2,271 research outputs found

    Myths and Legends of the Baldwin Effect

    Get PDF
    This position paper argues that the Baldwin effect is widely misunderstood by the evolutionary computation community. The misunderstandings appear to fall into two general categories. Firstly, it is commonly believed that the Baldwin effect is concerned with the synergy that results when there is an evolving population of learning individuals. This is only half of the story. The full story is more complicated and more interesting. The Baldwin effect is concerned with the costs and benefits of lifetime learning by individuals in an evolving population. Several researchers have focussed exclusively on the benefits, but there is much to be gained from attention to the costs. This paper explains the two sides of the story and enumerates ten of the costs and benefits of lifetime learning by individuals in an evolving population. Secondly, there is a cluster of misunderstandings about the relationship between the Baldwin effect and Lamarckian inheritance of acquired characteristics. The Baldwin effect is not Lamarckian. A Lamarckian algorithm is not better for most evolutionary computing problems than a Baldwinian algorithm. Finally, Lamarckian inheritance is not a better model of memetic (cultural) evolution than the Baldwin effect

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Automated Generation of Cross-Domain Analogies via Evolutionary Computation

    Full text link
    Analogy plays an important role in creativity, and is extensively used in science as well as art. In this paper we introduce a technique for the automated generation of cross-domain analogies based on a novel evolutionary algorithm (EA). Unlike existing work in computational analogy-making restricted to creating analogies between two given cases, our approach, for a given case, is capable of creating an analogy along with the novel analogous case itself. Our algorithm is based on the concept of "memes", which are units of culture, or knowledge, undergoing variation and selection under a fitness measure, and represents evolving pieces of knowledge as semantic networks. Using a fitness function based on Gentner's structure mapping theory of analogies, we demonstrate the feasibility of spontaneously generating semantic networks that are analogous to a given base network.Comment: Conference submission, International Conference on Computational Creativity 2012 (8 pages, 6 figures

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances
    • …
    corecore