25,668 research outputs found

    Structural selection in implicit learning of artificial grammars

    Get PDF
    In the contextual cueing paradigm, Endo and Takeda (in Percept Psychophys 66:293–302, 2004) provided evidence that implicit learning involves selection of the aspect of a structure that is most useful to one’s task. The present study attempted to replicate this finding in artificial grammar learning to investigate whether or not implicit learning commonly involves such a selection. Participants in Experiment 1 were presented with an induction task that could be facilitated by several characteristics of the exemplars. For some participants, those characteristics included a perfectly predictive feature. The results suggested that the aspect of the structure that was most useful to the induction task was selected and learned implicitly. Experiment 2 provided evidence that, although salience affected participants’ awareness of the perfectly predictive feature, selection for implicit learning was mainly based on usefulness

    Deferred Action: Theoretical model of process architecture design for emergent business processes

    Get PDF
    E-Business modelling and ebusiness systems development assumes fixed company resources, structures, and business processes. Empirical and theoretical evidence suggests that company resources and structures are emergent rather than fixed. Planning business activity in emergent contexts requires flexible ebusiness models based on better management theories and models . This paper builds and proposes a theoretical model of ebusiness systems capable of catering for emergent factors that affect business processes. Drawing on development of theories of the ‘action and design’class the Theory of Deferred Action is invoked as the base theory for the theoretical model. A theoretical model of flexible process architecture is presented by identifying its core components and their relationships, and then illustrated with exemplar flexible process architectures capable of responding to emergent factors. Managerial implications of the model are considered and the model’s generic applicability is discussed

    Absolute identification by relative judgment

    Get PDF
    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative relative judgment model (RJM) in which the elemental perceptual units are representations of the differences between current and previous stimuli. These differences are used, together with the previous feedback, to respond. Without using long-term representations of absolute magnitudes, the RJM accounts for (a) information transmission limits, (b) bowed serial position effects, and (c) sequential effects, where responses are biased toward immediately preceding stimuli but away from more distant stimuli (assimilation and contrast)

    How active perception and attractor dynamics shape perceptual categorization: A computational model

    Get PDF
    We propose a computational model of perceptual categorization that fuses elements of grounded and sensorimotor theories of cognition with dynamic models of decision-making. We assume that category information consists in anticipated patterns of agent–environment interactions that can be elicited through overt or covert (simulated) eye movements, object manipulation, etc. This information is firstly encoded when category information is acquired, and then re-enacted during perceptual categorization. The perceptual categorization consists in a dynamic competition between attractors that encode the sensorimotor patterns typical of each category; action prediction success counts as ‘‘evidence’’ for a given category and contributes to falling into the corresponding attractor. The evidence accumulation process is guided by an active perception loop, and the active exploration of objects (e.g., visual exploration) aims at eliciting expected sensorimotor patterns that count as evidence for the object category. We present a computational model incorporating these elements and describing action prediction, active perception, and attractor dynamics as key elements of perceptual categorizations. We test the model in three simulated perceptual categorization tasks, and we discuss its relevance for grounded and sensorimotor theories of cognition.Peer reviewe

    Cortical Learning of Recognition Categories: A Resolution of the Exemplar Vs. Prototype Debate

    Full text link
    Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.Defense Advanced Projects Research Agency SyNaPSE program (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC #801881-BS under HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (NSF SBE-0354378

    Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates

    Full text link
    What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Stability of Groups with Costly Beliefs and Practices

    Get PDF
    Costly signaling theory has been employed to explain the persistence of costly displays in a wide array of species, including humans. Henrich (2009) builds on earlier signaling models to develop a cultural evolutionary model of costly displays. Significantly, Henrich's model shows that there can be a stable equilibrium for an entire population committed to costly displays, persisting alongside a no-cost stable equilibrium for the entire population. Here we generalize Henrich's result to the more realistic situation of a population peppered with subgroups committed to high-cost beliefs and practices. The investigative tool is an agent-based model in which agents have cognitive capacities similar to those presupposed in Henrich's population-level cultural evolutionary model, and agents perform similar fitness calculations. Unlike in Henrich's model, which has no group differentiation within the population, our model agents use fitness calculations to determine whether to join or leave high-cost groups. According to our model, high-cost groups achieve long-term stability within a larger population under a wide range of circumstances, a finding that extends Henrich's result in a more realistic direction. The most important emergent pathway to costly group stability is the simultaneous presence of high charisma and consistency of the group leader and high cost of the group. These findings have strategic implications both for leading groups committed to costly beliefs and practices and for controlling their size and influence within wider cultural settings.Costly Signaling, Credibility Enhancing Displays, Cultural Transmission, Religion, Charismatic Leader, Agent-Based Model
    corecore