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Abstract

We propose a computational model of perceptual categorization that fuses elements of grounded
and sensorimotor theories of cognition with dynamic models of decision-making. We assume that
category information consists in anticipated patterns of agent-environment interactions that can
be elicited through overt or covert (simulated) eye movements, object manipulation, etc. This
information is firstly encoded when category information is acquired, and then re-enacted dur-
ing perceptual categorization. The perceptual categorization consists in a dynamic competition
between attractors that encode the sensorimotor patterns typical of each category; action pre-
diction success counts as “evidence” for a given category and contributes to falling into the
corresponding attractor. The evidence accumulation process is guided by an active perception
loop, and the active exploration of objects (e.g., visual exploration) aims at eliciting expected
sensorimotor patterns that count as evidence for the object category. We present a computa-
tional model incorporating these elements and describing action prediction, active perception,
and attractor dynamics as key elements of perceptual categorizations. We test the model in
three simulated perceptual categorization tasks, and we discuss its relevance for grounded and
sensorimotor theories of cognition.

Keywords: Hopfield networks, perceptual categorization, prediction, active vision, dynamic
choice

1. Introduction

Cognitive scientists and neuroscientists have widely studied how the brain categorizes and
recognizes objects and entities. Traditional cognitive psychology theories propose that categories
are stored in the form of sets of rules that define the category (Trabasso and Bower, 1968),
category prototypes that average across category elements (Rosch, 1975), sets of exemplars that
correspond to specific category elements (Medin and Schaffer, 1978), or a combination of all
them.
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More recently, grounded theories of cognition have put categorization research into a broader
perspective, arguing how the abilities of perceiving, categorizing, and thinking about objects and
events are highly related. According to this view, perceptual and motor processes (rather than
amodal symbols) constitute the conceptual content of categories and concepts, including abstract
ones. Once acquired through agent-environment interaction, this conceptual content can be re-
enacted to support off-line thinking and cognition, determining so-called situated simulations
(Barsalou, 1999, 2008; Pezzulo et al., 2011, 2013).

Sensorimotor theories stem from similar assumptions but further emphasize the importance
of action dynamics. They assume that actions are constitutive of perception and categorization,
and describe object perception in terms of interaction dynamics and stable patterns of actions
and sensory stimulations, or sensorimotor contingencies (O’Regan and Noe, 2001). For example,
the sight of a glass produces a coherent pattern of sensory stimulations (as an effect of the eye’s
actions), and the mastery of such contingencies corresponds to the knowledge of what is a glass.
Support from this view comes from experiments showing the importance of action (e.g., eye
movement) dynamics in shaping the categorization process (Ballard, 1991; Hayhoe and Ballard,
2005; Rothkopf et al., 2007; Yarbus, 1967).

In a similar vein, action-based approaches emphasize that knowledge of the external world
consists in sets of “dispositions to act” as produced by action-outcome mechanisms, and that
object knowledge consists in the anticipated patterns of actions and perceptions produced by
an interaction with them (Bickhard, 1993; Grush, 2004; Pezzulo, 2008, 2011). For instance, a
sponge can be understood in terms of a characteristic (sequence of) action-outcome relation, such
as the anticipated softness one expects when squeezing it. These action-outcome relations have
been linked to the concepts of internal forward models (Desmurget and Grafton, 2000; Kawato,
1999) and ideomotor codes (Hommel et al., 2001); see also (Maye and Engel, 2011; Pezzulo and
Calvi, 2011; Roy, 2005). Numerous studies support the idea that the same action-outcome links
adopted in the on-line interactions can also be reused off-line to mentally simulate an interaction,
essentially recruiting the same brain mechanisms for motor cognition (Jeannerod, 2001, 2006).

In this article we offer a theory of perceptual categorization that distills key concepts of
grounded, sensorimotor and action-based theories of cognition and integrates them with dy-
namic and competitive models of choice. We propose that categories are coded in terms of the
associated action-outcome sequences, not in purely sensorial terms. Specifically, an object cat-
egory is linked to (predictable) sequences of saccades, grasp movements, or a combination of
them. This sensorimotor information is firstly acquired during situated agent-object interactions
and can be successively re-enacted to guide perceptual processing and categorization, in a pro-
cess that resembles the sampling of environmental information under the guidance of categorical
hypotheses (Barsalou, 1999; Pezzulo et al., 2013).

In this view, agent-object relations can be described as sequences of actions and resulting
sensations, or action-outcome pairs. In keeping with grounded cognition theories, we assume that
this information is acquired when the agent interacts with exemplars of the category (Barsalou,
1999). For instance, during interactions with a sponge an agent learns action-outcome relations:
how a sponge feels when it is squashed, how it looks if it is foveated to the left or right, etc. Once
learned, the same sensorimotor processes used to explore (e.g., visually or haptically) and interact
with objects also realize the object categorization process; for instance, a sponge is recognized
when the agent successfully reuses the stored action-outcome relations associated to earlier sponge
uses. The same information can be reused to mentally simulate interactions with the same objects
in their absence (Pezzulo, 2011). Action-outcome relations are maintained in the internal models
used to interact with objects, in a modal format; more frequently, objects link to multimodal
information acquired using different effectors (e.g., eye and hand). Categorization profits from
both overt exploration (e.g., physical manipulation of a sponge) and mental simulation (e.g., just
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anticipating the interaction), which according to grounded theories of cognition recruit the same
brain processes.

The pragmatic view of categorization that we propose emphasizes the importance of previous
interactions, like exemplar and prototype theories of categorization. At the same time, it reverses
the perception-categorization-action pipeline of traditional cognitive theories, and proposes that
action is part and parcel of perception and categorization rather than being successive to the
categorization. In sum, our approach assumes that action-outcome representations are constitu-
tive of the conceptual content of categories, at least for categories that can be readily mapped
to possible interactions.

1.1. The mechanics of situated categorization
Up to now we have introduced our proposed theory of categorization by referring abstractly

to action-outcome patterns. Now we discuss how this information is elicited during situated
interactions with the to-be-categorized object and how it influences the moment-by-moment
dynamics of the categorization.

There is ample consensus that perceptual decision-making and categorization are dynamic
and competitive processes in which evidence is accumulated in favor or against the competing
alternatives (e.g., deciding if a visual stimulus is a cat or a dog). The widely adopted drift-
diffusion model describes choice as a competitive process of accumulation of evidence up to a
criterion; when the criterion is reached, action can start (Ratcliff, 1978; Ratcliff and Rouder,
1998); see also (Bogacz et al., 2006; Usher and McClelland, 2001; Wang, 2002) for descriptions of
plausible neural implementations of diffusion-to-bound and related mechanisms. Several models
of perceptual categorization invoke the same dynamic mechanisms but differ on what they con-
sider to be the relevant dimensions along which evidence is accumulated. An influential model
(Nosofsky and Palmeri, 1997) describes perceptual categorization as a dynamic competition be-
tween exemplars, linking to the exemplar models of categories described earlier. Another model
(Lamberts, 2000) uses the same principles of dynamic accumulation of evidence, but focuses on
competition between stimuli features rather than exemplars.

Diffusion-to-bound models have been extremely successful in explaining behavioral data and
map nicely to the brain substrate (Gold and Shadlen, 2001, 2007). This leads to the idea that
core mechanisms of decision-making (based on evidence accumulation) could have been preserved
to support increasingly more complex and abstract decisions and categorizations (Cisek, 2012;
Shadlen et al., 2008). However, they largely abstract from the way evidence is accumulated.
They often point to a bottom-up process in which a stimulus is repeatedly probed to obtain
multiple samples and do not model active perception dynamics or overt exploration (but see
Krajbich et al. (2010)). Our proposed model extends these theories and describes categorization
as a dynamic and competitive process that builds on evidence elicited through active perception.

Within the dynamic and competitive categorization process that we discussed, it is often
assumed that evidence accumulation follows a sequential sampling rule (Ratcliff, 1978), which
corresponds to an optimal statistical test. We assume that active perception dynamics bias
the evidence accumulation process; this process is not random but rather it recapitulates the
agent-object interactions that firstly created the agent’s categorical concepts. In other words,
the visual exploration of an object consists in an attempt to re-create and re-elicit the same
action-perception patterns that were established when an object category was acquired, and the
elicitation of the same (predicted) stimuli counts as evidence for the category. The proposed
model (sketched in Figure 1) is based on three main assumptions that we discuss below.
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Figure 1: Proposed dynamic model of perceptual categorization. See main text for explanations.

1.1.1. Action dynamics shapes the ongoing categorization
A first aspect that distinguishes our model from previous ones is that it gives motoric and

active perception processes a key role in the categorization and decision-making process. The
theories of decision-making that we have considered so far describe evidence accumulation as a
bottom-up process segregated from action dynamics; in this two-stage approach, actions are exe-
cuted only when decisions are completed. However, recent experiments support a continuous flow
model (Coles et al., 1985), in which evidence-accumulation and the preparation of corresponding
actions are not segregated, but partial decisions steer actions, so that movement trajectories can
be informative of the underlying decision dynamics and uncertainties (Barca and Pezzulo, 2012;
Resulaj et al., 2009; Song and Nakayama, 2009; Spivey, 2007)1.

If the flow was unidirectional, from decision to motor processes, then it could be regarded
as a nuance without importance for the choice itself. However, there are reasons to believe that
action dynamics feed back and influence perceptual processes and choice, and that processes
of motor preparation, planning, and execution can influence the (perceptual) decision-making
in many ways. The premotor theory of attention (Rizzolatti et al., 1987) suggests that motor
processes have modulatory effects on sensory processing; for instance, planned actions can direct
attention by priming relevant stimulus dimensions (Fagioli et al., 2007). Furthermore, theories
of active vision (Ballard, 1991) emphasize that the perceptual flow is not passive but actively
selected, and overt perceptual processes (e.g. gaze allocation) bias perception (and indirectly the
accumulation of information for perceptual decision-making). Finally, recent evidence indicates
that it is possible to influence object perception and categorization by influencing overt attention,
suggesting that action dynamics (e.g., eye movements) are constitutive elements of perception
(Kietzmann et al., 2011), as also proposed by sensorimotor contingencies theory (O’Regan and
Noe, 2001). All these elements point to the conclusion that action dynamics (and specifically
eye movements in our model, see figure 1) affect the evolving decision.

The idea that categorization is a situated activity based on active perception and agent-
environment interactions is present in several models using evolutionary robotics techniques

1The continuous flow produces adaptive advantages by linking perceptual processing to motor preparation
and execution, making an organism more responsive to real-world challenges. This idea seems plausible if one
considers that the perceptual system of living organisms evolved to support rapid action selection in dangerous
environments, not for discriminating between stimulus categories per se (Cisek and Kalaska, 2010; Pezzulo and
Castelfranchi, 2009).

4



(Gigliotta and Nolfi, 2008; Mirolli et al., 2010; Nolfi and Marocco, 2002; Tuci et al., 2010).
Furthermore, the importance of situated interactions for categorization has been recognized in
dynamical systems (Quinton et al., 2013; Schoener, 2008; Spivey, 2007; Strauss and Heinke, 2012;
Tipper et al., 2000) and probabilistic models (Maye and Engel, 2011). Our model incorporates
aspects of these proposals while retaining key aspects of the evidence-accumulation framework
discussed earlier.

1.1.2. Evidence accumulation and action guidance are both based on prediction success
A second aspect that distinguishes our approach from previous categorization models is that it

considers predictive processes central in the choice. Predictive coding models have long assumed
the importance of predictive dynamics for perception and categorization, using prediction success
for an error minimization process (Friston, 2005; Rao and Ballard, 1999). In our model prediction
dynamics are central, too, for two main reasons.

First, we assume that the relevant dimensions over which evidence is accumulated is pre-
diction success of the action-outcomes mechanisms associated with each object category. To
understand how this is possible, consider the links between “category representation” and “fea-
tures prediction” and between “features prediction” and “evolving decision” in Figure 1. During
a decision-making task, the overt (e.g., visual or haptic) exploration or even its simulation (e.g.,
when one simulates grasping an object) produces anticipated patterns of motoric and sensory
stimulations that are plausibly acquired during category learning, such as the prediction that if
one moves the eyes to the right, it will see a given feature, if one then moves again to the right, it
will see another feature, and so on (see the link between “category representation” and “features
prediction” in Figure 1). In turn, as the elicited action-outcome pairs constitute an embodied
form of knowledge of the categories or objects, the predictions they produce are constitutive for
the choice (see the link between “features prediction” and “evolving decision”). In other words,
the recognition of an object (e.g. a straight line) boils down to the accumulation of a series
of successful predictions (e.g., expecting to find the same features when saccading in a fixed
given direction, see O’Regan and Noe, 2001). Similarly, the discrimination of a sponge vs. a
brick depends on the prediction success of action-outcome mechanisms that predict squeezing or
not squeezing following a (real or simulated) grasping action. This mechanism is similar to the
prediction-error minimization of predictive coding theories (Friston, 2005; Rao and Ballard, 1999)
but uses action outcome prediction dynamics within an overall evidence accumulation process.
The idea of using predictive power of the features to drive categorization is not novel (Kruschke,
1992); what is novel in our model is that, in keeping with action-based and sensorimotor the-
ories, the predictions are generated by action-outcome mechanisms and elicited through overt
or covert exploration. In other words, we assume that the same predictive processes implied in
performing object-directed actions are reused to recognize the same object (or even to recognize
actions performed by others (Dindo et al., 2011; Wolpert et al., 2003)).

Second, we assume that predictive information drives overt stimulus exploration (e.g., eye
movements). Studies of eye movements during concept formation (Nelson and Cottrell, 2007;
Rehder and Hoffman, 2005) and categorization (Nelson et al., 2010) reveal that knowledge of
anticipated perceptual patterns is key to guiding overt exploration towards the most informative
dimensions. The process of evidence accumulation can thus be guided by processes that tend
to test hypotheses and predictions and minimize uncertainty relative to the choice alternatives
rather than selecting (only) the most salient stimuli features (Friston et al., 2012; Geisler, 2011).
In Figure 1 this process is represented by the link between “features prediction” and “stimulus
sensation”.

5



1.1.3. Evidence accumulation follows attractor dynamics that mimics structured agent-environment
interactions

The last aspect that characterizes our approach is the nature of the evidence accumulation
process. As we have discussed, evidence accumulation is a process of re-creation and re-enactment
of the interactive knowledge acquired when interacting with objects of a given category. It is
important to notice that interactions with objects give rise to highly structured sequences of
actions and resulting sensations (not just random samplings). The same structure is plausibly
incorporated in the neuronal patterns encoding category information, and can be reused during
evidence accumulation.

While neuronal mechanisms can encode structured information in multiple ways, several
studies suggest that attractor dynamics could have a key role (Bassett and Gazzaniga, 2011;
Churchland et al., 2010). For example, in a monkey classification task using familiar images
and morphed stimuli, the authors report that the conversion of graded visual information into
a category can be mathematically characterized in terms of local attractor dynamics within
populations of inferior temporal neurons (Akrami et al., 2009). This evidence is relevant for our
study as the task we model is very similar (see below).

Attractor models have long been recognized as relevant as brain models for categorization
(Amit et al., 1997; Miyashita and Chang, 1988; Sakai and Miyashita, 1991) and are widely used
to model perceptual decisions in cognitive psychology (Spivey, 2007) and neuroscience (Wang,
2002). In these models, the way evidence is accumulated reflects the attractor dynamics of
(e.g., the “structure” of the information encoded in) the neuronal populations responsible for
the choice. In our proposed model, attractor dynamics govern the way category representation,
features prediction and the evolving decision are linked (see the circular arrows in Figure 1).

1.2. Structure of the article
In the rest of the article, we incorporate the model presented so far in a computational

architecture (see Section 2) and test it in three tasks (see Section 3). The first task is a visual
categorization experiment consisting in recognizing if a stimulus (normal or morphed) is a dog,
giraffe, horse, or cat. This task helps illustrating the main characteristics of the model, and
shows how the decision can be conceptualized in terms of attractor dynamics steered by action-
outcome predictions. In the second task, to support our claims on the importance of prediction
and action dynamics, we show that categorization of ambiguous figures is significantly affected by
the specific sequence of actions (fixations) used during the task, similarly to the study reported
by (Kietzmann et al., 2011). In the third task we show how the model can qualitatively reproduce
the data reported in (Akrami et al., 2009) on the categorization of stimuli having various levels
of ambiguity. Finally, in Section 4 we draw our conclusions.

2. Method: The Computational Model

The proposed computational architecture essentially connects several (category-selective) sen-
sorimotor feature predictors through a Hopfield network (Hopfield, 1982; Amit, 1989), and per-
forms a categorization by accumulating evidence on predictors’ success during the visual explo-
ration of the to-be-categorized object. In the scenario we address in this article, the categorization
task consists in determining whether a stick figure (input image) represents a giraffe, a horse, a
cat or a dog; features represent picture parts.

The model components and their interactions are sketched in Fig. 2.
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Figure 2: Attractor Predictors Network. After the learning phase which determines the weights Jij within
the resources network, the network modulates the activity of the predictors, themselves interacting with the
environment. Resources Ri above threshold Ni (fully red nodes) leads to the activation of the associated predictor
Pi. If a predictor is moreover relevant (source feature F src

i found), if its action gets selected (Sbest = Si) and

is then confirmed (target feature F tgt
i is found), it gives a positive feedback to the network (prediction success

Ai = +1). The 5 possible predictor configurations are represented on the figure, with plain lines representing
activation/confirmation signals. The reason why here both P5 and P6 are selected is that predictors can share
the same starting feature and vote for the same action having different target features (see the S5=S6 equation
within the figure). P5 and P6 are active, relevant and see their action selected, but then only P5 has its prediction
confirmed. See main text for explanation.

2.1. Motor outputs and sensory inputs to the architecture
Adopting an active vision approach to categorization, the architecture is only given access to

the stimuli through a reduced field of view. Because of the size of this area relative to stimuli, the
system needs to explore stimuli through saccades in order to obtain information and discriminate
between them. This sensory limitation is however compensated by active capabilities. The
computational architecture has control over this small foveated area, that can be freely moved
around the stimulus to categorize. Actions thus consist in saccades (S) that instantaneously move
the foveated area from one position to another. As a consequence, the proposed architecture not
only needs to exploit salient information acquired through bottom-up processes (at each fixation
point) (Itti et al., 1998), but must also direct top-down attentional processes, by selecting relevant
features in the visual field (covert) and controlling eye movements (overt). Other computational
architectures use such a combination to efficiently extract information from the environment, but
the selection and sequence of saccades is generally segregated from the classification of stimuli
(Frintrop and Jensfelt, 2008).

The visual input from the foveated area is preprocessed. This is first to compensate for the
lack of the kind of highly robust visual system and life-long learning found in humans. It keeps
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Figure 3: Representation of the feature extraction process and of the predictors coding (subpart of Fig. 1). At any
time t, a variable number of features lying within the foveated area of the visual environment (here F1 and F2) are
detected and described by their position relative to the center of the fovea (u, v) (crosses), and the activity of M
fixed orientation detectors (oj) (polar diagram). If active, a predictor Pi can then compare these observed features
with its source feature (F src

i ) (context) and propose a saccade Si that may be selected through a winner-take-all
competition, thus shifting the fovea to another position at time t + dt, so it can test the presence of the expected
target feature (F tgt

i ).

the system complexity high enough for the phenomena we are interested in to emerge, yet allows
for an intuitive understanding of the overall system dynamics and predictors role. Finally and
for a more technical reason, this allows real time simulation of the model on standard computer
architectures.

As we focus on categorization and decision-making processes, we provide the system with the
most informative features available on the specific class of stimuli considered (see Fig. 3 for an
example). Neuro-inspired saliency maps were computed over stick figure images. By saliency,
we here refer to a human inspired vision algorithm where multi-scale luminance contrasts, ori-
entations and color contrasts (not relevant in our case) are extracted from the visual input, and
later combined in a single conspicuity map (Itti et al., 1998). A slightly altered version of such
algorithm is used here, where both on-off and off-on intensity contrast detectors are considered
in order to deal with black figures on a white background. The fact that the same processing
must occur at different scales, orientations and positions of the visual field are common place
in cortical areas (e.g. MST for motion perception (Clifford et al., 1999)). This approach uses
population coding and pooling, where a discrete set of orientations and scales are sufficient to
encode for continuous changes in the sensory flow. Distributed systems can then rely on their dy-
namics to interpolate between different scales, so that resulting detectors and descriptors reflect
continuous variations (Quinton and Girau, 2012).

As expected and due to the shape, structure and black-and-white nature of the stimuli used
in this paper, oriented Gabor filters on a single scale had the strongest response, and saliency is
concentrated around the joints of the stick figures. In order to lower the dimensionality of the
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input, only a set of feature points (Fi) corresponding to the visible joints of the stick figure are
retained for each fixation. Each feature is described by its coordinates within the retinal image
(u, v), as well as a vector synthesizing the oriented Gabor filter responses away from the joint
(oj)j∈[1,M ] (with M fixed to 16 in the experiments). In practice, Gaussian tuning curves with
wide selectivity profiles along orientations have been used to directly convert an arbitrary set of
orientations into a fixed number of correlated activities from the stick figure description (see Eq. 1
and Fig. 3). Even with these highly selective features, the non triviality of the discrimination
process must once again be underlined. There is for instance no way for the system to easily
distinguish between front and back legs without saccading across the stimulus.

oj = max
l

exp−
(
M(θj − ρl)

2π

)2

(1)

where θj = −π + jπ/M , and ρl is the set of angles formed by the sticks starting from the
considered joint.

Features are thus fully described by Fi = (u, v, o1, . . . , oM ) and two features (F1, F2) can be
compared according to a similarity measure defined as:

σ(F1, F2) = 1− e−
‖F2−F1‖

2

γ2 (2)

where ‖.‖ is a norm in RM+2 with an adequate weighting of the various dimensions involved.
This weighting must simply ensure that an improved precision for the orientation filters (increase
of M) will not make their influence dominant over the position discrepancy within the visual
field (dimensions u and v). This is implemented using an exponentially weighted sum to make
the topology smoother, with weight 0.2 for the coordinates (u, v) in the experiments and 1.0 for
the orientations (oj)j∈[1,M ] (both based on an estimation of the variability of the components
values). Moreover, γ is chosen to be proportional to the number of the dimensions.

Please note that we could have used other well known descriptors from computer vision such as
SIFT, which is also based on multiscale processing (Lowe, 1999). The distributed cognitive model
developed in this paper could however directly benefit from saliency based feature extraction.
Indeed, and although we here focus on a single scale in order to underline the specificities of
the cognitive model, the similarity σ defined in Eq. 2 could be easily extended and the number
of predictors multiplied to make the recognition scale-invariant. Finally, it is also possible to
dynamically tune such preprocessing to make it more reactive to specific features, a capability
particularly well suited to active and predictive perception systems. Gain neurons (Salinas and
Sejnowski, 2001) or a direct modulation of saliency maps (Frintrop and Jensfelt, 2008) can be
used for such purpose.

2.2. Predictors
Building on the visual features provided to the system and the potential actions that can be

performed, local predictors can be defined. Predictors represent particular sensorimotor regular-
ities expected while interacting with the to-be-categorized object. In other words, predictors are
specialized units able to implement modality-specific sensorimotor strategies. A predictor P is
here defined by a triple (F src, S, F tgt) where F src is the source feature, S is the motor command
and F tgt is the expected target feature. When applied to active vision, each predictor (Pi) sug-
gests a saccadic motor command (Si) that moves the fovea from an area where the feature F srci

was visible to an area where the predictor expects to find the feature F tgti (see Fig. 3).
To discriminate between different contexts or recognize various stimuli, each being described

by many local predictors, a very large set of predictors {Pi}i∈J1,NK might be required. Addition-
ally, every action takes some time to perform and has a cost for the agent. In most situations,
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it is thus both impossible and useless to perform all possible actions to confirm or inform each
predictor. The system thus needs to select the most suitable predictors at all times, which is a
difficult task when facing ambiguous or initially unknown stimuli.

2.3. Resources and activation
In order to address this issue, a quantity called resources is associated to each predictor.

Let Ri(t) be the resources for predictor Pi at time t. Let also Ni be the necessary resources of
the predictor, i.e. the amount of resources needed for the predictor to become active, perform
its action and test its prediction (run its code in more computational terms). The cost of an
operation should be assigned according to its complexity and urgency, relative to the architecture
and application considered2.

We can then define the activation variable Ai ∈ {−1,+1} as follows:

Ai =

{
+1 if Ri ≥ Ni (active)
−1 otherwise (idle)

(3)

As underlined earlier, prediction success is used in our approach to accumulate evidence. This
is done here by updating the activation variable when predictors get activated, and this process
thus does not influence idle predictors. In the end, only those that confirm their prediction
remain active, by finding both their source feature in the foveated field of view before acting
(time t) and their target feature afterwards (t+ dt):

Ai =

{
+1 if Ai = 1 and F srci ∈ fovea(t) and F tgti ∈ fovea(t+ dt)
−1 otherwise

(4)

If predictors cannot switch from idle to active through the previously described process,
they can however obtain sufficient resources from two possible sources. The first one, called
base resources or Bi, is defined by the user to represent the absolute relevance of the predictor,
independent of time and immediate context. It might for instance bias the selection of active
predictors due to external constraints (see Task 2 in the results section) or reflect habituation or
learning dynamics. The other source, called linked resources or Li, are the resources received from
other predictors, and represents the contextual relevance of the predictor. These are predictors
that previously focused on different yet congruent features that provide the necessary conditions
for the considered prediction to be effectively confirmed (sequence of predictions).

2.4. Attractor Predictors Network (APN)
The Attractor Predictors Network (APN) constitutes the bulk of the architecture. It consists

of a Hopfield network (Hopfield, 1982) that connects predictors and distributes resources between
them, so that their activity can be well coordinated. The presence of a limited amount of
resources guarantees only a small subset of predictors will be active at the same time, by putting
them into competition, thus only allowing mutually congruent predictors to remain active in the
end. Additionally, learning leads the system to select the most suitable predictors depending on
the context and problem to solve; see also (Kokinov, 1994; Pezzulo and Calvi, 2007) for related
models managing the distribution of resources among components.

2The possibility to assign to predictors different computational resources is not used in the tasks described
below (here all predictors are assumed to have the same cost for simplicity), but this is something that we left
open to show the generality of the proposed model and its possible further developments. The exact values of
these costs could be learned through repeated interactions during task execution.
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Table 1: Hopfield to APN terminology

Hopfield network (as in (Amit, 1989)) APN

Neurons Predictors (Pi)

Symbol Description Symbol Description

Ui Post-synaptic potential Ri Predictor computational Resources

Ti Activation threshold Ni Necessary Resources to become active

Si Spike Ai Activation needed to run operations

Jij Synaptic matrix Jij Resources network’s Links matrix

The following paragraphs describe the functioning of such a network and show how it can
be altered and extended to integrate the active and normative capabilities of predictors (used as
components).

We start from the mathematical definition of a Hopfield network taken from (Amit, 1989),
where terms are translated in the APN terminology. Table 1 makes it possible to easily transfer
known results in Hopfield networks to resources networks, and thus to APNs. Eq. 5 is another
formulation of Eq. 3, only more consistent with classical Hopfield network descriptions. In turn,
Eq. 6 transposes into resources the computation of the postsynaptic potential within neuron i
from the excitatory and inhibitory activities of connected neurons. Synaptic weights between
neurons are encoded in matrix J , with positive values corresponding to excitatory links. The
original equation exactly corresponds to the computation of the linked resources, and is only al-
tered to include the base resources, thus enabling the possibility to boost the resources associated
to predictor Pi when Bi > 0.

Ai(t) = sign(Ri(t)−Ni) (5)

Ri(t+ 1) = Bi + Li(t+ 1) = Bi +
1
2

N∑
j=0,j 6=i

Jij(Aj(t) + 1) (6)

Another slight difference with the classical Hopfield networks’ update equation lies in the
use of Ai instead of Ai, in order to account for the active nature of predictors. Instead of
being passively controlled by the network, they indirectly participate in its dynamics through
the feedback they provide. The entire APN, considered as a resources network enriched with
predictors, therefore integrates both the interactions between predictors and the interactions
between predictors and the environment of the agent.

2.5. Predictors’ Attractors
An Hopfield network is used to memorize patterns which are represented by the attractors of

the dynamical system that it defines (Rojas, 1996). Whatever the configuration of an Hopfield
network, it will sooner of later converge to one of its attractors. The set of initial configurations
leading to the same attractor belongs to its basin of attraction.

The same attractors are found at the core of an APN and are called Predictors’ Attractors.
Each attractor Aµ = (Aµ1 , A

µ
2 , . . . , A

µ
N ) ∈ {−1, 1}N is a configuration of active predictors (that

will execute their operational code and should confirm their predictions) and non-active predic-
tors (that will remain silent). Each Ai here represents the asymptotic activity of predictor Pi,
i.e. its activity after an indefinitely long number of resources network updates (see Eq. 6).
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Another interesting feature of an APN concerns its ability to perform well in the presence of
noise or when the number of agents is high. Robustness to noise means that the retrieval of a
predictors’ attractor can be done even if the network is under the influence of noise. Moreover,
noise can be considered as the temperature of the system and determines the trade off between
exploration and exploitation. It is thus required to escape from local minima and to destabilize
spurious attractors, which are a mixture of memorized attractors.

In this paper, artificial Gaussian noise is added to the predictors both to prove robustness
and to enable the use of the Montecarlo method to obtain faster convergence. As a result, the
probability of having the resources associated with predictor Pi equal to R is:

Pr(Ri = R) =
1√

2πδ2
exp[− (R− R̄i)2

2δ2
] (7)

where R̄i is the statistical mean of the random variable Ri. The distribution variance δ and
the temperature T are related as T = (2

√
2δ)−1 (for a similar definition of noise in Hopfield

networks see (Amit, 1989), pages 66-67).
In the end, predictors’ attractors represent long-term multimodal frames of predictors used

to achieve representation, categorization and motor control. They not only are a collection of
several features, but they also have active capabilities. They are characterized by a coordinated
pattern of activity and strong associative links. A predictors’ attractor thus arises when a set of
feature-specific predictors cooperate to find regularities inside the visual input.

2.6. Learning
For decision-making and categorization tasks, we want each attractor to be associated with

one category of stimuli/contexts. After choosing adequate predictors to test hypotheses through
interaction, we still need to learn the link matrix that determines the dynamics within the
resources network. In the more restricted context of active vision, each predictor is specialized
on a specific saccade movement that shifts the fovea from a particular feature to another. So,
if we assume that a category is characterized by a set of spatial relations among features, the
activation of a subset of predictors (i.e. a predictors’ attractor) can identify a category. The main
idea of our proposal is to represent perceptual categories by a set of anticipatory active processes.
Using dynamical system like representations (attractors as categories) makes it possible to study
the dynamics that leads the categorization process to reach a decision, and not only its final
result.

To learn the connection weights we used a procedure based on a Hebbian rule. In the tasks
we will present later in this paper, we use four fixed categories to determine whether a stick
figure (input image) represents a giraffe, a horse, a cat or a dog. Additionally, we started from a
large database of pictures already categorized by humans in a previous experiment by Sanborn
et al. (2010) (see Fig. 3 for an example), so that supervised learning can be used.

In each picture we use a brute force approach to generate all potentially correct predictors,
which are all triples made of an existing starting feature, saccade and target feature that matched
the corresponding stick animal. Then we defined four predictors’ attractors {ACAT , ADOG,
AGIRAFFE , AHORSE}, each of them composed by all predictors that were previously extracted
from figures of the associated category. A Hebbian rule is generally used to memorize a set
of arbitrary patterns in a Hopfield network, and works as follow: for each known attractor
Aµ ∈ {+1,−1}N , with µ ∈ {CAT,DOG,GIRAFFE,HORSE} here, the resources network’s
weights, initialized to zero, are modified by adding the term ∆Jµij = Aµi A

µ
j . Integrating over all

attractors, the final weight’s are given by:
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Jij =

{
0 if i = j
1
N

∑
µA

µ
i A

µ
j otherwise

(8)

2.7. Algorithm and behavior
Once we have memorized the categories as predictors’ attractor, we finally need a procedure

to recall them in order to categorize any stimulus. Remembering that Hopfield networks are
associative memories, we know that predictors’ attractors will be reached according to their
similarity with the current configuration. The algorithm used to alternate and combine the
updates on the predictors and on the resources network is reproduced in Algorithm 1. It especially
describes how the system dynamically converges to an attractor by selecting adequate saccades,
testing the predictions and spreading resources between predictors. You can also refer to Fig. 2
to see how the different components of the model are organized and interact. Moreover, Table 2
reports the list of parameters involved in the system, with the values used in the simulations
described in the following section.

To simplify the following explanations, assume that each predictor Pi has the same compu-
tational cost and same base resources. We will thus arbitrarily take Ni = 0 and Bi = 0 for
all predictors. We then initialize the system by putting the fovea in a random position and by
activating a small set of a predictors randomly chosen to be active for the first iteration (lines
1-2 of Algorithm 1). Active predictors have to pass three steps in order to remain active in the
following iteration and thus continue on contributing to the basin of attraction of the predictors’
attractor that will finally be selected:

1. Each active predictor must have perceptual relevance, which here means that its starting
feature must be immediately available in the current foveal view. If this condition is
satisfied, the predictor will be retained for the next step, else it will become idle (in lines
5-11 of Algorithm 1 these relevant predictors are collected in the set RP).

2. Each perceptually relevant predictor proposes its saccadic motor command to be selected
by the system. The fovea then merges these potentially asynchronous commands into the
next effective fixation point. A Winner-Take-All strategy is used to select the saccade with
more proponents, each predictor voting for its saccade (lines 16-18 of Algorithm 1). In a
case of parity the tie is broken randomly. Note that more relevant predictors can propose
the same saccade (although they might share their starting feature and proposed command,
the target feature can still differ). So also the selection of a single action can imply the
further verification of more than one predictor.

3. Each relevant predictor which had its saccadic motor command selected finally tests if its
target feature appeared, as a result of the fovea movement. If the matching occurs, the
prediction was fully successful and the predictor is kept active to contribute to the defini-
tion of a basin of attraction during the following iterations (in lines 19-24 of Algorithm 1
these successful predictors are collected in the set SP). Furthermore if this happens, other
predictors of the same category are activated (Ai = +1 for other s predictors, where s is
called boosting parameter), enriching the basin of attraction in order to boost the evidence
collected for faster convergence (lines 25-28).

At the end of each iteration, the fovea moved to a new position and predictors which have seen
their commands selected and predictions satisfied are active. Moreover, related predictors are also
activated according to the spread of resources within the network and a few more are randomly
flipped on or off by the temperature simulated in the system (lines 40-41 of Algorithm 1). The
success of a predictor pertaining to a given category therefore has a positive impact on predictors
that respond to the same category (remember that predictors from the same attractor are linked
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Algorithm 1 Categorization by the APN
1: // Randomly position the fovea and activate a predictors
2: foveapos ← random position
3: {Ai} ← random vector in {−1,+1}N where card(Ai = 1) = a
4: repeat
5: RP ← ∅ // Relevant predictors
6: for all Pi do
7: // Only consider active predictors with adequate context
8: if Ai = +1 and F srci ∈ foveaview then
9: RP ← RP ∪ Pi

10: end if
11: end for
12: // Try saccades until at least one prediction is confirmed
13: {Ai} ← {Ai}
14: SP ← ∅ // Successful predictors
15: repeat
16: // Perform the saccade with the maximum number of votes
17: Sbest ← argmaxS{card(Sk = S|Pk ∈ RP ))}
18: foveapos ← foveapos + Sbest
19: // Test all relevant predictors
20: for all Pj ∈ RP do
21: // Confirm those where action and prediction both match
22: if Sj = Sbest then
23: if F tgtj ∈ foveaview then
24: SP ← SP ∪ Pj
25: // Activate s predictors of the same category
26: for s randomly chosen Pv | ∀µ Aµv = Aµj do
27: Av = 1
28: end for
29: else
30: Aj ← −1
31: end if
32: RP ← RP\Pj // No more selection of this predictor
33: end if
34: end for
35: // Revert the saccade if no predictor was successful
36: if SP = ∅ then
37: foveapos ← foveapos − Swta
38: end if
39: until SP 6= ∅ or RP = ∅
40: Update the network with Montecarlo method at temperature T
41: {Ai} ← application of Eq. 5, 6 & 7
42: until ∃µ | card{An=1 and Aµn=1}

card{Aµm=1} > t // A category has frequency of active predictors > t
43: repeat
44: {Ai} ← application of Eq. 5, 6 & 7
45: until A ∈ {Aµ} // Predictors’ attractor reached
46: return µ // Return the associated category
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with strong positive weights). This improves the efficiency and robustness of the categorization
process. These steps must however be repeated, moving the fovea in each iteration, until enough
evidence is collected. More specifically, a scan path should collect evidence about which predictors
deserve to be part of the basin of attraction, because this is what determines the convergence
to a predictors’ attractor instead of another. Tested successful predictors should be kept active
across the iterations and unsuccessful ones should become idle. The role of Ai is to keep track of
relevant unsuccessful predictors (i.e., those that matched with the starting feature but not with
the target one). Considering that these predictors are more likely to represent a wrong category
through this variable we inhibit their ability to contribute to the activation of other predictors of
the same category during the network update. As it is possible to see from Algorithm 1, Ai starts
as copy of Ai (line 13) and then, if some relevant unsuccessful predictors are encountered, to
some of its elements can be assigned an idle value (line 30). Note that other evaluated predictors
have already Ai equal to +1, because only active predictors are taken in consideration. This is
the reason why in Eq. (6) the current resources are computed over the Ai variables: to integrate
the action outcome within the network dynamics.

To automatically understand when enough evidence is collected we chose to define a threshold
parameter (called t) that indicates when the basin of attraction is rich enough to properly recall
a predictors’ attractor: when one of the categories reaches a number of active predictors, which
divided by the cardinality of its predictors is greater than t , the architecture stops to saccade
(line 42). Starting from (Amit 1989), who already investigated the relation between recalled
attractors and basins of attraction, we found that t = 0.3 worked fine for the tasks described
below. Then, once all the saccades are performed, the resources network uses the knowledge
stored in its links to enrich the evidence collected by predictors through the last updates until
convergence (lines 43-45). Finally, when a predictors’ attractor is reached the decision is made
(line 46).

3. Simulation results

To validate the proposed architecture we tested it in three categorization studies. In the
first study, the architecture was trained to recognize figures of four categories (CAT, DOG,
GIRAFFE, HORSE) and tested in a categorization task with exemplar and morphed stimuli.
As we can see in this example little feature variations can lead to different categorical decisions.
In the second study, we modified the probability of executing different eye movements so as to
study how sensorimotor and active vision processes modify the choice. Finally, we studied the
relationship between the morphing parameters and the accuracy of the system, with a qualitative
comparison to biological data.

3.1. Task 1: Categorizing through attractor dynamics
We trained our system on a learning set of 32 pictures originally developed by Olman and

Kersten (2004) and categorized in Sanborn et al. (2010). As previously said, in each picture
we considered all the possible triples (starting feature, saccade, target feature) in order to build
all the possible predictors. At the end of this process we obtained 1176 predictors 3. Among
these predictors, 224 were extracted from pictures of the category CAT, 319 from pictures of the
category DOG, 319 from pictures of the category GIRAFFE and 314 from pictures of the category

3A number that depends on the chosen offsets used to distinguish feature descriptors and saccades belonging
to different predictors.
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Table 2: APN parameters and their values used in the simulations.

Parameter Description Value

N Total number of predictors 1176

Bi Predictor Base Resources ( 6= 0 only for simulation of Figure 7) 0.23

M Number of Gabor filter’s orientations 16

T Temperature (noise) of the system 0.2

a Number of initial active predictors 30

s Boosting parameter 75

t Threshold frequency of category active predictors reached to stop scanning 0.3

HORSE 4. After the four predictors’ attractors have been obtained through the application of
the Hebb Rule (Eq. 8), we used Algorithm 1 to categorize a test set of new pictures with
Temperature = 0.2 and 30 randomly chosen predictors activated in the first iteration (a = 30).
As reported in the algorithm, the Montecarlo method was used to speed up simulations.

The architecture was validated with a test set of 32 stick animal figures, each one processed
five times to amortize the fluctuations produced by the Temperature’s noise and the many
possible scan paths. The categorization was correct 120 times, so we had 75% of correct answers.
Furthermore, the system used an average number of saccades equal to three to perform these
categorizations, which is comparable to humans. The performance of other systems was: Linear
Discriminant Analysis: 87%, Gaussian NaiveBayes Classifier: 90%, Decision Tree: 68%. These
classifiers were trained on vectors composed by nine float values that uniquely identify a stick
animal (see (Olman and Kersten, 2004)). These values represent the feet angles, body height,
body angle, tail length, tail angle, neck length, neck angle, head length and head angle of the
corresponding animal. Note that these classifiers were directly trained using these vectors where
as our system processes only the visual input through the described feature descriptors. The
same learning and test phase structures were used with both these classifiers and our system.

We report below two plots that show the dynamics of the categorization process (Fig. 4 and
Fig. 5). The following overlap measure between the resources network’s configuration at time t
and a predictors’ attractor is defined:

mµ(t) =
1
N

N∑
i=1

Aµi Ai(t) µ ∈ {CAT,DOG,GIRAFFE,HORSE} (9)

The overlap is a real number with mµ(t) ∈ [−1.0, 1.0]. Its maximum value is 1.0, which
corresponds to an identity between the current configuration and the predictors’ attractor µ. On
the other hand the overlap’s minimum value is −1.0, meaning that the the configuration at time
t and the predictors’ attractor µ are opposite.

In Fig. 4 and Fig. 5 we report the evolution in time of the overlap between the resources
network’s configuration and the four predictors’ attractors CAT, DOG, GIRAFFE and HORSE
during the categorization process. In certain time steps we also showed the starting and target
features of the successful predictor which took control of the fovea at that time. This was done in
order to show the dependence of the categorization’s dynamics on the current foveated features.

4There are fewer predictors belonging to the category CAT because the corresponding stick animals are smaller
and thus produced less saccades’ variability among the different predictors.
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Figure 4: Overlaps of the predictors’ attractors CAT (green), DOG (blue), GIRAFFE (magenta) and HORSE
(red) with the resources network’s configuration at each time step. Every time step we reported the starting
feature (cyan) and target feature (fuchsia) of the successful predictor which took control of the fovea. In this
example 3 saccades were necessary to build a rich enough configuration that led the resources network to recall the
proper predictors’ attractor GIRAFFE, ending with an overlap close to 1.0. In this example we have a stimulus
that can be considered unambiguous, because the predictors’ attractor GIRAFFE dominates the others since
early stages of the categorization process.

Indeed, as we will see, two different scan paths made on the same stick animal can bring two
different categorization’s dynamics and sometimes also to the recognition of different categories.

Fig. 4 shows a successful categorization where one predictors’ attractor dominates the others
from the beginning. On the other hand, Fig. 5 shows the categorization of a more ambiguous
stimulus that makes predictors’ attractors compete before a final decision can be taken. Overall,
the results of this simulation show that the proposed model achieves good classification perfor-
mance. Compared to other classification systems, the proposed method aims at reproducing key
dynamic and competitive aspects of the choice (see Fig. 4 and Fig. 5). The comparison between
the two situations shows that the model is sensitive to the amount of perceptual ambiguity.
In a situation with low uncertainty, the competition is resolved very early, whereas with high
ambiguity it requires more time, coherent with psychological models of drift-diffusion (Ratcliff,
1978; Ratcliff and Rouder, 1998).
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Figure 5: Categorization dynamics made on a stick animal categorized by humans as a DOG. Note how the
ambiguity of this stick figure keeps the overlaps close to each other until a final decision is taken, finally making
the system categorizes it as a DOG. Here more ambiguity implies also a larger number of saccades. Note also how
in the last two steps the network starts to repeat its configurations (i.e., reaches a predictors’ attractor) when the
choice is made.

3.2. Task 2: How sensorimotor processes and active vision influence choice
To observe how different scan paths made on the same stick animal can bring diverse catego-

rization results, we can compare the two categorization’s dynamics represented in Fig. 5 and Fig.
6 where two different saccadic sequences are executed on the same stick animal (a horse), but yet
lead to distinct categorization outcomes (DOG and HORSE). A study conducted by Kietzmann
et al. (2011) reported a similar effect: the experimenters were able to bias the categorization of
ambiguous figures by influencing the subjects’ scan-paths, and concluded that the actions (eye
movements) are constitutive of perception.

To better understand how this result emerges in our model, we now discuss in detail a
categorization example. We chose the ambiguous stick animal shown in Fig. 7. As we can see, it
is not easy to determine a priori what stick animal it represents, indeed our architecture sometime
categorizes it as a CAT and sometimes as a DOG. To underline how much different scan paths
can bring the categorization process to different results we will manually augment the probability
of activating some predictors instead of others. To implement this idea we can increase the base
resources Bi of these predictors (that before was assumed to have a value zero giving the same
absolute relevance to all predictors). Considering the presence of the noise produced by the
system’s Temperature, this will increase the probability of doing saccades among some chosen

18



Figure 6: In this figure we reported the categorization dynamics made on the same stick animal as in Fig.5 but
with a different sequence of foveated features. As we can see this brought the architecture to recognize a HORSE
instead of a DOG. So the category of a stick animal is not absolute and strictly depends on the sequence of the
foveated features.

features.
As we can guess from Fig. 7, the set of boosted predictors has a strong influence on the

categorization results. Indeed if we increase the base resources Bi of predictors belonging to the
category DOG the ambiguity is broken and the stick animal is categorized as a DOG; symmet-
rically if we increase the base resources of predictors belonging to the category CAT the stick
animal is categorized as a CAT.

Among ten different scan paths if Bi = 0 ∀i ∈ [1, N ] we found a mixture of DOG’s
categorizations and CAT’s categorizations. This is reflected in Fig. 7 by the average overlaps
represented in blue (DOG) and green (CAT) with circle data points. On the contrary if the
number of predictors belonging to the category DOG, with an assigned value of base resources
Bi equal to b, is greater than c (| i ∈ [1, N ] s.t. ADOGi = 1 and Bi = b |> c), where we set
c = 7 and b = 0.23 5, the system categorizes DOG in all the ten runs, as we can see from the

5Here the value 7 for c and the value 0.23 for b were chosen manually to show that a small number of predictors
with a little additional amount of activation are enough to change the overall system behavior.
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Figure 7: Average overlaps over ten categorizations of the stick animal reported above. Average dynamics of the
unbiased system with Bi = 0 for all predictors represented together with the dynamics with the biased system
with Bi 6= 0 for some predictors. As we can see augmenting the probability to visit some features instead of
others has a strong influence on the categorization process. Note that the unbiased categorizations for this stick
animal requires to perform an additional saccade.

average overlaps represented with square data points in Fig.7 (the case of the category CAT is
the same as the DOG case). Although this is not reported in detail here, the same test was
performed on many other ambiguous stimuli and yielded the same results. Overall, the results
of this simulation show that the active perception loop can influence the categorization process;
by eliciting different action-outcome sequences, evidence is accumulated in different ways and
the system can fall in distinct attractors. This implies that different sequences of saccades might
lead to different categorizations, as shown experimentally (Kietzmann et al., 2011).

3.3. Task 3: How morphed stimuli influence choice
Akrami et al. (2009) report a study involving two macaques performing a 2-alternative-forced-

choice delayed-match-to-sample (2AFC-DMS) task, consisting in categorizing a set of pictures.
In each trial they started from two different pictures, among a complete set of stimuli, and
produced a set of morphed variants of them. The monkeys’ task was to choose the most similar
picture to the morphed variants among the two original pictures. A linear relation between the
number of times the monkeys chose one of the original pictures, taken as reference category, and
the morphing parameter used to produce the stimuli was found (except for the extreme morphing
values leading to variants close to the original images).
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Figure 8: Result of the linear regression computed for the proportion of times the system chose the reference
category (morphing parameter 8) as a function of the morphing parameter. The slope of the line is 0.149. Error
bars represent mean values and standard deviations for the 60 simulations performed. The series of morphed stick
animals is arbitrary and simply illustrates the morphing.

To underline the cognitive plausibility of our proposal we tested our architecture on a very
similar task. We randomly chose 12 pairs of our stick animals and produced 7 morphed variants
for each of them. The original stick animal taken as reference has a morphing parameter 8 and the
other original stick animal has a morphing parameter 0. All the remaining values between these
two extremes represent the corresponding morphed variants of the two original stick animals (see
Fig. 8). For each of the 12 pairs we performed 5 simulations where our architecture categorized
the 9 possible images (the 2 originals plus the 7 variants). In each trial, instead of keeping the
four possible predictors’ attractors memorized as before, we memorized only the two predictors’
attractors representing the two target categories. Using linear regression we found the same
kind of linear relation as in (Akrami et al., 2009) between the average proportion of times our
architecture chose the reference category (among 60 simulations) and the values of the morphing
parameter.
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Figure 9: Result of the linear regression computed for the proportion of active predictors belonging to the reference
category (morphing parameter 8) as a function of the morphing parameter. The slope of the line is 0.043. Errors
bars represent mean values and standards deviations for the 60 simulations performed.

Akrami and her colleagues also recorded the neural activity of the macaques’ neurons with
an effective response to the reference category. A linear relation between the neural population
responses, averaged across trials, and the morphing parameter used to produce the stimuli was
found also in this case (still taking apart the extreme values close to the original images). We
found a similar result measuring the proportion of active predictors belonging to the reference
category averaged among 60 simulations. The resources network configuration considered here
is the one before a predictors’ attractor is reached. As we can see from Fig. 9 there is a linear
relation between the average proportion of active predictors belonging to the reference category
and the morphing parameter. Overall, the results of this simulation show that, similar to the
study of Akrami et al. (2009), there is a linear relation between the morphing parameter and the
response of the predictors in the proposed model.

Although our task is similar to the one described above, there are some differences between
the behavioral task performed by the monkeys and the task performed by our architecture. First
our task is not a 2AFC-DMS, in fact only one stimulus to categorize is used as input in each trial.
This implies that in our case there is no decision about the similarity of two images because in
each trial the category of a single image has to be determined. Then the role of the two original
images used in one trial of the task performed by the macaques is asymmetrical. Indeed, they
recorded the activity of neurons that were giving an effective response to only one of the two
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images (defined as ”Eff image” in Akrami et al., 2009). In our task instead the role of the
two original images used in one trial is fully symmetric because both corresponding predictors’
attractors are stored before the architecture performed the task.

In their work an attractor neural network is presented to model the behavioral task performed
by the two monkeys. Although our resources network is a Hopfield-like network too the attractor
predictors network adds other interesting features compared with classical neural networks. One
is the role played by prediction, implemented in the predictors’ activities. Moreover a visual
attention controller is distributed among these competing predictors. Finally their neural net-
work stores uncorrelated random patterns. On the contrary in the resources network the stored
predictors’ attractors are learned from a set of stimuli and they represent the long term activity
of successful predictors for a certain category.

3.4. Further analyses: how categorization depends probabilistically on the choice of saccade se-
quences

In the proposed system, the likelihood of a categorization depends on the sequence of saccades
selected to visually explore the object. In more formal terms, one can assign to each saccadic
sequence a probability that it will lead to the recognition of a certain category (see Fig. 10).
Indeed saccadic sequences are not all equivalent because, as we observed in our simulations, the
features’ triples (F src, S, F tgt) of predictors can be less or more informative. Triples that are
represented by predictors belonging to all the categories can be considered as non informative
since their application can support all the hypotheses at the same time, thus not contributing
to one category in contrast to the others. On the other side the application of a triple that is
codified by predictors belonging to only one category is clearly supporting the recognition of
only that category. To give an example taken from our experiments we found triples codifying a
very long neck (head and torso features linked by a very long saccade) represented by predictors
belonging only to the GIRAFFE category. On the other hand we found the legs or the tail to be
less informative.

To fully characterize the observations made above, on the basis of all the simulations described
here, we computed such probability distributions to exploit the relation between predictors in-
volved during a scan path and the category recognized when it is executed. As we can see in Fig.
10, the probability that a saccadic sequence will bring the system to choose a certain category
is proportional to the number of predictors that belong to that category involved in the catego-
rization process. Fig. 10 shows that when more that one third of the predictors that control a
scan path belongs to a certain category, that category has a high probability to be chosen by
the system. The results of this analysis are compatible with active perception and sensorimotor
theories that link categorization to “the mastery of the sensorimotor contingencies” that govern
object exploration (O’Regan and Noe, 2001). In the proposed system, sensorimotor contingen-
cies can be conceptualized in probabilistic terms as sequences of features triples (F src, S, F tgt);
see also (Maye and Engel, 2011). Our results show that (so-defined) sensorimotor contingencies
play an important role for the categorization. Further analyses are necessary to assess how much
information needs to be conveyed by sensorimotor contingencies for determining a categorization,
and if and when there is a phase structure in the categorization (e.g., in Fig.10 0.3 seems to be
a critical value).

4. Conclusions

We presented a computational theory of perceptual categorization that elaborates on the
widespread idea of evidence accumulation but includes elements of grounded and sensorimotor
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Figure 10: In this figure we reported the probability to recognize a certain category as a function of the frequency
in a scan path of that category’s predictors. To compute this probability we processed data from all the 160
simulations performed to evaluate the success rate of the architecture. To obtain the frequencies we divided the
number of predictors of a certain category that produced a scan path by the length of the path. Then to compute
the corresponding probability we analyzed how many times a certain frequency brought to the recognition of a
category instead of another. We observe that the probability that a saccadic sequence will bring the system to
choose a certain category is proportional to the number of predictors that belong to that category involved in the
categorization process.

theories of cognition to determine what is the conceptual content (and counts as evidence) for
the choice, and how this information is elicited during the decision.

The proposed model is based on three key hypotheses: (1) action dynamics shapes the ongo-
ing categorization; (2) evidence accumulation and action guidance are both based on prediction
success; (3) evidence accumulation follows attractor dynamics that mimics structured agent-
environment interactions. The specific implementation of the proposed model is based on a net-
work of sensorimotor predictors that encode category-specific regularities and permit re-enacting
them during visual exploration. Hopfield networks were selected as models of this process given
their prominence in modeling memory dynamics (Amit et al., 1997; Miyashita and Chang, 1988;
Sakai and Miyashita, 1991).

The model retains essential aspects of diffusion-to-bound (Ratcliff, 1978; Ratcliff and Rouder,
1998) and related models (Lepora et al., 2013; Usher and McClelland, 2001); still it has several
elements of novelty. In particular, the proposed model incorporates sensorimotor dynamics that
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are disregarded in other approaches. While in diffusion-to-bound models what is accumulated
over time is a sensory evidence, in the proposed model what is accumulated are the category-
specific predictions, which in turn are generated by the re-enactment of action-outcome pairs
associated to the category. Furthermore, while in diffusion-to-bound models evidence is accumu-
lated passively, the proposed model uses active perception to select the next sensory evidence.

The simulations we performed show that the model can achieve good performance while at
the same time reproducing key aspects of perceptual decisions such as an appropriate sensitivity
to ambiguity and other characteristics of the stimuli (e.g., morphing coefficients), and a de-
pendency of the categorization from the sensorimotor contingencies elicited while exploring the
to-be-categorized stimulus. Our model assumes that when possible active vision is used to select
the next saccade and the next stimuli to attend, as the active selection of stimuli is plausibly an
important aspect of naturalistic choices (Ballard, 1991). Even so, we recognize that the active
selection of stimuli is not a necessary requirement and it is certainly possible to recognize cate-
gories without doing any saccades (for example, when objects are presented briefly). Recognizing
a category without doing saccades is possible in our model by activating several (or even all)
predictors that link to the currently available portion of the image and without using the active
vision part of the model, which would plausibly imply a decrease in the model performance.

An open objective for future research is refining the active perception process so that it elicits
the most relevant and informative evidence. Indeed, in the proposed model not all interactions
are informative for a decision, but only those that lead to bifurcations of the categorization
dynamics, and future extensions of the model should consider this aspect. Another objective for
future research is applying the method to more complex choice scenarios by incorporating realistic
feature descriptors and by studying how sensorimotor patterns can encode the hidden structure
of complex objects. Furthermore, the model can be extended by using interoceptive and affective
codes (rather than only perceptual and motor codes) that are elicited during the interaction with
objects in the same way perceptual and motor codes are (Barsalou and Wiemer-Hastings, 2005;
Pezzulo, 2013).

A final objective for future research is exploring the putative brain correlates of the proposed
model. This is not an easy task, since the attractor predictors network is a hybrid architecture
that combines different mechanisms. In fact the resources distribution system uses a neural
model (an Hopfield network), while predictors have a more procedural nature that encodes
simple sensorimotor computational modules, which are not directly implemented as a neural
network. Despite that, a characteristic of the proposed model is that active perception and
decision processes are tightly linked. Recent research on perceptual choices reveals that the
neuronal circuits involved in saccade and attention control (e.g., the lateral intraparietal area of
monkeys) are also involved in decision-making and in particular they show neuronal signatures of
evidence accumulation for the choice alternatives (Gold and Shadlen, 2001, 2007), even in tasks
requiring the acquisition of novel arbitrary associations between visual stimuli and actions (Tosoni
et al., 2008). Further evidence supports a continuous flow model according to which evidence
is continuously feed to and used by motor areas even before the decision is completed (Coles
et al., 1985). This body of evidence suggests that perception, decision and action are not staged
and segregated processes, which is consistent with our assumption that categorization requires
continuous interactions between them. It remains to be tested if the bidirectional interactions
between categorization dynamics and the choice of action movements (e.g., saccades) postulated
in our model are realistic and which brain networks support them.

Another characteristic of the proposed model is that it uses predictive information elicited
by action-outcome pairs for the categorization. A series of studies have demonstrated that the
visual appearance of objects primes motor programs and activates neural responses in motor areas
of the brain (Chao and Martin, 2000; Tucker and Ellis, 2004); these activations could provide
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the necessary predictive information for our model to function. Our model would predict that
categorization should be impaired if these automatic motor responses are suppressed. Evidence
exists that interfering with the perceiver’s motor activity influences the recognition of actions
performed by others (Kilner et al., 2003) and can influence the categorization of ambiguous
figures (Kietzmann et al., 2011) but further studies are necessary to fully assess the role of action
prediction mechanisms in categorization.

4.1. Linking grounded and sensorimotor theories of cognition with dynamic models of choice
Another novelty of our model is that it reconnects grounded and sensorimotor theories of cog-

nition with dynamic models of choice. A prominent view in grounded cognition is the Perceptual
Symbol Systems (PSS) theory, which is based on the two concepts of perceptual symbols (records
of the neural activation that arises during perception (Barsalou, 1999, p. 583)) and simulators
(multimodal frames of perceptual symbols which afford motor control, representation, and cate-
gorization). In this framework, categorization consists in the (partial) re-enactment of simulators
and its associated perceptual symbols, which in turn re-creates the experience associated with
the original acquisition of the concept while at the same time situating it in the current sensori-
motor context (this is why it can be referred to as a situated simulation (Barsalou, 2003)). This
theory provides a coherent framework that also somewhat subsumes prototype and exemplar
theories, because both can emerge from the dynamics of situated simulations. Furthermore, it
also explains ad-hoc categories (e.g., fruits vs. things that could be useful for camping) that can
be formed de novo based on an agent’s goals (Barsalou, 1983).

The original PSS theory (Barsalou, 1999) focuses principally on the importance of multimodal
perceptual codes for categorization; more recent developments of the theory also highlight the
importance of action codes and predictions (Barsalou, 2009; Pezzulo et al., 2011) as well as
of interoceptive and affective codes, especially for processing abstract concepts (Barsalou and
Wiemer-Hastings, 2005; Pezzulo, 2013). This implies that according to PSS the architecture of a
concept is constituted by a multifarious set of modal codes. However, the theory does not fully
specify which elements are stored in the perceptual symbols and what are the mechanics of re-
enactment and situated simulations (e.g., during a perceptual categorization task). Our model
proposes that the stored perceptual symbols largely correspond to action-outcome links that
are (typically) elicited during situated interactions, and simulators organize them into (longer)
sequences that encode characteristic patterns of multi-modal interactions, and which in our model
are linked to predictors’ attractors.

We also argue that the dynamics of simulators are linked to two key phenomena. On the one
hand, simulators follow attractor dynamics, where attractors are essentially a powerful mecha-
nism for encoding and re-enacting category-specific information (Pezzulo and Calvi, 2011). On
the other hand, situated simulations are guided by active perception dynamics that elicit task-
relevant information rather than collecting it in a purely bottom-up way (Ballard, 1991; Hayhoe
and Ballard, 2005; Rothkopf et al., 2007; Yarbus, 1967). As a result, our model fuses elements of
grounded and sensorimotor theories of cognition with dynamic models of decision-making, which
are up to now disconnected but address categorization from different and potentially comple-
mentary perspectives.
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