1,003 research outputs found

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    A Design Methodology to Optimize Supply Chain Network Performance

    Get PDF
    Organizations are constantly looking for new ways to reduce costs while still providing high customer service levels to face stringent competitive environments and the ever- increasing market globalization. An alternative these organizations can pursue to respond to these challenges and to gain a competitive differentiation is to optimize their supply chain network (SCN). This research aims to develop an effective SCN design strategy to locate facilities (i.e., plants and distribution centers) and to balance the allocation of customers to these facilities to satisfy capacity limitations and customer demands with minimum total cost and maximum level of service. It is anticipated that the results of this research will improve the strategic decision making of a manufacturing firm when locating facilities or redesigning the SCN and allow decision makers to determine tradeoffs among the organization’s conflicting criteria

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    A Multi-Objective Optimization for Supply Chain Network Using the Bees Algorithm

    Get PDF
    A supply chain is a complex network which involves the products, services and information flows between suppliers and customers. A typical supply chain is composed of different levels, hence, there is a need to optimize the supply chain by finding the optimum configuration of the network in order to get a good compromise between the multi-objectives such as cost minimization and lead-time minimization. There are several multi-objective optimization methods which have been applied to find the optimum solutions set based on the Pareto front line. In this study, a swarm-based optimization method, namely, the bees algorithm is proposed in dealing with the multi-objective supply chain model to find the optimum configuration of a given supply chain problem which minimizes the total cost and the total lead-time. The supply chain problem utilized in this study is taken from literature and several experiments have been conducted in order to show the performance of the proposed model; in addition, the results have been compared to those achieved by the ant colony optimization method. The results show that the proposed bees algorithm is able to achieve better Pareto solutions for the supply chain problem

    An Integrated Model for Optimization of Production-Distribution inventory Levels and Routing Structure for a Multi-Period, Multi-Product, Bi-Echelon Supply Chain

    Get PDF
    In many multi-stage manufacturing supply chains, transportation related costs are a significant portion of final product costs. It is often crucial for successful decision making approaches in multi-stage manufacturing supply chains to explicitly account for non-linear transportation costs. In this paper, we have explored this problem by considering a Two-Stage Production-Transportation (TSPT). A two- stage supply chain that faces a deterministic stream of external demands for a single product is considered. A finite supply of raw materials, and finite production at stage one has been assumed. Items are manufactured at stage one and transported to stage two, where the storage capacity of the warehouses is limited. Packaging is completed at stage two (that is, value is added to each item, but no new items are created), and the finished goods inventories are stored which is used to meet the final demand of customers. During each period, the optimized production levels in stage one, as well as transportation levels between stage one and stage two and routing structure from the production plant to warehouses and then to customers, must be determined. We consider “different cost structures,” for both manufacturing and transportation. This TSPT model with capacity constraint at both stages is optimized using Genetic Algorithms (GA) and the results obtained are compared with the results of other optimization techniques of complete enumeration, LINDO, and C-plex

    A Multi-Stage Supply Chain Network Optimization Using Genetic Algorithms

    Get PDF
    In today's global business market place, individual firms no longer compete as independent entities with unique brand names but as integral part of supply chain links. Key to success of any business is satisfying customer's demands on time which may result in cost reductions and increase in service level. In supply chain networks decisions are made with uncertainty about product's demands, costs, prices, lead times, quality in a competitive and collaborative environment. If poor decisions are made, they may lead to excess inventories that are costly or to insufficient inventory that cannot meet customer's demands. In this work we developed a bi-objective model that minimizes system wide costs of the supply chain and delays on delivery of products to distribution centers for a three echelon supply chain. Picking a set of Pareto front for multi-objective optimization problems require robust and efficient methods that can search an entire space. We used evolutionary algorithms to find the set of Pareto fronts which have proved to be effective in finding the entire set of Pareto fronts.Comment: 12 pages, 4 figure

    Resolving forward-reverse logistics multi-period model using evolutionary algorithms

    Get PDF
    © 2016 Elsevier Ltd In the changing competitive landscape and with growing environmental awareness, reverse logistics issues have become prominent in manufacturing organizations. As a result there is an increasing focus on green aspects of the supply chain to reduce environmental impacts and ensure environmental efficiency. This is largely driven by changes made in government rules and regulations with which organizations must comply in order to successfully operate in different regions of the world. Therefore, manufacturing organizations are striving hard to implement environmentally efficient supply chains while simultaneously maximizing their profit to compete in the market. To address the issue, this research studies a forward-reverse logistics model. This paper puts forward a model of a multi-period, multi-echelon, vehicle routing, forward-reverse logistics system. The network considered in the model assumes a fixed number of suppliers, facilities, distributors, customer zones, disassembly locations, re-distributors and second customer zones. The demand levels at customer zones are assumed to be deterministic. The objective of the paper is to maximize the total expected profit and also to obtain an efficient route for the vehicle corresponding to an optimal/near optimal solution. The proposed model is resolved using Artificial Immune System (AIS) and Particle Swarm Optimization (PSO) algorithms. The findings show that for the considered model, AIS works better than the PSO. This information is important for a manufacturing organization engaged in reverse logistics programs and in running units efficiently. This paper also contributes to the limited literature on reverse logistics that considers costs and profit as well as vehicle route management

    Location-inventory-routing model with considering urban road networks

    Get PDF
    Purpose: To develop LIRP (location-inventory-routing problem) model with considering multiple links and solve it using method of heuristic based on algorithm of simulated annealing. Method of heuristic for the LIRP model is applied in city of Jakarta to improve effectiveness and efficiency of the food supply chain. Design/methodology/approach: The LIRP model is developed using main references. To solve the model, this paper develops two methods, namely method of optimal and method of heuristic. Computational experiments are performed to obtain the efficiency of the method of heuristic. New design of food supply chain is resulted from the application of the method of heuristic in city of Jakarta. Findings: The new design of food supply chain resulted from the application of LIRP model in city of Jakarta reduces total cost by 18%, increases availability from 76% to 95%, and reduces the number of vehicles by 73%. This paper also shows that distance is not the only consideration to decide the traversed links in cities. Research limitations/implications: Average gap between method of heuristic and method of optimal in terms of total cost is 3.1%. Practical implications: Government of city of Jakarta can improve effectiveness and efficiency of the food supply chain by implementing the LIRP model. Social implications: Citizens of Jakarta are well provided with their needs of vegetables and fruits. Originality/value: The first LIRP model that considers multiple links to represent road networks in cities. The LIRP model developed in this paper consists of probabilistic demands, multi products, and multi echelons. Traditional markets, UCCs (urban consolidation centers) and province of suppliers are the places where decisions of inventory madePeer Reviewe

    Multi-objective Dual-Sale Channel Supply Chain Network Design Based on NSGA-II

    Get PDF
    [[abstract]]In this study, we propose a two-echelon multi-objective dual-sale channel supply chain network (DCSCN) model. The goal is to determine (i) the set of installed DCs, (ii) the set of customers the DC should work with, how much inventory each DC should order and (iv) the distribution routes for physical retailers or online e-tailers (all starting and ending at the same DC). Our model overcomes the drawback by simultaneously tackling location and routing decisions. In addition to the typical costs associated with facility location and the inventory-related costs, we explicitly consider the pivotal routing costs between the DCs and their assigned customers. Therefore, a multiple objectives location-routing model involves two conflicting objectives is initially proposed so as to permit a comprehensive trade-off evaluation. To solve this multiple objectives programming problem, this study integrates genetic algorithms, clustering analysis, Non-dominated Sorting Genetic Algorithm II (NSGA-II). NSGA-II searches for the Pareto set. Several experiments are simulated to demonstrate the possibility and efficacy of the proposed approach.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙
    corecore