, and hyper-

parameter optimisation into a single forecasting program is described. Subsequently,

using grammatical evolution (GE), an evolutionary search is undertaken in the grammar

space to find the optimal forecaster for a specific time-series. Third, a novel measure

for evaluating forecasting models, as a part of the predictive model in finite horizon

optimal control applications, is proposed. Specifically, for the case of linear-quadratic

time-invariant systems, a closed-form equation for the increase in cost of a discrete-time

finite horizon controller (FHC) due to prediction error is derived, and it is demonstrated

that this measure is a better choice for model validation compared to standard error

measures.

Using both synthetic and historical data, the proposed techniques were validated and

benchmarked. Real-world data from Westpac Institutional Bank retail FX trades were
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used to test the proposed FX risk management and forecasting systems. It is shown that

while the best model for describing FX trades is a Gaussian distribution, the stochastic

risk management system exhibits better risk management on a risk-cost Pareto frontier

compared to rule-based hedging strategies, with up to 44.7% lower cost for the same

level of risk.

Similarly, for a real-world BESS application, data from TransGrid iDemand manage-

ment system was used. The results indicated that the GE optimised forecasting models

outperformed other prediction models by at least 9%, improving the overall peak shaving

capacity of the system to 57.6%.
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Chapter 1

Introduction

1.1 Aims and Motivation

Risk has been defined as “the effect of uncertainty on objectives” [1]. Any real-world

system is influenced by several internal and external factors, of which only a few can be

modelled accurately. The resulting uncertainty in any model causes the final outcome

to deviate from the desired objective. This deviation is often undesirable, and manifests

itself as monetary loss, material loss, or even loss of life.

Generally, risk management is implemented through one of the following techniques [2]:

• Risk avoidance: The easiest way to mitigate risk is to avoid it entirely. Unfortu-

nately, this is not always possible.

• Risk transfer: Risk can be transferred to others who are willing to accept it for a

premium. This is commonly done in the form of insurance.

• Risk reduction: By pre-planning and dynamically dealing with uncertainties, the

undesirable effects of risk can be reduced.

This thesis aims to develop a system to improve risk management of a foreign exchange

(FX) dealer. The FX market is a continuous, global and decentralised market where

different international currencies are traded. This market enables international firms

to easily convert currencies, which is required for trade and investment. Banks are an

important part of this market, brokering for small institutes and big corporations with

minimal costs, and thus facilitate international trade through their specialised services.

Since the early 1970s, the exchange rate between different major currencies has been

continuously floating [3]. Rate fluctuations, measured in percentage in points (pips)

and occurring in milliseconds, can cause profit and loss, and hence financial risk. While

speculative traders are attracted to this risk, corporations try to apply hedging strategies

1
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to manage it. An FX dealer is especially vulnerable, since he or she is not only affected

by the FX rate, but also has to consider the effect of cash flow from his or her clients.

Various financial derivatives and options have been created to reduce risk exposure of

financial bodies by transferring it to another party, at the cost of paying a premium. To

remain competitive in the already efficient foreign exchange market, banks need to not

only use these tools, but also employ other techniques.

A hedging strategy to manage an FX dealer’s risk requires three major components:

1. A model to forecast future FX market rates.

2. A model to forecast future client transactions.

3. A hedging algorithm to decide the optimal action based on the current state and

the forecasts, to minimise loss risk and transaction costs with regards to uncer-

tainty of the forecasts.

Crafting each of these components has some unique challenges:

1. The FX market is very efficient, nearly perfect, and unpredictable1 [3, 4]. Any pre-

diction more accurate than a random walk can be turned into a trading algorithm

to make profit [5], regardless of any trading with clients.

2. Many clients actively try to hide their trade intentions, in order to avoid arbitrage

or frontrunning [6]. This is typically performed by either breaking their trades

into many smaller trades, or trading with multiple dealers [7].

3. Risks can be reduced using risk management techniques, at the expense of its

premium cost. Alternatively, costs can be reduced by accepting a level of risk.

The FX market shares similarities with several other inventory/storage systems with

dynamic supply and demand. For example, the degree of uncertainty in a grid con-

nected battery energy storage system (BESS) with renewable energy generation has the

following similarities:

1. Renewable energy sources are intermittent, with generation affected by predictable

cycles (e.g., no photovoltaic generation at nights) as well as uncertain factors (e.g.,

weather conditions).

2. Energy consumption commonly does not follow a fixed schedule and is subject to

weather patterns, resident habits, or external events.

3. There are several conflicting objectives, including cost minimisation, peak shaving,

and improving the life of the energy storage system, that have to be considered by

the energy management system.

1Definitions of efficiency and perfectness for a market, and their impact on price predictability, are
explored in Section 2.2.1.
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Additionally, the requirements to operate in the FX market, which can be malicious

and ill-conditioned, are more stringent than many other domains. Hence, many of the

techniques developed or used in FX hedging can be re-purposed for other applications.

1.2 Approach and Contributions

In this thesis, model predictive control (MPC) [8] is used to deal with uncertainty. MPC

is a modern control theory technique, and employs a model to predict the future states of

a system over a finite time horizon. Based on this model, the controllable inputs of the

system are determined such that an objective cost function is minimised, and thus the

system is controlled towards the desirable outcome. Operating in discrete time, MPC

constantly updates the state of the system and re-optimises the controllable inputs based

on new observations. The combination of dynamic model updates with a future looking,

multi-period optimisation, enables MPC to pre-plan for the best outcome while adapting

to uncertainties arising from model misspecifications, prediction errors, or observation

noise. As a result, this methodology creates a powerful control algorithm for handling

risk.

This thesis divides the model predictive risk management into two steps: first, using

stochastic model predictive control (SMPC) methodology, a stochastic shrinking horizon

formulation of the underlying risky process is devised. Then, any non-trivial part of the

predictive model, specially the external inputs, are treated as time-series and forecast

using machine learning (ML) techniques. To control the system, an optimiser is applied

to the combined predictive model to find the optimal control actions. The structure of

this system is presented in Figure 1.1.

The main contributions of this work are as follows:

• A risk management framework for an FX dealer using SMPC [9, 10].

An FX dealer’s monetary losses are divided into two categories: transaction costs,

which are the costs incurred in trading; and currency risk, which is the profit or

loss due to fluctuations of the market rate. A stochastic model for the dealer is

proposed, incorporating the client flow, FX rate volatility, and market impact.

The model is carefully constructed to obtain a quadratic objective function, which

is efficiently solved using quadratic programming (QP). Minimising the objective

function results in an improved risk-cost Pareto frontier for the FX dealer compared

to rule-based hedging strategies.

Furthermore, using a scenario generation oracle and stochastic models, sensitivity

of the SMPC framework to modelling inaccuracies and forecast errors of the client

flow, FX volatility, and market impact coefficient is studied.
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Figure 1.1: Architecture of the proposed risk management system using stochastic
model predictive control and time-series forecasting.

We are not aware of any published previous work related to FX hedging using this

methodology.

• An automation framework for non-linear time-series forecasting [11, 12].

Although much research has been done on time-series forecasting, building a

real-world forecasting model often requires an expert who should go through the

time-consuming effort of trial-and-error to find the best combination of data pre-

processing, feature extraction, feature selection or dimensionality reduction, model

selection, model training, hyper-parameter tuning, and cross-validation. In this

work, grammatical evolution (GE) is used to automate this process. First, an ex-

tensible grammar is defined that allows valid combinations of the aforementioned

steps to be sequenced as a single forecasting program. In the second step, an evo-

lutionary optimisation technique is used to search through the grammar space to

find the optimal forecasting program.

This framework is a generalisation of our research on expert assisted time-series

forecasting, previously applied to electrical grids [13], stock market [14], and closed

loop heating systems [15].

• An error measure for time-series prediction in finite horizon control applications

[16].

It was observed that tuning forecasting models using an ordinary mean square

error (MSE) did not yield the optimal results with the MPC controller, and the

best results were obtained through selecting the model with backtesting, i.e., a full

simulation of the system interacting with the forecasting model and the controller.
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This was formally investigated by deriving a closed-form solution for the effects

of forecasting errors on the cost function of a receding horizon controller, for any

linear-quadratic (LQ) system. This deviation of cost from optimal, dubbed ∆J ,

was analysed on benchmark problems and was shown to be a better measure for

tuning time-series prediction models.

The problem of the FX dealer, which is an LQ system, was studied with this new

measure, and ∆J was used as the GE cost function for evolutionary forecaster

optimisations.

• The proposed FX hedging model and the associated forecasting techniques were

applied and tested on historic FX trade data provided by Westpac Institutional

Bank (Figure 1.2a).

• A similar management system, combining MPC and forecasting, was devised to

control a grid connected battery energy storage system (BESS) with local re-

newable energy generation (Figure 1.2b). The techniques were tested on historic

electricity consumption and renewable energy generation data from the TransGrid

iDemand installation, and the results were compared with the iDemand’s current

demand management methodology.

1.3 Thesis Structure

The structure of this thesis is as follows.

Chapter 2 covers the fundamentals of FX market, BESS, MPC, and GE. Several notions

and techniques, including FX market hierarchy, details of an MPC controller and its

applications, context-free grammars, and genetic algorithms (GA) are introduced in this

chapter.

In Chapter 3, a stochastic formulation modelling an FX dealer is proposed. The for-

mulation is then employed within an SMPC framework to offer a full risk management

strategy.

Chapter 4 studies a ML-based approach to time-series prediction. Prediction is formu-

lated as a regression task, and different pre-processing, feature selection, and dimension-

ality reduction techniques that can be used in this process are reviewed.

Chapter 5 describes a GE approach to time-series forecasting. A customisable template

structure, in form of a context-free grammar, is devised based on the forecasting models

explored in Chapter 4, and the optimal model for a data is obtained using evolutionary

search within this grammar.
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(b) The proposed renewable energy management system.

Figure 1.2: Applications of the proposed risk management architecture.

Chapter 6 studies the effects of forecasting inaccuracies on finite horizon optimal control

of LQ systems. A closed-form solution measuring this effect is extracted, and it is shown

that this error does not necessarily correlate with common time-series error measures,

such as mean square error (MSE).

Chapter 7 presents and discusses the results of the proposed forecasting and risk man-

agement techniques on synthetic and historic data in the FX market.

Chapter 8 applies the aforementioned methodologies to peak shaving and cost saving

in a grid-connected battery energy storage system, in combination with local renewable

energy generation. The proposed techniques are then tested on historic generation and

demand data.

Finally, in Chapter 9 the work is summarised, and future research directions are sug-

gested.
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Several appendices are also included. In Appendix A, details of the R package gramEvol

are explained. This package was created as a part of implementing Chapter 5. In

Appendix B, the error measure derived in Chapter 6 is verified for the hedging formu-

lation through analytical sensitivity testing. Appendix C expands the theory of energy

management system proposed in Chapter 8 to any battery storage system. In the end,

Appendix D proposes a cloud-based architecture for distributed implementation of the

energy management system.





Chapter 2

Background

2.1 Introduction

This chapter establishes the theoretical foundation on which the proposed risk manage-

ment methodology is based, including portfolio optimisation, model predictive control,

and grammatical evolution. In addition, the foreign exchange market and its properties,

as well as battery energy storage systems are discussed, and previous interdisciplinary

approaches towards applying control techniques to financial and energy applications are

briefly studied.

2.2 Foreign Exchange Market

The foreign exchange market, also known as the FX market and the Forex market, is

the largest financial market worldwide [17], with an average daily turnover of 5.3 trillion

US dollars worldwide [18], and 150 billion dollars in Australia1 [20]. Being a global

and decentralised market allows the participants to trade at working hours of different

dealers, and thus keep the market open from Monday 8:00 a.m. in Sydney, Australia, to

Friday 4:00 p.m. in New York, United States. This is effectively equal to five 24-hour

trading days from Sunday 10 p.m. to Friday 10 p.m. GMT.

In the FX market, prices are quoted for currency pairs, which are named using ISO 4217

three character naming system [3]. For example, the price of Australian dollar (AUD)

against United States dollar is denoted with AUDUSD, the price of Euro (EUR) against

New Zealand dollar (NZD) with EURNZD, and Pound Sterling (GBP) for Japanese Yen

1 In comparison, the worldwide gross domestic product (GDP) and Australian GDP in 2014 were
77.8 trillion dollars and 1.45 trillion dollars respectively [19].

9
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(JPY) with JPYGBP. These six major currencies (i.e., USD, EUR, JPY, GBP, AUD,

and NZD), constitute 82.9% of the market share [18]. Although commonly the mid

market price is quoted, every pair is associated with two prices: the bid (or the buy)

price, and the ask (or offer, or sell) price. The difference between the bid and ask price

is referred to as the bid-ask spread, and is the main source of trading costs.

Additionally, the prices are a function of the contract maturity dates. For example, a

forward transaction, which is to be settled on a future date, usually considers the effects

of the interest rate on the contract value compared to a spot contract, where the delivery

date is two business days from the trade date and is effectively “on the spot”.

Unlike other financial markets, the FX market is over-the-counter (OTC) and not ex-

change based, and the trading happens directly between the participating financial in-

stitutions. Major FX players include central banks and treasuries, international banks,

and major securities dealers [21]. The aforementioned entities often broker for smaller

participants, including:

• corporations, that wish to access the FX market to facilitate international trade,

• retail FX dealers, which trade foreign currencies with individual clients, and

• hedge fund institution, who engage in speculation to profit from price movements.

The data about these trades is often confidential, and the only publicly accessible data

regarding FX markets are the prices quoted by dealers. Even considering this informa-

tion, the literature is divided and inconclusive whether the private information about

dealers and their clients can be used to model FX rates [22–24].

2.2.1 FX Market Properties and Predictability

Due to the high number of participants and the large volume of trades, the FX market

is considered both near perfect and very efficient [21].

A market is called perfect when there is perfect competition among its participants [25].

Characteristics of a perfect market include:

• No barriers to entry or exit: Entry to the market is available through FX dealers

worldwide.

• Liquid market: There are enough participants to allow large trades.

• Market liquidity: Large trades do not cause drastic changes in prices.

• Perfect information: All participants have equal access to the information about

the assets being traded.

• No single participant has the market power to set prices.

• Governments or central banks do not commonly intervene in the market.



Chapter 2. Background 11

A market is considered efficient when market prices reflect all the available information

about the assets, and quickly adjust to the release of new information [26, 27].

The foremost consequence of these assumptions is a strong form of the efficient market

hypothesis (EMH) [28], that due to equal distribution of information, there is no way

to earn excess profit from the market. Closely related is the random walk hypothesis

[29], which states that as there is no extra information available about the direction of

market movements, the price evolutions follow a random walk process, and hence are

unpredictable.

Lack of a better model for forecasting, compared to a random walk, has been the subject

of various studies [30–32]. In a few cases, it has been shown that while some forecast-

ing techniques could have successfully predicted the market in a certain period, their

predictive properties are lost with time [33, 34]. This phenomenon, dubbed the adap-

tive market hypothesis [35], is a direct result of the EMH: with the availability of new

information, including the forecasting technique methodology, the prices will adapt to

include their own forecasts, and thus become unpredictable [36].

Although there are empirical observations that the EMH does not always hold for the

FX market [37, 38], trading with forecasts based on these inefficiencies is not profitable

[39, 40]. Furthermore, some market participants engage in criminal activities to obtain

advantageous information over others, such as insider trading and using yet to be released

information, participants conspiring together to change prices to their own profit, and

frontrunning, as in the cases of 2010 Australian FX insider trading [41] and the 2013

Forex Scandal [42]. These are in addition to the common practice of exploiting arbitrage

opportunities in the FX market [43].

Hence, not only have financial institutions become sensitive about publicising their trad-

ing strategies, they actively try to hide their intents by splitting their trade volume over

time [6, 44].

2.2.2 FX Risk Management and Hedging

Exchange rates market movements can cause monetary gains and loses to FX market

participants. Due to their unpredictable nature, these fluctuations pose a financial risk,

better known as the FX risk, currency risk, or FX exposure [45]. The FX risk exposure

can have enormous impact not only on the FX dealers, but also companies who trade

internationally and thus the global economy. Studies have shown that even simple FX

risk management protocols, such as limiting the foreign currencies held, can improve



Chapter 2. Background 12

profitability [46]. As a result, managing the FX risk, also known as FX hedging, is

strongly encouraged by governmental bodies [47, 48].

As noted in the introduction chapter, risk management practices in any field can be

divided into three groups. In the context of FX exposure risk, these practices include

[45, 49]:

• Risk avoidance: FX risk can be avoided by only accepting home currency payments

or working exclusively with foreign currency in international transactions. This

practice may not be possible in all contexts.

• Risk reduction: An international company can either

– add currency surcharges for foreign trades to offset price changes,

– limit the amount of the foreign currency held, or

– exchange foreign currency for home currency on the same day to avoid long

term exposure to price volatility.
These techniques impose additional costs, reducing international competitiveness

and profitability.

• Risk transfer: Transferring currency risk is possible through FX derivatives [3, 50],

such as:

– Forward and futures contracts: Forward and futures contracts allow delivery

of foreign currency, at a determined price, at a future date.

– Foreign currency swap: Swap contracts allow two parties (such as multi-

national companies) to swap their cash flow, loans, or credits, in different

currencies. Technically, this is equal to a spot transaction (to exchange the

required foreign cash) and a forward transaction (to offset the spot contract

exchange).

– Currency options: An option allows its buyer to have the option of buying

(or selling) a currency sometime in future at a set price, from the writer (i.e.,

the option seller). Using this method, the maximum loss is limited to the

premium paid for the option. Different types of options are implemented,

including call options, which allow their buyer to choose to buy a currency

at a strike price (the pre-set designated price), and put options, which allow

their buyer to choose to sell a currency at the strike price, or not.

To use derivatives for hedging, an appropriate derivative has to be selected such that

changes in its value would offset the changes in the original inventory or investment [51].

For example, a put option’s price rises when the price of its underlying asset falls. This

type of hedging is widely practised in the FX market [50], and had a 337 billion dollars

daily turnover in 2013 [18].

Selecting the optimal hedging ratio, i.e., the size ratio of a hedging contract to the

original inventory, requires comparing the derivative’s premium against an estimate of
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future price volatility [52]. Considering the uncertainty of the market prices, as well as

the dealer’s FX inventory, the hedging ratio should be adjusted dynamically by buying

new derivatives or liquidating the current contracts, based on price updates and the

inventory sizes change [53]. An improved approach is to consider future market changes

over a longer horizon. This can be accomplished by using stochastic models such as the

Garman–Kohlhagen model for pricing FX options [54], as well as information about the

expected future cash flow [55, 56].

An alternative to using derivatives for hedging is to directly build one using a hedging

portfolio. One can select and hold a collection of assets, such that their market value

would follow the changes in the target asset. This technique is mainly used to hedge when

derivatives are not available, or the derivative itself is being hedged by the option writer.

Using portfolios for hedging the risk of exchange traded assets has been thoroughly

explored in the literature [57–59]. However, to the best of our knowledge, FX risk

hedging using portfolios has been first formally introduced in a previous work by this

author [9].

2.3 Portfolio Optimisation and Foreign Exchange

A portfolio is a collection of assets, including stocks, bonds, and cash, held by an investor.

The concept of holding a portfolio instead of investing one’s wealth on a single asset is

historically well-known, and started as a type of risk diversification; although, until

the second half of the 20th century, choosing a portfolio was based on the investors’

experience [60]. In 1952, Harry Markowitz published his seminal work on “Portfolio

Selection”. Markowitz proposed a quantitative way to model the return and risk of a

portfolio, and formulated a mean-variance optimisation to select the optimal portfolio

for a return-risk trade-off [61]. This technique, later known as the modern portfolio

theory, revolutionised the quantitative finance [62].

2.3.1 Modern Portfolio Theory

Modern (or Markowitz) portfolio theory (MPT) deals with quantitative evaluation of

return and risk. The fundamental concept of MPT is that the risk of a portfolio of assets

is less than the risk of individual assets [61].

In MPT, selecting a portfolio is based on assigning a weight, wi, to each asset i in the

market, to determine the share of asset i in the portfolio. It is commonly assumed that
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the sum of weights is normalised to one, or

∑
wi = 1.

MPT assumes the price of an asset can be modelled by a random walk process; therefore,

the return on the asset, i.e., profit or loss due to the change of its price, can be modelled

using

r ∼ N (µ, σ2)

where r is the return on the asset, and N (µ, σ) is a Gaussian distribution with mean µ

and standard deviation σ.

Consequently, the expected return of the portfolio can be obtained using

E[
∑

wiri] =
∑

wiE[ri] =
∑

wiµi.

The risk of the portfolio is defined by its volatility, as its variance from the expected

return:

Var[
∑

wiri] =
∑
i

w2
i σ

2
i +

∑
i

∑
j

wiwjσiσjρij

Here, ρij is the correlation between ri and rj .

These equations can be more concisely expressed in vector form. Assuming

w = [w1 w2 · · · wN ]T, and

r = [r1 r2 · · · rN ]T,

the expected return is

E[wTr] = wTE[r] = wTµ,

and the volatility simplifies to

Var[wTr] = wTVar[r]w = wTΣw

where µ is the vector of the expected returns, and Σ is the covariance matrix of returns.

MPT suggests maximising the expected returns while minimising the volatility. These

two objectives are combined and parameterised by λ ≥ 0, the risk preference factor, into
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mean-variance optimisation formalised by

argmin
w

wTΣw − λwTµ.

The solutions of this optimisation form a Pareto frontier, also known as the efficient

frontier. The investor can select between the minimum risk combination of assets using

λ = 0, or maximise the expected returns by λ→∞.

2.3.2 Extensions to Modern Portfolio Theory

Since the introduction of MPT formulation, several extensions have been proposed to

improve its practical results:

• Additional constraints: MPT formulation allows short selling, i.e., selling an asset

without having it, using wi < 0. In some markets, short selling is not allowed. This

restriction is implemented by adding a constraint on weights. Similar constraints

can be implemented, limiting the weight of certain assets in a portfolio [62].

• Additional terms and costs: In the real-world, investors have to pay a transaction

fee to their brokers for every trade, or may be required to pay taxes on their profits

[63]. MPT formulation can be improved by adding a transaction cost term, which

specially becomes important when the assets are not liquid. This term is also

useful for improving portfolio rebalancing (i.e., selling previous assets to buy new

ones) [64].

• Alternative measures of risk: MPT assumes that the returns follow a Gaussian

distribution. In practice, the distribution of returns for many stocks are fat-tailed

and skewed. Variance, which is a symmetric measure, penalises the excess returns

and losses alike, and is also less sensitive to the extreme fat-tail of non-Gaussian

distributions which could incur very high losses [65].

As a result, measures can be used to be sensitive to the distribution tails, such as

– value at risk (VaR), defined by

VaRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α},

which measures the α-percentile of loss distribution, i.e., the smallest thresh-

old l, such that the probability of losses L being equal to or exceeding this

threshold, is equal to or greater than α [66],

– the expected shortfall (ES), also known as conditional value at risk (CVaR),

which measures the expected losses strictly exceeding VaR [66], and
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– lower partial moments, expressed by

LPMn = max
(
0,wT (r − τ )

)n
,

which can be used to penalise the returns below threshold τ , parameterised

with order n [67].

• Alternative objectives: If the final goal of the portfolio is to track a certain deriva-

tive, for example an option, the objective of the optimisation can be changed to

absolute deviation of wealth, i.e.,

argmin
w
|wTp− t|,

or shortfall of wealth from the desired value, formalised by

argmin
w

max(wTp− t, 0)

where p is the vector of asset prices, and t is the tracking target [58].

2.3.3 Multi-period Portfolio Optimisation

MPT formulation is a single-period optimisation, and only considers the current state of

the market in its formulation; however, in reality, portfolio managers need to dynamically

and actively manage their portfolio.

Historically, techniques such as amortisation (i.e., breaking a single large transaction

to multiple smaller ones over time) was used to extend the results of the single-stage

optimisation to multiple periods [68]. Nevertheless, different studies have proven that

using a native multi-period optimisation is more advantageous and offers superior results

over amortised single-stage optimisations in asset allocation and portfolio management

problems [69, 70].

Different methodologies have been proposed to optimise multi-period portfolios [71].

Optimal asset selection using computational intelligence techniques, such as evolution-

ary algorithms [72, 73] and particle swarm optimisation (PSO) [74, 75], is an example

of such methodologies. These algorithms can quickly approximate solutions to com-

plex stochastic programming problems with long horizons, while handling non-convex

formulations caused by inclusion of additional constraints and cost terms [76].

It has been shown, however, that using modern control theory techniques, these multi-

period portfolio optimisations can be reduced to convex form and solved exactly and

efficiently [77]. This class of techniques will be discussed in Section 2.5.2.
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2.3.4 FX Inventory as a Portfolio

An FX dealer keeps an inventory of different foreign currencies to trade with differ-

ent counterparties, i.e., both the participants of the inter-bank market, and his or her

corporate, retail, or institutional clients.

From a dealer’s point of view, this inventory is a portfolio of assets. Each FX trade is

equal to buying a certain currency and selling another. For example, a dealer selling

AUDUSD to a client is actually taking a short position (i.e., selling) on AUD and long

position (i.e., buying) on USD. The dealer has to eventually close all of his or her

positions by converting all foreign currency to his or her home currency, i.e., settle by

buying back short positions from the market, and selling long positions to the market.

Due to lack of transparency, studies on the FX dealers’ portfolio management practices

are more scarce compared to market makers in other markets [78]. One exception is the

work by Lyons [79], who analysed an FX dealer with daily volume well over 1 billion

dollars over a week. It was noted that:

• Half-life of the dealer’s positions is only 10 minutes on average, and is twice as

long in a high volatility market compared to low volatility conditions.

• Open positions rarely rose above 40 million dollars, well below the typical 100–150

million dollars intraday position limits imposed on senior dealers at major banks.

• Before the end of every day, the dealer closed all of his positions. Lyons suggested

two rationales:

1. Carrying an open position requires monitoring it through the evening.

2. A dealer’s comparative advantage in speculation is when he is seated at his

desk observing order flows and quotes.

Lyons argued that these signs show aggressive inventory management and active specu-

lation, considering the dealer’s $100,000 profit per day, compared to the average $10,000

for a similar equity dealer. In any case, no insights on the inventory management tech-

niques were given.

Practices of FX inventory management of the Bank of Canada were analysed in [53].

The Bank of Canada “selectively” hedged its spot FX risk in derivatives market using

FX forwards by varying its hedge ratio, i.e., the ratio of exposure to forwards risk versus

spots risk, in order to take advantage of private information while adjusting to the

market volatility and premium involved in hedging. Appreciation of FX risk premia in

the context of hedging, based on the variation in market prices, is separately confirmed

by Tien [80].
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2.3.5 FX Price and Volatility Modelling

Currency prices can be modelled by studying the main driving force of the FX market.

As in any other market, the supply and demand of foreign currency is the main driver of

the prices, which itself is driven by international trade [81]. Several factors are used as

proxies to determine a country’s demand for imports and supply of exports, including

mainly macroeconomic factors, such as GDP, trade deficit, and industrial production

statistics [82]. Any announcements releasing information about these factors can cause

jumps in the FX prices [83, 84], as the market players try to adapt their prices to this

new information [85].

In addition to these announcement based movements, due to the high number of influ-

encing factors and market players as described in the previous sections, ordinary price

fluctuations follow a geometric Brownian motion mode [86]. Consequently, a jump-

diffusion model [84] is commonly used to model FX rate:

dp(t) = µ(t)dt+ σ(t)dW (t) + k(t)dq(t)

Here, p(t) is the logarithm of FX rate, and t denotes time. The components of this

differential equation are:

• Drift, which models the risk free interest rate using the drift coefficient µ.

• Diffusion, modelling the ordinary prices movements using the Wiener process (i.e.,

the standard Brownian motion) W (t), and the diffusion coefficient (i.e., the volatil-

ity) σ.

• Jumps, which account for reactions to news, including anticipated macroeconomic

news announcements, or unanticipated releases of information. k measures the

jumps’ intensity and q(t) is a counting process.

Empirical studies have been undertaken to quantify FX rate volatility, transaction costs

and the effect of news announcements in FX market. McGroartya et al. [87] confirmed

the results of many previous studies regarding the existence of intra-day patterns in the

FX spot market. While the FX market is a true global market, liquidity and dealer

participation depends on the geographical distribution of the currency being traded. As

a result, volatility and bid-ask spreads exhibit M-shaped and U-shaped daily patterns

respectively, as the markets go through the daily cycle of open, trade, and close. Evans

[84] showed that jumps accompanying the anticipated events are prevalent and signifi-

cant. Furthermore, approximately one third of jumps are caused by US macroeconomic

news announcements, and the size of jumps is correlated with the informational surprise

of the announcement. Scholtus et al. [88] found that the bid-ask spread widens and
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volatility increases in the period around the announcements, which also coincides with

a decrease in market depth.

2.3.6 FX Cost Model and Market Impact

A widely accepted method for measuring the transaction cost in the FX market is the

bid-ask spread [89], as the cost of a transaction only depends on the friction between

buying a currency from the market and selling it back. The transaction cost for an order

size x can be modelled through the cost function

fcost(x) = s 1
2
|x|, (2.2)

where s 1
2

is the half spread (i.e., bid-ask spread divided by two).

Several bid-ask spread models are proposed for exchange-based equity markets, mainly

by major financial institutions (e.g., Northfield model [90], Bloomberg model, JP Morgan

model, and Deutsche Bank models [91]). The main concept behind these models is

measuring the market impact caused by an order.

In any market, the number of participants currently willing to buy or sell an asset at

the current bid and ask price is limited. If a large order is executed in this market, it

effectively absorbs all market liquidity at that price. The rest of participants are only

willing to trade at a higher price, leading to a price rise (or in case of selling, price fall),

and consequently the gap between the bid and ask price widens. This effect is often

temporary, as new participants may enter to profit from the recently risen (or fallen)

price, and therefore rebalancing the spread. In some cases, the price movements might

be permanent. This effect of the order size on market price and spread, is known as the

market impact [92]. To avoid this impact, and therefore reduce trading costs, traders

commonly amortise their volume, i.e., gradually buy or sell over time [91, 92].

The equity spread models capture the market impact as a function of the order size,

current and historical prices, volatility, previous bid-ask spreads, and expected daily

and period trade volume [90, 91]. From the aforementioned parameters, the daily or

period trade volume is usually not publicly accessible in the FX market. Additionally,

considering that the FX market is OTC and is not anonymous, the quoted prices in

the foreign exchange market also depend on the expectations of the provider from its

counterparty: dealers are known to “skew” spreads favourable to their current positions

and vary prices based on their trade history with each counterparty [93]. Other evidences

also show that the relation between the volatility and the spreads are due to the number

of trades [84, 88], and both follow a certain daily cycle [87].
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2.4 Battery Energy Storage System

A battery energy storage system (BESS) is a device which stores electrical energy in

one or more electrochemical cells [94]. Batteries have several advantages over other

energy storage systems, such as pumped hydroelectric or compressed air energy storage

systems: batteries respond rapidly to load changes, and have high energy efficiency and

low standby losses. The main disadvantages of batteries are high manufacturing costs

and shorter life spans [95].

Historically, using battery storage with the electrical grid was debated as its only prac-

tical case was to improve the power quality (i.e., voltage depressions and power inter-

ruptions) [96]. With wide scale adoption of renewable energy systems (RES), including

wind and solar power, the landscape of energy generation and consumption has changed,

resulting in new interests towards BESS [97]: wind and solar RES are intermittent en-

ergy sources, with generation affected by predictable cycles (e.g., no solar generation

at nights) as well as uncertain environmental factors (e.g., weather conditions). Using

BESS allows the generated energy to be stored and used on-demand [98].

It has been shown that while RES are good at reducing dependence on the electrical

grid, going off-grid (i.e., completely disconnecting from the grid) is not an economical

choice, and the best strategy is staying connected while minimising the demand from

the grid [99].

Different aspects of using BESS, in combination with RES, smart grids, and even as

off-grid, have been widely studied. The approaches commonly use stochastic informa-

tion management schemes to model the uncertainty in generation, consumption, and

electricity pricing [100]. Examples include determining the optimal battery size with

regards to the uncertainty of PV solar generation and consumer power requirements,

against its economic benefits [101–103].

2.4.1 Batteries in Grid Connected Systems

In grid connected systems, BESS can be used to reduce grid congestion during peak

hours [104]. Grid demand, i.e., consumption minus renewable generation, is not evenly

distributed during the day. Consumption peaks in the evening, which coincides with

the nightly decline in photovoltaic (PV) solar generation. Considering that RES have

a stochastic nature and are not controllable, congestion management has been imple-

mented through two different approaches:

• Load management, where the consumption is shifted to off-peak hours by schedul-

ing the load [105, 106].
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• BESS Scheduling: A BESS can be charged during off-peak hours, filling the de-

mand valleys, and then discharged to shave the peaks, resulting in a flat demand

profile [107].

The first approach is intrusive to the consumers’ habits, and requires significant in-

vestment for automating load management through advanced metering infrastructure

(AMI) [108] and smart appliances [109]. The second approach only requires connecting

the battery to the grid through an inverter [110], and the rest is handled by scheduling

algorithm software.

If the demand profile is known in advance, the optimal peak shaving schedule can be

derived analytically [111]. As the demand is a stochastic process, dynamic scheduling,

i.e., constantly re-optimising the energy dispatch schedule based on recent observations

and model updates, is a more realistic approach for real-world implementations [112].

Different optimisation schemes have been proposed, including dynamic programming

[113], mixed integer linear programming [114], chance constrained programming [115],

or even fuzzy approaches [116, 117]. It has been shown that utilising forecasts, even

using näıve techniques, can significantly improve peak shaving [118, 119].

2.5 Model Predictive Control

Model predictive control (MPC), also known as finite horizon control (FHC), is a process

control technique that uses multi-period optimisation over a finite horizon [8].

The idea of MPC [120] (Figure 2.1) can be summarised as follows:

• A model is available to predict the future behaviour of a system towards its inputs,

over a finite time horizon. The predictive model is typically represented using a

linear state-space model.

• By minimising a cost function, which incorporates the predictive model, the opti-

mal input sequence to the system over the finite horizon can be found. Commonly,

the cost function is of quadratic form.

• The system is controlled in discrete time using a digital computer; hence, after ap-

plying the first set of inputs, the model can be updated based on new observations

to include unaccounted changes, due to external disturbances, observation noise,

and/or predictive model inaccuracies.

• At the next time step, optimisation is repeated for the new horizon using the

updated model.

• The sequence of

1. apply inputs for current time-step
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2. update the model

3. optimise cost function
is repeated until the process ends.

The model update in MPC acts as a feedback pathway to the controller, and thus this

technique exhibits a robustness typical of closed-loop control systems [8]. The downside

of using MPC is the computational power required for re-optimising the cost function

at each time-step.

Selecting the horizon at each new time-step takes two main forms:

• Receding horizon: The horizon is shifted one time-step forward, and the same

horizon length is kept. This sliding technique is known as receding horizon control

(RHC) (Figure 2.2a).

• Shrinking horizon: If the optimisation objective has a strict deadline, the new

horizon begins one time-step forward while the same termination time is held.

This causes the length of the horizon to shrink as time advances (Figure 2.2b).

Consequently, this technique is referred to as shrinking horizon control (SHC)

[121].

MPC methodology is well studied [8, 122, 123] and widely adopted in different engineer-

ing applications and industries [124]. Additionally, since the underlying idea of using a

predictive model for determining the optimal future actions is inherent to many real-

world problems, a similar methodology is studied under different names for inventory

management [125] and dynamic scheduling [126] problems.

Apply 𝑢∗ for 
current 

time-step 𝑡

System

Update
system model

System Model & States

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)

Cost Function

𝐽 = ∑𝑄𝑖𝑥
2 𝑖 + 𝑃𝑖𝑢

2 𝑖

Optimise 𝑢∗ = argmin 𝐽

Subject to system constraints

Over time horizon 𝑡 → 𝑁

Feedback

MPC Controller

Control

Figure 2.1: Architecture of an MPC controller. The system has a linear state-space
representation, with states x and inputs u. The cost function is quadratic and is
parameterised by Pt and Qt, where t denotes time. The optimiser finds the optimal
control actions u∗ over a finite horizon t to N , but only u∗(t) for the current time-step
t is applied, and the rest are discarded. At the next time-step, the system model is
updated based on new observations, and the optimisation is repeated for the new time

horizon.
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Figure 2.2: Receding versus shrinking horizon control. In receding horizon control,
the optimisation horizons are shifted forward at each time-step t. In shrinking horizon
control, the start of the horizon moves forwards, but its termination time does not

change, and as a result the horizon shrinks.

2.5.1 Stochastic MPC

An important extension to MPC is stochastic model predictive control (SMPC). Nor-

mally, MPC problems are studied for linear time-invariant (LTI) systems; extending

this to uncertain systems, SMPC introduces random variables into the optimisation,

and is more versatile in cases where a deterministic model of the underlying system is

not available. For example, controlling a linear parameter varying (LPV) system, where

the parameters of the linear system have a stochastic nature, can be posed as a SMPC

problem [127].

Ordinarily, such a problem requires solving a multi-stage stochastic dynamic program-

ming, and it quickly becomes infeasible to solve as the horizon length grows. Recent

literature has proposed sub-optimal techniques for solving this problem: by discretising
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Figure 2.3: Flowchart of stochastic shrinking horizon MPC, operational during time-
steps t ∈ [0, 1, · · · , N ]. Compared to an ordinary MPC, stochastic MPC includes an

additional scenario generation step.

the stochastic variable evolution to a finite number of scenarios, the problem is approx-

imated by a random convex program [128]. For linear-quadratic systems, this technique

which is alternatively referred to as random model predictive control (RMPC) [129] or

scenario-based model predictive control (SCMPC) [130], translates to a quadratic pro-

gramming (QP) formulation, and is solved efficiently using numeric solvers. SCMPC has

been shown to be stable [131], with analytic bounds on the number of scenarios required

to obtain any level of robustness [132, 133]. Moreover, the computational complexity of

this method scales quadratically with the length of control horizon and does not depend

on the uncertainty/disturbance dimensions [134]. Flowchart of this algorithm is shown

in Figure 2.3.

Scenarios allow a versatile range of models to be adopted in simulations, compared to

the limited nature of analytical formulations. Hence, scenario generation techniques

have been widely studied [135], especially for use in Monte Carlo techniques [136], and

are applied to different aspects of financial risk management [137, 138].

2.5.2 MPC Applications in Finance

There has been a growing interest in using stochastic MPC in many financial applica-

tions, as this technique is a natural solution for multi-period stochastic systems with

uncertain models.

Portfolio optimisation and asset allocation is one such application. A receding horizon

approach for portfolio selection, under the assumption of zero transaction cost, has been

formulated by Herzog et al. [139]. Topaloglou et al. [140] included currency forwards in an

international stocks portfolio to combine hedging and portfolio allocation using dynamic

stochastic programming. Primbs [141] considered both problems of wealth maximisation

and index tracking for a portfolio with different constraints using SRHC. Calafiore [77]

used a RHC strategy for portfolio allocation. By employing affine policies he managed

to convert the stochastic programming problem to a convex quadratic programming
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problem. In further publications, this method was enhanced with transaction costs

[142] and asymmetric measures of risk [67].

Options hedging is another area where RHC approaches have been extensively used.

Gondzio et al. [143] extended the simple delta-vega hedging approach for hedging con-

tingent claims using stochastic optimisation. Hedging a basket of European call options

using receding horizon techniques has been studied both with a mean-variance model

approach [57] and a scenario based approach [144]. In their other work, Meindl and

Primbs [145] incorporated a utility function as a part of their optimisation function for

option hedging. Recent works by Bemporad et al. [58, 146, 147] have shown that hedg-

ing options using stochastic model predictive control can perform extremely well, with

performance approaching that of prescient hedging models for European style options.

Other applications of dynamic stochastic programming to FX cash flow risk management

include the work by Volosov et al. [55], where spot and forward rates random behaviour

were predicted by a vector error correction model and used in a two-stage stochastic

programming model. This technique, however, assumed the foreign cash flow to be

deterministic.

2.5.3 MPC for Optimal BESS Scheduling

As noted before, dynamic scheduling is another term for model predictive control (MPC)

methodology. Hence, MPC and SMPC have been mentioned explicitly and utilised

extensively in the BESS optimal scheduling problem, as well as many other energy

system applications. Approaches mainly differ in assumptions, system configuration,

and objectives. Variations include different stochastic models for wind only, solar only, or

hybrid combinations of renewable energies [148], utilising solar radiation forecasts versus

näıve PV models [149], modelling consumption behaviour through Markov chains [150],

considering lossy batteries [151], including thermal energy storage (TES) in addition to

batteries [152], formulating the problem through scenario-based stochastic programming

SMPC [153], or utilising random stochastic MPC (RMPC) implementations [154].

2.6 Grammatical Evolution

Grammatical evolution (GE) [155] is an evolutionary optimisation technique for gener-

ating complete programs, optimised towards performing a certain task. GE is formed

by combining the ideas from context-free grammars (CFG) [156] and genetic algorithms

(GA) [157].
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Figure 2.4: The evolutionary optimisation process and associated operators.

GE is an alternative to genetic programming (GP) [158] for generating programs via

evolution. While GP directly operates on the actual program’s tree structure, GE applies

evolutionary operators on binary strings which are subsequently converted to the final

program. GP normally requires a custom search strategy to generate correct programs,

whereas GE can utilise an unconstrained evolutionary search, relying on the grammar

to generate correct programs.

Customisability of the grammar in GE allows quick and easy integration of domain-

specific knowledge into an optimisation problem. GE has been successfully applied to

many research areas in science and engineering, including computational finance and

smart grid forecasting. A survey by McKay et al. [159] discusses the range of GE

research and applications.

In this section, the components of GE, i.e., CFG and GA, are studied. Consequently,

the architecture of a GE optimiser is presented and discussed.

2.6.1 Genetic Algorithm

Genetic algorithm (GA) [157] is an optimisation algorithm which operates on a popula-

tion of chromosomes, performing evolutionary operations including selection, crossover,

and mutation as illustrated in Figure 2.4. Inspired by biological evolution, GA has been

successfully used in applications with complex fitness landscapes and multiple local op-

timas [160].

In canonical GA, a chromosome is represented by a binary string. Normally, modern

GA implementations do not directly operate on binary values; instead, bits are grouped

into n-bit values creating a codon, each of which is used as a parameter in the optimi-

sation objective. If the problem is made of multiple building blocks, codons related to
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010100010110    .   ..011100111001 Binary string

Codons 
(4-bit)

Genes
 (3 codons per gene)

0101 0001 0110 ... 0111 0011 1001

5    1    6 ... 7     3     9

Figure 2.5: Chromosome representations in GA. The underlying data is stored as a
binary string, while it is logically divided to codons and genes.

each block are grouped together as a gene (Figure 2.5). This arrangement is a logical

presentation of data and does not affect the low level representation of the chromosome.

The initial population is created from randomly generated chromosomes, each represent-

ing a solution to the formalised problem. The chromosomes are then evaluated based on

a given cost function, φ(·). The objective is to minimise the cost function, or maximise

the fitness of the chromosome. The better scoring chromosomes are deemed to be more

desirable, and hence their data is retained. Conversely, the low scoring chromosomes are

discarded from the population and replaced with new chromosomes to form a new gen-

eration. Elitism favours the highest ranking chromosomes and directly forwards them

to the new generation’s population. Others are created by a recombination of selected

chromosomes.

The selection operator is applied to select chromosomes with a likelihood proportional

to their fitness score. Different selection schemes exist, including roulette wheel selection

and tournament selection. In roulette wheel selection, the probability of selecting the ith

chromosome, denoted with bi, follows a Bernoulli distribution by p = φ(bi)/
n∑
j=0

φ(bj).

The crossover operator is applied on two randomly selected chromosomes. In canonical

GA, a single-point crossover is used, where a position in the binary string is chosen at

random and the opposing string sections of the two parents are exchanged, creating two

new offsprings.

The mutation operator randomly flips single bits on a specific chromosome with a pre-

defined mutation probability. Mutation is necessary to maintain genetic diversity from

one generation of a population to the next.

The evolutionary process is repeated until a given termination criterion is satisfied.

This criterion may include reaching a pre-determined number of generations, finding a

chromosome with fitness better than a desirable minimum, or a lack of improvement in

the population fitness despite evolution.

Since its introduction in 1975 [161], other techniques and evolutionary algorithms have

been proposed to extend the canonical GA. For example, to facilitate complex data
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representation, GA is often implemented with integer or floating point codons, and

evolutionary operators are applied directly to the codons instead of the underlying bit

string. This method also takes advantage of the architecture of modern processors to

speed-up computation. For a review of other GA techniques, readers are referred to a

survey by Srinivas and Patnaik [162].

2.6.2 Context-free Grammars

Grammar is a set of rules that describes the syntax of sentences and expressions in a

language. While grammar was originally invented for studying natural languages, they

are extensively used in computer science for describing programming languages.

A context-free grammar (CFG) is a mechanism to generate patterns and strings us-

ing hierarchically organised production rules [163]. A CFG is described by the tuple

(T ,N ,R,S), where T is a set of terminal symbols, N is a set of non-terminal symbols

with N ∩T = ∅, and S ∈ N is the start symbol. A non-terminal symbol is one that can

be replaced by other non-terminal and/or terminal symbols, while terminal symbols are

literals. N and T form the lexical elements used in R, the production rules of a CFG.

R is defined as a set of relations (also referred to as production rules) in the form of

x→ α with x ∈ N , α ∈ (N ∪ T )∗, where ∗ is the Kleene star. If the grammar rules are

defined as R = {x→ xa, x→ ax}, a is a terminal symbol since no rule exists to change

it.

CFGs are commonly described using Backus–Naur form (BNF) [156]. To differentiate

between terminal and non-terminal symbols in the BNF, the non-terminal symbols are

enclosed within angle brackets (i.e., ‘<’ and ‘>’). Furthermore, in each production rule,

possible replacement sequences are separated by a vertical bar (i.e., ‘|’).

An example of grammar in BNF notation is given in Table 2.1. In this grammar, the start

symbol (S) is <expr>. Each of the non-terminal symbols defined in N , <expr>, <op>,

<coef> and <var>, can be replaced by an appropriate terminal as specified in R. For

example, <expr> can either expand to (<expr>)<op>(<expr>) or <coef>×<var>,

and <op> can be replaced by one of the +, -, ×, or ÷ operators.

2.6.3 Genotype to Phenotype Mapping using Grammar Rules

To combine grammars with GA optimisation, a way is required to convert the numeric

chromosome data, through the grammar, to a program. Notice that by a program, we re-

fer to any sequence of instructions that perform a specific task. This ranges from a single
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expression (e.g., sin(x)), to several statements with function declarations, assignments,

and control flow.

In evolutionary biology, chromosome data is referred to as the genotype, while an or-

ganism’s observable characteristics are called the phenotype. Biological organisms use

complicated methods to map their genotype to phenotype. Advanced evolutionary al-

gorithms, such as GE, use a similar notion.

In GE, genotype to phenotype mapping is performed according to the production rules

of a CFG selected using the chromosome’s codon values. The usual mapping function

used is the mod rule defined as

(codon integer value) mod (number of rules for the current non-terminal),

where mod is the modulus operator. Mapping begins from the start symbol S, and

continues by replacing each non-terminal element (defined in set N ), according to the

production ruleR chosen by the mapping function. At each step, the resulting expression

can contain terminal (defined in set T ) or non-terminal elements. The mapping continues

until all non-terminal elements are replaced with terminals.

If the chromosome is too short, it may run out of codons with non-terminal elements still

remaining. A common approach is to wrap the chromosome and continue the mapping

process by reusing the codons from the beginning. However, in cyclic grammars, infinite

recursion may occur. This is addressed by introducing a limit on the number of allowed

chromosome wrappings and assigning a poor fitness score to the chromosome if the limit

is reached.

In Table 2.2, using this technique, an example of program generation is shown. For

this purpose, the grammar of Table 2.1 is used. Consider the chromosome with a 16-bit

Table 2.1: An example grammar in BNF notation. The three first lines define the
non-terminal (N ), terminal (T ), and start (S) symbol sets respectively. The rest of the

lines define the production rules (R).

N = {expr, op, coef , var}
T = {÷, ×, +, -, v1, v2, c1, c2, (, )}
S = <expr>

R = Production rules:

〈expr〉 ::= (〈expr〉)〈op〉(〈expr〉) | 〈coef 〉×〈var〉 (1.a) (1.b)

〈op〉 ::= + | - | × | ÷ (2.a), (2.b), (2.c), (2.d)

〈coef 〉 ::= c1 | c2 (3.a), (3.b)

〈var〉 ::= v1 | v2 (4.a), (4.b)
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Table 2.2: Production of an expression using the grammar of Table 2.1. The process
starts from the start symbol S, and continues by replacing the first symbol present in
N with another. This later symbol is selected from the production rules R according
to the value of the current codon. In 8 steps, all of non-terminal symbols are replaced

and the string {2, 1, 0, 0, 3, 3, 3, 1} is mapped to (c1 × v1) ÷ (c2 × v2).

Step Codon mod operator Rule Current element state

0 S <expr>

1 2 2 mod 2 0 (1.a) (<expr>)<op>(<expr>)
2 1 1 mod 2 1 (1.b) (<coef>×<var>)<op>(<expr>)
3 0 0 mod 2 0 (3.a) (c1 ×<var>)<op>(<expr>)
4 0 0 mod 2 0 (4.a) (c1 × v1)<op>(<expr>)
5 3 3 mod 4 3 (2.d) (c1 × v1) ÷ (<expr>)
6 3 3 mod 2 1 (1.b) (c1 × v1) ÷ (<coef>×<var>)
7 3 3 mod 2 1 (3.a) (c1 × v1) ÷ (c2 ×<var>)
8 1 1 mod 2 1 (4.a) (c1 × v1) ÷ (c2 × v2)

genotype, {2, 1, 0, 0, 3, 3, 3, 1}, where the integer numbers represent 2-bit codon values.

There are two production rules to choose from for the start symbol S = <expr>: (1.a)

and (1.b). The mod operation on the current codon becomes 2 mod 2 = 0, hence rule

(1.a) is chosen, and the expression transforms to (<expr>)<op>(<expr>). The succes-

sive application of rules continues for eight steps, when all non-terminal elements are

exhausted. The resulting phenotype, (c1 × v1) ÷ (c2 × v2), can be later evaluated in

different contexts as a numerical value.

2.6.4 Evolving a Grammar

As explained before, the objective of GE is to automatically generate a program that

minimises a cost function, by combining CFGs and GA:

1. A grammar is defined to describe the syntax of the programs.

2. A cost function is defined to assess the quality (i.e., the cost or fitness) of a program.

3. GA is used to search within the space of all programs definable by the grammar,

translated from chromosome data through genotype to phenotype mapping, in

order to find the program with the lowest cost.

The flow of information between different components of GE is presented in Figure 2.6.

One must note that the overall cost function, which includes the genotype to phenotype

mapping as well as the user defined cost function, i.e., mapping a binary string to a

program and subsequently to a numeric score, is often non-smooth and non-convex, pre-

cluding gradient-based optimisation algorithms and favouring evolutionary optimisation

techniques.
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Figure 2.6: Architecture of a grammatical evolution optimiser.

2.7 Summary

This chapter reviewed the theoretical background and collected the prior art related to

the objectives of this thesis:

• Foreign exchange (FX) market, the largest financial market worldwide, is global

and decentralised, and as a result exhibits different properties from exchange-based

markets. Many concepts, including the FX market hierarchy, previous research on

exchange rate predictability, market impact, transaction costs, volatility, and cur-

rency risk were introduced, and common financial techniques including portfolio

optimisation and hedging (i.e., risk management) using financial options were ex-

plained.

• Battery energy storage systems (BESS) are important components of modern

smart grids. The main application of batteries is to increase reliability of intermit-

tent energy sources, including solar and wind power, and to shave peak demand by

storing electricity at off-peak periods and dispatching energy during high demand.

• Model predictive control (MPC) is a modern process control technique. The central

idea of MPC is using a model to predict the future outcome of a system. By

minimising a cost function, which incorporates this predictive model, the optimal

input sequence to the process over a finite horizon can be found. This optimisation,

performed in discrete time, is repeated at each time-step by sliding the horizon

towards the future, or shrinking it. Hence, MPC is also known as finite horizon

control, receding horizon control, and shrinking horizon control.
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• Grammatical evolution (GE) is an evolutionary optimisation technique for creating

programs optimised for a user defined task. It combines context-free grammars

(CFG) as a template for generating programs, and genetic algorithm (GA) for

finding the optimal program in the grammar space.

The following chapters will utilise these techniques to model, predict, and manage risk.



Chapter 3

Stochastic Model Predictive

Control for Short-Term Risk

Management in Foreign Exchange

3.1 Introduction

Foreign exchange (FX) dealers facilitate international trade by connecting corporate,

retail, and institutional clients, with the inter-bank FX market. Unexpected or even

anticipated fluctuation in FX rates, combined with an accumulation of large positions

absorbed from their clients’ trading flow, can create a significant risk for these dealers.

In this chapter, a methodology is formalised to manage this risk over short time periods

in the FX spot market.

3.2 Assumptions

We define the specific problem of an FX dealer, who accepts flow from corporate, retail,

and institutional clients. The dealer wishes to hedge the risk of his positions only by

opening or closing new positions in the spot market. It is assumed:

• The dealer does not perform speculation and is only interested in hedging.

• The dealer makes decision in discrete time-steps.

• There is a limit on how much the dealer can trade at each time-step.

• There is a limit on how much open position the dealer is allowed or willing to keep

at each time-step.

33



Chapter 3. SMPC for FX Hedging 34

• The dealer must close all positions at the end of a trading session (e.g., daily or

weekly). This is common practice to avoid carrying an open position’s risk during

non-business hours [79].

• Market impact affects the inter-bank market’s bid-ask spread [164].

• Client flow is always initiated by the clients, and the dealer is unable to refuse

them, assuming credit status and other conditions (e.g., anti-money laundering

laws) are satisfied.

• The dealer works with local clients (either corporate, retail, or institutional), under

their own geographic time zone. These types of clients usually buy more foreign

currency than sell [165].

• FX rate jumps resulting from macroeconomic news announcements are a large

contributor to the dealer’s risk [84]. The timing of these events is known, but the

direction and magnitude of the jumps are not.

The dealer’s profit and loss (P&L) arises from three major sources:

1. Transaction costs received from clients.

2. Transaction costs paid to inter-bank market counterparties for hedging trades.

3. Market volatility.

Here, we assume that the profit from transaction costs received from clients is not in-

fluenced by hedging. As a result, they are not considered and only volatility and trans-

action costs paid to inter-bank market counterparties are included in the optimisation

formulation.

3.3 Problem Formulation

3.3.1 Dealer Dynamics

We formulate the problem in discrete time notation, with the dealer trading at t ∈
[0, 1, ..., N ]. The trading session ends at t = N + 1. At any time t, the dealer holds a

position of xk(t) ∈ R for currency k. The dealer’s initial position is denoted by xk(0).

Positions vary in time as a result of the accumulated client flow fk(t) ∈ R and the

dealer’s hedging actions hk(t) ∈ R (Figure 3.1):

xk(t+ 1) = xk(t) + hk(t) + fk(t) (3.1)
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Figure 3.1: Hedging state-space dynamics. The dealer’s position at time t+1, x(t+1),
is a result of his position at time t being updated with the accumulated client flow in

this period f(t) and hedged with h(t).

The dealer must close all positions at the end of a trading session (e.g., daily or weekly),

and therefore xk(N + 1) = 0, ∀k. As a result, the last hedging action has to be

hk(N) = −(xk(N) + fk(N)). (3.2)

At time t, the cumulative transaction costs paid by the dealer for hedging is

Ck(t) =

t∑
i=0

fcost(hk(i), i, k), (3.3)

where fcost(h, t, k) = sk(h, t)|h| is a time dependent transaction cost function based on

the bid-ask spread sk(h, t) quoted for trading h at time t, and |h| is the size (i.e., absolute

value) of h. The spread is known to be highly volatile, and is affected by market impact

(i.e., increases with the size of h), market conditions (e.g., the spread decreases in liquid

markets), and the history of trades between counterparties. The spreads are modelled

as having a linear relationship with the size of trade [164],

sk(h, t) = δk(t)|h| (3.4)

where δk(t) is the time-varying market impact coefficient. This results in a quadratic

cost function:

fcost(h, t, k) = δk(t)h
2 (3.5)

Additionally, we limit the size of hedging actions to hk,max:

|hk(t)| ≤ hk,max (3.6)



Chapter 3. SMPC for FX Hedging 36

This is realistic as the dealers will have trading limits with their counterparties in the

inter-bank market and usually wish to avoid impacting the market’s liquidity beyond a

certain degree.

FX rate volatility changes the value of positions, causing profit and loss. We denote the

logarithmic market price of currency k with pk(t) and its returns rk(t) with

rk(t) = pk(t)− pk(t− 1).

The profit and loss (P&L), Lk(t), is therefore given by

Lk(t) =
t∑
i=1

xk(i)rk(i). (3.7)

The dealer usually wishes to avoid the risk of excessive exposure, and thus the maximum

position of each currency is restricted to

|xk(t)| ≤ xk,max. (3.8)

3.3.2 Definition of Risk

We define FX risk as the unpredictable loss of the dealer’s portfolio value due to FX

rate changes.

Based on the efficient market hypothesis, we assume that predicting the direction of

FX price changes, i.e., the sign of rk(t), is not feasible: formally speaking, rk(t) has a

symmetrical probability distribution, and is zero-mean (i.e., E[rk(t)] ≈ 0). As a result,

the only available information regarding future price changes is their variance,

vk(t) = Var[rk(t)],

which is also known as the volatility.

This assumption considers any profitable FX rate change to be undesirable, but as

stated in Section 3.2, the dealer’s objective is only hedging, and speculative trades can

be performed irrelevant to the incoming client flow.

Consequently, we characterise the dealer’s risk exposure by the variance of P&L, and

define it using

ρk(t) = Var[Lk(t)]. (3.9)
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3.3.3 Hedging Objectives

Dealers wish to reduce their transaction costs and risk exposure, subject to the discrete

space representation and constraints defined in this section. Considering the probabilis-

tic nature of client flow and FX rate, we formulate this as a mean-variance optimisation,

argmin
hk(t); ∀t,k

E

[
m∑
k=1

Ck(N)

]
+ λVar

[
m∑
k=1

Lk(N)

]
subject to xk(N + 1) = 0

|hk(t)| ≤ hk,max

|xk(t)| ≤ xk,max

(3.10)

where m is the number of currencies in the dealer’s portfolio, and 0 ≤ λ <∞ is the risk

aversion factor.

This minimisation requires values of rk(t), fk(t), and δk(t). From these, only variables

at t = 0 are observed, and the rest have to be modelled by stochastic variables. In

this thesis, we use prediction (and equally forecasting) to refer to statistical or machine

learning techniques that determine a future stochastic variable’s probability distribution

or statistical properties (e.g., mean and variance).

Optimising (3.10) results in a risk-cost Pareto frontier parameterised by λ. Using this

information, the dealers choose the best hedging strategy considering contextual factors,

such as their utility of risk.

3.3.4 Matrix Notation

To simplify notation, we introduce variable yk(t), as the unhedged position of the dealer:

yk(0) = xk(0)

yk(t) =
∑t−1

i=0 fk(i) + xk(0)
(3.11)

We use the following matrix notation to simplify representation of the dealer dynamics.

Vectors xk,fk,hk, δk, rk, yk ∈ RN are the collection of variables xk(t), fk(t), hk(t),
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δk(t), rk(t), and yk(t) in time:

xk = [xk(0) xk(1) · · · xk(N − 1)]T

fk = [fk(0) fk(1) · · · fk(N − 1)]T

hk = [hk(0) hk(1) · · · hk(N − 1)]T

δk = [δk(0) δk(1) · · · δk(N − 1)]T

rk = [rk(1) rk(2) · · · rk(N)]T

yk = [yk(1) yk(2) · · · yk(N)]T

Notice that rk and yk are indexed differently from the others.

Vectors X,H,F , δ,R, Y ∈ RmN are defined as concatenations of xk, fk, hk, δk, rk,

and yk over all currencies. For example, for three currencies USD, EUR, and GBP,

X = [xT
USD x

T
EUR x

T
GBP ]T,

H = [hT
USD h

T
EUR h

T
GBP ]T,

F = [fT
USD f

T
EUR f

T
GBP ]T,

δ = [δT
USD δ

T
EUR δ

T
GBP ]T,

R = [rT
USD r

T
EUR r

T
GBP ]T, and

Y = [yT
USD y

T
EUR y

T
GBP ]T.

Similarly, vectors x(t), f(t), h(t), δ(t), r(t), y(k) ∈ Rm are the concatenation of their

respective variables at time t for all k, e.g.,

x(t) = [xUSD(t) xEUR(t) xGBP (t)]T,

f(t) = [fUSD(t) fEUR(t) fGBP (t)]T,

h(t) = [hUSD(t) hEUR(t) hGBP (t)]T,

δ(t) = [δUSD(t) δEUR(t) δGBP (t)]T,

r(t) = [rUSD(t) rEUR(t) rGBP (t)]T, and

y(t) = [yUSD(t) yEUR(t) yGBP (t)]T.

Notice that all vectors except the optimisation objectivesH, h(t), and hk, are stochastic

processes.
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3.4 Rule-based Hedging Strategies

Forecasting or even modelling fk(t), rk(t), and δk(t) can be a challenging task. In this

section, the transaction cost and the risk (i.e., (3.3) and (3.9)) are analysed to offer

insight regarding hedging in absence of any predictive models. These analyses are used

to create rule-based hedging strategies, which will serve as benchmarks.

3.4.1 Minimum Risk Strategy

Obtaining the minimum risk is possible by minimising (3.9),

min Var[
N∑
i=1

xk(i)rk(i)],

which is satisfied by xk(t) = 0, or

hk(t) = −fk(t).

In this method, every position opened through the trade with a client is closed immedi-

ately, and consequently no position is exposed to risk. This strategy, however, entails the

highest cost as a transaction is performed for every trade with the clients. Furthermore,

if |fk| > hk,max, the constraint on hedging size (3.6) is not met.

3.4.2 Minimum Cost Strategy

Minimising transaction cost is possible by minimising (3.3),

min
N∑
i=1

δk(i)hk(i)
2,

which is satisfied by

hk(t) = 0.

In this method, no hedging is performed, and therefore no transaction cost is incurred.

However, this is impractical as this assumes N →∞ to avoid the end-of-session position

closing costs of (3.2), and (3.8) is not satisfied if |
∑
fk(i)| > xk,max.
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3.4.3 Limited Position Strategy

This strategy sets a hard limit xmax for the dealer’s positions:

hk(t) =


xmax − (xk(t) + fk(t)) xk(t) + fk(t) > xmax

−xmax − (xk(t) + fk(t)) xk(t) + fk(t) < −xmax

0 otherwise

(3.15)

As this limit changes, the strategy sweeps the risk-cost profiles from minimum risk

(xmax = 0, i.e. holding no risk, as in Section 3.4.1) to minimum cost (xmax → ∞, i.e.,

letting the incoming client buy and sell orders neutralise each other as in Section 3.4.2).

3.4.4 Gradual Closing Strategy

Gradual closing strategy distributes the hedging actions required to close the current

positions over the remaining trading time-steps. This is further parameterised by 0 ≤
λ ≤ 1 as a risk aversion parameter, resulting in actions determined by

hk(t) = −(xk(t) + fk(t))
(N − t)λ+ 1

N − t+ 1

where λ = 1 minimises risk by instantly closing all positions, and λ = 0 results in

the positions being closed gradually with equally sized hedging actions, and therefore

minimising cost by avoiding market impact.

3.4.5 Advantages and Disadvantages

Despite their ease of implementation, there are major disadvantages to the rule-based

non-predictive strategies:

• No information regarding client flow, volatility, or market impact is used.

• Constraints on h and x ((3.6) and (3.8)) are not upheld.

As a result, not only the hedging results are far from optimal, but also the dealer could

be left with a large open position at the end of trading session, imposing high risk or

additional transaction costs.
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3.5 Single-stage Hedging Strategy

A more accurate way of obtaining a hedging action is to perform a single-stage optimi-

sation. In this strategy, (3.10) is solved with N = 1, which results in a single hedging

action. This action is then amortised over the available steps. At the next time-step,

the model parameters are updated using the observed market information and the opti-

misation is repeated. This strategy is effectively a simplified form of shrinking horizon

control (SHC), as explained in Section 2.5 and presented in Figure 2.2b.

The optimisation objective of this strategy can be expressed formally as

argmin
hk(0); ∀k

E

[
m∑
k=1

(
f

(N)
cost(hk(0)) + fcost(hk(1))

)]
+ λVar

[
m∑
k=1

xk(1)rk(1)

]
subject to xk(1) = xk(0) + hk(0)

hk(1) = −xk(1)− fk(1)

|hk(t)| ≤ hk,max, t ∈ [0, 1]

|xk(1)| ≤ xk,max

(3.16)

where f
(N)
cost is the cost function amortised over N payments:

f
(N)
cost(h) = Nfcost(

1

N
h) =

δh2

N
=

1

N
fcost(h)

Eq. (3.16) assumes:

• The dealer starts with position x(0).

• There is no client flow at t = 0.

• The dealer hedges at time t = 0 to prepare for future flow.

• The market price changes at t = 1, creating a risk for positions held at that time.

• The only client flow occurs t = 1.

• The dealer closes all positions before t = 2 using hk(1).

• Market impact coefficient is constant, i.e., δk(1) = δk(0) = δk.

This sequence is illustrated in Figure 3.2.

Minimising (3.16) requires fk(1), rk(1), and δk and yields hk(0), ∀k. Using the matrix

notation introduced in Section 3.3.4, we denote these values for the whole currency

portfolio as vectors f , r, δ, and h respectively.

h(1) can be computed recursively as

h(1) = −x(0)− h− f .
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𝑡 = 0 𝑡 = 1 𝑡 = 2
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ℎ(0)Dealer’s hedging actions:

Client flow:

Dealer’s positions: 𝑥 2 = 0

ℎ(1)

𝑓(1)

Trading starts

Preparation 
action

Price change

Trade 
with clients

End-of-session
action

Trading ends

Figure 3.2: Single-stage hedging state-space dynamics. The dealer prepares for in-
coming client flow by hedging action h(0), absorbs the incoming client flow f(1), and
closes all position using h(1). Only one change of price is observed, at t = 1, which

causes risk to the dealer’s position..

Consequently, the cost function of (3.16) is reorganised as

J =E
[

1

N
hT∆h+ (−h− f − x(0))T∆(−h− f − x(0))

]
+ λVar

[
(h+ x(0))Tr

]
,

where ∆m×m = diag(δ) is the diagonal market impact matrix, and diag(x) creates a

diagonal matrix from vector x.

Expanding this cost function, replacing f +x(0) with y as defined in (3.11), and sorting

by the order of h, yields

J =E
[
N + 1

N
hT∆h+ 2hT∆y + yT∆y

]
+

λ(h+ x(0))TVar [r] (h+ x(0))

=
N + 1

N
hTE [∆]h+ 2hTE [∆y] + E

[
yT∆y

]
+

λ
(
hTVar[r]h+ 2hTVar[r]x(0) + x(0)TVar[r]x(0)

)
=hT

(
N + 1

N
E [∆] + λVar[r]

)
h+

2hT ((E [∆]E [y] + Cov [∆,y]) + λVar[r]x(0)) +

E
[
yT∆y

]
+ x(0)TVar[r]x(0).

Let ȳ = E [y] be the expected client flow, ∆̄ = E [∆] be the expected market impact

matrix, and Σ = Var[r] be the market rate volatility covariance matrix. The terms

that do not contain h can be removed, as they do not influence the optimisation. This
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simplifies J to

J =hT

(
N + 1

N
∆̄ + λΣ

)
h+

2hT
(
∆̄ȳ + Cov [∆,y] + λΣx(0)

)
.

If the client flow, and consequently y, are not correlated with the market (e.g., ∆ and

r), this cost function can be simplified further:

J =hT

(
N + 1

N
∆̄ + λΣ

)
h+

2hT
(
∆̄ȳ + λΣx(0)

)
The cost function is quadratic. Without constraints, it can be solved analytically with

h = −
(
N + 1

N
∆̄ + λΣ

)† (
∆̄ȳ + λΣx(0)

)
,

where † is the Moore–Penrose pseudoinverse operator. If constraints are present, quadratic

programming (QP) techniques can be used to efficiently minimise this cost function.

Assuming no constraints, the results can be interpreted as follows:

• For λ = 0 (i.e., maximum risk preference), the minimisation results in h = − N
N+1 ȳ,

which is then amortised to −1
N+1 ȳ per time-step. This can be interpreted as dividing

the expected client flow equally into N hedging trades and one closing trade, which

results in the minimum transaction costs.

• For λ→∞ (i.e., maximum risk aversion), the minimisation results in h = −x(0).

Here, the optimiser tries to close the current open positions before the change of

market rate at t = 1 to avoid any risk.

• For 0 < λ <∞, an intermediate value for h is obtained that balances between the

transaction cost (from ∆), and the risk (from Σ).

For λ → ∞, the hedging action is amortised to h = −x(0)
N , which does not yield the

desired minimum cost. To neutralise the amortisation, and yield a result similar to

other strategies in obtaining the global minimum risk, we replace the original x(0) with

Nx(0), which results in the following cost function:

J = hT

(
N + 1

N
∆̄ + λΣ

)
h+ 2hT

(
∆̄ȳ + λNΣx(0)

)

3.5.1 Advantages and Disadvantages

This strategy has the advantage of requiring only one forecast for each variable:
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• ∆̄: the average market impact coefficients.

• ȳ: the expected total client flow. As the initial position x(0) is already observed,

using (3.11), this equals to forecasting f .

• Σ: the volatility covariance matrix.

However, the obtained results are not optimal. The cost function distributes the hedging

actions evenly, and any flow asymmetries during the day and market events are disre-

garded. For example, when λ→∞, only the initial positions x(0) are hedged, and the

risk introduced by client trades is neglected.

The same problem affects the constraint on position limits (3.8), as only the last positions

are considered in the QP optimisation, and intermediate positions resulting from the

amortisation process are not considered.

3.6 Dynamic Risk Management using SMPC

Stochastic model predictive control (SMPC) is a powerful process control methodology,

which is applicable to stochastic processes where a state-space model is defined to predict

the system’s behaviour. The dealer model (3.1) is effectively a state-space representation,

with the uncontrollable inputs modelled using stochastic variables. Consequently, this

problem can be efficiently solved using stochastic control theory.

3.6.1 Optimisation Model

An optimal solution to the hedging problem is given by solving (3.10) for every available

hedging time-step:

argmin
hk(t); ∀t,k

E

[
m∑
k=1

N∑
t=0

fcost(hk(t))

]
+ λVar

[
m∑
k=1

N∑
t=1

xk(t)rk(t)

]
subject to xk(t+ 1) = xk(t) + hk(t) + fk(t)

xk(N + 1) = 0

|hk(t)| ≤ hk,max

|xk(t)| ≤ xk,max

(3.17)
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Replacing the transaction cost function in (3.17) with (3.5), applying the end of trade

closing constraint (3.2), and expanding xk(t) recursively using (3.1) results in the fol-

lowing cost function:

J =E

[
m∑
k=1

N−1∑
t=0

δk(t)hk(t)
2 +

m∑
k=1

δk(N)

(
N−1∑
i=0

hk(i) +
N∑
i=0

fk(i) + xk(0)

)2 ]
+

λVar

[
m∑
k=1

N∑
t=1

(
t−1∑
i=0

hk(i) +
t−1∑
i=0

fk(i) + xk(0)

)
rk(t)

]

Substituting yk(t) from (3.11) simplifies the above to

J =E

[
m∑
k=1

N−1∑
t=0

δk(t)hk(t)
2 +

m∑
k=1

δk(N)

(
N−1∑
i=0

hk(i) + yk(N + 1)

)2 ]
+

λVar

[
m∑
k=1

N∑
t=1

(
t−1∑
i=0

hk(i) + yk(t)

)
rk(t)

]
.

(3.18)

Using the notation of Section 3.3.4, (3.18) can be written in matrix form as

J =E
[
HT∆H + (ΥTH + y(N + 1))TD(ΥTH + y(N + 1))

]
+

λVar
[
(ΨH + Y )TR

]
,

(3.19)

where

ΨmN×mN = Im×m ⊗ SN×N =


S 0 · · · 0

0 S · · · 0
...

...
. . .

...

0 0 · · · S

 ,

ΥmN×m = Im×m ⊗ ~1N×1,

Dm×m = diag(δ(N)),

∆mN×mN = diag(δ),

S is a lower triangular matrix of 1’s, ~1N×1 is [1 1 . . . 1]N×1, I is the identity matrix,

diag(x) creates a diagonal matrix from vector x, and ⊗ is the Kronecker product.

Additionally, matrix form of (3.11) is

Y = ΨF + Υx(0).
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Stochastic operators in (3.19) can be expanded,

J =HTE[∆]H +HTΥE[D]ΥTH+

2HTΥE[Dy(N + 1)] + E[y(N + 1)TDy(N + 1)]+

λ
(
Var[Y TR] +HTΨTVar[R]ΨH + 2HTΨTCov[R,Y TR]

)
,

and reordered by H, resulting in a quadratic cost function:

J =HT
(
E[∆] + ΥE[D]ΥT + λΨTVar[R]Ψ

)
H+

2HT
(
ΥE[Dy(N + 1)] + λΨTCov[R,Y TR]

)
+

E[y(N + 1)TDy(N + 1)] + λVar[Y TR]

(3.20)

3.6.2 Hedging Solution and Constraints

Unconstrained MPC problems with quadratic cost and linear state-space are referred

to as linear-quadratic (LQ) control problems and their solution can be found using the

matrix algebraic Riccati equation [8]. With deterministic constraints, (3.20) can be

solved efficiently using numeric quadratic programming techniques.

The problem formulation in (3.17) includes four constraints. The first two are equal-

ity constraints and were implicitly implemented as a part of the cost function in Sec-

tion 3.6.1. The third constraint, |hk(i)| ≤ hk,max, is deterministic and easily described

by −H ≤Hmax

H ≤Hmax

.

The fourth constraint requires special attention, as xk(i), i ∈ [1, · · · , N ] are stochastic

variables, and therefore are not deterministically constrainable before being observed.

However, in a real-world multi-stage optimisation, one can use f(0) and x(0), which

are known before solving for h(0) (as shown in Figure 3.1), to make the first inequality,

x(1) < xmax, deterministic. The rest of the inequalities can be replaced with their

expected values [77], i.e., |E[xk(i)]| ≤ xk,max. While this results in a less conservative

control law, it still guarantees constraints fulfilment [131].

Other approaches are also possible, including imposing constraints to hold with a given

sufficiently high probability, or using the worst case of a scenario tree. Both of these

approaches may not hold for some situations (e.g., in the case of scenario trees, when the

outcome is not covered by the generated scenarios), and suffer from higher computational

complexity.
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In this chapter, the expected value constraint is implemented. Rewritten in matrix form,

and given E[X] = E[ΨH + Y ], the following constraints are imposed:

−ΨH ≤Xmax + E[Y ]

ΨH ≤ Xmax − E[Y ]

3.6.3 Prediction Requirements

Solving (3.20) for H requires the following parameters:

• E[∆] and E[D]: the expected value of market impact coefficients

• Var[R]: FX rate returns covariance matrix

• E[Dy(N+1)] and E[y(N+1)TDy(N+1)]: the expected value of transaction costs

for closing the accumulated client flow

• Var[Y TR]: the variance of P&L in absence of hedging

• Cov[R,Y TR]: the covariance matrix of FX returns and P&L

Different approaches are available for forecasting these parameters:

1. Using an analytical model for each parameter.

2. Treating each parameter as a multi-dimensional time-series, and forecasting them

using a statistical or ML technique.

3. Obtaining values using Monte Carlo techniques: stochastic models are defined for

F , R and δ, and fit to the observation from the market. η random scenarios are

generated using these models, and the expected values and covariance matrices are

approximated from the scenarios.

Each method has its own advantages or disadvantages:

1. Simple analytical models are easy to explain and solve analytically. However,

better modelling of real-world events requires more sophisticated models, adding

to the complexity of any analytical solution.

2. Forecasting techniques are well studied. However, six different matrices and vectors

need to be forecast, requiring one model per each matrix element, which adds to

the model tuning and computational complexity.

3. The Monte Carlo methods require a large number of scenarios to improve their

approximations, and are computationally expensive. Nevertheless, Monte Carlo

methods are not bound to analytical models for generating scenarios, and are able

to directly sample historical data [67].
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3.6.4 Simplification of the Hedging Model

If the client flow is uncorrelated to the market conditions (i.e., the FX rate returns,

volatility and market impact coefficient), (3.20) can be further simplified to

J =HT
(
∆̄ + ΥD̄ΥT + λΨTΣΨ

)
H+

2HT
(
ΥD̄ȳ(N + 1) + λΨTΣȲ

) (3.22)

where Σ = Var[R] is the returns covariance matrix and for every variable the expected

value E[x] is denoted by x̄. Notice that the constant terms are also dropped.

Therefore, the only requirements are

• expected position of the dealer in absence of hedging Ȳ = E[Y ], or the expected

client flow F̄ = E[F ] as E[Y ] = ΨE[F ] + x(0),

• expected market impact coefficient δ̄ = E[δ], which is then formed into diagonal

matrices ∆̄ and D̄, and

• volatility covariance matrix Σ.

3.7 The Risk Management System Architecture

An FX risk management system can be implemented using the SMPC hedging model

proposed in Section 3.6.1. The internal design of this system is divided to three major

components:

• A SMPC controller, optimising the cost function defined in (3.20).

• A customisable time-series prediction engine, forecasting parameters required by

the SMPC controller. Implementing a single customisable time-series forecasting

engine, instead of multiple task specific models, allows system scalability: man-

ually tuning a task specific model is time-consuming and costly. Furthermore,

the customisable engine can automatically discover the best model for prediction

and dynamically adapt to changes. Details of designing this subsystem will be

discussed in Chapter 5.

• A hedging action manager, which queries the SMPC controller and executes the

recommended hedging action.

Figure 3.3 illustrates the relationship of the proposed risk management system and its

components to the dealer and the FX market.

While in a normal system the SMPC controller is responsible for predictive modelling

and executing the results as well as the optimisation, in our proposed risk management

system these tasks are assigned into different modules. Additionally, the hedging action
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management subsystem is arranged as a part of the dealer. This modular layout has the

following advantages compared to a monolithic design:

• External circuit breaker: Due to regulatory issues, automated financial systems

may require an external circuit breaker to monitor their behaviour, and issue a

trading halt if an unexpected decision is made. A modular design allows external

audits to be included without affecting the SMPC controller and the prediction

engine.

• Fault tolerance: Financial systems have to be highly reliable. In the proposed

system, fault tolerance is achievable through N-module redundancy, where multiple

identical SMPC controllers and prediction engine instances are run on different

computers. The action manager queries all instances and selects the correct results

on the basis of a quorum, and thus discarding results from hardware failures or

errors.

• High performance computing: A modular design allows different subsystems to

be executed on separate processors. For example, instead of serially running the

prediction engine for each parameter, several engines are executed in parallel on

different processors, tuning unrelated time-series prediction models separately.
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Figure 3.3: The proposed FX risk management system and its components.
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3.7.1 Shrinking Horizon Hedging

In real-world systems, exact modelling of the client flow and the FX market is impossible

due to incomplete data and approximations, and consequently the accuracy of hedging

actions is lost over time. To improve hedging performance, one can include new infor-

mation in the optimiser using a shrinking horizon scheme, as summarised in Algorithm

3.1:

1. At each time-step the prediction subsystem updates the client flow, FX rate re-

turns, and market impact coefficient models, based on the observed market condi-

tions.

2. The prediction subsystem applies statistical or machine learning techniques to

forecast the future client flow and market conditions, and estimate the cost function

parameters accordingly.

3. The estimated parameters are then given to the SMPC controller, which uses a

quadratic programming (QP) solver to obtain the optimal hedging action H by

minimising (3.20), subject to the constraints of Section 3.6.2.

4. The hedging action management system hedges the positions by h(0), which adds

to the transaction costs.

5. At the next time-step, FX volatility may change the FX rates and consequently

the value of the dealer’s open positions, and thus generating profit or loss.

6. The hedging algorithm is repeated from the first step, with the horizon shortened

one time-step.

7. The algorithm terminates when the end-of-trading time is reached.

Algorithm 3.1: SMPC Hedging Algorithm

1 t← 0

2 while t ≤ N do

3 Update client flow models using new trades data.

4 Update FX rate volatility models from market conditions.

5 Update market impact coefficient models from market conditions.

6 Predict the hedging model’s parameters, E[F], E[δ], Var[R], · · · .
7 Compute H = [h(t),h(t+ 1), . . . ,h(N)] by minimising (3.20).

8 Hedge by h(t).

9 Update positions x(t).

10 t← t+ 1.

11 end

12 Close all position using h(N) = −(x(N) + f(N)).
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3.8 Summary

In this chapter, FX risk hedging from a dealer’s point of view was studied. Realistic

assumptions were made to model the dealer dynamics, considering the stochastic nature

of client flow, FX rate, and transaction cost. Rule-based hedging approaches were then

studied, and disadvantages of each were noted.

The main contribution of this chapter is a SMPC approach to FX hedging. A finite

horizon optimisation was formulated using the proposed dealer model, and an algorithm

was devised to periodically update the model using feedback. The model’s cost function

was constructed such that it can be efficiently minimised via quadratic programming,

making the scheme suitable for real-time implementations.

The forward looking multi-period formulation of the proposed model uses several stochas-

tic variables to describe future client flow and market states. The following chapters will

discuss machine learning based time-series forecasting techniques to model and predict

these variables.





Chapter 4

A Machine Learning Approach to

Time-series Prediction

4.1 Introduction

A time-series is defined as a set of observations, recorded successively at specific points in

time [166]. Time-series are used in any domain which involves temporal measurements,

including finance and econometrics, signal processing, control engineering, the energy

industry, astronomy, climate sciences, biomedical sciences, and management.

Forecasting (or prediction1) is an important time-series analytics tool; success or failure

of many systems relies on an accurate prediction of future.

Forecasting algorithms, either as general purpose prediction tools or adapted to specific

applications, have been subject to extensive research [36, 166]. In this chapter, based

on the state-of-the-art techniques in literature, a generic machine learning (ML) based

approach to time-series prediction is studied.

4.2 Time-series Prediction as a Regression Task

In this thesis, as with many other applications employing digital computers, time-series

are studied only in a discrete-time framework: for a time-series denoted by {x(t)}, values

are only sampled at equally spread intervals, i.e., the finite set t ∈ [0, 1, . . . , N ].

From a machine learning perspective, time-series prediction is commonly realised as a

regression task. The objective is to find a regression function, f(·), to model future

1Forecasting and prediction are used interchangeably within this thesis.

53
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Figure 4.1: Inputs and outputs in a generic machine learning algorithm.

values of a time-series using its past observations. This can be expressed formally as

x̂(t+ h) = f
(
x(t), x(t− 1), x(t− 2), . . .

)
(4.1)

where h ≥ 1 is the horizon in future to predict, and x̂(t + h) is the estimate (i.e., the

forecast or prediction) of x at time t+ h, i.e., x(t+ h).

Time-series prediction is a supervised machine learning task [167]: the algorithm learns

from the provided examples (in this case, historical time-series), and its results are

validated against the already observed future of that time-series. In the rest of this

section, details of this learning process are discussed in depth.

4.2.1 Terminology

Supervised machine learning algorithms are divided into two separate phases:

• Training phase, where available data is applied to the model to fit model parame-

ters.

• Prediction phase, where new data is applied to the model to estimate future fore-

casts.

It is noteworthy to differentiate the two types of parameters used (Figure 4.1):

• Ordinary parameters, which are built-in arguments within the internal formulation

of the mathematical model. These values are determined by the model fitting

algorithm and returned as its output.

• Hyper-parameters, which are set by user, and act as inputs or settings.
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Consider fitting a finite impulse response (FIR) filter, expressed as

x(t+ 1) =

p∑
i=0

αix(t− i) + ε(t) (4.2)

to model and predict a black box system from data. Here

• x(t) is the input data.

• ε(t) is the error, modelled as Gaussian noise.

• p, the FIR model order, is the hyper-parameter. It is set by the user, and tuned

using a model validation technique.

• αi, the coefficients, are the ordinary parameters. These coefficients are automati-

cally determined during the model fitting process, which is commonly implemented

using ordinary least squares.

After fitting the model and obtaining the αi parameters, the same coefficients are used

on any new data to obtain x(t+ 1).

Care must be taken in implementation of training and prediction phases, as some algo-

rithms are often mentioned without separating these two steps. For example, consider

feature scaled normalisation, defined by

x̄ =
x−min(x)

max(x)−min(x)
(4.3)

where x is a vector of data, and x̄ is the normalised data.

Here, the first step is to compute the maximum and minimum of the data. The second

step applies these values to centre and scale the data. In real-world problems, where

normalisation is itself the first phase in a multi-step processing algorithm, these param-

eters are extracted from the larger set of observed data at the training stage, stored, and

later applied to a smaller set of new data during the prediction stage. Otherwise, if the

parameters are extracted from the new data for its own scaling, considering the smaller

size of the new data set, the statistical accuracy of parameters will be reduced, and thus

possibly invalidating the rest of the multi-step processing algorithm’s assumptions.

4.3 Data Flow for Time-series Prediction

In time-series prediction, the training phase is commonly [13, 167, 168] comprised of the

following sequence (Figure 4.2):
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Figure 4.2: Data flow in machine learning based time-series prediction.

1. Pre-processing: Machine learning algorithms commonly assume a certain data dis-

tribution (e.g., zero-mean unit-variance Gaussian). Consequently, an adjustment

step is required to adapt the statistics of the data.

2. Feature extraction: A regression function typically requires a multi-variate vector

of inputs, with enough information to model and predict the output. In contrast, a

time-series is a long single dimensional vector. The goal of feature extraction is to

convert the time-series data to an informative vector, so as to be used as the input

to the learning algorithm. This data may additionally include other time-series,

which we refer to as exogenous data.

3. Feature selection: Redundancies may occur during the feature extraction phase,

and some features may be irrelevant to the output. Hence, a feature selection step

is commonly applied to only keep the informative features.
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4. Model training: A machine learning algorithm is applied to the features to create a

predictive model. Many machine learning models are available, ranging from linear

regression using ordinary least squares (OLS), to artificial neural networks (ANN)

and kernel based techniques such as support vector regression (SVR) [169] and

kernel recursive least squares (KRLS) [170]. Each model has its own assumptions,

advantages, and disadvantages.

The prediction sequence is similar to the training phase, as the regression model requires

input features similar to what it has been trained on:

1. Pre-processing: New time-series data is pre-processed (normalised, power trans-

formed, seasonally adjusted) using the parameters that were obtained in the train-

ing phase.

2. Feature extraction: From the pre-processed time-series (and also the other exoge-

nous time-series), features are generated using the same techniques used during

the training.

3. Feature selection: The same features deemed relevant in training phase are se-

lected.

4. Prediction: The features are used with the regression model obtained in the train-

ing phase to predict the future values.

5. Post-processing: The prediction step is actually forecasting the pre-processed time-

series. To forecast the original time-series, pre-processing has to be reversed.

4.3.1 Pre-processing for Time-series Prediction

Several pre-processing algorithms are available for time-series:

• Normalisation: The mean and variance of a time-series is adjusted to create a

zero-mean unit-variance data.

• Scaling: An alternative to normalisation is feature scaling, implemented using (4.3)

as explained in Section 4.2.1.

• Power transform: A power transform adjusts the data distribution to create a

more Gaussian-like distribution by stabilising its variance. The simplest power

transform is logarithm. More advanced and parametrisable techniques exist, such

as the Box–Cox transformation [171], defined by

x(λ) =


xλ−1
λ if λ 6= 0

log (x) if λ = 0
(4.4)

where λ is the scaling parameter.
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• Seasonal decomposition: Many time-series show a seasonal variation or a trend.

For example, solar radiation (and consequently PV electricity generation) has a

daily cycle (with peak at noon) and a yearly cycle (as the sun elevation changes

with the season). Electricity consumption may show an upward trend due to

continuous population growth. Separating these variations improves predictability

by reducing the complexity of the models required to fit each part of the time-series.

Several techniques are available, including STL (Seasonal and Trend decomposition

using Loess) [172].

• Differencing: In addition to decomposition techniques, one can use differencing,

i.e., subtracting lagged values from the current value, to remove the trends and

seasonality. This effectively works by removing the common trend or seasonal

element which is repeated through the time-series.

For example, consider an AR time-series with trend and drift,

x(t) = c+ δt+ αx(t− 1) + ε(t),

where c is the drift, δt is the trend, and ε(t) is an independent and identically

distributed (i.i.d) Gaussian noise.

The first order difference is

x′(t) = x(t)− x(t− 1) = δ + α(x(t− 1)− x(t− 2)) + ε(t)− ε(t− 1)

and the second order difference, x′′(t) = x′(t)− x′(t− 1), becomes

x′′(t) = x(t)− 2x(t− 1) + x(t− 2)

= α(x(t− 1)− 2x(t− 2) + x(t− 3)) + ε(t)− 2ε(t− 1) + ε(t− 2).

Let e(t) = ε(t) − 2ε(t − 1) + ε(t − 2) be a Gaussian random noise (which is true

by the assumption of ε(t) being i.i.d), and y(t) = x(t)− 2x(t− 1) + x(t− 2). The

above can be rewritten as

y(t) = αy(t− 1) + e(t)

which is a first order AR model, and easily predictable using available tools.

A common way of selecting the optimal differencing order is to test for stationarity.

A stationary time-series is one “whose properties do not depend on the time at

which the series is observed” [36]. In other terms, the time-series does not show

any trend or seasonal behaviour. Several tests are available, mostly testing for

existence of a unit root. If the AR model polynomial (or in other terms, the FIR

filter) contains roots outside the unit circle, it shows non-stationary (i.e., unstable)
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behaviour. Commonly used tests include:

– Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) [173],

– Augmented Dickey-Fuller test (ADF) [174],

– Phillips-Perron test (PP) [175],

– Canova-Hansen (CH) test [176] with null hypothesis of deterministic season-

ality, and

– Osborn-Chui-Smith-Birchenhall (OCSB) test [177] with null hypothesis that

a seasonal unit root exists.

Tests differ on their assumptions, e.g., the null hypothesis that x has a unit root

against a stationary root alternative, versus the null hypothesis that x has a sta-

tionary root against a unit root alternative. Hence, they may result in various

differencing order suggestions.

4.3.2 Features for Time-series Prediction

Features are informative variables, used as inputs for a learning model. A good time-

series prediction algorithm employs a combination of the feature extraction process and

learning model to closely mimic the physical process that generates the time-series. As

a result, features have to be designed around the assumptions about this process.

A commonly used time-series process model is an infinite impulse response (IIR) model,

x(t+ 1) = c0 +

p∑
i=0

αix(t− i) +

q∑
i=0

βiu(t− i) + ε(t),

where x(t) is the time-series, u(t) is an exogenous input to the system, c0 is a constant,

p and q are the model orders, and εt is white noise.

This assumption is the basis of many forecasting techniques, with the simplest being the

auto-regressive (AR) model:

x̂(t+ 1) =

p∑
i=0

αix(t− i) (4.5)

Here, the features are simply a lagged window of the time-series.

The simple AR model has been extended in order to use a non-linear regression func-

tion, and include a lagged window of another time-series as its exogenous input. This

extension is referred to as the non-linear auto-regressive with exogenous input (NARX)
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Figure 4.3: Example of endogenous and exogenous features for time-series prediction.
Notice that u(t+1) is not available for inferring x(t), as it is yet to be observed at time

t. As a result, its forecast û(t+ 1) is used instead.

model:

x̂(t+ 1) = f
(
x(t), x(t− 1), . . . , x(t− p), u(t), u(t− 1), . . . , u(t− q)

)
(4.6)

where f(·) is the non-linear regression function.

4.3.2.1 Endogenous vs. Exogenous Features

As mentioned above, features are commonly divided into two groups:

• Endogenous features, which are extracted from historical observations of the same

time-series data.

• Exogenous features, which are constructed from other time-series.

Figure 4.3 illustrates an example of this type of features for time-series.

Exogenous features are usually helpful, especially if they are predicted using a more

accurate technique. For example, renewable energy generation is highly correlated with

weather conditions, and future weather conditions are available due to scientific under-

standing of atmospheric processes and the high level of investment in monitoring current
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states of the atmosphere. As a result, predicting renewable energy generation benefits

from using weather forecasts as exogenous features.

Unfortunately, exogenous features are not available for all time-series due to either lack

of data, or lack of understanding about the processes driving the time-series.

4.3.2.2 Seasonality Features

In addition to seasonal decomposition, auto-regressive models (either in linear form or

non-linear form) can be readily extended to take seasonality into account.

This is realised by including seasonal lags of the time-series in addition to the ordinary

lags [36, 178], as in

x̂(t+ 1) = f
(
x(t), x(t− 1), . . . , x(t− p),

x(t− T ), x(t− 2T ), . . . , x(t− PT )
) (4.7)

where P is the order of the seasonal features and T is the period of seasonality.

The seasonality period is not always known beforehand. Several methods are available

for estimating it, which mainly include finding the peak frequency from a periodogram

plot or the Fourier transform [179].

4.3.2.3 Argument against Linearly Dependent Features

Some publications employing time-series prediction have used features such as Discrete

Fourier Transform (DFT) coefficients, Wavelet coefficients, and different moving averages

(simple, exponentially weighted, and custom weighted). All of these features only offer

an affine transformation over the original time-series:

X = Wx

For example, kth coefficient of DFT is defined by

Xk
def
=

N−1∑
t=0

x(t) · e−2πikt/N .
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A four point DFT matrix, i.e., x ∈ R4, X ∈ C4, W ∈ C4×4 is realised by

W =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i



Similarly, a discrete wavelet transform (DWT) with Haar wavelets for N = 4 is realised

by a similar affine transformation with

W =


1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1

 .

Additionally, all moving averages, and other concepts such as technical indicators [180,

181] are different variations of an FIR filter:

• A simple moving average (SMA) is realised by αi = 1
p in (4.2), where p is the

model order.

• Exponentially weighted average (EMA) uses α0 = a and αi = a(1 − a)i, where

0 < a < 1 is a constant parameter.

• A momentum technical indicator, defined as momentum = x(t) − x(t − 1), is

constructed by setting α0 = 1, α1 = −1, and αi = 0, i > 1.

Considering this affine relationship, using the aforementioned transformations as features

is redundant; even a linear regression function will find the optimal affine coefficients

for extracting useful features from the time-series, and using another layer of affine

transformation will not add any useful information. Formally, let x be the input vector

and y the targets. Solving for B in y = Bf (where f = Wx is the features vector) is

equivalent to finding A in y = Ax, where A = BW.

Additionally, moving averages create a chance of peeking if incorrectly implemented. A

simple moving average, defined by

x̄(t) =
1

2n+ 1

n∑
i=−n

x(t+ i)

is using information from x(t+1), x(t+2), · · · , which, while available during the training

phase and simulations, are not observed in a real-world setting at time t.
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Table 4.1: Dummy variables for weekly seasonality. Notice the absence of a seventh
variable, removed due to linear dependence.

V1 V2 V3 V4 V5 V6

Monday 1 0 0 0 0 0
Tuesday 0 1 0 0 0 0
Wednesday 0 0 1 0 0 0
Thursday 0 0 0 1 0 0
Friday 0 0 0 0 1 0
Saturday 0 0 0 0 0 1
Sunday 0 0 0 0 0 0

Nevertheless, these transformations can be beneficial if used as a pre-processing step.

For example, applying a moving average to the input time-series can filter noise, and

thus improve results in feature selection and modelling steps.

4.3.2.4 Seasonality Dummy Regression Variables

Instead of directly using the Fourier transform, one can include periodic information

using dummy variables. This is commonly implemented by including the Fourier series

transform coefficients, i.e., cos(2πωit) and sin(2πωit), as a feature. This effectively helps

by allowing harmonic regression [182], in the form of

x̂(t) = · · ·+
p∑
i=1

Ai cos(2πωit) +

p∑
i=1

Bi sin(2πωit). (4.8)

Alternatively, a similar technique can be used to add dummy variables to differentiate

time-periods (e.g., seasons, or days of a week) which show different attributes, but do

not exhibit a sinusoid behaviour. For example electricity consumption shows a weekly

cycle (higher consumption on weekdays, less consumption on weekends). This can be

modelled by assigning a 0–1 variable to each day of the week. This is demonstrated in

Table 4.1. Note that only six variables are generated, as the seventh variables is linearly

dependent on the others and therefore redundant:

V7 = 1−
6∑
i=1

Vi
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4.3.3 Feature Selection and Dimensionality Reduction

While feature selection and dimensionality reduction are commonly implemented as

separate techniques, they both follow the common goal of choosing the most appropriate

inputs for the learning algorithm. The logic behind both is to avoid over-fitting by

reducing the model’s degrees of freedom. Additionally, the curse of dimensionality [183]

prohibits using high dimensional data in many algorithms by exponentially increasing

their time complexity. Hence, reducing the number of features is essential.

Dimensionality reduction commonly takes the form of transforms, such as principal com-

ponent analysis (PCA), independent component analysis (ICA), or autoencoder neural

networks; the data is first transformed to another domain space, and only parts of the

data with a significant weight are selected as features [184].

Feature selection directly selects what features are to be used as inputs, and is commonly

implemented using one of the following approaches:

• Filter methods, where the relationship between the feature and the output is scored

by similarity measures such as correlation or linear regression, and the features with

the highest similarity scores are selected. In has been shown that these techniques

do not necessarily lead to improvement in predictability [185, 186].

• Wrapper methods, where the features are selected based on the learning algo-

rithm’s validation score. The learning algorithm is effectively wrapped inside a

loop, and evaluates the feature sets based on the prediction results. An outer loop

algorithm tries to find the best combination of features, in order to maximise the

learner’s prediction score. It has been shown that this approach is NP hard [187].

Details of filter and wrapper methods for time-series are discussed extensively in [167].

4.3.4 Choice of Learning Algorithm

Time-series prediction, using a machine learning approach, as formulated in (4.6), re-

quires a supervised regression technique. Some popular techniques include:

• Linear regression: Due to its simplicity and speed, linear regression is widely

used in statistics and machine learning. AR models [36] are an example of linear

regression for time-series prediction. Various techniques are used to fit the linear

model, including ordinary least squares (OLS) and maximum likelihood estimation.

• Artificial neural networks (ANN): ANNs are universal function approximators, i.e.,

any continuous function defined over compact subsets of Rn can be approximated

by one [188]. As a result, ANNs have been extensively used for time-series pre-

diction, and the N in the term NARX originally stood for neural networks [189].
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However, because of technical problems, specially the non-convex optimisation for-

mulation of ANNs which is prone to getting stuck in local minimas, ANNs were

abandoned in favour of convex algorithms such as SVM. Recently, introduction of

extensions such as deep learning techniques [190] and extreme learning machines

(ELM) [191] have renewed interest in ANNs.

• Kernel based techniques: Support vector regression machines (SVR or SVM) [169],

and kernel recursive least squares (KRLS) [170] are supervised regression algo-

rithms. These techniques are linear in nature (e.g., kernel recursive least squares

is a special case of linear adaptive filters), but by using the kernel trick they

are able to perform in non-linear spaces [192]. The kernel trick, combined with

the convex formulation of their optimisation problem, results in fast and versatile

non-linear regression techniques.

• Probabilistic techniques: Probabilistic models, such as Gaussian mixture mod-

els (GMMs) [193] and Gaussian processes (GP) [194], are able to model data as

stochastic processes. By using a custom covariance function to model the relation-

ship between different dimensions of the model (i.e., multidimensional inputs and

outputs), these techniques are not only able to perform regression, but also provide

confidence intervals of the prediction using the distribution’s variance. This, how-

ever, is at the expense of computational complexity, as these methods commonly

use Monte Carlo integration techniques to compute conditional expectations of the

underlying stochastic processes.

It must be noted that, except for linear regression, most supervised machine learning

algorithms require hyper-parameters, such as:

• Neural Networks: number of hidden layers, the number of neurons at each hidden

layer, and the choice of activation function.

• Kernel-based techniques: choice of the kernel (including linear, polynomial, radial,

sigmoid, · · · ) and kernel parameters.

• Probabilistic techniques: choice of the covariance function (including exponential,

squared exponential, Matérn, · · · ) and its parameters.

Choosing an optimal hyper-parameter is vital for the performance of the learner. This

choice is commonly performed by a model validation technique, namely cross-validation,

which will be explained in depth in Section 4.5.

4.4 Multi-horizon Forecasts

The machine learning approach of regression, as with the (4.1), only predicts the hth

horizon. Many applications, such as a finite horizon control, require forecasting m next
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Figure 4.4: Iterative versus direct multi-horizon forecasting.

values of the time-series, i.e., x(t + 1) to x(t + m). Two common approaches are used

to predict these values [195] (Figure 4.4):

1. Direct method, where m different models are fitted for each horizon.

2. Iterative method, where one single model is fitted and its own previous predictions

are used iteratively to compute the next forecast.

Performance of these approaches is data dependent, either favouring a direct method

[195] or an iterative approach [196]. Model validation on data for choosing one, or a

hybrid approach by combining their results using boosting techniques are recommended

[197, 198].

It must be noted, however, that if the prediction horizon is long and the learning process

is costly, using an iterative model might be advantageous with regards to the training

time.
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4.5 Cross-validation for Time-series Prediction

Considering the number of choices (e.g., model order for selecting past lags, the hyper-

parameters of the learning algorithm, etc.), model validation is crucial for choosing a

good predictor.

Different techniques are available for validating models, including goodness of fit, R2

(coefficient of determination), Akaike information criterion (AIC), and Bayesian infor-

mation criterion (BIC) [36]. However, comparing different learning models using these

criterion is not possible, as each are built around model dependent assumptions and

thus are incompatible.

An alternative technique for comparing model accuracy is cross-validation (the term

used in statistics and machine learning) or backtesting (as referred to in finance). In

cross-validation, the model is tested using a simulation with available real-data; the

data is divided to several folds, each comprised of a training and a testing set. For each

fold, the model is fit to the training set, and its output is compared with the testing

set. The prediction errors are measured and accumulated, and the model with the least

error is selected.

It must be noted that a time-series cross-validation is unlike an ordinary k-fold or leave-

p-out cross-validation, where the testing set is selected from in-between training data

(Figure 4.5a). In time-series cross-validation, only the training data before observation

of the testing period has to be used (Figure 4.5b and 4.5c). This is because of the

dependency between steps in a time-series, which invalidates the results of ordinary

k-fold cross-validation by using future data for modelling the past.

Additionally, when predicting time-series, one might want to include possible non-

stationariness, i.e., changes in the dynamics of the process generating this data. As

a result, two variants of cross-validation are generally used for time-series:

• Expanding window, where the training window expands with each fold. This

method uses the most available data for training the model (Figure 4.5b).

• Fixed window, where the size of the training window is fixed. This technique helps

by discarding older training data, where the dynamics of samples are not relevant

to the current process any more (Figure 4.5c).

4.5.1 Error Measures for Time-series

Choice of the error measure for cross-validation is problem dependent; however, several

commonly used error measures have been proposed, each with their own advantages and
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Figure 4.5: Cross-validation strides for time-series prediction.

disadvantages.

Some of these measures include means square error (MSE), defined as

MSE =
1

N

N∑
i=1

(x(i)− x̂(i))2,

and root mean square error (RMSE), realised by

RMSE =

√√√√ 1

N

N∑
i=1

(x(i)− x̂(i))2,

which are used specially to penalise larger errors more using a quadratic equation.

In comparison, mean absolute error (MAE), formalised as

MAE =
1

N

N∑
i=1

|x(i)− x̂(i)|,
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treats the errors uniformly.

MSE and MAE are useful for comparing results only on the same time-series. To allow

comparisons between different time-series, which may differ in their scale (i.e., minimum

and maximum), mean absolute percentage error (MAPE), defined by

MAPE =
100

N

N∑
i=1

|x(i)− x̂(i)|
x(i)

,

and symmetric MAPE (sMAPE), realised by

sMAPE =
200

N

N∑
i=1

|x(i)− x̂(i)|
x(i) + x̂(i)

,

have been proposed.

A recent measure is mean absolute scaled error (MASE) [199], proposed as

MASE =
1

N

N∑
t=1

|x(t)− x̂(t)|
1

N−1

∑N
i=2 |x(i)− x(i− 1)|

,

which is designed to compare the prediction error |x(t)− x̂(t)| against the average näıve

forecast error. In a näıve forecast, x̂(i) = x(i− 1), and consequently its error is |x(i)−
x(i − 1)|. Thus, this measure can be used to show if the forecast is effective compared

to a näıve approach.

4.6 Existing Approaches to Automatic Forecasting

Creating a successful forecasting model requires a careful selection of components and

hyper-parameters. This is commonly performed manually by an expert who chooses

these components and devises cross-validation strategies according to the properties of

the target time-series.

To the best of our knowledge, the only completely automatic and peer-reviewed approach

to time-series forecasting is the methodology proposed by Hyndman and Khandakar

[200], and implemented as the package forecast [201] in R [202]. Two main techniques

provided are the auto-regressive integrated moving average (ARIMA) and exponentially

smoothing (ETS). The automation methodology deploys a step-wise search algorithm

to select the ARIMA parameters, and uses an error penalty term to compare and select

the appropriate additive/multiplicative model for ETS. The implementations are highly

configurable with regards to the parameters of ARIMA and ETS models.
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No equivalent ML-based time-series prediction libraries were found. The nearest ap-

proach is tsDyn package [203] in R, and narxnet in MATLAB, both implementing NARX

using neural networks. Selecting the model orders, adding exogenous features, and ap-

plying pre/post-processing techniques are left out as the user’s responsibility.

General purpose machine learning libraries are available, which offer functionality for

pre-processing, feature selection, and cross-validation, including caret [204] package in

R, Weka [205] in Java, and scikit-learn [206] in Python. Each component is provided

separately, and none of these libraries offer a systematic way for creating a complete

time-series prediction model.

4.6.1 ARIMA

An ARIMA(p,d,q) process [36] is expressed in polynomial form by(
1−

p∑
i=1

φiL
i

)
(1− L)d x(t) =

(
1 +

q∑
i=1

θiL
i

)
εt (4.9)

where L is the lag operator (e.g., Lx(t) = x(t− 1) and L2x(t) = x(t− 2)).

The ARIMA model is essentially:

1. a pre-processing step, removing trends by differencing. This is parameterised by

d, using (1− L)x(t) = x(t)− x(t− 1).

2. an auto-regressive component, as in (4.5), parameterised by φi with model order

p.

3. a moving average component, i.e., a FIR filter (4.2) parameterised by θi with model

order q applied to white noise ε(t).

4.6.2 Exponential Smoothing

ETS models [36] use exponential smoothing of the past observations as a means of fore-

casting the future. These models are non-linear in the sense that they cannot be learnt

using linear regression techniques, and are interpreted based on state-space representa-

tion of the time-series [207, 208]. For example, a simple ETS model, without trend or

seasonal component, is realised by

s0 = x(0)

st = αx(t) + (1− α)st−1, t > 0
(4.10)
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where si is the ith state, α is the smoothing parameter, and the future is forecast using

x̂(t+ 1) = st.

By adding trend or seasonal components through multiplicative or additive forms, and

careful tuning of the parameter, ETS can become comparable or even better than pro-

prietary and case-specific models [207].

4.7 Summary

In this chapter, data flow and ML algorithms for time-series prediction were studied.

Prediction was formulated as a regression task based on past observation, and different

pre-processing, feature selection, and dimensionality reduction techniques were reviewed.

Additionally, methodologies for multi-horizon forecasting and model validation were

discussed.

These techniques will be used in Chapter 5 to create an automatic time-series forecasting

methodology based on machine learning. Existing approaches to automatic time-series

forecasting, namely ARIMA and ETS, were also examined, which will be later compared

to the proposed forecasting methodology.





Chapter 5

Grammatical Evolution for

Time-series Prediction

5.1 Introduction

Despite more than 50 years of study [209], time-series forecasting is still a cumbersome

operation, requiring an experienced data scientist to design and build models. This

becomes problematic for systems which require a fast response to changing time-series

dynamics, as redesigning and validating a new prediction model is time-consuming.

Additionally, many businesses face datasets with thousands of different time-series, and

adapting a separate model to each becomes impossible. Consequently, with the ever

increasing complexity of modern systems and amounts of data being generated each

year, it becomes more challenging to create effective time-series prediction software.

In this chapter, a systematic approach to automating time-series prediction using gram-

matical evolution is proposed. Based on the techniques reviewed in Chapter 4, a generic

template for describing machine learning algorithms for time-series prediction is for-

malised using context-free grammars. Subsequently, the template is utilised within a

computational intelligence framework, to automatically create the optimal forecasting

model for any given time-series.

5.2 Motivation

In Chapter 3, a model predictive control framework was proposed to manage an FX

dealer’s risk. While the dealer is modelled using a simple linear formulation, its predictive

accuracy relies on several exogenous parameters, including client flow, market volatility,

73
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and the bid-ask spreads. An estimation of the future values of these parameters is

required, and the controller’s efficiency depends on the quality of this estimation.

As explained in Section 3.6.3, one of the techniques for estimating these parameters is

time-series prediction, where each time-varying parameter is treated as a time-series,

and prediction algorithms are applied to forecast their future values.

In addition to FX, renewable energy management techniques also benefit from time-

series prediction. The amount of electricity consumption, as well as its generation using

renewable resources, are not known in advance; as a result, any forward planning, either

short or long-term, requires an accurate forecast of generation and consumption.

5.3 A Template for Time-series Prediction

In this section, we formalise a structured algorithmic approach to time-series prediction

based on the techniques and requirements examined in Chapter 4.

The proposed method is composed of two major components:

• A customisable template for prediction algorithms.

• An optimisation scheme to choose the best template configuration for a given

time-series.

The rest of this section discusses the customisable algorithm in more depth, and the

optimisation scheme is discussed in the next.

5.3.1 A Customisable Prediction Algorithm

We propose a time-series prediction algorithm, comprised of a training function which

fits a ML model using historical data, and a prediction function that uses the ML model

to forecast the future over a horizon.

The training function, summarised in Algorithm 5.1, is divided to three major parts:

1. Pre-processing: A <pre-processing techniques list>, containing selected techniques

and their parameters, is applied to the input time-series x.

2. Feature extraction: The Feature Extraction function is used to extract features

from the pre-processed time-series.

3. Machine learning model training: A <regression algorithm> is used to create the

prediction model, which can map the features to the time-series.
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Algorithm 5.1: The proposed time-series prediction training algorithm.

Input: time-series x.
Result: Prediction model

// pre-processing

1 pre-processing techniques ← <pre-processing techniques list>
2 foreach ( technique, hyper-parameters) in pre-processing techniques do
3 x, parameters ← Apply technique with hyper-parameters to x

4 pre-processing techniques
Append←−−−− parameters

5 end

// Feature extraction

6 features ← Apply Feature Extraction to x

// ML Training

7 learner ← <regression algorithm>
8 model ← Apply learner on <m> last features

9 return model, pre-processing techniques

Notice that the <pre-processing techniques list>, <regression algorithm>, and <m>

are covered in angle brackets. We use this notation, similar to non-terminal elements in

a context-free grammar (CFG) in Backus–Naur form, to show that these components

are later replaced by actual pre-processing methods and regression algorithms.

The prediction function, summarised in Algorithm 5.2, has four components:

1. Pre-processing: The same pre-processing techniques are applied to the time-series

x.

2. Feature extraction: The same feature extraction function is used to obtain features.

3. Prediction: The model created in the training phase is used for prediction. The

prediction is able to forecast h steps ahead by iteratively using its own output as

new observations.

4. Post-processing: Reverses the pre-processing step on the prediction results.

This function, unlike the training function, is not customisable, and the information

regarding the choice of techniques and models are set via function arguments.

The proposed training and prediction methodologies follow the discussion in Section

4.3, specifically the data flow explained in Figure 4.2, but with a major difference;

feature extraction, addition of exogenous features, and feature selection are combined

and replaced with the Feature Extraction function. This is explained in detail in

Section 5.3.3.

Ordinarily, the training and the prediction functions are executed back to back after the

observation of each new sample. This is to update the forecasting model using the new
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Algorithm 5.2: The proposed forecasting algorithm.

Input: time-series x, forecasting horizon h, pre-processing techniques, ML
model, feature window size m.

Result: future forecasts x̂

// pre-processing

1 foreach ( technique, hyper-parameters) in pre-processing techniques do
2 x, parameters ← Apply technique with hyper-parameters to x

3 pre-processing techniques
Append←−−−− parameters

4 end

// Rolling window prediction

5 x̂← x
6 for i = 1 to h do
7 features ← Apply Feature Extraction on x̂

8 x̂
Append←−−−− Predict model with the last m features

9 end

// Reverse pre-processing Phase

10 foreach ( technique, hyper-parameters, parameters) in pre-processing techniques
do

11 x̂ ← Reverse technique on x̂ with hyper-parameters and parameters
12 end

information in order to obtain better prediction results. However, in several cases one

may want to separate these processes:

• If time-series dynamics do not change often, re-fitting the model can be avoided

to save on computational costs.

• If real-time or high throughput prediction is required, computational load of model

training can be offloaded to a low-priority background process or a separate com-

puting device, and prediction is performed on a high priority foreground process.

• Embedded systems with low computational capacity can offload model training to

a more capable computer. For example, training is performed on a cloud computing

system, and model parameters are transferred to the local low-power embedded

system. While the cloud computing system can be also responsible for forecasting,

storing the prediction model locally allows continuous operation even when the

communication to the cloud breaks down.

5.3.2 Pre-processing Grammar

The CFG in Table 5.1 is proposed to replace the <pre-processing techniques list> in

Algorithm 5.2. The terminal and non-terminal elements used in this grammar are:
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Table 5.1: Production rules for the time-series prediction pre-processing grammar.

〈techniques list〉 ::= {<techniques list>, <technique>} | <technique> (1.a) (1.b)

〈technique〉 ::= (normalise) | (feature scale) | (2.a) (2.b)
(diff, <ndiff>) | (sdiff, <nsdiff>, <T>) | (2.c) (2.d)
(log) | (BoxCox, <λ>) (2.e) (2.f)

〈ndiff 〉 ::= <n> | KPSS | ADF | PP (3.a) (3.b) (3.c) (3.d)

〈nsdiff 〉 ::= <n> | CH | OCSB (4.a) (4.b) (4.c)

〈T 〉 ::= known frequency | FFT (5.a) (5.b) (5.c)

〈λ〉 ::= Guerrero | λmin | · · · | λmax (6.a) (6.b) (6.c) · · ·

〈n〉 ::= 1 | 2 | · · · | nmax (7.a) (7.b) (7.c) · · ·

• <techniques list>: A list of selected pre-processing techniques. This element is

recursive, which can extend to include one or multiple <technique>s.

• <technique>: Contains a pair of (method, parameters). Several pre-processing

techniques are included:

– mean-variance normalisation, or feature scaling. These techniques are non-

parametric.

– differencing (diff) and seasonal differencing (sdiff), to create a stationary time-

series by removing trends and seasonality.

– power transforms, including logarithm and Box–Cox transform.

• <ndiff> and <sndiff>: Order of ordinary and seasonal differencing. These values

can be obtained using unit root tests, as explained in Section 4.3.1. Tests include

ADF, KPSS, and PP for ordinary differences, and CH and OCSB for seasonal

differences. An alternative option is to directly choose the order from a list of

integer numbers, <n>.

• <T>: The time-series periodicity. If this frequency is known (for example weekly

or daily) it can be directly used. Otherwise, a spectrogram using FFT can extract

the dominant frequency of the time-series.

• <λ>: The λ parameter of the Box–Cox transform, as explained in (4.4). The

value of λ is either chosen from a user specified set, [λmin, · · · , λmax], or obtained

using the Guerrero’s variance-stabilising method [210].

• <n>: A positive integer. The maximum value is controllable by user specified

value nmax ∈ N.

The statistical techniques used above are well studied, and are available from several

statistical software packages [201, 202, 211].
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5.3.3 Feature Extraction Grammar

The training and prediction algorithms use the Feature Extraction function to prepare

the machine learning model’s input. Similar to the pre-processing step, it contains

several customisable options as it can select from a pool of different endogenous and

exogenous features. The customisability has two different goals. First, the end user

can easily update the pool with new features. Second, this unifies feature selection

and extraction algorithms: wrapper feature selection algorithms work by comparing

different feature combinations. If the customisable feature extraction can also create

different feature combinations, only one external validation step would be required.

The Feature Extraction function, summarised in Algorithm 5.3, has three main steps:

1. Endogenous features are extracted according to (4.7) (i.e., seasonal AR model).

The features are parameterised by

• <AR order>, i.e., the model order p in (4.7), which determines the window

size of lagged values used as features,

• <seasonal AR order>, the model order P in (4.7), which determines the

window size of seasonally lagged values, and

• <T>, similar to <T> in Table 5.1 and the T in (4.7), which determines the

frequency of the lagged seasonal components.

2. Exogenous features are added in accordance with the NARX model of (4.6). These

features are parameterised by

• the <additional time-series>, which contains a list of related time-series,

suggested by the user, and

• the <window size>, which determines the order of the lags and leads for each

time-series included in the <additional time-series>. The parameter q− is

used to determine the order of past lags (similar to the order q in (4.6)), and

q+ sets the order of future leads (e.g., q+ = 1 for û(t+ 1) in Figure 4.3). One

must note that the selected window of the exogenous time-series can only

include available forecasts, and thus q+ should be limited to the number of

available step-ahead forecasts for that exogenous time-series.

3. Time-dependent features are added as dummy variables. These include calendar

based variables (e.g., day-of-week as in Table 4.1), and Fourier transform coeffi-

cients as in (4.8).

Table 5.2 lists the production rule for customising the Feature Extraction function:

• <AR order>, <seasonal AR order>, and <X order>: Determine the candidate

orders for the auto-regressive, seasonal auto-regressive, and exogenous features.
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Algorithm 5.3: The proposed feature extraction algorithm for time-series pre-
diction.

Input: Time-series x
Result: Extracted features

1 Function Feature Extraction is
// Extract endogenous features

2 p = <AR order>
3 P = <seasonal AR order>
4 τ = <T>
5 features ← [x(t− 1), x(t− 2), · · · , x(t− p)]
6 features

Append←−−−− [x(t− τ), x(t− 2τ), · · · , x(t− Pτ)]

// Extract exogenous features

7 additional time-series ← <additional time-series>
8 window sizes ← (q−, q+) ∈ <X order> for each additional time-series
9 foreach y, q−, q+ in additional time-series and window sizes do

10 q+ ← min(q+, max available future forecasts for y)

features
Append←−−−− [y(t− q−), · · · , y(t− 1), y(t), y(t+ 1), · · · , y(t+ q+)]

11 end

// Add seasonality dummy variables

12 features
Append←−−−− <dummy variables list>

13 return features

14 end

These values are limited by the user suggested orders pmax, Pmax, and qmax re-

spectively.

• <T>: The time-series periodicity. If this frequency is known (for example weekly

or daily) it can be directly used. Otherwise, a spectrogram using FFT can extract

the dominant frequency of the time-series.

• <exogenous time-series>: A list of related exogenous time-series, supplied by the

user.

• <additional time-series>: A recursive list, selecting time-series form the <exoge-

nous time-series> to be used as features.

• <dummy variables>: A list of explanatory dummy variables, as described in Sec-

tion 4.3.2.4.

• <dummy variables list>: A recursive list, selecting form <dummy variables> to

be added as features.
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Table 5.2: Production rules for the feature extraction grammar.

〈AR order〉 ::= 1 | 2 | · · · | pmax
〈X order〉 ::= 0 | 1 | 2 | · · · | qmax
〈seasonal AR order〉 ::= 0 | 1 | 2 | · · · | Pmax
〈T 〉 ::= known frequency | FFT

〈additional time-series〉 ::= {<additional time-series>, <exogenous time-series>} |
<exogenous time-series> | None

〈exogenous time-series〉 ::= {List of exogenous time-series}

〈dummy variables list〉 ::= {<dummy variables list>, <dummy variable>} |
<dummy variable> | None

〈dummy variable〉 ::= hour-of-day | week-of-day | month-of-year | · · · |
calendar holidays | sin(2π t

<T>) | cos(2π t
<T>)

5.3.4 Learning Model Grammar

The final component for training and predicting time-series is a machine learning model.

While the prediction algorithm re-uses the same model that was used during the training,

the user is responsible for choosing the machine learning model in the training algorithm.

Additionally, the user has to tune the model’s hyper-parameters, either manually, or

using a search method such as random search or grid search.

To automate and unify learning model and hyper-parameter selection, we propose the

grammar in Table 5.3:

• <learner> selects the learning model, and determines what hyper-parameters are

required for configuring it.

• Other production rules customise the selected model’s hyper-parameters. For ex-

ample, the ANN is parameterised by the number of <hidden layers> and <hidden

nodes per layer>, while the kernel methods are configured with type of <kernel>

and its parameters such as <γ> (the Gaussian kernel width) or d (the order of

polynomial kernel). Each kernel method has other additional hyper-parameters,

such as the soft margin cost C for SVM, and the regularisation parameter λ for

KRLS. The range of each parameter is controllable by the user, allowing the algo-

rithm to search within a fine-grained or course-grained list.

• As explained in Section 4.5, the training can be performed on all available data

to maximise training samples, or just on the recent features to reject older and

non-relevant samples. The parameter <m> is used to set the number of features

for this purpose. This can vary from a minimal number set by the user in mmin,

up to all of the available features.
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Table 5.3: Example of production rules for the hyper-parameter selection grammar.

〈learner〉 ::= (ANN, <hidden layers>, <neurons per layer>) |
(SVM, <kernel>, <ε>, <C>) |
(KRLS, <kernel>, <λ>)

〈hidden layers〉 ::= 1 | 2 | · · · | Lmax
〈neurons per layer〉 ::= 1 | 2 | · · · | Nmax

〈kernel〉 ::= Linear | {Radial, <γ>} | {Polynomial, <d>} | · · ·

〈C〉 ::= Cmin | · · · | Cmax
〈ε〉 ::= εmin | · · · | εmax
〈λ〉 ::= λmin | · · · | λmax
〈γ〉 ::= γmin | · · · | γmax
〈d〉 ::= dmin | · · · | dmax
〈m〉 ::= mmin | · · · | all

5.4 Grammatical Evolution for Time-series Prediction

In Section 5.3, a customisable template for non-linear time-series prediction was pro-

posed. While any custom configuration of this template results in a valid predictor, the

choice of components directly determines the forecasting quality.

In this section, we use grammatical evolution (GE) to search for the optimal forecasting

configuration. GE, introduced in Section 2.6, is an evolutionary search technique used

for generating complete programs optimised towards a certain task. Implementing GE

for any domain-specific task requires 3 major components:

1. A grammar: Context-free grammars (CFG) are used to determine the structure

of the program.

2. A cost function: The cost (or fitness) function compares different configurations

of the program.

3. An evolutionary search technique: Considering the cost function is usually non-

smooth and non-convex, gradient-based optimisation algorithms are unable to find

the optimal grammar configuration. As a result, evolutionary optimisation tech-

niques such as genetic algorithm (GA) are used.

Specific to the time-series prediction, these components are already explored:

• The grammar, which was proposed in Section 5.3.

• The cost function: The best technique to compare time-series prediction algorithms

is cross-validation on the target data, as introduced in Section 4.5.
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5.4.1 The Evolutionary Search

Evolutionary optimisation algorithms, such as GA, are inspired by natural evolution.

These algorithms alter a population of candidate solutions, searching within the feasible

solution space for an individual solution with the minimum cost (or maximum fitness).

We implement the grammatical evolution using GA with integer chromosomes:

1. GA creates a population of integer sequences, called chromosomes.

2. A grammar mapping engine, maps each chromosome to a configured forecasting

function. This is performed by replacing each component in the prediction tem-

plate algorithms, with a rule from the grammar tables, selected according to the

value in chromosomes. Similar to translation of DNA to a complete organism in

biology, this step is referred to as genotype to phenotype mapping.

3. Each prediction algorithm is cross-validated using the target time-series.

4. The cross-validation error is returned to the GA as the fitness score or the cost.

5. Ordinary GA operators are applied to the population to create a new generation

of population. These operators include:

• Selection: Only predictors with low cross-validation error (i.e., high fitness

and low cost) are kept.

• Cross-over: Combines the integer sequence from two chromosomes to create

new chromosomes.

• Mutation: Some chromosomes are randomly perturbed, and thus the search

is extended to their nearby solution space.

6. The algorithm is repeated for the new generation from step 2, until a termination

condition is reached. Termination conditions include reaching a desired level of

cross-validation score, or a maximum number of generations.

The proposed implementation of the GE optimisation is presented in Figure 5.1.

One must note that as GE is a stochastic optimisation, i.e., it randomly searches the

solution space. As a result, on some occasions it might be unable to find the best

prediction function. Alternatively, an exhaustive search can be performed to find the

global minima at the expense of computation time. This technique, however, might not

be practical for larger problems.

5.4.2 The Chromosome Structure

Unlike other program generating evolutionary algorithms, such as genetic programming

(GP) which require a specific structure for their chromosomes, GE only uses a string
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Figure 5.1: Grammatical evolution for time-series prediction.

of integer numbers. Creating a prediction function is performed by replacing each non-

terminal element of Algorithms 5.1, 5.2, and 5.3 with an according rule defined by the

grammars in Tables 5.1, 5.2, and 5.3.

Consider the example in Table 5.4, where the <pre-processing techniques list> of Algo-

rithm 5.1 is transformed into two pre-processing functions, namely normalisation and

differencing with the order determined by ADF test. The chromosome in this ex-

ample is {0, 1, 0, 2, 2}. The mapping starts from the start rule, which in this case is

the <techniques list>. The first codon (i.e., the integer value 0) is used with a zero-

indexing scheme to choose rule (1.a). The non-terminal is then replaced by this rule,

i.e., {<techniques list>, <technique>}. Mapping continues by replacing the first non-

terminal element in the new state (i.e., a new <techniques list>), using the next codon

(i.e., the integer value 1). When all non-terminals are replaced, as in step 6, the mapping

terminates.
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Table 5.4: Genotype to phenotype mapping example using the pre-processing gram-
mar.

Step Current State Sequence Rule Replacement

0 Start <techniques list>
1 <techniques list> 0 (1.a) {<techniques list>, <technique>}
2 {<techniques list>, <technique>} 1 (1.b) <technique>
3 {<technique> , <technique>} 0 (2.a) (normalise)
4 {(normalise), <technique> } 2 (2.c) (diff, <ndiff >)
5 {(normalise), (diff, <ndiff >) } 2 (3.c) ADF
6 {(normalise), (diff, ADF) }

5.4.3 Fitness Function

The fitness function requires a model-independent technique to compare the forecasting

quality of different time-series prediction algorithms. Cross-validation, studied in Section

4.5, satisfies these requirements.

Determining cross-validation details are task dependent, and the following parameters

have to be determined by the user:

• h: The forecasting horizon.

• Nfolds: The number of folds to use in cross-validation. More folds result in more

testing, but the data available for training will be reduced, and vice versa.

• Error measure for comparing the predictions against the observed time-series.

Common error measure used for comparing prediction results are listed in Sec-

tion 4.5.1. It must be noted an appropriate measure depends on the application of

prediction, and how the prediction error affects that application’s results. This, fo-

cusing on a linear-quadratic (LQ) control application, is further studied in Chapter

6.

Given this information, the cross-validation can be applied to each prediction algorithm

in the following sequence:

• The data is divided to Nfolds training and testing fold, considering that test folds

have to be of length h.

• For each fold, the model is trained on the training data.

• The prediction function is applied iteratively to predict h steps ahead.

• The prediction is compared against the testing data, and its error is measured.

• The errors are accumulated and returned as the cost (i.e., the inverse of fitness).

This fitness function is summarised as pseudocode in Algorithm 5.4
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Algorithm 5.4: The proposed fitness function for time-series prediction evalua-
tion.

Input: Time-series x, forecasting horizon h, number of folds Nfolds, error
measure, training function, prediction function

Result: Cross-validation score

1 etotal ← 0
2 folds ← divide x into Nfolds training and testing folds
3 foreach ( train data, test data) in folds do
4 model ← Apply training function on train data
5 forecast ← Apply prediction function on model with forecast horizon h
6 e← error measure(forecast, test data);
7 etotal ← etotal + e

8 end
9 return etotal

5.4.3.1 Speeding-up the Fitness Function

Computing the fitness is the most time-consuming part of any evolutionary algorithm.

For time-series cross-validation, the main speed bottleneck is the training and testing

algorithms applied to different folds of data. By improving fitness computation speed,

more grammar space can be explored, which leads to finding better prediction functions

in a limited time.

In this thesis, a combination of these techniques will be used to speed up fitness function

computation:

• Search parallelisation: In an evolutionary search algorithm, such as genetic algo-

rithm, computing fitness function of each chromosome is independent of the others.

As a result, each chromosome can be evaluated on a different processor, and the

communication overhead would be negligible.

• Cross-validation parallelisation: The time-series can be broken into different sec-

tions, with cross-validation of each section assigned to a different processor. One

must note that as time-series samples are sequential in nature, some of the results

for samples around the breaking points will be lost. Hence, a mechanism is required

to divide the time-series into overlapping sections, and re-assemble cross-validation

results into the final cost [168].

• Fast breaks: Some prediction functions may show a considerably high prediction

error, or even terminate in error (e.g., logarithmic pre-processing used with neg-

ative numbers). If the error is identified to surpass the best fitness early in the

cross-validation process, it is unnecessary to continue the cross-validation.
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5.5 Summary

In this chapter, grammatical evolution (GE) was proposed to automate non-linear time-

series prediction. Based on the state-of-the art techniques in literature, a customisable

template for describing a machine learning (ML) methodology for time-series prediction

was formalised using context-free grammars (CFGs). Subsequently, an optimisation

framework based on GE was proposed, which allows finding the optimal template con-

figuration for any given time-series requirements.

An important feature of the proposed method is its extensibility. If any new information

regarding the time-series is known, it can be added to one of the forecasting steps;

furthermore, additional methods are easily added as another rule, and known poor

performing techniques are removed before executing the GE search.

This technique will be used to automatically find the optimal time-series prediction

algorithms, for the applications where:

• time-series dynamic change quickly, e.g., financial markets, or

• the number of time-series to predict is large enough for an analyst to study, e.g.,

the energy market.



Chapter 6

Time-series Forecasting Error

Measures for Finite Horizon

Control

6.1 Introduction

In Chapter 3, an FX dealer’s risk was modelled using a linear-quadratic (LQ) system,

and a shrinking horizon MPC controller was proposed for hedging it. This model requires

an estimation of future system parameters, and the controller’s efficiency depends on

the accuracy of these estimations.

This problem is not limited to hedging. Many real-world systems are described by an

LQ model (i.e., a set of linear differential equations and a quadratic objective function),

and finite horizon optimal control regulators are used for controlling them. Applica-

tions include chemical engineering [212], electric power systems [213], and inventory

management [125].

In finite horizon control (FHC), as with other optimal control techniques, a state-space

model is defined to allow predictive modelling of the system’s future states to any input.

Based on this model, controllable inputs of the system are determined such that the

objective cost function is minimised, and thus the system is controlled towards the

desirable outcome.

Classic FHC formulations model the system’s uncontrollable exogenous inputs analyt-

ically as a part of the state-space equations. This is performed by dividing these in-

puts into measurable and non-measurable external disturbances, and using an analytical

model to describe them [8]. However, due to the complexity of real-world applications,

87
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developing an accurate analytical model for the system’s exogenous inputs is not always

possible.

One relatively recent solution is the use of statistical models and machine learning (ML)

algorithms as a part of the predictive model, where the time-varying exogenous inputs

are treated as a time-series, and estimated via a forecasting algorithm [214–218]. In

time-series forecasting, error measures such as mean square error (MSE) or mean ab-

solute error (MAE) are used for model validation, by comparing the effectiveness of

different forecasting techniques and their parameters for a certain prediction task [199].

However, these assume that the error of each sample is independent of other time-steps,

which is not generally true. To obtain full accuracy for model selection, one must vali-

date a model by backtesting over the control horizon. Alternative techniques exist, such

as including the conditional distribution of the exogenous inputs in the dynamic pro-

gramming problem [121]. Unfortunately, none of these approaches are computationally

efficient.

In this chapter, the criteria for evaluating and selecting an appropriate forecasting model

for discrete-time LQ FHC regulators are discussed. As will be demonstrated, this prob-

lem has its own unique challenges.

6.2 A Notation for Optimal Control Problems

A discrete linear time-invariant (LTI) system can be described using the following state-

space model:

x(t+ 1) = Ax(t) + Bu(t) + Cv(t) (6.1)

Here,

• x(t) ∈ Rk is the state vector at time t ∈ [0, 1, . . . , n],

• u(t) ∈ Rl is the vector of controllable inputs,

• v(t) ∈ Rm is the vector of exogenous inputs,

and A ∈ Rk×k, B ∈ Rk×m and C ∈ Rk×n are the system and input matrices respectively

and are controllable.

The objective is to find controllable inputs, u(t), to minimise a quadratic cost function

defined by

J =

n∑
t=1

x(t)TQtx(t) +

n−1∑
t=0

u(t)TPtu(t) (6.2)
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where positive-semidefinite matrix Qt ∈ Rk×k and positive-definite matrix Pt ∈ Rl×l

are stage costs of x(t) and u(t) respectively.

6.2.1 Matrix Form Solution

A common way to find the solution to argmin J is to explicitly express x(t),∀t > 0 as a

function of inputs through matrix form, and then minimise J to find all u(t) in a batch

approach [8].

In matrix form, the state-space equation (6.1) and the cost function (6.2) are represented

by

X =SAx(0) + SBU + SCV (6.3)

J =XTQ̄X +UTP̄U (6.4)

where

X = [x(1)T x(2)T · · · x(n)T]T,

U = [u(0)T u(1)T · · · u(n− 1)T]T,

V = [v(0)T v(1)T · · · v(n− 1)T]T,

SA =


A

A2

...

An

 ,

SB =


B 0 · · · 0

AB B · · · 0
...

...
. . .

...

An−1B An−2B · · · B

 ,

SC =


C 0 · · · 0

AC C · · · 0
...

...
. . .

...

An−1C An−2C · · · C

 ,

Q̄ = blockdiag{Q1,Q2, · · · ,Qn},

P̄ = blockdiag{P0,P1, · · · ,Pn−1},
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and blockdiag{M1,M2, · · · ,MN} creates a block diagonal matrix from matrices M1 to

MN .

We define Y as the vector of uncontrollable variables, i.e., the accumulated initial state

and exogenous inputs, formalised as

Y = S†CSAx(0) + V (6.5)

where † is the Moore–Penrose pseudoinverse operator.

Theorem 6.1. Let

JA = P̄ + ST
BQ̄SB,

JB = ST
BQ̄SC ,

JC = Y TST
CQ̄SCY , and

H = −J†AJB.

The cost of the system as a function of controllable and uncontrollable inputs U and Y

is realised by

J(U) = UTJAU + 2UTJBY + JC . (6.6)

Proof. We begin by replacing X in (6.4) with (6.3):

J = XTQ̄X +UTP̄U

= (SAx(0) + SBU + SCV )TQ̄(SAx(0) + SBU + SCV )

+UTP̄U

Considering the definition of Y from (6.5), this can be simplified to

J = (SBU + SCY )TQ̄(SBU + SCY ) +UTP̄U ,

which is subsequently expanded and reordered by U :

J = UT(P̄ + ST
BQ̄SB)U

+UT(ST
BQ̄SC)Y

+ Y TST
CQ̄SCY

The proof is complete.
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Finally, using the optimality condition, namely
dJ

dU
= 0, the optimal control input

U∗ = argmin J can be obtained:

U∗ = −J†AJBY

= HY .
(6.7)

6.2.2 Finite Horizon Control

The goal of an FHC regulator is to dynamically minimise J over control period t ∈
[0, 1, . . . , N ]. Due to practical considerations, at each time-step, (6.7) is solved over a

finite horizon of length n < N to obtain the optimum control sequence U , and only

the first action of this sequence, u(0), is applied. As time moves forward, the model

is updated based on observations, and the finite horizon optimisation is repeated. This

update allows better control of the system in presence of external disturbances and

model misspecification, at the expense of computational power required for repeated

optimisation at each time-step.

Updating the horizon at the next time-step takes two major forms:

1. The horizon is either moved forward, becoming the receding horizon control (RHC).

2. The same termination time is held, resulting in the shrinking horizon control

(SHC).

In this chapter, both methodologies are studied.

6.3 Closed-form Analysis of the Final Cost

6.3.1 Prediction Error

In a real system, the exogenous inputs v(t) are not observed before time t and must be

substituted by v̂(t) = v(t) + ε(t), where v̂(t) is their prediction and ε(t) is the additive

prediction error.

In a finite horizon approach (either shrinking or receding), at each time-step t, v̂(t+ h)

is re-estimated (i.e., predicted again using the latest available information) for h ∈
[1, 2, · · · , n]. We denote these re-estimations and their prediction error by v̂t(t+ h) and

εt(t+ h) respectively (Figure 6.1).

Similarly, their matrix form counterparts are defined as

V̂t = [v̂t(t+ 1)T v̂t(t+ 2)T · · · v̂t(t+ n)T]T
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𝑣 (2)

𝑣 (1)

 𝑣0(1)  𝑣0(2)  𝑣0(3)

 𝑣1(2)  𝑣1(3)  𝑣1(4)

 𝑣2(3)  𝑣2(4)  𝑣2(5)𝑣 (1)

Prediction horizon (𝑛 = 3)

0 1 2 3 4 5

𝑡 = 0

𝑡 = 1

𝑡 = 2

Prediction

Prediction 
update time

Observed 
input

Time
𝑡

Figure 6.1: Prediction updates in FHC. To differentiate between predictions per-
formed at different times, the estimation of v(t+h) predicted at time-step t is denoted

with v̂t(t+ h).

and

Et = [εt(t+ 1)T εt(t+ 2)T · · · εt(t+ n)T]T.

To denote all prediction errors over all control horizons,

E = [ET
0 E

T
1 . . . ET

N−1]T

is defined.

6.3.2 Optimal Input in Presence of Prediction Error

Theorem 6.2. The applied controllable input U , obtained from the FHC regulator, is a

linear function of the accumulated exogenous inputs Y and their prediction errors E,

U = ΨY + ΦE (6.8)

where

Ψ =
N−1∑
i=0

ΦiMY (i), (6.9)

Φ = [Φ0 Φ1 · · · ΦN−1], (6.10)

Φi =
N−1∑
j=0

MΦ(j)HjΓ(j, i), (6.11)
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Γ(t, τ) =


t > τ 0knt×knτ

t = τ Iknt×knt

t < τ
∑t−1

i=0 C†At−iBMU (i)HiΓ(i, τ)

MΦ(t) = [Ki,j ]N×nt ,

i = t+ 1, j = 1 Ki,j = Il×l

else Ki,j = 0l×l

=



0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

I 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0



MU (t) = [Ki,j ]nt×1,

i = j = 1 Ki,j = Il×l

else Ki,j = 0l×l

=
[
I 0 · · · 0

]

MY (t) = [Ki,j ]nt×N ,


j − i = t Ki,j = Ik×k

i = 1, j ≤ t Ki,j = C†At+1−jC

else Ki,j = 0k×k

=



C†AtC · · · C†A2C C†AC I 0 · · · 0 0

0 · · · 0 0 0 I · · · 0 0
...

. . .
...

...
...

...
. . .

...
...

0 · · · 0 0 0 0 · · · I 0

0 · · · 0 0 0 0 · · · 0 I


,

nt is the length of horizon at time-step t, 0f×g and If×g are f × g zero and identity

matrices respectively, and [Ki,j ]f×g denotes a block matrix of f × g sub-block matrices.

Here, Ht is the matrix used to derive the control law, akin to H in (6.7), computed

considering the horizon length of the optimisation at time-step t. Here, the horizon

length has been denoted with nt, as the horizon for H was denoted with n. This

formulation allows (6.8) to be used with receding horizon, shrinking horizon, or hybrid

control schemes. For a receding horizon scheme, Ht = H, while for a shrinking horizon

scheme, it has to be recomputed.
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Proof. The system state in the presence of prediction error is obtained by

X = SAx(0) + SBU + SC(V +E)

= SBU + SCY + SCE.

The cost function can be rewritten as

J = XTQ̄X +UTP̄U

= (SBU + SCY + SCE)TQ̄(SBU + SCY + SCE) +UTP̄U

= UT(P̄ + ST
BQ̄SB)U + 2UTST

BQ̄SC(Y +E)+(
Y TST

CQ̄SCY + 2ETST
CQ̄SCY +ETST

CQ̄SCE
)

= UTJAU + 2UTJB(Y +E)+(
Y TST

CQ̄SCY + 2ETST
CQ̄SCY +ETST

CQ̄SCE
)
.

The solution to argmin
U

J is given by

U = H(Y +E).

In finite horizon control, controllable inputs are re-evaluated at each time-step. For

example, at time-step t,

Ut = Ht(Υt +Et) = HtΥ̂t, (6.12)

where Ut is the input optimised using information available at time t, Υt ∈ Rntm is

constructed by accumulating previous exogenous inputs (i.e., v(i), i < t) and the initial

state x(0) into the first value of Yt, the tth horizon window of Y . Yt can be obtained

by the affine mapping

Yt = MY (t)Y . (6.13)

Υ̂t is the estimate (i.e., prediction) of Υt and includes the prediction error at time t,

i.e., Υ̂t = Υt +Et.

At any time-step, Υt+1 can be computed by accumulating the observed values of u(i)

for i < t, to the Yt+1:

Υ̂t+1 = Yt+1 +Et+1 + C†
t∑
i=0

At+1−iBMU (i)Ui
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Here, MU is used to select the applied input control by separating the first input vector

of Ut; then A(t+1)−iB is used in a recursive approach (similar to applying SB) to accu-

mulate its effect on the system’s states. Finally, C† is applied, similar to S†C in (6.5), to

reshape the resulting new states into the new uncontrollable inputs vector.

The equation above can be rewritten in a recursive form by replacing Ui with (6.12),

Υ̂t+1 = Yt+1 +Et+1 +
t∑
i=0

C†At+1−iBMU (i)HiΥ̂i

which can be expanded recursively and then factored to

Υ̂t+1 =
t+1∑
i=0

Γ(t+ 1, i)(Yi +Ei).

The final U is constructed using MΦ(j) which places the first inputs of each Uj into the

jth position of U :

U =

N−1∑
j=0

MΦ(j)Uj

=
N−1∑
j=0

MΦ(j)Hj

N−1∑
i=0

Γ(j, i)(Yi +Ei)

By factoring Φi using (6.11), considering that MU is non-zero only for i = j, and

substituting Yi by (6.13), this simplifies to

U =
N−1∑
j=0

N−1∑
i=0

MΦ(j)HjΓ(j, i)(Yi +Ei)

=

N−1∑
i=0

Φi(Yi +Ei)

=
N−1∑
i=0

Φi(MY (i)Y +Ei),

which can be then reorganised by substituting for Ψ and Φ from (6.9) and (6.10), into

U = ΨY + ΦE.

The proof is complete.
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Notice that Ψ in (6.8) is an extended form of H in (6.7). In Section 6.2, H was designed

for a constant horizon length. In contrast, Ψ supports variable horizon lengths. This is

a result of (6.8)’s goal not being control, but an accurate simulation of what would have

happened if the control was to be performed with either a receding or shrinking horizon.

For shrinking only horizons (i.e., nt+1 = nt − 1), due to the principle of optimality,

Ψ = H.

6.3.3 Effects of Prediction Error on Cost

Theorem 6.3. Let U∗ = ΨY be the optimal input and J∗ = J(U∗) the optimal (i.e.,

minimum) cost obtained by using a prescient forecaster. The increase in cost from

optimal due to prediction error E, ∆J = J(U)− J∗, is given by

∆J = ETΘE +ETΩY (6.14)

where

Θ = ΦTJAΦ (6.15)

Ω = 2ΦT(JAΨ + JB). (6.16)

Proof. Let

Ue = U −U∗ = ΦE (6.17)

be the difference of the controllable input computed based on the prediction and the

optimal input (i.e., without prediction error). The cost difference between minimum

cost using U∗ (i.e., J(U∗)) and the cost with prediction error using U (i.e., J(U)), is

given by

∆J = J(U)− J(U∗)

= UTJAU + 2UJBY + JC −U∗TJAU
∗ − 2U∗JBY − JC

= UTJAU + 2UJBY −U∗TJAU
∗ − 2U∗JBY .
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Expanding U = U∗ +Ue results in

∆J = (U∗ +Ue)
TJA(U∗ +Ue)−U∗TJAU

∗

+ 2(U∗ +Ue)
TJBY − 2U∗TJBY

= U∗TJAU
T +UT

e JAUe + 2UT
e JAU

∗ −U∗TJAU
∗

+ 2(Ue +U∗)TJBY − 2U∗TJBY

= UT
e JAUe + 2UT

e JAU
∗ + 2UT

e JBY .

By replacing U∗ with its definition from (6.8) (i.e., U∗ = ΨY considering E = 0), we

can simplify the above to

∆J = UT
e JAUe + 2UT

e JA(ΨY ) + 2UT
e JBY

= UT
e JAUe + 2UT

e (JAΨ + JB)Y .

Substituting Ue with (6.17) results in

∆J = ET(ΦTJAΦ)E + 2ETΦT(JAΨ + JB)Y .

This can be factored using (6.15) and (6.16) to

∆J = ETΘE +ETΩY .

The proof is complete.

According to the principle of optimality [8], U∗ = HY is universal for all steps in a

shrinking horizon control, and as a result Ψ = H. Consequently, for an approach with

only shrinking horizons, ∆J simplifies to

∆J = ETΘE.

6.4 Time-series Prediction and Model Selection

The objective of time-series prediction is to find a function p(·) to estimate the future

of time-series v(t) over prediction horizon h ∈ [1, 2, · · · , n] using available data, i.e.,

v̂t(t+ h) = p(v(t), v(t− 1), v(t− 2), . . .).
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As explained in Chapter 5, forecasting techniques are divided into two phases:

1. A learning phase, where for a chosen model and its hyper-parameters, the training

data is fitted to minimise a p-norm error (i.e., ||v(t)− v̂t(t)||p). Commonly, an L2

norm is used as error, as in the cases of ordinary least squares (OLS) regression,

perceptron neural networks [219], and support vector regression (SVR) [220].

2. A cross-validation or backtesting phase, where performance of different models

and hyper-parameters across a separate set of testing data are compared.

The first phase implicitly minimises ||E||p, which also reduces the controller’s error.

However, the second phase is commonly implemented using ordinary error measures

which utilise an identity matrix instead of Θ (e.g., MSE is ETE), and thus ignore possi-

ble dependencies between errors and also between the errors and the inputs. To include

this knowledge of the controller, a step-by-step simulation of FHC has to be performed:

for each discrete time-step, the control law is first applied based on predictions, and then

the system states and costs are updated according to the actual inputs. Equivalently,

(6.14) can be used to evaluate the final cost of prediction error in a single step.

6.5 Cost Matrix Dimensionality Reduction

Computing ∆J using (6.14) is of O(N2) time complexity, compared to O(N) of using

MSE and MAE. Consequently, the efficiency of computing ∆J has to be improved before

being used in data-intensive problems.

In many real-world problems, matrices Θ and Ω prove to be sparse, or even diagonal. In

such cases, numerical techniques can be used to improve efficiency of computing (6.14).

In other cases, assuming repeated evaluation of (6.14) on a fixed system, one can pre-

compute Θ and ΩY , and calculate ∆J efficiently for different values of E, the latter

coming from different prediction models.

With this assumption, matrix decomposition can also be used to further reduce com-

putation complexity by approximating matrix Θ ∈ RM×M with a matrix of lower rank

[221]. Here, M is the total number of predictions and is obtained from the sum of

horizon lengths and size of the inputs vector, i.e.,

M = m
∑
i

ni.

Let Θ = V ΣV T, where Σ is the diagonal matrix of eigenvalues and V is the matrix of

eigenvectors of Θ. By only keeping the 0 < L < M largest eigenvalues of Θ and their
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corresponding eigenvectors, Θ can be approximated with

Θ′ = V ′Σ′V ′T,

where V ′ ∈ RM×L and Σ′ ∈ RL×L.

Let W = V ′
√

Σ′, where
√

Σ′ computes the root square of the diagonal eigenvalue

matrix. An approximation to (6.14) is

∆J ′ = ETW′W′TE +ETΩY . (6.18)

Exploiting the symmetric structure of the new cost function and assuming precomputed

W′ and ΩY , evaluating (6.18) is reduced to time complexity O(ML).

The choice of L is problem dependent. A general guideline is to select L such that

tr(Σ′) ≥ λtr(Σ), where tr is the trace operator and 0 ≤ λ ≤ 1 determines how much of

the matrix’s energy is to be conserved. In practice, λ > 0.99 is commonly used.

6.6 Numerical Examples and Simulation Results

In this section, two finite horizon problems with time series forecasting are analysed, and

the proposed error measure ∆J is compared with MSE for predictor selection. MSE was

chosen as it offers a quadratic error function, similar to the controller’s cost function,

and is not scaled against the magnitude of inputs.

For each problem, first the system dynamics are defined and used to formulate an FHC

control problem. The best predictor models are then selected over a set of training data

using different error measures. Consequently, a simulation is performed over a separate

set of testing data, and performance results of models selected using ∆J and MSE are

compared.

6.6.1 Pre-ordering Problem

Inventory management and supply chain planning techniques play an essential role in

managing supply and demand, and are widely studied and used in practice [222]. Re-

cent developments in this regard have shown that forward-looking optimisation-based

policies, such as using optimal control in combination with forecasting, significantly

outperform other rule-based decision policies [215, 223].
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In this example, we study the problem of meeting a fluctuating demand for a perishable

commodity, similar to the problem discussed in [216]. In this task, one can either pre-

order the perishable item with different lead times and discounts, or buy it on the spot

market at a higher price. The objective is to minimise the ordering costs by utilising

prediction.

6.6.1.1 Problem Formulation

We formalise this problem as follows:

1. The demand is denoted with v(t) ∈ R+, and the spot price is depicted with p.

2. It is possible to pre-order κ steps ahead, where at each time-step a discount of d

is applied.

3. A pre-order can be adjusted at any time before delivery; however, an adjustment

penalty equal to the discounted price is applied. Similarly, a penalty is applied for

over-supplied orders (i.e., discarded perishables).

4. Pre-orders are denoted with u(t) = [ut+1(t) · · · ut+κ−1(t) ut+κ(t)]T, where ut+h(t)

is the order (or adjustment to the order) at time t for delivery at time t+ h.

5. An order book is maintained, in form of the vector x(t) = [xt(t) xt+1(t) · · · xt+κ(t)]T,

where xt+h(t) is the total of orders expected at time t to be delivered at time t+h.

Notice that u(t) ∈ Rκ, and x(t) ∈ Rκ+1 as it includes a state for the delivery at time-step

t in addition to future pre-orders.

The problem can be formulated using the state-space equation (6.1), as updating the

order book using

xt+h(t+ 1) = xt+h(t) + ut+h(t)

when pre-ordering (i.e., h > 1), and

xt+1(t+ 1) = xt+1(t)− v(t)

during delivery.

Assuming κ = 3, the system dynamics in matrix form are

A =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 ,
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B =


0 0 0

1 0 0

0 1 0

0 0 1

 ,
and

C =


−1

0

0

0

 .

Eq. (6.2) is used as the cost function, with the stage cost of u(t) (i.e., pre-ordering prices

and discounts) defined as

Pt =


d3p 0 0

0 d2p 0

0 0 dp


and the stage cost of x(t) (i.e., the penalty for unmet demand) as

Qt =


p 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

For numeric simulation, the spot price was set to p = 4, and the discount to d = 0.7.

6.6.1.2 Analysis of the Cost Equation

An analysis of Θ and Ω from (6.14) for the current problem reveals the matrix elements

associated with prediction of the current demand, and prediction of steps more than

κ step ahead, are zero. The former is a result of the observed demand (and not the

prediction) being used for spot market ordering. The latter is because any prediction

beyond κ steps is not used for ordering in the current horizon. Consequently, choosing

a horizon length beyond the number of pre-orders (such as with the methodology used

in [216]) is redundant.

Furthermore, Θ is a diagonal matrix for optimisations ending with shrinking horizons

(e.g., as in Figure 6.2). In addition, the diagonal elements for each set of predictions
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Figure 6.2: A hybrid receding-shrinking horizon control scheme, with a maximum
horizon length of 3.

decay exponentially. For example, for κ = 3 and a horizon of n = 5, the block of Θ

associated with the first vector of predictions is

0 0 0 0 0

0 2.98 0 0 0

0 0 0.35 0 0

0 0 0 0.13 0

0 0 0 0 0


.

This simplifies ∆J to a weighted MSE.

6.6.1.3 Simulation and Results

The simulation was set up to run for 10 time-steps, with pre-ordering allowed for three

steps ahead (i.e., N = 10 and κ = 3). Based on the analysis of Θ in Section 6.6.1.2,

the control horizon n was limited to the number of pre-orders κ (i.e., nt ≤ κ = 3, ∀t).
A finite horizon controller governs the system, with seven receding windows of length 3,

followed by three shrinking windows (Figure 6.2).
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The hth step in the future, v(t+ h), was predicted using an AR model,

v̂t(t+ h) =

q∑
i=0

φiv(t− i), (6.19)

where q is the model order, and φi are the model parameters. For each future step in a

horizon, a different model was selected and fitted to data using ordinary least squares,

resulting in a total of three models. The range of orders was limited to q ∈ [1, 2, . . . , 8].

To simulate real-world demand, time-series from the M3 competition dataset [224] were

used. Only time-series longer than 100 samples were selected for simulation. For each

time-series, the first 80 values were assigned to in-sample testing, with the starting 60

time-steps used for training the predictor, and the next 20 values for model validation.

The last 20 were used to report out-of-sample prediction errors, as well as the controller’s

cost performance, i.e., the out-of-sample ∆J .

Three different approaches were used for model order selection using cross-validation:

1. A random search was performed to select the best model using in-sample MSE. A

subset of the models was sampled from the model space using a uniform distribu-

tion, and the model with the least cross-validation error was selected.

2. A random search using in-sample ∆J was performed.

3. A hybrid search was undertaken. The best model for the first step (i.e., h = 1)

was chosen using in-sample MSE through an exhaustive search. The model orders

for h = 2 and h = 3 were selected using in-sample ∆J through a random search.

The first two methods compare MSE and ∆J model selection when the computational

resources are limited. The design rationale of the third technique is based on the Θ

weights, where the first step contributes 84% of the total error. Hence, half of the

computational capacity is solely allocated to the first predictor’s model selection.

For a fair comparison, only 16 model evaluations were allowed per each approach. For

the hybrid approach, this translated to 8 evaluations exhaustively searching for the best

first model order, and 8 additional random evaluations for the second and third model

orders.

The test was repeated for each of the 1020 selected time-series. As each time-series

exhibits different mean-variance characteristics, the resulting MSE and ∆J are not di-

rectly comparable. Consequently, these errors were normalised to the MSE and ∆J of a

näıve predictor respectively, where the predictor simply repeats the last observed value,

i.e., v̂t(t+ h) = v(t),∀h. The normalised results were then averaged and reported.
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Table 6.1: Run-time and speed-up comparison for the pre-ordering problem.

Measurement Technique Run-time (s) Speed-up

Step-by-step simulation 2340.7 1
Closed-form ∆J using (6.14) 11.730 199.5
Diagonal ∆J 0.9130 2563.7
MSE 0.8940 2619.0

Table 6.2: Mean normalised error for different model selection methods in the pre-
ordering problem. Values within parentheses denote standard variation.

Selection In-sample In-sample Out-of-sample Cost
Method MSE ∆J MSE Performance

Random Search 0.9078 0.8953 0.9261 0.9208
using MSE (± 0.4497) (± 0.4044) (± 0.4562) (± 0.4338)

Random Search 0.937 0.867 0.941 0.9109
using ∆J (± 0.4668) (± 0.3922) (± 0.4745) (± 0.414)

Hybrid Search 0.9081 0.8533 0.9321 0.9072
based on ∆J (± 0.4515) (± 0.3851) (± 0.4704) (± 0.4117)

To reduce the computation time of ∆J , considering the diagonal nature of Θ, (6.14)

was also numerically implemented as a weighted MSE. Table 6.1 compares the run-times

of different methods. It is observed that computing ∆J using (6.14), even in its full

matrix form, offers a significant speed-up compared to a step-by-step FHC simulation.

Furthermore, the diagonal only implementation is almost as efficient as an ordinary

MSE, achieving a speed-up of more than 2500×.

In Table 6.2, prediction errors for models selected using MSE and ∆J are summarised.

While the models selected using MSE offered a better in-sample and out-of-sample MSE,

they were outperformed in the cost performance by the models selected using ∆J . Over-

all, a cost improvement of 1.5% was obtained simply by prioritising the first step’s model

selection over other steps. A paired sample t-test of results rejected the null hypothesis

of improvement not being significant with p-value of 0.0027.

Considering the independence of the three model orders and their errors, the best global

model would have minimised both the MSE and ∆J . This example demonstrates that

when a global search is not possible (e.g., limited computational resources), the search

can be concentrated on the most influential factor, as analysed by the proposed cost

measure, to improve model selection.
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6.6.2 Stock Portfolio Management

We extend the example of Section 6.6.1 to financial markets, where a dealer keeps a

portfolio of stocks to trade on behalf of his or her clients. The dealer wishes to reduce

the costs associated with:

1. the market risk, i.e., the loss of portfolio value due to market price changes, and

2. trading with other dealers, when the client’s requests can not be fulfilled using

what is available in the portfolio.

The first issue forces the dealer to minimise the inventory to avoid risk, while the second

obligates keeping all client trades in the portfolio, such that opposing client trades (i.e.,

buys and sells) are neutralised without referring to other dealers.

The problem of finding the optimal portfolio subject to cost and risk considerations

has been extensively researched. Recent studies of this problem for stock options and

FX market, using MPC but neglecting the effects of time-series prediction error, were

discussed in Section 2.5.2.

6.6.2.1 Problem Formulation

We simplify the problem by assuming a single-stock inventory with the following rules

and notations:

1. x(t) denotes dealer’s inventory.

2. The demand is denoted with v(t).

3. The inter-dealer trades are determined using u(t).

4. Short-selling is allowed.

5. To consider market impact, the inter-dealer brokering cost is modelled using a

quadratic function of trades, Ptu
2(t).

6. The risk is modelled using Qtx
2(t), where Qt is the market volatility, i.e., the

variance of the price process as used in modern portfolio optimisation [61].

The dealer’s dynamics can be formulated using the state-space equation (6.1), with

A = 1, B = 1, and C = 1. The dealer begins with a zero-balance, i.e., x(0) = 0.

To concentrate on demand prediction, we assume the cost of trading with inter-dealer

brokers and the market volatility are available and constant in time, Pt = 1 and Qt = 1

respectively. The objective is to minimise the overall cost, as defined by (6.2).
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Figure 6.3: A hybrid receding-shrinking horizon control scheme, with a maximum
horizon length of 5.

6.6.2.2 Simulation and Results

Similar to the controller used in Section 6.6.1, a receding/shrinking horizon controller

was designed to govern the system for 10 time-steps. The controller uses five receding

windows of length 5 followed by five windows with shrinking lengths (Figure 6.3).

For predicting vt, five different linear models were used to predict each future time-

step, using the AR model defined in (6.19). An exhaustive search was performed to

cross-validate the model orders q ∈ [2, 3, . . . , 8], using MSE and ∆J .

The clients’ trades were simulated via a 5th order auto-regressive (AR) model,

vt+1 =2.76vt − 3.13vt−1 + 1.79vt−2 − 0.50vt−3 + 0.05vt−4 + εt (6.20)

where εt ∼ N(0, 1) is a zero-mean unit-variance Gaussian noise.

For each test, a time-series of length 100 was generated. The first 80 values were assigned

to in-sample testing, with the starting 60 time-steps used for training the predictor, and

the next 20 values for model validation. The last 20 were used to report out-of-sample

prediction errors, as well as the controller’s cost performance, i.e, the out-of-sample ∆J .

The test was repeated 10 times.
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Table 6.3: Run-time and accuracy comparison for the stock portfolio management
problem.

Measurement Technique Run-time (s) Speed-up Measured ∆J

Step-by-step simulation 1427.664 1 96.8476
Closed-form ∆J using (6.14) 12.136 117.6 96.8476
Approximated ∆J using (6.18) 2.826 598.1 96.8476
MSE 1.228 1376.0 N/A

Table 6.4: Mean prediction error for different model selection methods in the stock
portfolio management problem. Values within parentheses denote standard variation.

Measure In-sample In-sample Out-of-sample Cost
for selection MSE ∆J MSE Performance

MSE
32.4888 86.9027 36.3447 98.1846

(± 15.0229) (± 25.7024) (± 12.3691) (± 34.2707)

∆J
32.4892 86.7015 38.0916 94.7870

(± 15.0266) (± 26.4899) (± 13.0867) (± 35.3964)

Our first concern is the dimensionality reduction for Θ ∈ R40×40. Despite its simpler for-

mulation compared to the problem of Section 6.6.1, Θ is not diagonal, and consequently

the eigenvalue method has to be used. The 10 largest eigenvalues hold more than 99.9%

of eigenvalue energy, and thus a fourfold order reduction is possible using W′ ∈ R40×10.

Table 6.3 compares the time required for computing each error measure and the value

of errors. It is observed the proposed dimensionality reduction technique results in near

5× speed-up, with less than 0.001% loss of accuracy. Comparing run-times of Table 6.3,

an overall 598× speed-up over a step-by-step FHC simulation is observed. While MSE

is still 2.3× faster, the difference in execution is 1.6 s, which is negligible compared to

the time spent for training the model.

Figure 6.4 compares in-sample MSE error against ∆J for different model orders. It is

evident that these errors are not strongly correlated. Numerical value of the correlation

coefficient for MSE and ∆J was measured to be 0.423, compared to that of MSE and

MAE being 0.893. As a result, model selection using MSE does not necessarily improve

∆J .

Performance results for the selected models are summarised in Table 6.4. It can be seen

that using ∆J as a model selection measure has reduced the controller’s cost compared

to selections using the standard MSE measure. While this reduction is not significant

for in-sample ∆J results, the controller’s final cost improvement, from 98.18 to 94.79,

is considerable. Additionally, a paired sample t-test rejected the null hypothesis of

improvement not being significant with p = 0.009409.
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Figure 6.4: MSE versus ∆J for different model orders in the stocks portfolio problem.

6.6.2.3 Dimensionality Reduction and Accuracy

To test the effects of dimensionality reduction on the accuracy of ∆J ′, the number of

chosen eigenvalues of Θ (i.e., L) was varied and the cost performance was measured

using (6.18). Only prediction errors from one AR model with q = 4 for all horizons were

used. The results, including the energy of the remaining eigenvalues (λ), run-time and

speed-up of (6.18) against using the full rank Θ matrix, the measured value of ∆J ′, and

the accuracy against ∆J defined as

Accuracy (%) =
∆J ′

∆J
× 100,

are shown in Table 6.5.

It can be seen that as expected, increasing L improves accuracy at the cost of run-

time. Additionally, selecting the smallest L where λ > 0.99 (as proposed in Section 6.5

and performed for the stocks portfolio example) results in near 100% accuracy, while

enabling the highest possible speed-up.
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Table 6.5: Effects of dimensionality reduction on ∆J accuracy and run-time.

L λ Run-time (s) Speed-up ∆J ′ Accuracy (%)

2 0.216 2.77 3.650 32.53 37.54
3 0.324 2.83 3.572 39.70 45.81
4 0.432 2.97 3.404 48.53 56.00
5 0.540 3.03 3.337 54.28 62.64
6 0.649 3.15 3.210 63.32 73.07
7 0.756 3.27 3.092 75.58 87.22
8 0.861 3.36 3.009 82.48 95.19
9 0.954 3.46 2.922 86.27 99.56

10 1.000 3.62 2.793 86.65 100.00
20 1.000 4.75 2.128 86.65 100.00
40 1.000 10.11 1.000 86.65 100.00

6.7 Application to the FX Risk Management Problem

As noted in this chapter’s introduction, and similar to the stock portfolio problem studied

in Section 6.6.2, the FX risk management system proposed in Chapter 3 uses an LQ

formulation:

• Hedging state-space equation (3.1) is a specific case of linear state-space model

(6.1), with A = 1, B = 1, and C = 1.

• Hedging cost is a quadratic function of the current state (i.e., positions) and the

controllable inputs (i.e., hedging actions).

Parameters of the cost function, including bid-ask spread and volatility, are determined

by predicting the market conditions. These parameters are deeply explored in financial

literature and well established techniques exist to model and forecast them using the

available market data [225, 226].

Client flow data, on the other hand, is considered confidential by financial institutions

and has been subject to fewer studies. Forecasting the client flow, which is represented

by f in (3.1), and v in (6.1), is possible using the techniques introduced in Chapter 5.

Assuming that the constraints on positions and hedging actions are set high enough

not to influence the hedging, one can use the proposed error measure (6.14) in cross-

validation. This improves the accuracy compared to using common error measures by

precisely replicating the final hedging results, while allowing the predictors to be evolved

with a faster speed compared to a complete backtesting.
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6.7.1 Numerical Examples

In this section, three numeric examples are presented to show the distribution of error

weights for different hedging objectives. It is assumed that the hedging has three steps

(i.e., N = 3), starting at t = 1 and ending at t = 3. Consequently, testing the client

forecaster algorithm requires six forecasts, i.e.,

v = [f̂1(1) f̂1 (2) f̂1(3) f̂2(2) f̂2(3) f̂3(3)].

Here, f̂τ (n) denotes the forecast of the client flow f(n) at time t = τ .

In the first case, minimum risk optimisation is studied with Pt = 0 and Qt = σ (i.e., the

bid-ask spreads are set to 0 and the volatility is set to σ). Using (6.15) and (6.16), and

letting σ = 1, results in Ω = 0, and

Θ =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1


.

The sparse Θ has 1’s on its diagonal, relevant to the locations of the first time-step of

each horizon. In other words, only the errors for f̂1(1), f̂2(2), and f̂3(3) are considered in

the final ∆J . This was expected from the analysis of Section 3.4.1, where it was shown

that the best strategy for minimising the risk is closing all of the current position. This

strategy only considers the current client flow and does not use the information from

future steps.

In the second case, minimum cost hedging is considered by using Qt = 0, t < N , which

dismisses the risk of holding position x(t). The transaction costs, and also the end-of-day

closing are modelled by Pt = δ and QN = δ respectively, where δ is the market impact
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coefficient. Letting δ = 1 results in Ω = 0, and

Θ =



0.083 0.083 0.083 0 0 0

0.083 0.083 0.083 0 0 0

0.083 0.083 0.083 0 0 0

0 0 0 0.167 0.167 0

0 0 0 0.167 0.167 0

0 0 0 0 0 0.5


.

In this case, the error weights are equal in each horizon (i.e., each block in the matrix),

but they increase towards the end-of-day. This is because, as analysed in Section 3.4.4

for λ = 0, the trades are based on the total estimation of the future flow, and divided

by the number of available hedging time-steps. Therefore, in each block, where there is

no difference between individual forecasts at that time, the weights are equal. As the

number of available hedging steps decreases, the controller has less time to compensate

for forecast errors in future actions, and as a result the impact of errors is intensified. It

can be shown that the error weight for each element is w = 1
(n)(n+1) , where n = N− t+1

is the number of hedging actions available from the current block. For example for t = 1,

three hedging actions remain, and thus w = 1
3×4 = 0.0833. For t = 3, only one final

hedging action can be applied, hence w = 1
1×2 = 0.5. In Appendix B, using sensitivity

analysis of the cost function, an analytical model for this case is derived, yielding the

same results.

For the third example, both cost and risk are minimised with δ = 1 and σ = 1 by letting

Pt = Qt = 1, resulting in Ω = 0, and

Θ =



0.985 0.369 0.123 0 0 0

0.369 0.138 0.046 0 0 0

0.123 0.046 0.015 0 0 0

0 0 0 0.9 0.3 0

0 0 0 0.3 0.1 0

0 0 0 0 0 0.5


.

In this case, analogous to the examples of Section 6.6, at each time-step (i.e., a forecast

block), the errors for the near future forecasts are more influential than later forecasts.

This knowledge can be used to allocate the computational effort to obtain more accurate

forecasters for near term prediction, to which the LQ controller is more sensitive. This
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technique was previously discussed and proven in the inventory management example

in Section 6.6.1.

6.8 Summary

This chapter presented several observations regarding error measures for an LQ finite

horizon controller in presence of a predictable exogenous input:

• First, an exact closed-form solution for ∆J , i.e., the increase in cost function of

a discrete LQ FHC system due to forecast error, was derived. It was shown that

this increase follows a quadratic form.

• Second, it was demonstrated that by using dimensionality reduction, computa-

tional complexity of ∆J can be reduced with minimal loss of accuracy. This leads

to a significant speed-up in the case where different prediction algorithms and

parameters need to be tested for fixed system parameters.

• Third, it was shown that using ∆J to select forecasting models results in better

predictors compared to common time-series error measures, such as MSE.

In addition to two benchmark problems, ∆J was also analysed in the context of FX

hedging, and it was shown that this measure can be used to quantify the effects of

forecast error on hedging costs.



Chapter 7

FX Hedging Results

7.1 Introduction

In Chapter 3, a new model for hedging FX risk was established. In this chapter, this

model is backtested using both synthetic and historical data.

To test the model independent of forecasting techniques, the scenario based approach

explained in Section 3.6.3 is used. First, several statistical models are introduced which

are used for creating synthetic data, as well as describing and modelling the real-world

observations. A scenario generating oracle is then defined to simulate non-perfect pre-

dictive modelling with a controllable degree of accuracy.

Consequently, to improve hedging risk-cost profiles, the time-series forecasting method-

ology proposed in Chapter 5 is utilised to forecast the client flow, and comparisons are

performed against stochastic models and other time-series forecasting techniques.

7.2 Data Models and Scenario Generation

As noted in Section 3.6.3, each hedging scenario consists of three correlated components:

• FX rate returns R

• client flow volume F

• market impact coefficients δ

In a multi-currency model, every scenario must include all of these components for each

currency. In this section, stochastic models are introduced for each component to be

used for scenario generation, as well as serving as benchmarks for forecasting the future

behaviour of the clients and market.

113
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7.2.1 FX Rate and Volatility Model

The FX logarithmic price process can be expressed as a continuous-time jump-diffusion

process [84], formalised by

dp(τ) = µp(τ)dτ + v(τ)dW (τ) + k(τ)dq(τ), (7.1)

where p(τ) is the logarithm of the FX rate for the continuous time τ , µp(τ) (the drift

coefficient) is risk free interest, W (τ) is the Wiener process, v(τ) is the diffusion coeffi-

cient (the volatility), k(τ) measures the jumps’ intensity, and q(τ) is a counting process

which is determined by the scheduled time of macroeconomic announcements. Here,

we assume µp ≈ 0 as the optimisation horizon is too short for the interest rate to be

effective.

Figure 7.1 shows an example of different FX rate scenarios generated for an event oc-

curring at 12:00.

We model the discrete-time logarithmic returns r(t) using

r(t) = p(t∆τ)− p ((t− 1)∆τ) (7.2)

where ∆τ is the time-step used in optimisation.
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Figure 7.1: Simulated FX rate scenarios with an announced event at 12:00 PM.
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Figure 7.2: Simulated M-shaped volatility during the day.

The discrete-time form of volatility, v(t), is modelled using an M-shaped pattern to

account for daily pattern of liquidity variation [87]:

v(t) = ν

(
1 +

ρ− 1

2

(
1 + cos

(
2π
t+ N−w

2 − tmin
N − w

)))
(7.3)

Here, ν is the minimum daily volatility, ρ is the ratio of maximum daily volatility to its

minimum, N is the number of time-steps in the day, tmin is the time of volatility minima

(i.e., maximum liquidity) and w determines the width of the M-shape peaks. Figure 7.2

presents an example of daily volatility scenarios generated using (7.3) and their average.

This model can be extended to a multivariate form, accounting for correlation between

different FX rates. For a given correlation matrix C, the following equation will generate

correlated stochastic variables [136]:

W = Wi.i.d.L (7.4)

Here, L is obtained from a Cholesky decomposition C = LL∗, Wi.i.d. is a matrix of

independent and identically distributed stochastic variables, and W is the resulting

matrix of correlated stochastic variables.

Correlated Wiener processes generated using (7.4) are then used in (7.1). Addition of

events or drift is performed in a manner analogous to the univariate case.
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7.2.2 Transaction Cost Model

The main component of transaction costs, as defined in (3.5), is the bid-ask spread,

which in (3.4) was modelled as an affine function of trade size.

In addition to the size of trade, the bid-ask spread is also affected by liquidity. The

liquidity increases during mid-trading hours, based on the geographic distribution of

currency traders, and is reduced in non-trading hours [87].

We model this time-varying liquidity effect with a U-shaped market impact coefficient:

δ(t) = δ

(
1 +

ρ− 1

2

(
1 + cos

(
2π
t+ N

2 − tmin
N

)))
(7.5)

Here, δ(t) is the time-varying market impact coefficient, δ is the coefficient’s daily mini-

mum, ρ is the ratio of maximum daily market impact to its minimum, N is the number

of time-steps in the day, and tmin determines the time of maximum liquidity.

Figure 7.3 shows an example of scenarios for daily bid-ask spread and their average

generated by (7.5).
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Figure 7.3: Simulated U-shaped bid-ask spreads during the day.
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Figure 7.4: Standard deviation of synthetic client flow versus time.

7.2.3 Client Flow Model

The choice of client flow model is a dealer dependent task. Cerrato et al. [227] noted that

in response to price moves, corporate and private clients act more as liquidity providers

while profit-motivated speculative traders (e.g., hedge fund investors and asset man-

agers) exhibit a directional behaviour as a result of being more informed. Furthermore,

Chen et al. [228] found significant relationships between volatility, spreads, and the order

flow of speculative traders. This information can be used by dealers to better model

their client flow.

In this Section, we model private domestic clients who mainly trade during their own

country’s working hours. These clients exhibit a certain periodicity, e.g., more trades

happen mid-day rather than at the end-of-day hours. Also, the dealers expect a bias

in buys versus sells in a certain direction relative to their home currency, which is not

influenced by price movement. Therefore, the client flow is modelled as a heteroskedastic

Gaussian process, with a time-dependent mean µf and variance σ2
f :

f(t) ∼ N (µf (t), σ2
f (t)) (7.6)

Figure 7.4 shows an example of σf (t) for a dealer trading from 7:00 to 23:00, with the

assumptions presented earlier.
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7.2.4 Scenario Generating Oracle

We define an oracle that generates scenarios by perturbing observations with alternative

scenarios:

x(p)(t) = αe−βtx(t) + (1− αe−βt)x′(t) (7.7)

Here, x(p)(t) is the oracle generated (i.e., perturbed) scenario used in optimisations, x(t)

is the actual future data used for backtesting, x′(t) is an alternative scenario sampled

from the models’ statistical distribution, and 0 ≤ α ≤ 1 and β ≥ 0 are initial accuracy

and oracle decay rate parameters. To generate extreme cases, α = 1 and β = 0 are

used for prescient hedging, while α = 0 tests the quality of data models with ordinary

scenario generation. Furthermore, α > 0 and β > 0 create an exponentially decaying

accuracy, simulating a more realistic signal decay model.

7.3 Implementation and Simulation Details

Several tests using synthetic and real-world data were performed to validate and measure

the performance of the SMPC hedging algorithm proposed in Section 3.6. This algorithm

is compared against three benchmark strategies:

1. Limited position strategy (proposed in Section 3.4.3).

2. Gradual closing strategy (proposed in Section 3.4.4).

3. Single-stage shrinking horizon (SHC) hedging, which is a simplified form of SMPC

hedging (proposed in Section 3.5).

In addition, a prescient hedging strategy is also demonstrated, by peeking into future

data and directly solving the hedging objective (3.10).

The experiments were implemented in R programming language [202], with the opti-

misation function written in C++ using QuadProg++ [229] and Eigen linear algebra

template libraries [230]. Run-time of the hedging algorithm for each trading session with

50 scenarios on a 3.4 GHz Intel Core i7-2600 processor was measured to be less than

50 ms, making it suitable not only for backtesting, but also for deployment in online

hedging systems.

7.3.1 Synthetic Data

The synthetic data was generated according to the models described in Section 7.2. It

is assumed the dealer worked from 7:00 to 23:00 and hedged at 30 minute steps.
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Client flow was generated with standard deviation, σf , as depicted in Figure 7.4, and a

positive mean, µf = 1
4σf .

For the FX rate volatility and market impact coefficients, each currency was assigned

different δ, ν, ρ, ω, and tmin parameters. At the start of each trading session, the asset

correlation matrix C, and number, time, and impact of announced events k(t) were

regenerated randomly.

7.3.2 Real-world Data

For real-world tests, 16 weeks of actual FX client transaction data supplied by Westpac

institutional bank was used1. AUD was chosen as the home currency and USD, EUR,

NZD, and JPY were selected as foreign assets. This data was filtered and aggregated to

create 32 half-hourly values per day, from 7:00 to 23:00 Australian Eastern Daylight Time

(AEDT). The first six weeks (30 days) of data was used to obtain model parameters

as described in Section 7.2.3 and the rest (i.e., 50 days) were used for out-of-sample

backtesting.

Accordingly, half-hourly values of historical FX rates were fit to the model defined in

Section 7.2.1. Individual variances ν and correlation matrix C were computed from

covariances of the previous day, and jump component timings were extracted from the

publicly2 available DailyFX.com event calendar [232]. Jump intensity was set to k = 5ν.

Only events classified in DailyFX.com as high impact were considered in this simulation

and the rest were discarded.

As the inter-bank market impact data was not available, U-shaped daily seasonality was

generated synthetically. The market impact coefficient, δ, was selected as the square of

average spread, 0.5, 1, 2 and 1 basis points (i.e., per 10000) for USD, EUR, NZD, and

JPY respectively. The time of maximum liquidity for each currency was chosen as 12:00

PM of its main market’s geographic distribution, i.e., New York, Frankfurt, Auckland

and Tokyo respectively.

7.4 Single-asset Tests

To test the correctness of the proposed SMPC hedging scheme, first a simple test with

one foreign currency asset for one trading session was performed. Data was synthetically

1This data was anonymised to protect Westpac client confidentiality.
2 DailyFX terms and conditions permit personal, non-commercial use of their data without subscrip-

tion [231].
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generated, as described in Section 7.3.1. FX rate returns were created with only one

announcement event occurring at 12:00, as shown in Figure 7.1.

Figure 7.5 compares the accumulation of positions in absence of hedging against different

stochastic paths. Figure 7.6 and Figure 7.7 show the hedged positions and hedging

actions respectively using the SMPC hedging with λ = 0.01. Figure 7.6 and 7.7 also

show results of open-loop optimisation in grey: each line represents the results if hedging

actions were not recalibrated again at each time-step according to Algorithm 3.1.

It can be seen from Figure 7.7 that the proposed method has gradually reduced the

positions to zero at the end of trading session; this lessens the market impact and

consequently transaction costs. Furthermore, comparing hedged and unhedged positions

in Figure 7.8 shows that by using the knowledge of the announced event at 12:00, the

open positions were gradually minimised before the event to reduce the possibility of

losses in case of a major unfavourable FX rate movement.

7.5 Multi-asset Tests

To measure the hedging performance in a multi-asset portfolio, backtesting was per-

formed with four foreign currencies using both synthetic and real-world data.

A total of 50 different trading sessions were backtested for the scenario based SMPC

hedging, as well a the three benchmark strategies and prescient hedging. To generate

risk-cost profiles, each run included different parametrisations of xmax in (3.15) for the

limited position strategy and λ for other strategies. The end-of-trading costs and profits

were computed according to (3.3) and (3.7) respectively and normalised by the daily

total value of transactions
∑
|f(i)| to basis points (bps). The normalised values were

then converted to risk-cost profiles.

Figure 7.9 shows the risk-cost profiles for the synthetic data test, while the real-world

data’s profiles are reported in Figure 7.10. It is shown that SMPC hedging outper-

forms all benchmark hedging strategies by offering a lower cost for any given risk in the

synthetic test.

It was noted that in the real-word experiment, the cost saving improvements are notice-

able only compared to the strategies of Section 3.4 which do not employ any information

about the future. Furthermore, there is considerable room for improvement compared

to the prescient hedging frontier in both tests. This problem can be traced to scenario

generation, where the simple models of Section 7.2 are unable to capture certain features
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Figure 7.5: The dealer’s unhedged position y(t) through the trading session in the
single-asset test. Each grey line shows a stochastic scenario estimated at various times
of the trading session, with later scenarios coloured darker. The vertical line marks the

location of the announcement event.
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shows result of open-loop hedging at various times of the trading session, with later
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such as the fat-tailed distribution of data, correlation between FX rate and client flow,

and variation of transaction cost around events, specially for the real-world data test.

To confirm the superiority of the proposed algorithm over the single-stage method re-

gardless of the data model quality, the real-world test was repeated with prescient data

in Figure 7.11. A comparison shows that the proposed method significantly outperforms

other strategies when its input scenarios are accurate.

7.6 Scenario Quality and Oracle Tests

In the previous experiments, the impact of scenario generation accuracy on hedging was

demonstrated. In this section, this impact is quantified using the oracle model of (7.7).

Figure 7.12 and Figure 7.13 compare hedging using scenarios generated by the oracle

with α = 0.5, β = 0.9 and α = 0.9, β = 0.5 for all scenario components, against ordinary

scenario generation and prescient hedging for synthetic and real-world data respectively.

As expected, improved scenario generation (i.e., increasing initial accuracy α and reduc-

ing decay rate β) results in less cost for any chosen level of risk.

The effect of improving accuracy for individual components on risk management is com-

pared in Figure 7.14 for synthetic and in Figure 7.15 for real-world data. Here, a high

degree of accuracy (α = 1, β = 0.2) is used to generate different scenarios for client flow,

volatility and market impact coefficients separately.

In Table 7.1 and Table 7.2, this test is repeated with a wider range of α and β’s for

synthetic and real-world data respectively. The results were averaged over the number

of backtesting sessions, and the normalised costs for risk = 10 bps were scaled to de-

note 0% for the single-stage hedging strategy (ie, the third benchmark) and 100% for

prescient hedging. For both tests, it is observed from the tables that improving scenario

generation produces better hedging profiles. Yet, hedging enjoys the most improvements

with better client flow modelling, while any further market impact coefficient model en-

hancements have minor effects on the final results. For example in the synthetic test, the

ordinary scenario generation reduces costs by 25.9%, and using a perfect market impact

model and a perfect volatility model improves this to 26.5% and 38.2% respectively.

In comparison, a perfect client flow modelling boosts the cost savings up to 87.8%. A

similar phenomenon is noticeable for real-world data, improving cost reduction by 1.0%,

27.7% and 73.8% with perfect transaction cost, volatility, and client flow modelling

respectively. A similar trend is also present in Figure 7.14 and Figure 7.15.
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Figure 7.9: Risk-cost profiles for the synthetic data experiment.
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Figure 7.10: Risk-cost profiles for the real-world data experiment.
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Figure 7.11: Risk-cost profiles for the real-world data experiment with prescient data.

These differences are the result of using more definite models for market impact and FX

rate, versus a less precise model for describing client flow. Most of the actual market

impact and FX rate variations are captured by the ordinary scenario generation, with

not much left to be improved by the oracle. On the other hand, the simple model of

Section 7.2.3 does not produce accurate client flow scenarios; hence, major improvements

are observed using the oracle.

Furthermore, Figure 7.15 shows an interesting effect. Improving volatility scenarios

offers a better cost versus risk compared to improving client flow for the low risk region

(i.e., the left side) of the plot. Comparably, in the low cost region (i.e., the right side),

this risk-cost profile converges with the ordinary scenario generation curve, while using

the oracle only for the client flow gives a considerably better cost versus risk in this

region, converging with the prescient hedging frontier. This is a direct effect of λ’s

influence on minimising the hedging cost function (3.20). That is, when λ → 0 (only

transaction cost is being minimised), the effect of client flow modelling error is more

evident, and when λ → ∞ (i.e., only minimising risk), the client flow modelling errors

become negligible compared to FX rate modelling error. In conclusion, the dealers can

choose to invest only on better client flow or volatility modelling depending on their risk

preference.
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Figure 7.12: Effect of oracle accuracy on risk-cost profile improvement in the synthetic
data experiment.
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Figure 7.13: Effect of oracle accuracy on risk-cost profile improvement in the real-
world data experiment.
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Figure 7.14: Effect of using the oracle for individual scenario components on synthetic
data experiment’s risk-cost profiles.
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Figure 7.15: Effect of using the oracle for individual scenario components on real-
world data experiment’s risk-cost profiles.
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Table 7.1: Percentage of cost savings for different oracle accuracies in the synthetic
data experiment. The values show normalised costs for risk = 10 bps, scaled between

the single-stage strategy and prescient hedging results.

Oracle β = 1 β = 0.8 β = 0.6 β = 0.4 β = 0.2 β = 0

α = 0 25.9

Market impact:
α = 0.2 25.9 25.7 25.1 24.7 25.7 26.3
α = 0.4 25.7 25.4 27.2 27.0 26.3 27.1
α = 0.6 26.3 26.5 26.1 25.5 25.1 26.3
α = 0.8 25.3 25.9 26.2 25.8 26.6 26.5
α = 1 26.6 26.3 26.0 27.9 25.7 26.5

Volatility:
α = 0.2 26.1 27.2 27.1 27.1 28.3 28.6
α = 0.4 30.8 31.2 31.6 31.8 31.8 32.6
α = 0.6 36.2 34.8 35.2 35.6 35.9 35.7
α = 0.8 37.0 37.6 37.5 38.9 38.1 38.4
α = 1 37.8 38.2 37.7 37.5 38.8 38.2

Client flow:
α = 0.2 32.2 33.4 37.3 39.8 43.3 46.9
α = 0.4 39.9 43.0 46.5 50.8 57.9 65.4
α = 0.6 46.4 48.7 54.5 60.9 69.0 78.3
α = 0.8 50.5 56.5 63.0 69.5 78.3 84.9
α = 1 55.3 61.2 68.8 76.0 83.9 87.8

All components:
α = 0.2 35.1 36.7 38.6 42.8 45.9 51.3
α = 0.4 46.0 50.3 53.3 58.4 64.6 72.2
α = 0.6 56.1 60.2 65.4 72.6 79.9 89.0
α = 0.8 62.1 67.7 72.8 80.6 88.7 97.3
α = 1 65.3 72.0 78.5 86.0 94.4 100.0
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Table 7.2: Percentage of cost savings for different oracle accuracies in the real-world
data experiment. The values show normalised costs for risk = 10 bps, scaled between

the single-stage strategy and prescient hedging results.

Oracle β = 1 β = 0.8 β = 0.6 β = 0.4 β = 0.2 β = 0

α = 0 4.6

Market impact:
α = 0.2 4.8 4.8 4.9 5.0 4.8 4.8
α = 0.4 5.1 5.1 5.2 5.1 4.9 5.1
α = 0.6 5.3 5.3 5.2 5.3 5.3 5.3
α = 0.8 5.5 5.4 5.4 5.5 5.5 5.5
α = 1 5.5 5.5 5.5 5.5 5.5 5.6

Volatility:
α = 0.2 0.4 0.9 1.2 1.6 1.8 1.7
α = 0.4 16.5 16.3 16.0 16.3 17.6 20.5
α = 0.6 23.9 24.3 24.8 26.1 28.2 31.0
α = 0.8 27.2 27.7 28.7 29.6 31.2 32.9
α = 1 29.2 29.7 30.7 31.8 31.6 32.3

Client flow:
α = 0.2 12.7 14.9 16.9 20.3 24.5 30.1
α = 0.4 19.8 23.6 27.9 33.5 40.9 49.6
α = 0.6 26.5 31.5 37.4 44.4 53.5 63.9
α = 0.8 32.6 38.4 45.1 53.8 63.5 73.3
α = 1 37.9 44.6 52.1 61.0 70.3 78.4

All components:
α = 0.2 9.7 11.3 13.4 16.3 20.1 25.3
α = 0.4 31.6 34.9 40.6 46.2 54.2 64.4
α = 0.6 44.3 48.8 54.8 62.8 73.6 87.0
α = 0.8 50.3 55.8 62.9 72.2 84.3 97.2
α = 1 54.3 60.5 68.4 78.4 90.7 100.0
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7.7 Automatic Client Flow Forecasting

In Section 7.6, specifically Table 7.2, it was shown that improving the quality of client

flow scenarios has the most significant effect on the overall hedging quality.

In this section, the evolutionary time-series forecasting techniques proposed in Chapter 5

will be integrated as a part of the hedging system, in order to model and predict the

client flow. The forecasting target is the expected client flow, E[f ], for each of the foreign

currencies being traded, i.e., fUSD, fEUR, fNZD, and fJPY . As the client flow is non-

stationary and clients’ behaviour changes with time, the model selection is repeated for

every week of data. This results in a total of 40 different models (i.e., four currencies over

10 weeks), justifying automatically evolved models instead of a hand-tuned methodology.

Additionally, the error measure introduced in Chapter 6 will be employed in the evolu-

tionary fitness function to compare different forecasters. This error, which models the

reaction of the hedging system’s LQ formulation to forecast errors in closed-form, im-

proves computation speed compared to full backtesting, while keeping the same amount

of realistic assumptions in evaluating errors of various prediction horizons.

7.7.1 Historical Data and Forecast Horizon

The data was prepared similar to that in Section 7.3.2. The same sixteen weeks of West-

pac FX client transaction data were selected, with AUD chosen as the home currency

and USD, EUR, NZD, and JPY selected as foreign assets. This data was filtered and

aggregated to create 16 hourly values per day, from 7:00 to 23:00 AEDT.

As the hedging algorithm requires the client flow forecasts until the end-of-trading ses-

sion, the forecast horizon was determined dynamically based on the number of hours

until 23:00 for every point in time.

7.7.2 Prediction Grammar

Conforming to the methodology proposed in Chapter 5, first a grammar was designed

to describe the pre-processing steps, feature generation, and the learning model. Sub-

sequently, a cross-validation scheme was used to evolve the grammar to select the best

forecaster for the data.
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7.7.2.1 Pre-processing

Pre-processing grammar was designed according to the methodology described in Sec-

tion 5.3.2. The most significant change was adding a new logarithmic variance stabilisa-

tion function: as the client flow can be negative to denote sells, the ordinary logarithm

cannot be used without resorting to complex numbers. Hence, a signed pseudo-logarithm

function, defined as

slog(x) =


log(x) x ≥ 1

0 −1 ≤ x ≤ 1

− log(−x) x ≤ −1

is proposed. This function is not strictly invertible, as loss of information occurs at the

−1 ≤ x ≤ 1 range. In practice, considering the average flow which is in millions of

dollars, one can reverse the results with only a negligible loss.

Additionally, the known daily and weekly cycle duration, respectively being 16 and 80

samples, were added to the frequency list.

7.7.2.2 Features

The feature generation grammar was also implemented as described in Section 5.3.3.

Implemented features include:

• An auto-regressive component, customisable with a lag order.

• Seasonal auto-regressive components for daily and weekly cycles, customisable with

lag and width orders.

• FX volatility: Windows of hourly realised volatility were used as explanatory

variables. In a fair study, only ex-ante (i.e., predicted) volatility should be used;

however, the ex-post (i.e., observed) volatility was included instead. This is to

validate this hypothesis that using volatility improves client flow prediction. If

a relationship is found which was not already covered by other variables (e.g.,

time-of-day, which theoretically drives both flow and volatility [87]), one can then

undertake extra computational efforts to improve volatility prediction over the

stochastic volatility model that was proposed and used in Section 7.2.

• Hour-of-day dummy variables: A binary vector with length 15, determining the

hour of day from 7 a.m. to 11 p.m.. The 16th value was removed, as it is linearly

dependent on other values.
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Table 7.3: Candidate features for predicting FX client flow.

Feature Window type
Maximum Maximum

width lag

Auto-regressive Past lags N/A 16
Daily cycle auto-regressive Past lags, centred 4 10
Weekly cycle auto-regressive Past lags, centred 4 2
Realised FX volatility Centred 4 N/A
Hour-of-day Binary vector N/A N/A
Day-of-week Binary vector N/A N/A

• Day-of-week dummy variables: A binary vector with length 4, determining the

day of week. The fifth variable was removed, as it is linearly dependent on other

values.

The details of these features are presented in Table 7.3.

7.7.2.3 Learner Models

The learner model grammar was implemented as described in Section 5.3.4. Two learning

techniques were used:

• A linear model, which is commonly used to describe forecasting models in finance

and econometrics [233].

• A SVM with radial basis function kernel. Hyper-parameters of the support vector

machine include ε, γ, and C [234].

7.7.2.4 Fitness Function

Fitness function implementation followed the cross-validation methodology described in

Section 5.4.3. As mentioned earlier, to adapt to the variable client flow dynamics, a

new forecasting model was selected for each of the ten weeks in the backtesting period.

For each model, all data from past weeks were used for cross-validation, with the length

of the testing period fixed to four weeks (20 days), and the rest of the data allocated

to initial model fitting. Using Algorithm 5.4, the aggregated forecast error of rolling

window predictions over the testing period was reported as the fitness score.

In two separate evolutionary optimisation runs, root mean square error (RMSE) as well

as the ∆J measure proposed in Chapter 6 were used to calculate the forecast errors in

the fitness function.
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In Section 6.7, it was shown that deviation of the hedging cost function from the optimal,

where the flow forecast is f̂ and the observed flow is f , can be determined by

∆J = (f̂ − f)TΘ(f̂ − f) (7.8)

where Θ is obtained from (6.15).

The results of Section 7.6, in addition to the analysis of Chapter 3, reveal that the

sensitivity of the hedging to client flow is at its maximum when the minimum cost is

desired (i.e., the right end of risk-cost profiles). Hence, Θ was computed accordingly

with λ = 0. Notice that the ∆J is not a replacement for backtesting, as different

conditions including the variable volatility and market impact are not included in its

assumptions.

Accordingly, RMSE was computed using

RMSE =

√
1

N
(f̂ − f)T(f̂ − f)

where N is the length of vector f , i.e., the total number of predictions over all horizons.

7.7.2.5 Grammatical Evolution

Grammatical evolution was implemented using the package gramEvol [11]. The number

of generations was set to 50, and the rest of the parameters were determined automati-

cally by the package. More details about the architecture of this package are presented

in Appendix A.

7.7.3 Comparison with Other Techniques

In addition to evolving grammar based predictors, the following techniques were also

employed for forecasting the client flow:

• Gaussian model: In Section 7.2.3, a Gaussian process was used for generating

client flow scenarios. The same stochastic model, i.e., Eq. (7.6), was fitted to the

first six weeks of historic data and used to forecast the expected future flow.

• Näıve predictor: A näıve predictor repeats the data from last observation as the

future forecasts. This is effectively equal to considering a random walk model for

the data [36].

• Averaging model predictor: The client flow for the last four weeks were averaged

and the mean value was reported as the future flow.
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• ETS and ARIMA: The R package forecast [200] was used to create ARIMA and

ETS forecasting models. Model orders were determined automatically by the pack-

age, using the same period selected for training the grammar based prediction. To

reflect data behaviour changes in the model training, for each prediction, model

parameters were fit only to the most recent ten days of data.

7.7.4 Forecast Results

The prediction results, comparing the forecaster models evolved from the grammar

against other techniques are presented in Table 7.4. Errors are reported separately

for the cross-validation period and the out-of-sample period, i.e., the backtesting week

after the model’s cross-validation period. For each currency, the errors were averaged

for all ten weeks, and then normalised to the error of the Gaussian model. The reported

error measures are:

• ∆J , implemented using (7.8), and averaged over every trading day.

• RMSE, averaged over every prediction window in a trading day.

• Mean absolute error (MAE), averaged over every prediction window in a trading

day.

Compared to backtesting, which requires 50 ms for computing the hedging cost of a

single day on a 3.4 GHz Intel Core i7-2600 machine, ∆J , RMSE, and MAE only take

255 µs, 246 µs, and 104 µs to run respectively.

Table 7.4 shows that the out-of-sample results are dominated by the Gaussian model.

Additionally, while the evolutionary model selection using the ∆J measure was successful

in finding the best in-sample models for ∆J , it was not as successful for other measures,

either in-sample or out-of-sample. A similar observation is made for the evolutionary

optimisation using RMSE, where no other model was able to provide better results than

the Gaussian distribution. This can be explained as GE over-fitting the models to the

cross-validation data, and lack of an underlying repeatable pattern in the client flow.

This phenomenon was previously observed by other researchers for FX rates [34, 36, 40],

where the FX returns were best modelled using an i.i.d. Gaussian distribution. Several

clues exist that hint at similar circumstances regarding the clients’ behaviour [6, 44].

The results of backtesting, in the form of risk-cost profiles, are presented in Figure 7.16.

The profiles include:

• Prescient hedging.

• SMPC hedging with Section 7.3.2’s stochastic scenario generation (i.e., without

time-series forecasting).
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Table 7.4: Normalised client flow forecast error for different prediction techniques.
Each measure is normalised as a percentage of its respective Gaussian model error.

Forecaster
In-sample Out-of-sample

∆J RMSE MAE ∆J RMSE MAE

Evolved (with ∆J) 93.6 106.5 124.4 117.6 112.0 131.5
Evolved (with RMSE) 101.6 99.9 101.3 102.0 100.6 103.2
Gaussian Model 100.0 100.0 100.0 100.0 100.0 100.0
Averaging 104.4 101.3 106.6 104.4 101.3 106.6
ARIMA 103.1 102.9 111.6 110.1 103.2 112.4
ETS 114.5 104.4 116.6 113.1 104.6 117.2
Näıve 1230.6 151.6 222.4 1230.6 151.6 222.4

(a) Normalised forecast errors for USD client flow.

Forecaster
In-sample Out-of-sample

∆J RMSE MAE ∆J RMSE MAE

Evolved (with ∆J) 83.1 109.7 134.9 104.3 112.8 137.1
Evolved (with RMSE) 99.9 100.2 101.1 106.4 102.4 104.4
Gaussian Model 100.0 100.0 100.0 100.0 100.0 100.0
Averaging 101.9 100.9 104.7 101.9 100.9 104.7
ARIMA 98.2 105.8 122.3 107.6 107.3 124.9
ETS 110.5 105.8 122.7 107.5 106.4 126.0
Näıve 1038.7 144.8 230.6 1038.7 144.8 230.6

(b) Normalised forecast errors for EUR client flow.

Forecaster
In-sample Out-of-sample

∆J RMSE MAE ∆J RMSE MAE

Evolved (with ∆J) 84.0 110.6 139.5 108.9 115.4 144.3
Evolved (with RMSE) 98.9 98.1 98.2 152.8 118.8 116.5
Gaussian Model 100.0 100.0 100.0 100.0 100.0 100.0
Averaging 100.3 101.0 105.4 100.3 101.0 105.4
ARIMA 96.3 102.6 112.4 101.3 102.5 110.4
ETS 109.6 104.1 118.1 109.0 104.6 120.1
Näıve 2083.7 154.2 257.2 2083.7 154.2 257.2

(c) Normalised forecast errors for NZD client flow.

Forecaster
In-sample Out-of-sample

∆J RMSE MAE ∆J RMSE MAE

Evolved (with ∆J) 97.3 114.2 148.1 103.5 117.8 147.4
Evolved (with RMSE) 99.7 99.4 99.7 100.9 102.0 102.2
Gaussian Model 100.0 100.0 100.0 100.0 100.0 100.0
Averaging 105.6 110.2 142.5 105.6 110.2 142.5
ARIMA 102.0 113.6 155.2 118.0 116.8 167.8
ETS 116.4 118.6 175.9 122.5 122.9 190.4
Näıve 2269.8 156.0 274.2 2269.8 156.0 274.2

(d) Normalised forecast errors for JPY client flow.
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Figure 7.16: Effect of prediction on hedging risk-cost profiles. SMPC hedging with
stochastic scenario generation is sub-optimal compared to the profiles using prescient

data, but outperforms hedging models using time-series forecasting.

• SMPC hedging with client flow oracle; the volatility and market impact coefficient

scenarios are generated using stochastic models of Section 7.3.2.

• SMPC hedging with client flow forecasted by ARIMA.

• SMPC hedging with client flow forecasted by ETS.

• SMPC hedging with client flow forecasted by predictors evolved using ∆J .

• SMPC hedging with client flow forecasted by predictors evolved using RMSE.

• Single-stage shrinking horizon (SHC) hedging algorithm (proposed in Section 3.5).

• Gradual closing strategy (proposed in Section 3.4.4), used as a benchmark.

The results show that SMPC hedging with stochastic model scenario generation is still

the best realistic hedging algorithm, and using any forecasts, as expected from the out-

of-sample ∆J errors, only worsens the results.

7.8 Summary

SMPC hedging, proposed and formulated in Chapter 3, was thoroughly tested and

verified using both synthetic and real-world data.
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Table 7.5: Summary of FX hedging improvement using different techniques. The
cost is measured at risk = 0.0010 AUD per AUD. The improvements are measured as
the percentage of possible cost savings against the prescient hedging and the gradual

closing strategy benchmark.

Cost (bps per AUD) Improvement (%)

Prescient hedging 0.2473 100.0
SMPC + Client flow foreknowledge 0.3304 86.4
SMPC + Stochastic scenarios 0.5851 44.7
Single-stage SHC hedging 0.5959 42.9
SMPC + GE forecasts 0.6344 36.6
Benchmark: Gradual closing strategy 0.858 0

First, different stochastic models were proposed, both for generating synthetic examples,

and also as benchmark models for fitting real-world data. The SMPC hedging was

then compared to other hedging techniques studied in Chapter 3, and was shown to

outperform them.

To analyse the weaknesses of the stochastic models and also further verify the SMPC

technique, a scenario generating oracle was defined to simulate non-perfect modelling by

perturbing the future data. It was shown that by improving the models and increasing

their forecasting quality, SMPC hedging results approach that of a prescient hedging

algorithm. It was noted that the client flow model, based on a univariate Gaussian

process, was the bottleneck of hedging results, and improving client flow prediction

could considerably boost the hedging’s risk-cost profiles.

Finally, the proposed GE based time-series forecasting technique was applied to the

client flow. It was noticed that this technique, in addition to other time-series models,

e.g., ETS and ARIMA, were unable to provide any forecasting ability beyond a Gaussian

model.

The summary of hedging results, comparing different techniques for real-world data,

are presented in Table 7.5. It can be observed that the SMPC hedging, combined with

the stochastic scenario generation, outperforms other techniques and offers a 44.7%

improvement over the benchmark strategy.





Chapter 8

Renewable Energy Management

using Model Predictive Control

8.1 Introduction

Recent advances in battery energy storage systems (BESS) and solar photovoltaic (PV)

electricity generation have opened new opportunities for widespread adoption of grid

connected renewable energy systems (RES) [235, 236].

Due to the inherent uncertainties of both generation and consumption, optimal control

techniques and stochastic models have been proposed to improve RES’s performance by

controlling the battery’s charging and discharging schedule. However, these techniques

either assume existence of an accurate forecaster, or utilise simple stochastic models

in their methodology. Additionally, the computational cost of these stochastic models

and control techniques are often beyond the ability of current microcontroller systems.

Consequently, despite intensive research, commercial solutions are still using näıve and

inefficient strategies.

In this chapter, the problems of electricity demand management in a grid-connected RES

with battery storage is studied. The control objectives are defined as both peak shaving

(i.e., reducing the peak demand from the grid [237]) and electricity cost minimisation.

This requires modelling and forecasting uncertain consumption behaviour and PV elec-

tricity generation, as well as considering variable electricity prices and limitations of the

battery storage.

In addition to serving as a basis for testing the techniques proposed in Chapters 5 and

6, this chapter offers the following contributions:
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• Proposing a customised grammar for forecasting electricity consumption and PV

generation using GE.

• A stochastic model predictive control (SMPC) approach towards combined peak

shaving and cost saving for grid connected renewable energy systems with battery

storage.

8.2 Case Study: TransGrid iDemand

TransGrid iDemand is a renewable energy and electricity demand management system

installed at TransGrid’s Sydney West site. Commissioned in 2014, iDemand is designed

to reduce the site’s grid consumption during peak demand [238].

The iDemand system includes (Figure 8.1) [239]:

• Battery storage system: A 400 kWh lithium polymer battery, with a peak power

output of 100 kW. This sub-system is able to provide both AC and DC supplies.

• Thin film solar panels: iDemand uses thin film cadmium telluride solar panels to

generate renewable electricity. The installed panels are rated at 45 kW.

• Poly-crystalline solar panels: Poly-crystalline solar panels are more efficient and

more costly than thin film panels (and in turn, poly-crystalline panels are cheaper

but less efficient compared to mono-crystalline panels). iDemand’s poly-crystalline

installation can generate up to 53 kW of electricity.

• AC and DC LED lighting: In iDemand, metal halide and fluorescent lighting are

replaced with the more efficient LED systems. Most of the lights allow automatic

dimming in response to daylight conditions.

• Inverters, SCADA, weather station, and web-based portal: Using a supervisory

control and data acquisition (SCADA) [240] system, inverters are controlled to

allow custom flow of energy. The data, including the system’s overall performance

and also the site’s weather conditions, are collected and made available1 through

the iDemand website [238].

iDemand’s SCADA and inverters allow dynamic programming of the battery charge and

discharge profile. As of November 2014, the system has been programmed to “set the

battery to charge overnight and then discharge on weekdays between 1pm and 6pm”

[239]. The rationale behind this is to reduce grid consumption (which can go “up to 400

kW in summer”) during peak demand.

1TransGrid terms and conditions permit personal, in-house, or non-commercial use of their data
without formal permission [241].
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Figure 8.1: A screenshot of TransGrid iDemand’s public web portal [238], showing
real-time power flow. iDemand uses two different solar panel types (thin film PV
and crystalline PV), in addition to the power from the grid, so as to supply power for
offices and workshops. A 400 kWh battery stores the energy and discharges during peak
demand to reduce power from the grid. Separate AC and DC LED lighting systems are
also installed to increase lighting efficiency. In this instance, the total consumption of

189.13 kW is satisfied with only 111.37 kW from the grid.

8.2.1 Improving iDemand’s Control Policies

An analysis of the current iDemand load and its static battery schedule shows that it

is far from reaching its goal. For example, Figure 8.2 shows that the peak demand,

considering the power from solar panels, does not necessarily occur between 13:00 and

18:00. Additionally, the workshop load profile changes with time, with a new peak

appearing in the 2015 second quarter’s morning load.

In this chapter, stochastic receding horizon control will be used to reduce the grid con-

sumption and shave load peaks by optimally scheduling the battery charge and discharge

rates. This problem combines three different challenges:

1. Forecasting solar power generation prediction: While mostly correlated with cloud

cover, many uncontrolled parameters, including shadows from nearby structures,

inclination of the PV plane and its variability, and meteorological events such as

haze and fog vary the PV generation.

2. Forecasting load: The site load, while following a daily and weekly cycle, is sub-

ject to high variations, influenced by many predictable (e.g., weather) and unpre-

dictable events (e.g., new constructions or extra work shifts).

3. Control system: Many factors have to be considered in the control algorithm,

including but not limited to battery capacity, battery charging maximum safe rate,
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Figure 8.2: The mean daily load, net demand (i.e., load consumption minus solar
generation), and battery power in TransGrid iDemand. Negative battery power denotes

charging.

variation of grid price with time, and uncertainties of generation and consumption

prediction.

Although the consumption profile changes with time, it shows a strong daily and weekly

cycle (Figure 8.3). Furthermore, considering the near flat profile of net demand (site

and LED load consumption minus solar generation, as in Figure 8.2), one can aim to

not only reduce possible peaks, but also reduce costs by managing grid demand during

periods of high electricity price.

Specifically, this work combines automatic time-series prediction techniques with a

domain-expert designed grammar, to provide better forecasts as inputs to the SMPC

controller.
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Figure 8.3: A week of TransGrid iDemand load. Notice that 8 June 2015 was a public
holiday in New South Wales, Australia.

8.3 Optimal Scheduling for the iDemand System

In this section, SMPC is used to develop a strategy for optimally scheduling iDemand’s

charge/discharge cycles.

8.3.1 iDemand Dynamics

The iDemand battery’s state of charge can be modelled using the following discrete

state-space model:

bt+1 = bt + gt + st − lt (8.1)

Here,

• bt is the battery’s state of charge at time t,

• st is the solar PV generation power,

• lt is the load power, and

• gt is the power demanded from the grid.

The battery’s capacity is limited to bmax:

0 ≤ bt ≤ bmax (8.2)

The battery charge and discharge rate is determined by

ut = bt+1 − bt,
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and is limited to umax:

|ut| ≤ umax

The grid operator charges pt for a unit of electricity at time t, resulting in the total cost,

C, formulated as

C =
∑
i

gipi, (8.3)

and does not buy electricity back, i.e.,

gt ≥ 0.

We define the objective of the iDemand control system as reducing costs and shaving

peaks. Considering the stochastic nature of the system’s variables, this is formalised as

argmin
ut; ∀t

E
[∑

g2
i

]
+ λE[C]

subject to |ut| ≤ umax
(8.4)

where the parameter 0 ≤ λ ≤ ∞ selects between peak shaving when λ = 0, and cost

saving when λ→∞. These goals, while not directly in opposition, may lead to different

results if pt varies with time.

8.3.2 Open-loop Optimisation

Assuming that battery storage constraint (8.2) holds, the grid consumption can be

obtained from

gt = ut + lt − st.

Notice that as gt ≥ 0, this may result in infeasible solutions if st − lt > umax, i.e., when

local generation is more than what can be stored on battery. The alternative, which is

explored in Appendix C, is to use

bt+1 = bt + gt + st − lt + wt,

where wt ≤ 0 is a slack variable to denote the energy wasted to satisfy the battery

capacity constraint (8.2). As this never happens in the iDemand system and only adds

to the complexity of the solution, this alternative was not implemented.
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By replacing the grid cost with (8.3), the cost function of (8.4) can be reorganised as

follows:

J = E
[∑

g2
i

]
+ λE[C]

= E

[∑
i

g2
i

]
+ λE[

∑
i

gipi]

=
∑
i

E
[
g2
i + λgipi

]
=
∑
i

E
[
(ui + li − si)2 + λ(ui + li − si)pi

]
=
∑
i

E
[
(u2
i + 2ui(li − si) + (li − si)2) + λ((li − si)pi + uipi)

]
=
∑
i

E
[
u2
i + 2ui(li − si +

1

2
λpi)

]
+
∑
i

E
[
(li − si)2 + λ(li − si)pi

]

As ut is the only controllable variable and deterministic, this simplifies to

J =
∑
i

(
u2
i + 2uiE

[
li − si +

1

2
λpi

])
.

Similarly, the constraints on ut and gt can be rewritten as

−ut ≤ lt − st,

−ut ≤ umax,

ut ≤ umax.

The battery energy state can be expressed recursively as

bt = b0 +

t−1∑
i=0

ui.

Hence, the constraint on battery energy is replaced with

0 ≤ bt ≤ bmax

−→ 0 ≤ b0 +
t−1∑
i=0

ui ≤ bmax

−→ − b0 ≤
t−1∑
i=0

ui ≤ bmax − b0.
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With the constraints and cost function transformed as a function of battery charge rate

ut, optimisation of (8.4) can be rewritten as

argmin
ut; ∀t

N∑
i=0

(
u2
i + 2uiE

[
li − si +

1

2
λpi

])

subject to −
t−1∑
i=0

ui ≤ b0

t−1∑
i=0

ui ≤ bmax − b0

− ut ≤ lt − st

− ut ≤ umax

ut ≤ umax

.

Similar to Chapter 3, this optimisation is vectorisable:

argmin
ut; ∀t

uTu+ 2uT

(
E
[
l− s+

1

2
λp

])
subject to −Σu ≤ b0~1

Σu ≤ (bmax − b0)~1

− u ≤ l− s

− u ≤ umax~1

u ≤ umax~1

(8.5)

where

l = [l0 l1 · · · lN ]T,

s = [s0 s1 · · · sN ]T,

p = [p0 p1 · · · pN ]T,

~1 is a vector of 1’s, and Σ is a lower triangular matrix of 1’s (i.e., without diagonal

elements).

8.3.3 Parameter Requirements

Solving (8.5) requires the following time-varying parameters:

• E[l]: Expected value of the total load for the next N steps. In iDemand, the load

includes the site load, the DC LED load, and the AC LED load.
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• E[s]: Expected value of the total renewable generation for the next N steps. In

iDemand, this translates to sum of solar generation for the thin film and the poly-

crystalline PV panels.

• E[p]: Expected value of the total electricity price for the next N steps. In this

chapter, we assume that the retail cost of grid electricity, while variable, is known

in advance at least for 24 hours ahead.

Considering the daily cycle of charge/discharge in iDemand, we select N as the next 24

hours.

Given this information, the stochastic constraints, i.e., −u ≤ l−s, can be handled using

the technique explained in Section 3.6.2. Subsequently, quadratic programming (QP)

can be used to minimise (8.5). In the case of λ → ∞ (i.e., cost saving only), the cost

function is further simplified to J = uTp, which is a linear programming problem.

8.3.4 Open-loop Simulation Results

To test the open-loop optimisation proposed in (8.5), a synthetic test was performed.

The length of each time-step was selected as 15 minutes, resulting in N = 96 for a

24 hour simulation. The net demand, i.e., l − s, was generated using a half sinusoidal

wave, peaking at midday. Constraints were set to umax = 0.5 and bmax = 5. The initial

battery charge was set to b0 = 2.

For the first test, only peak shaving was simulated by setting λ = 0. The results,

presented in Figure 8.4, show that the controller charges the battery during the early

low demand period, subject to the constraints, and then discharges the battery such

that the peak demand from the grid is shaved.

For the second test, cost saving with λ = 1000 was explored. The variable grid cost

per energy unit, p, was chosen with a minima during high demand and two peaks at

other times, as shown in Figure 8.5a. The same demand as in the first test was used.

The battery’s state of charge is shown in Figure 8.5b. It can be observed that the

controller charges the battery during low price periods, regardless of the grid demand,

while discharging at full rate during high price periods (Figure 8.5c).

The open-loop optimisation, using the R package quadprogpp and with N = 96, takes 4

milliseconds on a 3.4 GHz Intel Core i7-2600 processor.

8.4 Automatic Load and Generation Forecasting

As determined in the previous section, the controller requires forecasting these values:
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Figure 8.4: Open-loop battery schedule optimisation for peak shaving.

• Load, which is composed of

– the site load, lsite,

– DC LED lighting load, ldc, and

– AC LED lighting load, lac.

• The renewable energy generated by

– thin film solar panels, stf , and

– poly-crystalline solar panels, spc.

From December 2014 onwards, the AC LED lighting load profile shows a constant 2.64

kW consumption, and consequently lac was not analysed.

8.4.1 Historical and External Data

The historical load and solar data were aggregated to 15 minutes to improve training

and prediction speed. For a fair comparison with the current iDemand static schedule
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Figure 8.5: Open-loop battery schedule optimisation for cost saving.
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Table 8.1: Numeric scores for descriptive sky conditions.

Condition Numeric score

Clear 5
Scattered clouds 4

Partly cloudy 3
Mostly cloudy 2

Overcast 1
Other (e.g., rainy) 0

which is active only during weekdays, weekend data were discarded.

In addition to the historical generation and consumption, weather forecasts were also

used as explanatory variables for predicting loads and PV generation. As ex-ante (i.e.,

historical) forecasts were not available, the ex-post (i.e., actual) observations from two

nearby airports, Sydney Kingsford Smith Airport (40 km south-east of the site), and

Richmond Air Force Base (30 km north of the site) were downloaded from the publicly2

available WeatherUnderground website [243].

The temporal resolution of these observations is 30 minutes, and includes ambient tem-

perature, humidity, and descriptive sky conditions (e.g., clear, cloudy, or partly cloudy),

but doesn’t report the cloud cover in percentage. To include these descriptive values in

forecasting models, Table 8.1 was used to map the conditions to integer scores.

Notice that better data can be obtained from commercial services specifically designed

for predicting solar power, which is expected to improve the forecast results. Still, the

goal of this work is not to contribute an expert tuned model for the problem of day-ahead

solar generation prediction, but to compare automatic time-series forecasting techniques

using the available data.

8.4.2 Prediction Grammar

To model and predict lsite, ldc, stf , and spc, the methodology proposed in Chapter 5 was

used. Specifically, a grammar was first designed, and then using grammatical evolution

the best prediction function was selected.

2 Weather Underground, Inc., the owner of WeatherUnderground.com, permits personal, non-
commercial use of their data without subscription [242].
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8.4.2.1 Pre-processing

Pre-processing grammar was designed according to the methodology described in Sec-

tion 5.3.2. The most significant change was adding a new logarithmic variance stabili-

sation function. The logarithm function approaches infinity as the data leans towards

zero, which is observed in both solar generation (during night time), and LED load (at

non-working hours). Hence, a scaling term was embedded within the log function to

allow correct and reversible pre-processing.

Additionally, the daily and weekly cycles of the data with 15-minute intervals are known,

being 96 and 480 samples, respectively. These values were added to the frequency list,

and the FFT option was removed.

8.4.2.2 Features

Feature generation grammar was also implemented as described in Section 5.3.3, with

both auto-regressive and exogenous features. The details of these features are presented

in Table 8.2.

8.4.2.3 Learner Models

Learner model grammar was implemented as described in Section 5.3.4. Two learning

techniques were used:

• A linear model, as commonly used in electricity models (e.g., the Monash electricity

model [244]).

Table 8.2: Candidate features for predicting electricity consumption and generation
in iDemand.

Feature Window type
Maximum Maximum

width lag

Auto-regressive Past lags N/A 16
Daily cycle auto-regressive Past lags, centred 4 15
Weekly cycle auto-regressive Past lags, centred 5 5
Kingsford airport temperature Centred 8 N/A
Kingsford airport humidity Centred 8 N/A
Kingsford airport cloud cover score Centred 8 N/A
Richmond base temperature Centred 8 N/A
Richmond base humidity Centred 8 N/A
Richmond base cloud cover score Centred 8 N/A
Day-of-week Binary vector N/A N/A
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Figure 8.6: Fitness function error weights for 96 steps ahead predictions.

• A SVM with radial basis function kernel. Hyper-parameters of the support vector

machine include ε, γ, and C [234].

8.4.2.4 Fitness Function

The fitness function was implemented as described in Section 5.4.3. The period from

Monday 2015-01-15 to Friday 2015-05-01 (15 weeks) was selected for cross-validation,

with the first ten weeks of data as the initial training window, and the rest tested using

an expanding rolling window scheme. The cross-validation errors of the rolling windows

were aggregated and reported as the fitness score, as proposed in Algorithm 5.4.

As the problem described in this chapter is not strictly following a classic linear-quadratic

control formulation, the error measure proposed in Chapter 6 was not directly used.

Inspired by its result, weighted mean square error was used instead, with weights expo-

nentially decaying with time according to

wt =
e4(1− t

N−1
)+1∑N−1

j=0 e4(1− j
N−1

)+1
.

The error weights versus prediction horizon are illustrated in Figure 8.6. The weights

allow the cost function to be more sensitive to the inaccuracies of near future predictions,

while also considering far future errors.

8.4.2.5 Grammatical Evolution

Grammatical evolution was implemented using the package gramEvol [11]. The number

of generations was set to 50, and the rest of parameters were determined automatically
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by the package. More details about the architecture of this package are available in

Appendix A.

8.4.3 Comparison with Other Techniques

In addition to the evolved grammar predictors, the following techniques were also em-

ployed:

• Seasonal näıve predictor: Data from the same time of day of the last working day

is repeated to create a forecast.

• Averaging model predictor: Measurements for the same time of day for the last

15 days are averaged and reported as forecasts. This technique is widely used in

energy forecasting applications [245].

• ETS and ARIMA: The R package forecast [200] was used to create ARIMA and

ETS models. As the package only supports cycles with a frequency of less than 24,

the data was down-sampled to hourly intervals before being given to the package,

and the forecasts were then linearly interpolated to 15 minutes. The model orders

were determined automatically by the package using the same period selected for

training the grammar based models. To reflect data behaviour changes in the

model training, for each prediction, model parameters were fit only to the most

recent ten days of data.

• ARIMAX: The ARIMAX model from the package forecast was used with Rich-

mond Air Force Base weather forecasts as exogenous inputs. The methodology of

model order selection and parameter fitting was similar to ARIMA.

Despite the availability of other methods for load forecasting in literature [13, 244, 246,

247], no direct comparison with these techniques were made. The reason falls under one

or more of the following categories:

• The structure of these techniques was already covered in the proposed grammar

(e.g., using ANNs instead of SVM as a learner).

• Exogenous variables were used which are not relevant here (e.g., wind speed, local

population, or GDP).

• The proposed models were tuned to a specific dataset (e.g., Kaggle forecast com-

petition, or Southern Australia state-wide consumption).

• The objective of the forecast was different from the expected value of day-ahead

step-wise load (e.g., only predicting the daily peak).

• The iDemand system only started recording data from October 2014, which is not

enough time for some of techniques that deal with variation of the load over a

decade.
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8.5 Results

8.5.1 Forecasts

The results of model selection using the proposed evolutionary technique are presented

in Table 8.3. Some selected model features are intuitive:

• The load (both the site’s and the LED’s) shows strong correlation with the recent

consumption data, while the thin film PV is independent of the recent events (i.e.,

the selected order is p = 0).

• Solar generation is highly correlated with weather conditions.

• The load is correlated with humidity, which can be indicative of air-conditioning, as

human perception of temperature depends on humidity as well as rainy conditions.

Some selected features are counter-intuitive:

• None of the predictors use differential or logarithmic pre-processing, unlike the

technique proposed in [244]. Notice that the leaner models have their own built-in

scaling and centring steps.

• The week-of-day indicator binary matrix, which is expected to be only influential

on the load data, is selected for the solar generation instead.

• Predicting load uses simpler linear models instead of the more powerful SVM with

radial basis function kernel.

Table 8.4 compares the prediction error using different techniques for the site load,

the DC LED lighting load, the thin film panels’ generation, and the crystalline panels’

generation. The comparison includes the in-sample period, i.e., the period used to train

and validate the grammar, and the out-of-sample period, i.e., eight weeks from Monday

2015-05-04 to Friday 2015-06-24. The error measures include:

• The in-sample error obtained from the fitness function used in grammatical evo-

lution.

• Weighted mean square error (WMSE), exponentially weighted as described for the

fitness function, and averaged for every 96-step-ahead prediction of every time-

step.

• Root mean square error (RMSE), averaged for every 96-step-ahead prediction of

every time-step.

• Mean absolute error (MAE), averaged for every 96-step-ahead prediction of every

time-step.

As expected, the evolved predictor outperforms other techniques for the in-sample fit-

ness, and consequently out-of-sample WMSE error. In the case of out-of-sample RMSE
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Table 8.3: Selected features for predicting electricity consumption and generation in
iDemand. A dash denotes the feature not being selected, and p and q determine the
order of lags and window widths respectively. With q = 0, only the value at the centre

of the window is selected.

Feature Site load
DC LED PV PV

load thin-film crystalline

Pre-processing - - - -

Auto-regressive p = 13 p = 3 p = 0 p = 14

Daily cycle p = 4 p = 3 p = 14 p = 2
auto-regressive q = 4 q = 3 q = 3 q = 2

Weekly cycle p = 1 p = 2
-

p = 4
auto-regressive q = 3 q = 0 q = 3

Kingsford airport
- temperature - - q = 6 q = 6
- humidity q = 2 - q = 0 q = 7
- cloud cover score - - q = 5 q = 8

Richmond base
- temperature - - - q = 8
- humidity q = 3 q = 6 q = 8 q = 8
- cloud cover score - - q = 3 -

Day-of-week - - Selected -

Learner Linear Linear SVM SVM

and MAE; however, the evolved predictors only produce better results for PV generation

compared to other techniques, and load prediction favours näıve or averaging techniques.

This performance difference is a result of the 15-day average model being a better pre-

dictor for the far future, and the grammar-based predictor performing better in the near

future forecasts. Figure 8.7 illustrates this far versus near accuracy, where the 24-hour

ahead prediction of site load for the averaging model and the evolved predictor are com-

pared using the dashed line and the dark grey line, respectively. It can be observed that

the averaging model outperforms the evolved predictor; but while the averaging model’s

forecasts do not change with time, the evolved predictor reuses the recent observations

through its auto-regressive component, and updates its prediction accordingly. Eight of

these updated forecasts, performed at 2 hour intervals and predicting the next 8 steps,

are shown using different symbols in Figure 8.7. The rest of the day-ahead predictions

for each of these models are shown using light grey lines. It is evident that these updated

forecasts outperform the averaging model, especially in near term prediction. Conse-

quently, given that the error difference between two techniques is minimal for RMSE

(16.676 versus 16.426), and considering that the controller is more influenced by near
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Table 8.4: Day-ahead forecast error of electricity demand and solar generation in
iDemand for different prediction techniques.

Prediction In-sample
WMSE RMSE MAE

Technique Fitness

Evolved 13.396 633.634 16.676 12.365
Näıve 16.594 895.059 18.831 13.363
Averaging 17.141 679.921 16.426 11.976
ARIMA 22.226 1474.053 27.615 22.674
ARIMAX 21.229 1475.270 27.627 22.318
ETS 15.680 872.033 19.931 14.734

(a) Day-ahead site load forecast errors.

Prediction In-sample
WMSE RMSE MAE

Technique Fitness

Evolved 0.734 1.555 0.841 0.665
Näıve 0.774 2.009 0.83 0.552
Averaging 0.977 1.991 0.940 0.769
ARIMA 1.150 2.878 1.179 0.979
ARIMAX 1.151 2.973 1.207 1.003
ETS 1.142 2.966 1.193 0.940

(b) Day-ahead DC LED lighting load forecast errors.

Prediction In-sample
WMSE RMSE MAE

Technique Fitness

Evolved 4.628 22.501 3.175 1.788
Näıve 6.833 45.133 4.163 1.871
Averaging 6.778 47.267 4.539 2.265
ARIMA 7.153 75.771 6.013 3.152
ARIMAX 6.128 61.967 5.447 4.210
ETS 137.165 182779.048 98.430 26.306

(c) Day-ahead poly-crystalline solar panel generation forecast errors.

Prediction In-sample
WMSE RMSE MAE

Technique Fitness

Evolved 4.789 19.824 2.949 1.719
Näıve 6.760 42.250 4.041 1.853
Averaging 6.845 44.529 4.394 2.307
ARIMA 7.502 77.851 6.257 4.549
ARIMAX 5.842 54.978 5.167 4.060
ETS 8.857 63.309 5.262 3.687

(d) Day-ahead thin film solar panel generation forecast errors.

term forecasts, as demonstrated in Chapter 6, one can expect better control using the

evolved predictors.

Additionally, in the case of the poly-crystalline solar panel generation (spc), ETS tech-

nique diverges from cyclic prediction, resulting in very high errors. To allow ETS to be

used, solar generation forecasts’ range was bound to the capacity of the solar panels,
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Figure 8.7: An example of prediction accuracy for the evolved predictor and the
averaging model technique. The averaging model’s forecast (dashed line) is closer to
the observed site load (solid line) compared to the evolved predictor’s results obtained
at 02:00 (dark grey). In comparison, the eight-step-ahead predictions performed by the
evolved predictor at different times of day, depicted by different symbols, are closer to
the observed load. The light grey lines show the progression of each of these forecast

towards the end of the day.

through

min(max(ŝ, smax), 0)

where ŝ is the forecast, smax is the panels’ rated power, and 0 denotes no generation

(i.e., the minimum at night time).

The net demand prediction was obtained by aggregating separately predicted parame-

ters:

demand = l̂ − ŝ = l̂site + l̂dc − ŝtf − ŝpc

The results are presented in Table 8.5. It can be observed that the proposed method-

ology, using evolved grammar based predictors, outperforms other techniques over all

error measures.
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Table 8.5: Day-ahead demand forecast error for different prediction techniques.

Prediction
WMSE RMSE MAE

Technique

Evolved 721.201 18.143 13.348
Näıve 1082.581 21.090 14.899
Averaging 916.595 19.758 14.327
ARIMA 1444.003 26.987 21.870
ARIMAX 1488.393 27.587 22.146
ETS 1127.730 22.861 16.863
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Figure 8.8: Synthetic price per kWh for testing iDemand peak shaving controller.

8.5.2 Controller Simulation

To allow a fair comparison with the current static schedule of iDemand, a peak versus off-

peak pricing scheme was defined for the 13:00 to 18:00 time period, using the residential

prices of Origin Energy Retail distributed by AusGrid [248]:

pt =

0.50611 $
kWh 13:00 ≤ t ≤ 18:00

0.1144 $
kWh else

Figure 8.8 shows the daily cycle of this pricing scheme3.

This pricing scheme is to obtain a Pareto frontier of peak shaving against cost saving

profiles by varying the λ parameter of the controller cost function (8.5); in comparison,

the static schedule only produces one solution, resulting in a single profile.

Additionally, the static schedule is limited to discharge to no less than 20% of the

battery capacity, and the charge rate is limited to 90.2% of its maximum rating. Hence,

3 The Origin Powersmart domestic terms of use is based on a three tiered pricing scheme plus daily
supply charges. The above assumption only uses two of these prices as a guideline.
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Figure 8.9: Mean daily peak demand versus cost using time-series forecasting and
predictive control.

the following constraints were used in the simulation:

bmax = 1360 kWh× 15 min

hour
umax = 91 kW

The initial battery charge was set to 50% of the battery capacity, i.e., b0 = 1
2bmax.

The simulation was performed on the same period where the prediction techniques were

tested, i.e., Monday 2015-05-04 to Friday 2015-06-24.

The results of simulation, in the form of daily peak grid demand against daily grid cost

averaged over the testing period, are shown in Figure 8.9. It can be seen that while

grammar based evolved predictor is outperforming the rest of the techniques, it is still

far from the optimal frontier obtained using a prescient forecaster.

In comparison, if the peak is computed at hourly intervals, as shown in Figure 8.10, a

better shaving is observed. Additionally, the second best peak shaving technique would

be the ARIMA and ARIMAX predictors instead of the averaging model.

Comparable results are obtained if the standard deviation of grid demand is plotted

against daily cost, using the original 15-minute intervals, as presented in Figure 8.11.
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Figure 8.10: Mean daily peak demand versus cost, reported with hourly temporal
resolution.
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Figure 8.11: Standard deviation of grid demand versus mean daily cost using time-
series forecasting and predictive control.
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Figure 8.12: Average grid demand above mean consumption versus daily cost using
time-series forecasting and predictive control.

In addition to the above tests, similar to the concept of value at risk in finance, the first

upper partial momentum (UPM1) of demand, defined as

1

N

N∑
i=1

max(gi − ḡ, 0)

where

ḡ =
1

N

N∑
i=1

gi,

was employed to measure the grid demand above mean consumption. The results are

presented in Figure 8.12 and similar observations are made.

This difference, between the daily peak computed at 15-minute intervals and other mea-

sures, is caused by how the evolved predictor and the controller respond to sudden

changes in data. An example is presented in Figure 8.13, showing an early demand at

5:00 a.m. which was not predictable. Figure 8.13a shows that while the evolved predictor

has managed to reduce the peak for the rest of 5 a.m. as well as the rest of the day, the

daily peak has been set by this unexpected jump in demand. In contrast, Figure 8.13b
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which has averaged the demand into per-hour values, reflects this peak reduction by av-

eraging the 5:00 peak with the three other demand measurements of that hour (namely,

5:15 to 5:45). As a result, the hourly peak demand is significantly lower.

Additionally, in Figure 8.13, the averaging model shows more variance and above mean

consumption compared to the grammar-based predictor. Another example, presented

in Figure 8.14 demonstrates a similar behaviour for another day.

A comparison against the static scheduling is presented in Figure 8.15. The dynamic

results were generated by setting λ = 1000 in (8.5). The figure shows that while the

controller has managed to reduce the peak in the 13:00 to 18:00 period similar to the

static schedule, peaks were also shaved during the morning period from 262 kW to 213

kW.
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Figure 8.13: Effect of time resolution on peak shaving results. While the 15-minute
plot shows only a 10 kW peak shaving improvement for the evolved model, the hourly

plot’s peak is reduced by 22 kW compared to the averaging model.
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Figure 8.14: An example of peak shaving, comparing evolved grammar based predic-
tor with the averaging model, with λ = 0.
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Figure 8.15: An example of peak shaving, with emphasis on cost saving during 13:00
to 18:00 with λ = 1000, comparing evolved grammar based predictor with the static

schedule.
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8.6 Summary

In this chapter, a receding horizon SMPC system, combined with automatic time-series

forecasting, was used to shave peak grid demand and save electricity costs. This tech-

nique used grammatical evolution to evolve forecasters for electricity generation and

consumption, and used a quadratic model to determine the optimal course of action

based on the uncertainties and problem requirements. The results show that the evolved

predictors outperform other commonly used forecasting algorithms. In addition, the

configurability of the grammar used to create forecasters, allows experts to update the

model to improve the results based on model specific knowledge or available data.

A summary of the results, comparing peak shaving outcomes using different statistics

for a prescient controller, SMPC with three different forecasters, and static schedul-

ing, is presented in Table 8.6. The table reveals that the proposed evolved grammar

based forecaster offers 43.8 kW average daily peak shaving over static scheduling, a 9%

improvement over the second best practical technique.

While run-time of the proposed SMPC algorithm is acceptable for implementation on mi-

crocontroller systems, the cost of model selection using GE prohibits its full deployment.

This problem can be solved by offloading the computational overhead of GE optimisa-

tions to a cloud-based high performance computer (HPC) system. This methodology is

further explored in Appendix D.

Table 8.6: Summary of demand management results using a prescient controller,
SMPC with three different predictors, and static scheduling. Values in parenthesis

show the percentage of improvement.

Prescient Evolved Averaging ARIMA Static Sched.

Mean daily peak
121.6 kW 153.7 kW 160.6 kW 165.9 kW 197.5 kW
(100%) (57.6%) (48.6%) (41.7%) (0%)

Mean daily peak 113.2 kW 125.2 kW 134.4 kW 131.2 kW 158.8 kW
(hourly) (100%) (73.6%) (53.4%) (60.6%) (0%)

Standard deviation
12.9 kW 17.4 kW 21.7 kW 21.8 kW 36.7 kW
(100%) (81.1%) (63.3%) (62.9%) (0%)

UPM1
5.3 kW 6.7 kW 7.6 kW 8.4 kW 13.7 kW
(100%) (83.1%) (71.8%) (62.4%) (0%)





Chapter 9

Conclusion

When forecasting currency exchange rates, · · · there is plenty of

available data. However, we have a very limited understanding of

the factors that affect exchange rates. · · · , you will be correct

about 50% of the time, whatever you forecast. In situations like

this, forecasters need to be aware of their own limitations, and not

claim more than is possible.

Chapter 1 - What can be forecast?

Forecasting: Principles & Practice [36]

Success of any risk management system depends on two major factors:

1. Forecasting accuracy, or how close to reality is one’s estimate of the future.

2. Ability of the risk management process to prepare for the uncertain future and

respond to unanticipated events.

This thesis advocated managing risk using stochastic model predictive control (SMPC).

To improve the predictive model’s accuracy, a non-linear time-series forecasting model

enhanced with domain-specific knowledge and tuned using evolutionary optimisation

was proposed.

This methodology was applied on two real-world applications: the problem of foreign

exchange (FX) risk management from an FX broker points of view, and managing

electricity demand from the grid using a battery energy storage system (BESS).

SMPC showed promising results for controlling the outcomes, namely improving the

FX broker’s risk and transaction cost profile, and the BESS peak shaving capabilities.

Extensive tests revealed that the risk management performance was highly correlated

with the accuracy of future forecasts.

167
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The proposed time-series forecasting technique proved successful in predicting future

electricity demand and generation in the BESS application. In comparison, none of the

studied techniques showed results better than a Gaussian distribution for predicting the

FX broker’s future trades. As it has been noted by other researchers, limitations of

the available information and model structures must be considered when evaluating the

results of time-series prediction.

9.1 Summary of Achievements

The specific aims and contributions of this thesis were listed in Section 1.2.

The theoretical contributions were presented in the chapters 3, 5, and 6:

• In Chapter 3, the dealer’s dynamics were modelled in a state-space, based on

realistic assumptions accommodating stochastic models for FX rates, inter-bank

transaction costs, and client flow. To find the optimal portfolio of foreign currency

positions, the problem was formulated as a multi-period mean-variance stochastic

optimisation, which was then reduced to a quadratic program, allowing efficient

solution of such system using numerical techniques.

• Chapter 5 proposed a customisable and scalable technique for predicting time-

series. Context-free grammar was used to describe a configurable template fore-

caster structure, and the necessary requirements for optimising this structure to

fit any data using grammatical evolution were discussed.

• Chapter 6 studied the suitability of common error measures (e.g., RMSE) for com-

paring forecast results in the context of linear-quadratic systems optimal control.

It was shown that these error measures may differ from the results obtained from

the controller’s cost function, and consequently a closed-form solution was derived

to accurately measure the cost deviation due to forecast errors. In addition to

benchmark problems, application of this technique in evaluating forecast results

for the FX risk management system was also discussed.

The FX risk management system was backtested extensively with real-world and syn-

thetic data in Chapter 7. Time-varying models were proposed based on realistic market

assumptions, and used to model client flow, FX rate volatility, and transaction costs.

To test the capability of the risk management model, a scenario generation oracle was

defined to generate scenarios with different forecasting accuracies. SMPC hedging was

shown to significantly outperform benchmark strategies, and its performance with dif-

ferent levels of scenario generation quality was quantified. Additionally, the proposed

evolutionary time-series forecasting methodology was tested on client flow. It was shown
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that the client flow is best modelled using a univariate Gaussian distribution, which com-

bined with the SMPC hedging improves the hedging performance up to 44.7%.

In Chapter 8, the proposed methodology was applied to manage a grid connected battery

storage system, under the uncertainties of load prediction and renewable energy gener-

ation. A multi-period optimisation formulation was proposed to dynamically manage

the charge/discharge schedule of batteries based on demand forecasts, with the config-

urable objectives of peak shaving and cost saving. A time-series forecasting grammar

was designed based on the available information to individually model and predict com-

ponents of the total demand, including the consumption by different load sources and

the renewable generation from separate PV solar panels. The forecasting and scheduling

methodology were then tested on real-world data from the TransGrid iDemand, and it

was shown that the proposed techniques can reduce the daily peak from an average of

197.4 kW during the test period, to 153.7 kW. This is equal to a 57.6% improvement,

compared to a static scheduler and a prescient controller.

9.2 Future Work

The proposed state-space model for FX risk management uses fixed length time-steps

in its multi-period model. As the size of horizon increases, one may wish to use variable

time-step sizes in the model, with finer steps for near future actions and coarser steps for

far future. This is possible by adding an amortisation term to the transaction cost and

volatility models according to the length of the time-steps. This method reduces the

number of variables, and therefore the computational complexity, both in forecasting

and optimisation, at the expense of accuracy. Quantisation of this trade-off is another

direction for future studies.

Similarly, the proposed time-series prediction system only supports one resolution over

its forecast horizon. Future work can propose models with multiple time resolutions,

and then apply boosting techniques or hierarchical time-series analysis to improve the

overall forecast results.

Some of the assumptions in the FX model can also be improved. For example, transac-

tion cost models can use absolute value or logarithmic terms in addition to the quadratic

cost, and instead of using variance as a measure of risk, one-sided moments can be

utilised. These measures, while still convex, will not result in a quadratic programming

problem. Considering that the FX market has different properties from other financial

markets, one has to first justify the improvements in modelling before attempting to

implement these refinements.
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Additional computational intelligence techniques can replace the genetic algorithm in

the evolutionary optimisation phase, including simulated annealing or particle swarms.

The prediction grammar can also be redesigned to be non-recursive, or multiple chro-

mosomes can be used for different parts of the forecasting pipeline. In order to obtain

better forecasts from the available chromosomes in each generation, additional work may

consider an automatic technique to boost the GE results.

The error measure introduced in Chapter 6 is limited to linear-quadratic systems with-

out constraints. Further studies are required to include constraints in the formulation,

or determine error bounds in the presence of constraints. Future work may include

implementation of this error form directly in a learning algorithm, or a comprehensive

study of improvements in real-world examples.

While the results of the predictors evolved by GE outperformed other techniques, one

would expect to achieve better results with a more extensive search. In this thesis,

the number of generations was limited to 50. Considering that time to finish the GE

optimisation is directly proportional to the number of generations divided by the number

of available processors, one can run the algorithm on a HPC cluster or cloud to improve

search results or shorten the runtime. It must be noted that the current gramEvol

package has basic support for multi-processing, but extending the package to consider

unreliable connections in a distributed system, such as implementing an island hopping

evolutionary algorithm, requires further work.

The electricity demand forecast results were obtained from ex-post weather observations;

however, in reality, only ex-ante weather forecasts are available, and further tests are

required based on prospective data. Additionally, as noted in Chapter 8, one can replace

the publicly available forecasts with commercial insolation data and satellite cloud maps

to improve results. The cost effectiveness of using commercial data can be the subject

of a comparative study.

In addition to load and solar generation, electricity prices can also be forecast using the

grammar. As a variable price will add further uncertainty to the system, one may have

to include variance of the price as a risk factor in the BESS scheduler’s optimisation

model.



Appendix A

Package gramEvol: Grammatical

Evolution in R

A.1 Introduction

Grammatical evolution (GE) uses context-free grammars (CFG) to provide a concise and

versatile mechanism for expressing structure of programs. Combined with evolutionary

optimisation, GE creates a powerful framework that allows integration of domain-specific

knowledge, defined using a grammar, into real-world optimisation problems.

In this appendix, the R package gramEvol is presented, which facilitates defining, cre-

ating, evaluating, and evolving programs using GE in R [202] .

A.1.1 Rationale for an R implementation

Several open source software implementations of GE exist, including

• Java: GEVA [249],

• Python: PonyGE [250] and PyNeurGen [251],

• MATLAB: GEM [252], and

• Ruby: GERET [253].

gramEvol is the first package for R.

The design goal of this package is to evolve programs natively in R. The Comprehen-

sive R Archive Network (CRAN) [254] includes many open source libraries for machine

learning and data mining, making R an attractive target for machine learning program

implementations. While it is possible to generate and call R code from other languages,

a native implementation has the following advantages:

171



Appendix A. gramEvol: Grammatical Evolution in R 172

• R’s expression objects can be used to define a grammar, removing an error prone

text-based BNF interpretation or compilation step, allowing dynamic grammar

manipulation and rapid prototyping.

• Expression are created directly in R as expression objects, which removes the

overhead of calling R from an external program.

• Only R’s base packages are used for evolutionary operations and grammar pro-

cessing along with parsing and running generated programs. This eliminates the

need for third-party libraries and external dependencies.

As a result, gramEvol allows quick and easy integration of domain-specific knowledge

into machine learning problems described and programmed using R.

A disadvantage of gramEvol is its speed compared to compiled GE libraries, such as

libGE [255] or AGE [256], which are written in C++. We assume that the computational

overhead of processing the cost function is greater than the overhead of GE operators.

Hence, any major speed-up will be a result of moving the cost function computational

bottleneck to C, C++ or Fortran. This is already a common practice in the design and

implementation of R packages. Furthermore, packages such as Rcpp [257] are available

to facilitate porting existing R code to C++.

A.2 Using gramEvol

The CFG and GE’s theoretical backgrounds were introduced in Section 2.6. In this

section, the syntax required for defining a GE problem using gramEvol is described, and

the internal architecture of this package is explained.

A.2.1 Defining a Grammar

In gramEvol, a grammar is defined by passing a list of productions rules to the function

CreateGrammar. CreateGrammar automatically determines the terminal, non-terminal

and start symbols based on the rules. gramEvol supports two type of rules: expression

based rules defined using grule, and character string rules defined using gsrule.

For example, the following commands will construct the CFG of Table 2.1 using gsrule:

library("gramEvol")

ruleDef <- list(expr = gsrule("(<expr>)<op>(<expr>)", "<coef>*<var>"),
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op = gsrule("+", "-", "*", "/"),

coef = gsrule("c1", "c2"),

var = gsrule("v1", "v2"))

grammarDef <- CreateGrammar(ruleDef)

grammarDef

## <expr> ::= (<expr>)<op>(<expr>) | <coef>*<var>

## <op> ::= + | - | * | /

## <coef> ::= c1 | c2

## <var> ::= v1 | v2

Using R’s native expression objects require a change to the grammar, as expr op expr

is not valid in R. Instead, a functional form of op(expr, expr) is used with grule:

ruleDef <- list(expr = grule(op(expr, expr), coef*var),

op = grule(‘+‘, ‘-‘, ‘*‘, ‘/‘),

coef = grule(c1, c2),

var = grule(v1, v2))

CreateGrammar(ruleDef)

## <expr> ::= <op>(<expr>, <expr>) | <coef> * <var>

## <op> ::= ‘+‘ | ‘-‘ | ‘*‘ | ‘/‘

## <coef> ::= c1 | c2

## <var> ::= v1 | v2

The grammar properties are reported via the summary function:

summary(grammarDef)

## Start Symbol: <expr>

## Is Recursive: TRUE

## Tree Depth: Limited to 4

## Maximum Rule Choices: 4

## Maximum Sequence Length: 18

## Maximum Sequence Variation: 2 2 2 2 4 4 2 2 2 4 2 2 2 2 4 2 2 2

## No. of Unique Expressions: 18500
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This summary reports that:

• The non-terminal symbol of the first production rule (i.e., <expr>) was selected

as the start symbol S.

• The grammar is cyclic, i.e., the non-terminal symbol <expr> expands to more

<expr>s. To avoid infinite recursion, the maximum recursion depth is limited to

the number of production rules.

• The grammar tree depth is limited to four.

• Maximum choices in a production rule is four, given by <op>.

• Maximum length of a chromosome, avoiding wrapping and limiting recursions, is

18.

• The maximum variation of each integer codon in the chromosome. This value

depends on the location of the codons and the grammar, and helps reduce the

search space of chromosomes.

• The grammar, with recursion limited to four, can create 18500 different expres-

sions.

GrammarMap maps a sequence of integers (the genotype in evolutionary algorithms) to

a symbolic expression (the phenotype). The code below converts the numeric genome

used in Table 2.2’s example to its analytical phenotype, using the verbose argument to

show the steps of the mapping.

genome <- c(2, 1, 0, 0, 3, 3, 3, 1)

expr <- GrammarMap(genome, grammarDef, verbose=TRUE)

## Step Codon Symbol Rule Result

## 0 starting: <expr>

## 1 2 <expr> (<expr>)<op>(<expr>) (<expr>)<op>(<expr>)

## 2 1 <expr> <coef>*<var> (<coef>*<var>)<op>(<expr>)

## 3 0 <coef> c1 (c1*<var>)<op>(<expr>)

## 4 0 <var> v1 (c1*v1)<op>(<expr>)

## 5 3 <op> / (c1*v1)/(<expr>)

## 6 3 <expr> <coef>*<var> (c1*v1)/(<coef>*<var>)

## 7 3 <coef> c2 (c1*v1)/(c2*<var>)

## 8 1 <var> v2 (c1*v1)/(c2*v2)

## Valid Expression Found
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expr

## (c1 * v1)/(c2 * v2)

The returned object is of class GEPhenotype. It can be cast to a character string or an

expression and subsequently evaluated using R’s eval function:

as.character(expr)

## [1] "(c1 * v1)/(c2 * v2)"

c1 <- 1

c2 <- 2

v1 <- 3

v2 <- 4

eval(as.expression(expr))

## [1] 0.375

To inspect some random expressions of the grammar, GrammarRandomExpression can

be used. For the purpose of reproducibility, the random generator seed value is first set

to a fixed value:

set.seed(0)

GrammarRandomExpression(grammarDef, numExpr = 4)

## [[1]]

## expression((c2 * v2) + (c1 * v1))

##

## [[2]]

## expression((c1 * v1) - (c1 * v2))

##

## [[3]]

## expression(c1 * v1)

##

## [[4]]

## expression((((c1 * v2) - ((c1 * v2) - (c2 * v2))) + ((c1 * v1) +

## (c1 * v2))) - ((c1 * v2) - (c2 * v2)))
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From the example, it can be seen that this grammar is capable of generating both simple

and complex expressions.

A.2.2 Exhaustive and Random Search in Grammar

Context-free grammars are a general way of describing program structures, not bound

to evolutionary optimisation. As a result, gramEvol additionally supports exhaustive

and random search.

The first step in any optimisation is defining a cost function. This function receives an

expression generated using the grammar, and returns an appropriate score. For example,

in order to find the numeric sequence that generates a certain expression, the following

cost function returns the generalised Levenshtein distance of the current expression and

the target:

evalFunc <- function(expr) {
adist(as.character(expr), "(c1 * v1) - (c2 * v2)")

}

The objective is to find a suitable chromosome, and therefore the expression, that min-

imises the cost function, i.e., the string distance. GrammaticalExhaustiveSearch per-

forms an exhaustive search to find this expression:

GrammaticalExhaustiveSearch(grammarDef, evalFunc)

## GE Search Results:

## Expressions Tested: 18500

## Best Chromosome: 0 1 0 0 1 1 1 1

## Best Expression: (c1 * v1) - (c2 * v2)

## Best Cost: 0

GrammaticalRandomSearch performs a similar albeit random search. The terminationCost

option allows the algorithm to terminate if the required minimum cost is found. In our

example, the optimal cost is zero:

GrammaticalRandomSearch(grammarDef, evalFunc, terminationCost = 0)

## GE Search Results:

## Expressions Tested: 1000
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## Best Chromosome: 0 1 2 0 2 3 1 1 0 3 1 1 0 0 1 1 1 2

## Best Expression: (c1 * v1) * (c2 * v2)

## Best Cost: 1

Both of these methods have their drawbacks: testing 18500 expressions requires extensive

computation, and a random search is ineffective. In such cases, considering the non-

smoothness and non-convexity of the search space, evolutionary algorithms are often an

efficient choice.

A.2.3 Evolving a Grammar

GrammaticalEvolution uses evolutionary optimisation to find the minima of evalFunc.

Continuing the previous example, the best expression is determined using the same gram-

mar and cost function, optimised using GrammaticalEvolution. Details of evolutionary

optimisation, such as size of the population and number of iterations are automatically

chosen by an internal heuristic:

result <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0)

print(result, show.genome = TRUE)

## Grammatical Evolution Search Results:

## No. Generations: 3

## Best Genome: 2 1 0 0 1 1 1 1 0 3 3 1 2 1 2 0 2 1

## Best Expression: (c1 * v1) - (c2 * v2)

## Best Cost: 0

It is evident that the evolutionary algorithm has quickly converged to the optimisation

objective.

GrammaticalEvolution allows monitoring the status of each generation using a callback

function. This function, if provided to parameter monitorFunc, receives an object sim-

ilar to the return value of GrammaticalEvolution. For example, the following function

prints the information about the current generation and the best chromosome in the

current generation:

customMonitorFunc <- function(results){
print(results)

}
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ge <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0,

monitorFunc = customMonitorFunc)

GrammaticalEvolution is summarised as pseudocode in Algorithm A.1. Internally,

GrammaticalEvolution uses GeneticAlg.int, which is a GA implementation with in-

teger codons partially based on genalg package by Willighagen [258]:

• Using the information obtained about the grammar (e.g., number of possibles

expressions and maximum sequence length), GrammaticalEvolution applies a

heuristic algorithm based on the work of Deb and Agrawal [259] to automati-

cally determine a suitable value for the popSize (i.e., the population size) and the

iterations (i.e., the number of iterations) parameters.

• The ordinary crossover operator is considered destructive when homologous pro-

duction rules are not aligned, such as for cyclic grammars [260]. Consequently,

GrammaticalEvolution automatically changes crossover parameters depending on

the grammar to improve optimisation results.

• Each integer chromosome is mapped using the grammar, and its fitness is assessed

by calling evalFunc (i.e., the cost function).

• After reaching a termination criteria, e.g., the maximum number of iterations or

the desired terminationCost, the algorithm stops and returns the best expression

found so far.

• GrammaticalEvolution also supports multi-gene operations, generating more than

one expression per chromosome using the numExpr parameter.

A.2.4 Parallel Processing Option

Processing expressions and computing their fitness is often computationally expensive.

The gramEvol package can utilise parallel processing facilities in R to improve its perfor-

mance. This is done through the plapply argument of GrammaticalEvolution function.

By default, lapply function is used to evaluate all chromosomes in the population.

Multi-core systems simply benefit from using mclapply from package parallel [202],

which is a drop-in replacement for lapply on POSIX compatible systems. The following

code optimises evalFunc on 4 cores:

library("parallel")

options(mc.cores = 4)

ge <- GrammaticalEvolution(grammarDef, evalFunc,

plapply = mclapply)
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Algorithm A.1: GE implementation in gramEvol.

1 Function GrammaticalEvolution is
2 if missing crossover parameters then
3 determine crossover parameters based on grammar
4 end
5 if missing popSize or iterations then
6 determine the optimal popSize and iterations based on grammar
7 end
8 genotypes ← suggestions

9 for i := length(suggestions) + 1 to popSize do

10 genotypes
Append←−−−− random chromosome

11 end
12 for generation := 1 to iterations do
13 for i := 1 to len(genotypes) do
14 phenotypes[i] ← GrammarMap (grammarDef, genotypes[i], wrappings)
15 end
16 fitnesses ← evalFunction(phenotypes)
17 if terminationCost is given & minimum(fitnesses) <

terminationCost then
18 break For loop
19 end
20 genotypes ← sort genotypes by their fitness
21 new genotypes ← genotypes[1 to elitism]
22 for i := elitism+1 to popSize do
23 parent1 ← Select from genotypes using Roulette Wheel operator
24 parent2 ← Select from genotypes using Roulette Wheel operator
25 new genotypes[i] ← Crossover(parent1, parent2, crossover

parameters)
26 if random number > mutationChance then
27 Mutate new genotypes[i]
28 end

29 end
30 genotypes ← new genotypes

31 end
32 return the genotype and phenotype (i.e., the expression) with the best

fitness
33 end

To run gramEvol on a cluster, clusterapply functions can be used instead. The

gramEvol package must be first installed on all machines and the evaluation function and

its data dependencies exported to all cluster nodes before GE is called. The following

example demonstrates a four-process cluster running on the local machine:

library("parallel")

cl <- makeCluster(type = "PSOCK", c("127.0.0.1",

"127.0.0.1",
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"127.0.0.1",

"127.0.0.1"))

clusterEvalQ(cl, library("gramEvol"))

clusterExport(cl, c("evalFunc"))

ge <- GrammaticalEvolution(grammarDef, evalFunc,

plapply = function(...) parLapply(cl, ...))

stopCluster(cl)

A.2.5 Non-terminal Expressions

As demonstrated in Section A.2.1, a cyclic grammar allows complex expressions to be

derived from a compact description. However, if the chromosome is too short, the

expression may still contain non-terminal symbols even after wrapping multiple times.

For example:

chromosome <- c(0)

expr <- GrammarMap(chromosome, grammarDef)

expr

## Non-Terminal Sequence:

## (((<expr>)<op>(<expr>))<op>(<expr>))<op>(<expr>)

Non-terminal expressions are identified using GrammarIsTerminal function:

GrammarIsTerminal(expr)

## [1] FALSE

GrammaticalEvolution and other search functions automatically filter non-terminal

expressions, and the user does not need to worry about them in practice.

A.3 Grammatical Evolution for Machine Learning

In this section, three applications of grammatical evolution in statistics and machine

learning are explored. Other applications, such as symbolic regression and regular ex-

pression discovery using package rex [261] are explained in the package’s vignette.
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A.3.1 Model Selection and Hyper-parameter Optimisation

In machine learning, selecting the best learning model is often performed in three steps:

1. Feature selection, where different features are selected as inputs to for a learning

model.

2. Model selection, where candidate learning models are compared and one of them

is selected.

3. Hyper-parameter optimisation, where hyper-parameters of the model are optimised

for the current objective, (e.g., the kernel type and parameters for kernel methods).

Due to their importance, dedicated packages such as caret [204] support feature selec-

tion and hyper-parameter optimisation for many machine learning techniques. Extend-

ing these packages to support new algorithms or combining additional steps into their

operation, however, require structural changes to the package’s code. In this section,

we show how CFGs can offer an easily extensible framework for a simultaneous feature

selection, model selection and hyper-parameter optimisation.

Here, the ChickWeight dataset [202] is used to demonstrate these steps. The objective

is to learn the weight of a chicken based on the Time passed since its birth and its Diet.

The Chick identifier is also included.

We choose a linear model, an artificial neural network (ANN), and support vector re-

gression (SVR) from e1071 [262] as the possible learning algorithms.

data("ChickWeight")

library("e1071")

library("nnet")

grammarDef <- CreateGrammar(list(

learner = grule(function(train.data) {
result <- NULL

features <- weight ~ F1 + F2 + F3

if (length(attr(terms(features), "variables")) > 2) {
capture.output({

result <- model

})
}

return(result)

}),
model = grule(lm(features, train.data),
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nnet(features, train.data, size = nn.size),

svm(features, train.data, cost = svm.c, svm.hyperparam)),

F1 = grule(Time, 0),

F2 = grule(Chick, 0),

F3 = grule(Diet, 0),

nn.size = grule(4, 8, 16),

svm.hyperparam = grule(.(kernel = "linear"),

.(kernel = "polynomial", degree = svm.degree),

.(kernel = "radial", gamma = svm.gamma)),

svm.c = grule(0.1, 1, 10, 100, 1000),

svm.degree = grule(1, 2, 3, 4, 5),

svm.gamma = grule(0.1, 0.2, 0.5, 1.0)))

The start symbol, the <learner>, has only one production rule, which creates a function

that receives the training data and returns the trained model:

• It first selects the appropriate formula of features, and if there is at least one

regressor variable, it returns a <model>. The features formula is built by either

selecting a variable (i.e., Time, Chick, and Diet), or 0 using <F1>, <F2>, and

<F3> rules.

• The<model> can be either a lm, an svm or a nnet and is wrapped in capture.output

to suppress the diagnostic but useless messages by nnet.

• Each learning algorithm has its own set of hyper-parameters: nnet’s hidden layer

size is determined using <nn.size>, and svm uses <sym.hyperparamm> to select

its kernel and its associated parameter in one-step. Here, .() is used to avoid

premature interpretation of assignment operator and comma (i.e., = and ,) by R.

The remaining rules, assign certain ranges of values to different hyper-parameters, sim-

ilar to an ordinary grid search.

An example of an expression generated by this grammar is:

GrammarRandomExpression(grammarDef)

## expression(function(train.data) {

## result <- NULL

## features <- weight ~ 0 + 0 + Diet

## if (length(attr(terms(features), "variables")) > 2) {

## capture.output({

## result <- nnet(features, train.data, size = 4)
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## })

## }

## return(result)

## })

This uses Diet as a feature, and an ANN with four neurons in its hidden layer as its

model.

The grammar can generate 432 unique models:

summary(grammarDef)

## Start Symbol: <learner>

## Is Recursive: FALSE

## Tree Depth: 4

## Maximum Rule Choices: 5

## Maximum Sequence Length: 8

## Maximum Sequence Variation: 1 2 2 2 3 5 3 5

## No. of Unique Expressions: 432

To assess each model, a cost function is required. In this example, we define a simple

cross-validation test, returning the out-of-sample mean square error (MSE):

set.seed(0)

data("ChickWeight")

total.samples <- nrow(ChickWeight)

train.ind <- sample(total.samples, trunc(total.samples * .8))

train.data <- ChickWeight[train.ind,]

test.data <- ChickWeight[-train.ind,]

eval.chicken <- function(expr) {
trainer <- eval(expr)

model <- trainer(train.data)

if (is.null(model)) {
return (Inf)

}
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test.results <- predict(model, test.data)

cost <- mean((test.results - test.data$weight)^2)

return (cost)

}

The eval.chicken function, first evaluates the expression to get its underlying function.

This function is then applied to the training data to obtain a model. If the model is NULL,

i.e., some error has occurred during the training, it returns a very high cost. Otherwise,

the model is used on the testing data, and the MSE of the results is returned.

To find the best combination of features, model and hyper-parameters, Grammatical

Evolution is applied to the appropriate grammar and cost function:

result <- GrammaticalEvolution(grammarDef, eval.chicken)

result

## Grammatical Evolution Search Results:

## No. Generations: 108

## Best Expression: function(train.data) {

## result <- NULL

## features <- weight ~ Time + Chick + 0

## if (length(attr(terms(features), "variables")) > 2) {

## capture.output({

## result <- svm(features, train.data, cost = 100,

## kernel = "radial", gamma = 0.1)

## })

## }

## return(result)

## }

## Best Cost: 68.3212558249473

The optimal model uses only two of the available features with a radial kernel SVR, and

is identical to the result of an exhaustive search:

GrammaticalExhaustiveSearch(grammarDef, eval.chicken)

## GE Search Results:

## Expressions Tested: 432

## Best Chromosome: 0 0 0 1 2 3 2 0
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Exhaustive search GE minimum GE median GE maximum

Error 68.32 68.32 68.32 988.45
Generations - 1 39.50 108
Time (s) 71.72 0.61 19.60 149.57

Table A.1: Summary of GE’s performance for 100 runs of the model selection example.

## Best Expression: function(train.data) {

## result <- NULL

## features <- weight ~ Time + Chick + 0

## if (length(attr(terms(features), "variables")) > 2) {

## capture.output({

## result <- svm(features, train.data, cost = 100,

## kernel = "radial", gamma = 0.1)

## })

## }

## return(result)

## }

## Best Cost: 68.32126

To compare the performance of GE and exhaustive search, the GE was run 100 times,

with termination condition set to reaching the global optima obtained by the exhaustive

search. The error, number of generations and the duration of execution was measured.

The tests were performed on a single thread on a 3.40 GHz Intel Core i7-2600 CPU.

To ensure reproducibility, set.seed(0) was executed before running the code. The

results are presented in Table A.1. Overall, the GE’s average execution time is 3.6 times

better than that of the exhaustive search. It must be noted that however, as the GE

is a stochastic optimisation, on some occasions it was unable to find the global minima

before reaching the maximum number of allowed iterations. In this example this was

limited to 108 generations, set automatically by GrammaticalEvolution. As a result,

the optimisation terminated prior to reaching the global optima.

The final model can be constructed from the results of GE optimisation:

train.func <- eval(result$best$expression)

final.model <- train.func(ChickWeight)
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The machine learning approach used in this section was intentionally kept simple.

Other learning algorithms can be added as additional rules, each with their own hyper-

parameters. Different options, such as scaling or dimensionality reduction techniques

can also be added to the <learner> function, each described using separate rules.

A.3.2 Classification

In the second example, we use GE for classification. There are many ways that GE

can be adopted for classification, e.g., a model selection on classifiers similar to Section

A.3.1. Here, we directly define a grammar which takes input variables and returns the

classification result, with a structure similar to a decision tree.

In this example, the objective is defined as separating Iris versicolor from other species

in the Iris flower dataset. Here, the data is evaluated from a data-frame instead of the

program’s environment.

data("iris")

iris$Species <- ifelse(iris$Species == ’versicolor’,

’versicolor’, ’other’)

ClassifyFitFunc <- function(expr) {
sum(eval(expr, envir = iris) != iris$Species)

}

The grammar is defined using the following code:

ruleDef <- list(

result = grule(ifelse(expr, ’versicolor’, ’other’)),

expr = grule((expr) & (sub.expr),

(expr) | (sub.expr),

sub.expr),

sub.expr = grule(comparison(var, func.var)),

comparison = grule(‘>‘, ‘<‘, ‘==‘, ‘>=‘, ‘<=‘),

func.var = grule(num, var, func(var)),

func = grule(mean, max, min, sd),

var = grule(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width),

num = grule(1, 1.5, 2, 2.5, 3, 4, 5))

grammarDef <- CreateGrammar(ruleDef)
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In this grammar, the start symbol, <result>, receives a TRUE/FALSE and returns either

‘versicolor’ or ‘other’. The TRUE/FALSE value is generated by recursively applying

boolean operators to <sub.expr>s. In turn, each <sub.expr> is created by a <compar-

ison> of a <var> in Iris features and another value created using <func.var>.

A few examples of the grammar generated expression, formatted through the pretty.print

function, are as follows:

pretty.print <- function(expr) cat(gsub("|", "|\n\t",
gsub("&", "&\n\t", as.character(expr), fixed = TRUE), fixed = TRUE),

"\n")

pretty.print(GrammarRandomExpression(grammarDef))

## ifelse(((Petal.Width > Petal.Length) &

## (Sepal.Length >= sd(Petal.Length))) &

## (Petal.Length == 5), "versicolor", "other")

pretty.print(GrammarRandomExpression(grammarDef))

## ifelse((Sepal.Width == min(Petal.Length)) |

## (Sepal.Length <= sd(Sepal.Length)), "versicolor", "other")

The GE optimisation is performed by:

set.seed(10)

ge <- GrammaticalEvolution(grammarDef, ClassifyFitFunc)

expr <- ge$best$expression

pretty.print(expr)

## ifelse(((Sepal.Width >= max(Sepal.Length)) |

## (Petal.Width <= sd(Petal.Length))) &

## (Petal.Length >= Sepal.Width), "versicolor", "other")

err <- sum(eval(expr, envir=iris) != iris$Species)

err

## [1] 6
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Value Minimum Median Maximum

Error 4 8 22
Generations 1000 1000 1000
Time (s) 12.56 12.87 13.24

Table A.2: Summary of GE’s performance for 100 runs of the classification example.

The classification results are visualised in Figure A.1.
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Figure A.1: Classification of Iris versicolor using GE.

Table A.2 summarises the performance of GE classifier for 100 executions. As no termi-

nation condition was given, all of the runs terminated only after reaching the maximum

allowed number of generations. It is evident that on average, GE is able to find an

acceptable expression with in this limit.
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A.3.3 Symbolic Regression and Feature Generation

Symbolic regression is the process of discovering a function, in analytical form, which

fits a given set of data. Commonly, evolutionary algorithms such as GP and GE are

used for this task. Symbolic regression suffers from a possibly infinite, non-smooth and

non-convex search space, and therefore is not widely used in machine learning.

Feature generation is the process of deriving new features from existing features [263].

In this technique, an evolutionary algorithm is used to generate and combine results of

multiple independently discovered expression, e.g., by using a linear combination of GP

results [264, 265], or by using non-linear function estimators applied to GE [13]. This

can be considered a type of machine learning and symbolic regression hybrid, as the final

learning model is constructed from combination of simpler features created through a

process similar to symbolic regression.

For example, consider learning of the following sextic polynomial from numeric data:

f(X) = X6 +X5 +X4 +X3 +X2 +X + 1

Evolving an expression that matches the observed data to this polynomial would either

require a very well crafted grammar, or a successful search over a huge space, both of

which suffer from extreme computationally expensive.

However, linear dependencies exist between components of this function. By designing a

multi-gene chromosome, we can generate individual expressions independently and then

combine them through a linear regression model to create the final expression. This

effectively breaks the search space to several smaller ones, enabling a faster search over

the whole space. Figure A.2 illustrates the difference between these two approaches.

To compare the symbolic regression and the feature generation with ordinary GE, two

approaches are benchmarked using the same grammar:

ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),

func = grule(sin, cos, log, sqrt),

op = grule(‘+‘, ‘-‘, ‘*‘),

var = grule(X, X^n, n),

n = grule(1, 2, 3, 4))

grammarDef <- CreateGrammar(ruleDef)

The grammar can be used to generate different types of expressions:
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5 3 7 12 1 1 0 4 8 3 7 6 8 9 2 7 

expr = 
2x+sin(x)+4*log(x-1)

Err = |y - expr(x)|

5 3 7 12 1 1 0 4 8 3 7 6 8 9 2 7
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Linear Regression
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Single-gene
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Figure A.2: Symbolic regression (using a single gene) vs feature generation (using
multiple genes).

set.seed(0)

GrammarRandomExpression(grammarDef, numExpr = 3)

## [[1]]

## expression(log(2))

##

## [[2]]

## expression(sqrt(X * X) + cos(sqrt(cos(X^3))) - sqrt(log(sin(X))))

##

## [[3]]

## expression(X^3)

Obviously, this grammar is not tuned for the purpose of fitting high-degree polynomials.

A.3.3.1 Symbolic Regression

Firstly, symbolic regression is tested:

target.func <- function(X) X^6 + X^5 + X^4 + X^3 + X^2 + X + 1

X <- 1:10
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Y <- target.func(X)

symRegCostFunc <- function(expr) {
result <- suppressWarnings(eval(expr))

if (any(is.nan(result)))

return (Inf)

return (mean((Y - result)^2))

}

The cost function handles invalid values (e.g., log(−1)) by assigning a high cost to any

expression with an invalid value. However, R may show warnings about NaNs being

produced. To suppress these warnings, one can wrap the eval in the cost function

inside suppressWarnings.

To allow the GE to have enough search space, the length of the chromosome is set to

60:

set.seed(0)

ge.single <- GrammaticalEvolution(grammarDef, symRegCostFunc,

seqLen = 60,

terminationCost = 1e-4)

This test is prone to getting stuck in a local minima and multiple restarts may be

required to find the solution. Results often lack or include additional terms not in the

target, e.g.,

ge.single

## Grammatical Evolution Search Results:

## No. Generations: 1000

## Best Expression: (X^2 + X^3) * X^3

## Best Cost: 21085073.8

The resulting expression, which can be simplified to X6 +X5, lacks several components

and hence exhibits a high residual error.
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A.3.3.2 Feature Generation

The second approach uses GrammaticalEvolution’s numExpr option to generate multi-

ple expressions. Here, numExpr = 5 is set, and for a fair comparison, the length allocated

to each sequence seqLen is also reduced from 60 to 12. GrammaticalEvolution will still

use a chromosome with length of 60, but this is divided into 5 parts (i.e., the genes),

each of which are used individually to generate up to five valid expressions. A simple

linear model is then applied to fit these expressions to data and the fitting residuals are

reported as error.

For evaluating multiple expression, the function EvalExpressions offers a simpler in-

terface compared to eval:

X <- 1:10

Y <- target.func(X)

fitLinearModel <- function(expr.list) {
vals <- EvalExpressions(expr.list)

if (any(is.nan(unlist(vals))) | any(is.infinite(unlist(vals))))

return(NULL)

mdl <- lm(Y ~ ., cbind(as.data.frame(vals), Y = Y))

return (mdl)

}

fitnessFunction <- function(expr.list) {
mdl <- fitLinearModel(expr.list)

if (class(mdl) != "lm")

return (Inf)

return(mean(residuals(mdl)^2))

}

The fitnessFunction uses fitLinearModel to create a linear model of generated ex-

pressions to data. The model is then fit to the data, and the MSE of residuals are

returned as its cost.
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All other GE parameters (i.e., population size, mutation chance, termination condition,

etc.) are kept the same:

set.seed(10)

ge.multi <- GrammaticalEvolution(grammarDef, fitnessFunction,

seqLen = 12, numExpr = 5,

terminationCost = 1e-4)

This approach is clearly better at finding a close approximation to the target:

ge.multi

## Grammatical Evolution Search Results:

## No. Generations: 12

## Best Expressions: X + X^3 * X * ((X + 2) * 1)

## : X^4 * X^2

## : X^4

## : X^2

## : X^3

## Best Cost: 6.20330039637389e-23

expr <- ge.multi$best$expression

mdl <- fitLinearModel(expr)

mdl

##

## Call:

## lm(formula = Y ~ ., data = cbind(as.data.frame(vals), Y = Y))

##

## Coefficients:

## (Intercept) expr1 expr2

## 1 1 1

## expr3 expr4 expr5

## -1 1 1

X <- seq(1, 10, length.out = 40)

pred <- predict(mdl, newdata = EvalExpressions(expr))

err <- mean((target.func(X) - pred)^2)

err
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Symbolic regression Feature generation

Value Minimum Median Maximum Minimum Median Maximum

Error 2.14× 105 9.12× 108 6.15× 109 0.00 0.00 1.48
Generations 1000 1000 1000 5 25.5 200
Time (s) 23.24 24.73 25.17 6.59 30.65 309.93

Table A.3: Performance of symbolic regression vs feature generation using GE, com-
pared over 100 runs.

## [1] 4.64618e-21

In the results above, all elements of the sextic equation are found within five expressions.

Three of them (X2, X3, X4 and X6) are found separately, and the other expression,

X + X^3 * X * ((X + 2) * 1), contains the linear combination X+2X4 +X5. As X4

is already present separately, the linear regression can extract and combine all elements

with the correct y-intercept. Consequently, the regression model f̂(X) perfectly matches

the original model:

f̂(X) = 1 + (X +X3 ×X × (X + 2)) +X4 ×X2 −X4 +X2 +X3

= 1 +X +X2 +X3 +X4 +X5 +X6

A.3.3.3 Comparison

To test the stochastic performance of GE with a single and multiple genes, each method

was run 100 times and their error from the target equation was noted. The results are

presented in Table A.3. The results show major improvements in error, from an average

9.12 × 1010 for symbolic regression to a worst case of 1.48 for the feature generation

approach. In comparison, the average time required to process both approaches was

almost equal.

A.4 Summary

The gramEvol package allows creation of native R programs using GE. After specifying a

grammar and evaluation function, users can employ GE techniques with little additional

code. Parallel execution is also supported via parallel computing functions within R.



Appendix A. gramEvol: Grammatical Evolution in R 195

One disadvantage of GE lies in its stochastic nature, as it does not guarantee the con-

vergence to the global optima. The gramEvol package includes an exhaustive search

option which can ensure an optimal solution at the expense of computation time.





Appendix B

Sensitivity Analysis of Minimal

Cost Hedging to Client Flow

Forecast Error

B.1 Introduction

In Chapter 6, a general purpose formulation was proposed to compute the effect of

forecast error on the final cost of any LQ controller. This formulation was then used

as an error measure for choosing the best client flow forecaster through grammatical

evolution.

In this appendix, the effects of client flow forecast error on the cost function is derived

by analysing the sensitivity of the controller’s cost function to changes in client flow

forecasts. This was originally built up on an early observation, where improving the

hit-rate or RMSE of the client flow prediction did not necessarily improve the hedging

results.

For simplicity and focusing on only the effects of the client flow, the following assump-

tions were made to simplify derivation:

• Only the minimum transaction cost case (i.e., λ = 0 in Chapter 3 formulations) is

considered.

• Only effects of client flow variations are studied, and other parameters are assumed

to be constant.

• Only a univariate model is studied. This is possible as currently there is no de-

pendency between the client flow of different currencies in the transaction cost

model.
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• No constraints are assumed for the positions and hedging actions.

• Time invariant δ (i.e, bid-ask spread coefficient) is assumed.

• Forecasts are performed once, and are not updated at each time-step.

B.2 Hedging Cost Function

For a single currency, let h(i) = h, i ∈ [0, . . . , N ] be the hedging actions. According to

the assumptions and definitions of Section 3.3.1, the cost from the start to the end of

trading session (i.e., t = 1 to t = N) is

C =

N∑
i=0

fcost(h(i))

=

N∑
i=0

δh2(i)

(B.1)

where fcost(x) = δx2 is the quadratic transaction cost of a trade with size x.

As described in (3.2), at the end of trading session all positions are to be closed, or

x(N + 1) = 0, hence h(N) = −(x(N) + f(N)), and therefore

C =
N−1∑
i=0

δh2(i) + δ(x(N) + f(N))2 (B.2)

where f(t) is the client flow, and x(t), the current position’s of the dealer, is obtained

by expanding the dealer’s state-space equation (3.1):

x(t) = x(0) +

t−1∑
i=0

f(i) +

t−1∑
i=0

h(i).

B.3 The Minimum Transaction Cost

In Chapter 3, especially Section 3.5, it was shown that the minimum transaction cost

is obtained when the hedging actions are distributed equally in time, or h(i) = h; i ∈
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[0, 1, · · · , N ]. This can be re-evaluated by computing the minima of (B.2):

∂C

∂h
= 0

−→ 2δNh+ 2δ
(
x(0) +

N∑
i=0

f(i) +Nh
)∂(x(0) +

∑N
i=0 f(i) +Nh

)
∂h

= 0

−→ 2δNh+ 2δ
(
x(0) +

N∑
i=0

f(i) +Nh
)(
N
)

= 0

−→ h =
−1

N + 1

(
x(0) +

N∑
i=0

f(i)
)

At any time t, individual hedging actions h(t) can be rewritten based on current x(i)

and future f(i), i ∈ [t, . . . , N ]:

h(t) =

(
N − (t− 1)

N − (t− 1)

)
−1

N + 1

(
x(0) +

N∑
i=0

f(i)

)

=
−1

N − (t− 1)

(
N − (t− 1)

N + 1

(
x(0) +

N∑
i=0

f(i)

))

=
−1

N − (t− 1)

(
x(0) +

N∑
i=0

f(i) +
−t

N + 1

(
x(0) +

N∑
i=0

f(i)

))

=
−1

N − (t− 1)

(
x(0) +

t−1∑
i=0

f(i) +
N∑
i=t

f(i) +
t−1∑
i=0

h(i)

)

=
−1

N − (t− 1)

(
x(0) +

t−1∑
i=0

f(i) +

t−1∑
i=0

h(i) +

N∑
i=t

f(i)

)

=
−1

N − (t− 1)

(
x(t) +

N∑
i=t

f(i)

)

(B.4)

With f(i), i ∈ {t, . . . , N} known (i.e., using a prescient forecaster), the minimum cost

will be

Cmin = δ

N∑
i=0

(h(t))2

= δ

N∑
i=0

(
1

N + 1

(
x(0) +

N∑
i=0

f(i)
))2

=
δ

N + 1

(
x(0) +

N∑
i=0

f(i)
)2
.
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B.4 Hedging with Forecasts

To simplify derivation, it is assumed that the prediction is performed only once, and is

not updated once new observations arrive. Let f̂(t) denote the prediction of flow at time

t. The minimum transaction cost hedging action at time t can be determined similar to

(B.4), with the addition of separating observed and predicted client flows:

h(t) =
−1

N − (t− 1)

(
x(0) +

t−1∑
i=0

f(i) +
t−1∑
i=0

h(i) +
N∑
i=t

f̂(i)
)

For t = 0,

h(0) =
−1

N + 1

(
x(0) +

N∑
i=0

f̂(i)
)
.

Recursively, one can expand h(1) by replacing h(0) with the above:

h(1) =
−1

N

(
x(0) + f(0) + h(0) +

N∑
i=1

f̂(i)
)

=
−1

N

(
x(0) + f(0) +

−1

N + 1

(
x(0) +

N∑
i=0

f̂(i)
)

+
N∑
i=1

f̂(i)
)

=
−1

N

( N

N + 1
x(0) + f(0)− 1

N + 1
f̂(0) +

N

N + 1

N∑
i=1

f̂(i)
)

=
−1

N + 1
x(0) +

−1

N

(
f(0)− 1

N + 1
f̂(0)

)
+
−1

N + 1

N∑
i=0

f̂(i)
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And similarly for h(2):

h(2) =
−1

N − 1

(
x(0) + f(0) + f(1) + h(0) + h(1) +

N∑
i=2

f̂(i)

)

=
−1

N − 1

(
x(0) + f(0) + f(1) +

N∑
i=2

f̂(i)+

−1

N + 1

(
x(0) +

N∑
i=0

f̂(i)
)

+

−1

N + 1

(
x(0) +

N∑
i=1

f̂(i)
)

+
−1

N

(
f(0)− 1

N + 1
f̂(0)

))

=
−1

N − 1

(
(N + 1)− 2

N + 1
x(0) +

N − 1

N + 1

N∑
i=2

f̂(i) +
N − 1

N
f(0) + f(1)+

−(N − 1)

N(N + 1)
f̂(0) +

−2

N + 1
f̂(1)

)

=
−1

N + 1
x(0) +

−1

N + 1

N∑
i=2

f̂(i) +
−1

N
(f(0)− 1

N + 1
f̂(0))

+
−1

N − 1
(f(1)− 2

N + 1
f̂(1))

General, any flow forecast f̂(i) is hedged by −(i+1)
N+1 f̂(i) until the actual f(i) is observed.

Consequently, the hedging has to be corrected by 1
N−i(f(i) − i+1

N+1 f̂(i)) after observing

the real value of f(i):

h(t) =
−1

N + 1
x(0) +

−1

N + 1

N∑
i=t

f̂(i) +
t−1∑
i=0

−1

N − i
(f(i)− i+ 1

N + 1
f̂(i))

=
−1

N + 1

(
x(0) +

N∑
i=t

f̂(i) +
t−1∑
i=0

1

N − i

(
(N + 1)f(i)− (i+ 1)f̂(i)

)) (B.5)

B.4.1 Minimum Transaction Cost with Forecasts

When prediction is used, the cost function can be rewritten by replacing hedging actions

in (B.1) with (B.5), resulting in:

C =
δ

(N + 1)2

N∑
t=0

[
x(0) +

N∑
i=t

f̂(i) +
t−1∑
i=0

1

N − i

(
(N + 1)f(i)− (i+ 1)f̂(i)

)]2

(B.6)
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B.5 Sensitivity to Forecasts

B.5.1 Hedging Action Sensitivity

The sensitivity of hedging actions from (B.5) to a forecast at time k ≥ 0 (i.e., f̂(k)) is

obtained by

∂h

∂f̂(k)
(t) =

−1

N + 1

(
u(k − t)− k + 1

N − k
u((t− 1)− k)

)
(B.7)

where u(x) is the step function:

u(x) =

1 if x ≥ 0

0 if x < 0

B.5.2 Sensitivity of the Minimum Transaction Cost

Sensitivity of the minimum transaction cost to a forecast at time k ≥ 0 (i.e., f̂(k)) is

obtained by

∂C

∂f̂(k)
= δ

N∑
t=0

∂(h(t)2)

∂f̂(k)

= δ

N∑
t=0

[
2h(t)

∂h(t)

∂f̂(k)

]

=
−2δ

N + 1

N∑
t=0

[
h(t)

(
u(k − t)− k + 1

N − k
u((t− 1)− k)

)]
.

This can be expanded by replacing h(t) from (B.5):

∂C

∂f̂(k)
=

2δ

(N + 1)2

N∑
t=0[

x(0) +
N∑
i=t

f̂(i) +
t−1∑
i=0

1

N − i

(
(N + 1)f(i)− (i+ 1)f̂(i)

)]
[
u(k − t)− k + 1

N − k
u((t− 1)− k)

]
,

Simplifying the summations in the first bracket, factoring out f(t) and f̂(t), and re-

placing the step function in the second bracket with minimum functions, reveals the
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following linear function:

∂C

∂f̂(k)
=

2δ

N + 1

N∑
t=0

(
min(k, t) + 1

N −min(k, t)

)(
f̂(t)− f(t)

)
(B.8)

B.5.3 Building a Sensitivity Matrix

Eq. (B.8) can be vectorised by defining f = [f(0) f(1) · · · f(N − 1)] as the observed

client flow vector, and f̂ = [f̂(0) f̂(1) · · · f̂(N − 1)] as the predicted flow vector. The

sensitivity matrix ΘC (N×N) can be defined as

ΘC = |θk,t| =
min(k, t)

N −min(k, t) + 1
t, k = 1, · · · , N. (B.9)

Notice that different time indexing of [1, · · · , N ] versus [0, · · · , N − 1] in (B.8) is com-

pensated using an additional “+1”.

Analytically, the sensitivity matrix can be instantiated as follows:

ΘC =
2

N + 1
δ



1
N

1
N

1
N

1
N · · · 1

N
1
N

1
N

2
N−1

2
N−1

2
N−1 · · · 2

N−1
2

N−1
1
N

2
N−1

3
N−2

3
N−2 · · · 3

N−2
3

N−2
1
N

2
N−1

3
N−2

4
N−3 · · · 4

N−3
4

N−3
...

...
...

...
. . .

...
...

1
N

2
N−1

3
N−2

4
N−3 · · · N−1

2
N−1

2
1
N

2
N−1

3
N−2

4
N−3 · · · N−1

2
N
1


(B.10)

The difference, of the hedging cost using the forecasts, from the hedging cost using a

prescient forecaster, can be approximated by integrating the linear derivative obtained

in (B.8), i.e.,

∆C =
1

2
(f̂ − f)TΘC(f̂ − f) (B.11)

which is similar to the concept of ∆J explored in Chapter 6.

B.6 Comparison with ∆J

∆C assumes that the forecasts do not change between each iteration of the hedging

algorithm. In comparison, the error measure in Chapter 6, ∆J , was designed to consider

the effects of forecast updates at each time-step.
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Consider the following example for hedging with N = 3, and t ∈ [0, 1, 2]. The matrix

form of ∆C requires the error vector

Ẽ = [f(1)− f̂(1), f(2)− f̂(2), f(3)− f̂(3)].

In comparison, the ∆J in the example of Section 6.7.1 uses

E = [f(1)− f̂1(1), f(2)− f̂1(2), f(3)− f̂1(3), f(2)− f̂2(2), f(3)− f̂2(3), f(3)− f̂3(3)]

where f̂τ (n) denotes the forecast of f(n) at time t = τ .

To convert ∆J to ∆C, one can define and use matrix M, such that E = MẼ. For the

previous example

M =


1 0 0 0 0 0

0 1 0 1 0 0

0 0 1 0 1 1

 .

Consequently, (B.9) and (6.15) are equal if ΘJ = 1
2MTΘCM:

∆C =
1

2
ẼTΘCẼ

=
1

2
ETMTΘCME

=ET(
1

2
MTΘCM)E

=ETΘJE

=∆J

This can be verified numerically. In the example of Section 6.7.1, with δ = 1,

ΘJ =



0.083 0.083 0.083 0 0 0

0.083 0.083 0.083 0 0 0

0.083 0.083 0.083 0 0 0

0 0 0 0.167 0.167 0

0 0 0 0.167 0.167 0

0 0 0 0 0 0.5


.
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Using the same δ and N = 3, (B.10) results in

ΘC =
2

3 + 1


1
3

1
3

1
3

1
3

2
2

2
2

1
3

2
2

3
1



= 2


0.083 0.083 0.083

0.083 0.25 0.25

0.083 0.25 0.75

 .

A matrix multiplication shows that ΘJ = 1
2MTΘCM.





Appendix C

State-space Model for Scheduling

a Grid Connected Battery System

C.1 Introduction

In Chapter 8, a state-space model was proposed to model the dynamics of a grid con-

nected battery energy storage system (BESS) with local renewable energy generation.

The model, presented in (8.1), assumed that local generation is never more than local de-

mand, and therefore overcharging the battery would never occur without the controller’s

explicit action. This assumption was based on the real data used for simulation.

In contrast, in many real-world systems, local generation may surpass local demand,

resulting in energy that has to be either stored in the battery, or go to waste. Addition-

ally, one can never overdraw the battery by using more energy than what is stored in

the system. In the iDemand system this was enforced by allowing a 20% safety margin

for the battery capacity.

Consequently, a more realistic battery state-space model is

bt+1 = min(max(bt + gt + st − lt, bmin), bmax)

ut = bt+1 − bt
(C.1)

where

• bt is the battery charge state at time t,

• st is the local renewable generation (e.g., solar PV) power,

• lt is the load power,

• gt is the power demanded from the grid,
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• bmin and bmax are the minimum and maximum allowed charge states of the battery,

and

• ut is the battery charge/discharge rate.

Additionally, the constraint

|ut| ≤ umax

restricts the charge/discharge rate.

In this appendix, this model is analysed and an optimisation scheme without the limi-

tations of Chapter 8 is presented.

C.2 System Dynamics

One can remove the minimum and maximum of (C.1) by using a slack variable. Let wt

be the energy wasted when the battery is fully charged (i.e., bt + gt + st − lt > bmax).

The overdraw case can be handled by gt and the constraint bt+1 ≥ bmin.

Consequently, (C.1) can be rewritten as

bt+1 = bt + gt + st − lt − wt,

ut = gt + st − lt − wt,

bmin ≤ bt + gt + st − lt − wt ≤ bmax,

0 ≤ wt,

0 ≤ gt,

−umax ≤ ut ≤ umax.

The cost function requires no further changes, and is described by

J = E
[∑

g2
i

]
+ λE[

∑
gipi]

where pt is the grid usage price at time t, and the parameter 0 ≤ λ ≤ ∞ selects between

peak shaving when λ = 0, and cost-saving when λ→∞.
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C.3 Matrix Notation

The state-space model can be vectorised as

b = b0~1 + Σg + Σs−Σl−Σw

u = g + s− l−w

bmin~1 ≤ b+ g + s− l−w ≤ bmax~1
~0 ≤ w
~0 ≤ g

−umax~1 ≤ u ≤ umax~1

where b0 is the battery’s initial state, ~0 is a vector of 0’s, ~1 is a vector of 1’s, Σ is a

lower triangular matrix of 1’s (without diagonal elements).

Similarly, the cost function is rewritten as

J = E
[
gTg

]
+ λE[gTp]

where p is the grid prices vector.

C.4 Open-loop Optimisation

The model’s controllable inputs are w and g. Consequently, the open-loop optimisation

can be formulated as a stochastic quadratic programming problem:

argmin
g,w

E
[
gTg

]
+ λE[gTp]

subject to b =b0~1 + Σg + Σs−Σl−Σw

u =g + s− l−w

bmin~1 ≤b+ g + s− l−w

−bmax~1 ≤− b− g − s+ l+w

~0 ≤w
~0 ≤g

−umax~1 ≤− u

−umax~1 ≤− u

This can be solved in a manner similar to Chapter 8.





Appendix D

Cloud Computing for Battery

Energy System Management

The peak shaving and cost saving system proposed in Chapter 8 is suitable for deploy-

ment on cloud computing environments. The architecture of this environment, presented

in Figure D.1, is as follows:

• The control and data acquisition system (SCADA), located on the local site, col-

lects data from different subsystems, and issues charge/discharge commands to

the battery storage system. As most of the computational and storage capac-

ity is offloaded to the cloud, this system can be implemented using a low power

microcontroller system; however, a connection to the cloud is required.

• The cloud-based forecasting and control system provides its services through a

web gateway. Its two major services include demand forecast model selection, and

battery scheduling using MPC. Internally, both of these systems are based on a

single forecasting engine, which supports the grammar based models proposed in

Chapter 5.

• The forecasting engine can offload its computational load to a high performance

computing (HPC) systems, and store and retrieve data from a cloud-based database.

These services are available from different providers, including Amazon EC2 [266],

Microsoft Azure [267], and Google Cloud [268].

• Data from third party providers, including weather forecasts, insolation predic-

tions, and grid prices can be obtained to improve the forecasting results. The

data is either downloaded from public web-based repositories (as performed in

this thesis), or acquired through commercial business-to-business (B2B) services.
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ThirdThird party data services

Weather 
Forecast

Insolation 
Forecast

Grid 
Prices

High-
performance

Computational
Backend

Web 
Gateway

Storage Backend

Forecast 
Model 

Selection

Forecasting 
Engine

Renewable Generation
(Solar, Wind, …)

Cloud-based Forecasting 
& Control System

Control and Data 
Acquisition System

Battery

The Grid

Consumer
Load

MPC
Controller

Local Site

Bidirectional 
Inverter

C
o

m
m

o
n

 B
u

s

Battery Storage System

B2B 
Gateway

Figure D.1: Architecture of a cloud-based electricity peak shaving and cost saving
system.
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[17] Ramazan Gençay, Giuseppe Ballocchi, Michel Dacorogna, Richard Olsen, and

Olivier Pictet. Real-time trading models and the statistical properties of foreign

exchange rates. International Economic Review, 43(2):463–491, 2002.

[18] Monetary and Economic Department. Foreign exchange turnover in April 2013:

preliminary global results. Bank For International Settlement, September 2013.

URL http://www.bis.org/publ/rpfx13fx.pdf.

[19] The World Bank. Data - GDP (current US$), 2015. URL http://data.

worldbank.org/indicator/NY.GDP.MKTP.CD/countries. accessed July 2015.

[20] Rachel Evans and David Goodman. Currency Trading Jumps to

Records in U.S., U.K. Amid Divergence. Bloomberg.com, January

2015. URL http://www.bloomberg.com/news/articles/2015-01-27/

currency-trading-jumps-to-records-in-u-s-u-k-amid-divergence.

http://www.ee.usyd.edu.au/cel/farzad/GECCO_IC_2015
http://www.bis.org/publ/rpfx13fx.pdf
http://data.worldbank.org/indicator/NY.GDP.MKTP.CD/countries
http://data.worldbank.org/indicator/NY.GDP.MKTP.CD/countries
http://www.bloomberg.com/news/articles/2015-01-27/currency-trading-jumps-to-records-in-u-s-u-k-amid-divergence
http://www.bloomberg.com/news/articles/2015-01-27/currency-trading-jumps-to-records-in-u-s-u-k-amid-divergence


Bibliography 215

[21] John N. Kallianiotis. The foreign exchange market. In Exchange Rates and In-

ternational Financial Economics: History, Theories, and Practices, chapter 2.

Palgrave Macmillan, Basingstoke, 2013.

[22] Michael Sager and Mark P. Taylor. Commercially available order flow data and

exchange rate movements: Caveat emptor. Journal of Money, Credit and Banking,

40(4):583–625, 2008.

[23] Martin D.D. Evans and Richard K. Lyons. Forecasting exchange rate fundamentals

with order flow. Working paper, National Bureau of Economic Research, July 2009.

[24] Martin D.D. Evans. Order flows and the exchange rate disconnect puzzle. Journal

of International Economics, 80(1):58–71, 2010.

[25] Eugene F. Fama and Merton H. Miller. The Theory of Finance, volume 3. Dryden

Press, Hinsdale, IL, 1972.

[26] Jonathan Clarke, Tomas Jandik, and Gershon Mandelker. The efficient markets

hypothesis. In Robert C. Arffa, editor, Expert Financial Planning: Advice from

Industry Leaders, chapter 9, pages 126–141. Wiley, New York, 2001.

[27] Martin Sewell. History of the efficient market hypothesis. Research note RN/11/04,

University College London, 2011.

[28] Burton G. Malkiel. The efficient market hypothesis and its critics. Journal of

Economic Perspectives, 17(1):59–82, 2003.

[29] Michael D. Godfrey, Clive W.J. Granger, and Oskar Morgenstern. The random-

walk hypothesis of stock market behaviour. Kyklos, 17(1):1–30, 1964.

[30] Michael C. Jensen. Some anomalous evidence regarding market efficiency. Journal

of Financial Economics, 6(2–3):95–101, 1978.

[31] Jeremy Berkowitz and Lorenzo Giorgianni. Long-horizon exchange rate pre-

dictability? Review of Economics and Statistics, 83(1):81–91, 2001.

[32] Jiahan Li, Ilias Tsiakas, and Wei Wang. Predicting exchange rates out of sam-

ple: Can economic fundamentals beat the random walk? Journal of Financial

Econometrics, 13(2):293–341, 2014.

[33] Charles Goodhart. The foreign exchange market: A random walk with a dragging

anchor. Economica, 55:437–460, 1988.

[34] Yin-Wong Cheung, Menzie D. Chinn, and Antonio Garcia Pascual. Empirical

exchange rate models of the nineties: Are any fit to survive? Working Paper



Bibliography 216

9393, National Bureau of Economic Research, December 2002. URL http://www.

nber.org/papers/w9393.

[35] Andrew W. Lo. The adaptive markets hypothesis. The Journal Of Portfolio

Management, 30(5):15–29, 2004.

[36] Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and Prac-

tice. Otexts, 2013. URL https://www.otexts.org/fpp.

[37] Christian Ullrich, Detlef Seese, and Stephan Chalup. Investigating FX market

efficiency with support vector machines. In Quantitative Methods in Finance Con-

frenece, pages 13–16, 2006.
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[121] Joëlle Skaf, Stephen Boyd, and Assaf Zeevi. Shrinking-horizon dynamic program-

ming. International Journal of Robust and Nonlinear Control, 20(17):1993–2002,

2010.
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