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Highlights1

• The problem of designing a closed loop supply chain is addressed.2

• Simultaneous pickup and delivery as well as time windows are considered.3

• A bi-objective integer linear mathematical model is proposed.4

• The performance of NSGA-II and NRGA are compared to solve the problem.5
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Abstract. Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’13

rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and14

move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed15

loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle16

pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this17

paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well18

as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find19

the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the20

optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from21

the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms22

in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.23

24

Keywords. Network design, Closed loop supply chain, Periodic location-routing problem, Simultaneous pickup and delivery,25

Time window, Bi-objective.26

1 Introduction27

The retail e-commerce sales worldwide is estimated to almost quadruple from 2014 to 2021 (Statista, 2019) and the so-called28

Amazon effect has disrupted the way customers shop, bringing about massive challenges to the retail managers around the globe.29

As a result, retailers need to re-engineer their last mile delivery to keep up with the rapid change in the market and to have30

a sustainable business. A major challenge for retailers is return management which is estimated to cost £60 billion and $26031

billion to British and American retailers a year (Financial Times, 2016; CNBC, 2016) due to product damage, obsolescence and32

devaluation. This phenomenon is often called ”return tsunami” which refers to an ever-increasing number of customers who are33

willing to try a product before deciding on buying them or not. Meanwhile, poor return options can lead to ”basket abandonment”34

which can even lead to brand abandonment in the fiercely competitive markets of the 21st century. Additionally, there is a35

growing amount of pressure from consumers and non-profit organisations urging the need for incorporating circular economy36

throughout a product’s life-cycle. This has led to a proliferation of studies on circular economy and motivated investments by37

governments such as AC320 billion of circular economy investment opportunities for Europe (SYSTEMIQ, 2017) and the Circular38

Economy Investment Fund by Zero Waste Scotland (Zero Waste Scotland, 2019) to find ways to incorporate circular economy39

concepts into supply chain processes. An efficient reverse logistics process has benefits for retailers such as enhanced supply40

chain transparency, improved visibility, increased profit and higher customer satisfaction levels. However, managing an efficient41
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reverse logistics network imposes some unique challenges ranging from the difficulty of having accurate forecasts to finding the42

optimal network design.43

Companies can opt for a full combination or a full separation of their forward and reverse logistic activities or take a position44

in between the two extremes (Hansen et al., 2018). Regardless of the stance a company takes, network design is the most45

indispensable decision to be made to enable a company meet its long-term strategic goals and be resilient against uncertainties46

in the market. Supply Chain Network Design (SCND) is the problem of creating a network that incorporates all the facilities47

and transportation vehicles, aiming at reducing the overall cost of the supply chain and increasing the availability of products48

(Kheirabadi et al., 2019). SCND provides fundamental and underlying support for other supply chain operations and activities49

(Zhang et al., 2016). One component of SCND which has been studied extensively in the literature is the vehicle routing50

problem (VRP) which seeks to find the optimal routes for a set of homogeneous/heterogeneous vehicles to serve customers51

with the minimal cost (or another objective). A practical version of VRP is the VRP with Simultaneous Pickup and Delivery52

(VRPSPD) with variants such as VRPSPD with time windows (Wang et al., 2015), multi-depot VRPSPD (Li et al., 2015),53

heterogeneous VRPSPD (Avci and Topaloglu, 2016) and two-echelon VRPSPD (Belgin et al., 2018). However, separating the54

decision of finding the optimal locations for depots and the set of routes for the vehicles is known to lead to sub-optimal solutions55

(Salhi and Rand, 1989; Prodhon, 2011). Location Routing Problem (LRP) handles these two problems simultaneously and56

streamlines the logistics management process even further. It has wide variety of applications in emergency logistics (Zhang57

et al., 2018) and supply chain management (Bagheri Hosseini et al., 2019) and has variants such as LRP with time windows58

(Ponboon et al., 2016), time-dependent LRP (Schmidt et al., 2019) and multi-echelon LRP (Vidović et al., 2016; Dai et al.,59

2019).60

In this paper and in order to design the network of a retailer, we address a relatively new variant of LRP called Periodic61

Location Routing Problem (PLRP) which was first introduced by Prodhon (2008) and integrates simultaneous pickup and62

delivery with the classical LRP. We contribute to the literature by presenting an integer linear mathematical model for this63

problem and applying two efficient bi-objective solution algorithms, namely NSGA-II and NRGA, to compare their performance64

on a set of standard test problems. The problem seeks to find the optimal location for a set of depots, allocation of service65

days to the customers and to find routes for a set of homogeneous vehicles to serve customers. The goals are minimising the66

overall cost of network design and operation as the first and minimising violations from the times specified by the customers as67

the second. Two prime applications of our problem is in the beverage industry where firms not only distribute products over a68

number of days (periods), but also collect packaged materials for the sake of reuse or disposal as well as electronic and electrical69

equipment (personal computers, toasters, dishwashers and vacuum cleaners to name a few) for which the collection and disposal70

is part of the retailers/distributors responsibility in the UK (to either provide a free take back service or to set up an alternative71

free take back service (Gov.UK, n.d.)).72

The paper commences by first providing an overview of the published literature on location-routing problem and reverse73

logistics in Section 2. This will be followed by presenting a mathematical model for our problem in Section 3 before the solution74

procedures are discussed in Section 4. We will present a set of computational experiments in Section 5 and conclude the paper75

in Section 6 providing some avenues for future research.76
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2 Related work77

As far as we are concerned, Webb (1968) and Christofides and Eilon (1969) were the first scholars incorporating routing costs78

into location problems. Since a comprehensive review of the location routing problem is beyond the scope of our paper, interested79

readers can refer to Nagy and Salhi (2007); Prodhon and Prins (2014) and Drexl and Schneider (2015) and references therein for80

a better understanding of LRP and its variants. In this section, we review the most relevant publications to ours and position81

our study in the literature, explaining how it contributes to the field.82

Periodic LRP (PLRP) is one of the widely-applicable variants of LRP addressing a problem where decisions are made over83

multiple periods, say days. Prodhon and Prins (2008) was the first to pay attention to this problem and used a memetic algorithm84

with population management to solve it. Later, Pirkwieser and Raidl (2010) applied a large variable neighbourhood search to85

solve PLRP and Prodhon (2011) developed a new mathematical model for PLRP utilising a hybrid evolutionary algorithm as86

the solution method based on an extended local search and the Clarke & Wright algorithm. Despite the significance of time87

windows and pickup/delivery inclusion in a periodic LRP context, none of the aforementioned studies included these two.88

A mixed integer mathematical model for multi-period closed-loop supply chain was proposed by Demirel et al. (2014) assuming89

multiple periods and multiple parts. They investigated two policies, namely secondary market pricing and incremental incentive90

policy and proposed models for the crisp and fuzzy versions of the problem. Nasherahkami et al. (2015) proposed a model for91

periodic location routing problem where the predefined demand of customers in each period can decrease due to a violation92

of time windows in the previous periods. In their model of periodic location problem, the aggregate lost demand costs over93

multiple periods is minimised. Hemmelmayr et al. (2017) considered the collaborative recycling concept in the periodic location94

routing problem as a variant of PLRP in which one decides the set of depots to open, the capacity of depots to open and the95

visit frequency of the nodes in an effort to design networks for collaborative pickup activities. The flexible periodic location96

routing problem was another extension of the classical PLRP which was studied by Archetti et al. (2017). They assumed that97

each customer has a total demand to serve within a given time horizon and that there is a limit on the maximum quantity that98

can be delivered in each visit. Their problem has some similarities with the Inventory Routing Problem (IRP) where inventory99

levels are considered at each time period incurring additional cost in the objective function.100

The LRP with time windows (LRPTW) constraint has been addressed in some publications. Nikbakhsh and Zegordi (2010)101

suggested a non-linear model with two layers and proposed an or-based heuristic to solve it. Gündüz (2011) developed a single-102

stage LRP with time windows, for which a Tabu search heuristic was proposed. Zarandi et al. (2011) introduced a model for a103

capacitated location routing problem (CLRP) with time windows and uncertainty on demands and travel times. They developed104

a simulated annealing procedure based on initial solutions generated using fuzzy c-means clustering method.105

In some applications of LRP, there is a need for simultaneous pickup and delivery (LRPSPD) of customers’ orders at the106

same time. It has numerous applications such as dial-a-ride problems, distribution and collection of products to and from central107

warehouses and delivery of express courier. To the best of our knowledge, Mosheiov (1994) was the first article published on a108

problem related to LRPSPD where pickup and delivery were considered for a travelling salesman problem with stochastic demand.109

However, the general form of the LRPSPD, called many-to-many LRP (MMLRP), originates from Nagy and Salhi (1998). A110

flow-based LRPSPD was introduced in Karaoglan et al. (2011) disregarding the number of vehicles and employing a branch and111

cut algorithm to solve it. Later, Karaoglan et al. (2012) developed a node-based model alongside the arc criterion for LRPSPD112

and proposed a heuristic approach inspired by simulated annealing to solve large-size LRPSPDs. In a last-mile delivery setting,113
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a novel LRP with simultaneous home delivery and customer’s pickup was investigated in Zhou et al. (2016). They presented114

a hybrid evolutionary algorithm by combining genetic algorithm and local search to solve the problem. Demircan-Yildiz et al.115

(2016) addressed the two-echelon LRPSPD (2E-LRPSPD) which deals with optimally locating primary and secondary facilities116

by collecting from customers and delivering goods from distribution centres. They presented flow-based and node-based mixed117

integer mathematical models and demonstrated the efficiency of the flow-based model through a set of numerical experiments.118

Yu and Lin (2016) addressed the location-routing problem with simultaneous pickup and delivery using simulated annealing. A119

low-carbon location routing problem with heterogeneous fleet, simultaneous pickup and delivery and time windows was studied120

in Wang and Li (2017) with a two-phase heuristic based on variable neighbourhood search and genetic algorithm presented.121

A variant of LRP was studied in Karimi (2018) where a capacitated hub covering location-routing problem for simultaneous122

pickup and delivery was modelled. A tabu-search based heuristic and valid inequalities were suggested as solution algorithms to123

determine the hub location and vehicle routes simultaneously. Recently, Nadizadeh and Kafash (2019) addressed a capacitated124

LRPSPD with fuzzy demand and put forward a greedy clustering as a solution method. A multi-objective mathematical model125

in the context of industrial hazardous waste management was investigated to address the integrated decisions of three levels126

with locating, vehicle routing, and inventory control by Rabbani et al. (2019) in presence of stochastic parameters. A sim-127

heuristic approach as an integration of Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Monte Carlo simulation128

was developed to solve the stochastic problem and the efficiency of the proposed model was verified. A bi-level multi-sized terminal129

location-routing problem (BL-MSTLRP) with simultaneous home delivery and customer’s pickup services was proposed in Zhou130

et al. (2019) and a self-adaptive hybrid genetic algorithm with simulated annealing was used to solve the problem. A column131

generation algorithm was addressed to solve LRP with pickup and delivery problem in Capelle et al. (2019). Although their132

proposed algorithm performed better than Karaoglan et al. (2011) especially for large-size instances, time windows are not133

included in their study and customer satisfaction is neglected.134

From what said, we conclude that in general, there is a paucity of research on bi-objective location-routing problems and135

there is no study combining PLRP with time windows and simultaneous pickup and delivery in a bi-objective setting. Table 1136

juxtaposes our model with the published literature on PLRP for the sake of comparison. One can see from this table that none137

of these publications have addressed a bi-objective PLRP with simultaneous pickup and delivery in presence of time windows.138

Hence, our research contributes to the literature by putting forward the first periodic closed loop (forward and backward) model139

as a bi-objective mathematical optimisation problem with simultaneous pickup and delivery and time windows. We call this140

problem Periodic Closed Loop Network Design Problem (PCL-NDP) and compare the performance of two well-known algorithms141

to solve this problem. Since there is no existing benchmark in the literature for our problem, we adopted a set of test instances142

from the literature and analysed the results of the algorithms based on five metrics.143
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Table 1: Comparing our research with the published literature on PLRP
Paper Periodic LRP Bi-objective Simultaneous P/D Time windows Solution algorithm
Prodhon and Prins (2008) X Memetic
Prodhon (2009) X Hybrid evolutionary
Pirkwieser and Raidl (2010) X VNS
Prodhon (2011) X Hybrid evolutionary
Hemmelmayr (2015) X LNS
Nasherahkami et al. (2015) X X LNS
Koç (2016) X X LNS
Hemmelmayr et al. (2017) X Heuristic
Archetti et al. (2017) X Valid inequalities
Amiri et al. (2019) X X Exact
Our model X X X X Genetic Algorithm

Notes. VNS: Variable Neighbourhood Search; LNS: Large Neighbourhood Search144

2.1 Contributions of the paper145

Our paper contributes to the academic literature by filling major gaps and putting forward a mathematical model for a closed loop network146

design problem. It is the first attempt to address a periodic location routing problem with two conflicting objectives, simultaneous pickups147

and deliveries and time windows to serve customers. We explicitly incorporated these three assumptions into a mathematical model and148

investigated the performance of two bi-objective solution algorithms, namely NSGA-II and NRGA to solve a set of test problems. The149

outputs of our model is useful in industries ranging from healthcare to retail.150

3 Mathematical formulation of PCL-NDP151

Let G = (V, E , C) be a complete, weighted and undirected graph in which V and E represent nodes and edges respectively and C is the set of152

travelling costs associated with the set of edges E . The set V is composed of two subsets I for customers and J for depots (not necessarily153

disjoint). Each customer has a combination of pickup (denoted as p) and delivery (denoted as d) orders to meet. We consider the case154

of homogeneous vehicles which means that each vehicle has a pre-determined capacity with a fixed operational cost which is identical for155

the vehicles. Moreover, there are fixed costs for opening depots and a capacity for pickup and delivery orders. Each customer can choose156

a combination of days to be served (for instance, one might choose Monday and Thursday while another customer might be more flexible157

choosing any day during the week but Tuesdays). The demand of each customer must be served on each day of exactly one combination of158

days and by one vehicle. All the parameters in the model are assumed to be deterministic and the deliveries are positive integers. Similar159

to the majority of the LRP applications, each route must begin from and end at the same depot on the same day while the capacity160

of the vehicle must be respected throughout the day. The goal is to find the set of depots to open among a set of potential locations,161

combinations of service days to allocate to each customer and the routes to take from each depot in each period, so two conflicting objectives162

are optimised. Firstly, the total cost of the system should be minimised and then, the total violation from the pre-defined times by the163

customers should be minimised. These two objectives are clearly conflicting in urban areas, since on-time delivery calls for investing in164

opening new depots and deploying vehicles. The overall cost of the network is composed of the costs for opening depots, the aggregate cost165

of deploying the set of vehicles and the operational costs of distributing and collecting products to/from customers. We have modelled the166

problem as a bi-objective integer linear programming model. In Tables 2-4, the notations are introduced and the mathematical formulation167

of the problem is given in the following.168
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Table 2: Sets
Symbol Definition
I Set of customers
J Set of depots
V = I ∪ J Set of all nodes
T Periods
Ri Set of combinations of service days to node i ∈ V

Table 3: Input parameters used in the model
Symbol Definition
art If day t ∈ T is in combination r ∈ Ri

cij Travel cost between nodes i ∈ V and j ∈ V
dirt Delivery quantity for customer i ∈ I in day t ∈ T and r ∈ Ri

pirt Pickup quantity for customer i ∈ I in day t ∈ T and r ∈ Ri

si Service time of customer i ∈ I
σ−i Lower bound of the time window for customer i ∈ I
σ+
i Upper bound of the time window for customer i ∈ I
τij Travel time between nodes i ∈ V and j ∈ V
φj Fixed cost of constructing depot j ∈ J
Φ Fixed cost of using a vehicle
ψj Capacity of depot j ∈ J
Ψ Capacity of a vehicle

Table 4: Decision variables used in the model
Symbol Definition
bir Binary variable which equals one if combination r ∈ Ri is assigned to customer i ∈ I
xijt = 1 If a vehicle travels directly from node i ∈ V to node j ∈ V in the period t ∈ T and zero otherwise
yj = 1 If depot j ∈ J is open and zero otherwise
zij = 1 If customer i ∈ I is assigned to depot j ∈ J and zero otherwise
uit Arriving time for a vehicle to customer i ∈ I in period t ∈ T
wikrst Auxiliary binary variable
αit Delivery load of a vehicle before having served customer i ∈ I in period t ∈ T
βit Pickup load of a vehicle after having served customer i ∈ I in period t ∈ T
θ−it Overall violation of the lower time bound for i ∈ I in the period t ∈ T
θ+it Overall violation of the upper time bound for i ∈ I in period t ∈ T

Using the above-defined parameters and variables, we present the formulation of a bi-objective integer linear mathematical model.169

min

[∑

i∈V

∑

j∈V

∑

t∈T
cijxijt +

∑

j∈J
φjyj +

∑

i∈I

∑

j∈J

∑

t∈T
Φxjit

]
(1)

min

[∑

i∈I

∑

t∈T
(θ−it + θ+it)

]
(2)
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∑

i∈V
xijt ≤ 1 ∀j ∈ V;∀t ∈ T ; i 6= j (3)

∑

i∈V
i6=j

xijt −
∑

i∈V
i6=j

xjit = 0 ∀j ∈ V;∀t ∈ T (4)

∑

j∈J
zij = 1 ∀i ∈ I (5)

xijt ≤ zij ∀i ∈ I;∀j ∈ J ;∀t ∈ T (6)

xjit ≤ zij ∀i ∈ I;∀j ∈ J ;∀t ∈ T (7)

xikt + zij +
∑

h∈J
j 6=h

zkh ≤ 2 ∀i, k ∈ I : i 6= k;∀j ∈ J ;∀t ∈ T (8)

∑

i∈I
dirtzij ≤ ψjyj ∀j ∈ J ;∀r ∈ Ri;∀t ∈ T (9)

∑

i∈I
pirtzij ≤ ψjyj ∀j ∈ J ;∀r ∈ Ri;∀t ∈ T (10)

wikrst ≥ bir + bks + xikt − 2 ∀(i 6= k) ∈ V;∀r ∈ Ri;∀s ∈ Rk;∀t ∈ T (11)

3wikrst ≤ bir + bks + xikt ∀(i 6= k) ∈ V;∀r ∈ Ri;∀s ∈ Rk;∀t ∈ T (12)

αkt − αit + Ψwikrst + (Ψ− dirt − dkst)wkisrt ≤ Ψ− dirt ∀i, k ∈ I : i 6= k, ∀t ∈ T ,∀r ∈ Ri;∀s ∈ Rk (13)

βit − βkt + Ψwikrst + (Ψ− pirt − pkst)wkisrt ≤ Ψ− pkst ∀i; k ∈ I : i 6= k;∀t ∈ T ;∀r ∈ Ri;∀s ∈ Rk (14)

αit − dirt + pirt ≤ Ψ ∀i ∈ I;∀r ∈ Ri;∀t ∈ T (15)

αit ≥ dirt +
∑

k∈I
i6=k

∑

s∈Rk

dkrtwikrst ∀i ∈ I;∀r ∈ Ri;∀t ∈ T (16)

βit ≥ pirt +
∑

k∈I
i6=k

∑

s∈Rk

pkrtwkisrt ∀i ∈ I;∀r ∈ Ri;∀t ∈ T (17)

αit ≤ Ψ− (Ψ− dirt)
∑

j∈J

∑

s∈Rj

wijrst ∀i ∈ I;∀t ∈ T ;∀r ∈ Ri (18)

βit ≤ Ψ− (Ψ− pirt)
∑

j∈J

∑

r∈Rj

wjirst ∀i ∈ I;∀t ∈ T ;∀s ∈ Ri (19)

∑

r∈Ri

bir = 1 ∀i ∈ I (20)

∑

j∈V
xjit −

∑

r∈Ri

birart = 0 ∀i ∈ I;∀t ∈ T (21)

uit + si + τij − ujt ≤M(1− xijt) ∀i ∈ V;∀j ∈ J : i 6= j;∀t ∈ T (22)

uit ≤M
∑

j∈V
xjit ∀i ∈ I;∀t ∈ T (23)

θ+it ≥ uit − σ+
i

∑

j∈V
xjit ∀i ∈ I;∀t ∈ T (24)

θ−it ≥ σ−i
∑

j∈V
xjit − uit ∀i ∈ I;∀t ∈ T (25)

αit, βit, θ
+
it , θ

−
it , uit ≥ 0 ∀i ∈ V;∀t ∈ T (26)

xijt ∈ {0, 1} ∀i; j ∈ V;∀t ∈ T (27)

zij ∈ {0, 1} ∀i ∈ J ;∀j ∈ J (28)

bjr ∈ {0, 1} ∀j ∈ V;∀r ∈ Rj (29)

wikrst ∈ {0, 1} ∀i, k ∈ V;∀r ∈ Ri;∀t ∈ T ;∀s ∈ Rk (30)

yj ∈ {0, 1} ∀j ∈ J (31)

While the objective function 1 minimises the sum of transportation costs, fixed costs of constructing depots and costs for170
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using vehicles, the second objective maximises the customers satisfactions by minimising the violation from the specified time171

windows. The descriptions of the model constraints are given in Table 5.172

Table 5: The descriptions of the constraints
Symbol Definition
(3) A degree constraint ensuring that each customer is visited at most once
(4) A degree constraint ensuring that the number of arcs entering a node equals those leaving it
(5) Each customer is assigned to one and only one depot
(6)-(7) Forbids allocation of a node to a non-functional depot
(8) If an arc exists between two nodes on a day, both must be served by the same depot
(9)-(10) The capacity constraints for pickup and delivery loads of each depot
(11)-(12) Ensuring that wikrst = 1 if and only if bir = bks = xikt = 1
(13)-(14) Flow inequalities for delivery and pickup demands respectively, besides serving as sub-tour elimination constraints

They also compute the amount of delivery and pickup demands of each customer
(15) The total load on each arc must not be larger than the capacity of vehicles
(16)-(17) Ensuring that the load of a vehicle is not violated before or after visiting a node
(18)-(19) Computes values of α and β variables on the feasible routes. Furthermore, these constraints

besides (13) and (14) are bounding constraints for α and β
(20) Each customer is allocated to one and only one combination of days
(21) If a node is served on a specific day, it must be allocated to a combination the day is part of
(22) The relationship between the arrival times to a customer’s location and its immediate successor
(23) The arrival time to a node is zero if there is no arc entering it
(24)-(25) Soft time window constraints
(26)-(31) Definition of variables

4 Solution procedure173

Over the last decades, different techniques have been developed to solve multi-objective optimisation problems with the aim174

of striking a balance between convergence and diversity. These algorithms can be classified into meta-heuristic, decision-aided,175

interactive, fuzzy and scalar ones (Collette and Siarry, 2013). In the following, two popular meta-heuristic algorithms, NSGA-II176

(Non-dominated Sorting Genetic Algorithm-II) and NRGA (Non-dominated Ranked Genetic Algorithm) are utilised to solve177

PCL-NDP. We used the Matlab implementation of both algorithms and to ensure a fair comparison between the two, we ran all178

the experiments with identical hardware.179

NSGA-II was proposed on the basis of NSGA with improvements to decrease its complexity from O(mN3) (m is the number180

of objective functions and N is the population size) to O(mN2) (Li et al., 2016). It has less computational complexity, considers181

elitism, systematically preserves the diversity of Pareto-optimal solutions and adaptively handles the problem constraints (Deb182

and Jain, 2012). These features have made NSGA-II one of the most popular multi-objective optimisation algorithms in the183

literature with applications ranging from scheduling (Wang et al., 2017) to diabetes diagnosis (Alirezaei et al., 2019). Different184

test problems from previous studies applying NSGA-II were compared in Deb et al. (2002), showing that NSGA-II outperforms185

algorithms such as Pareto Archived Evolution Strategy (PAES) and Strength Pareto Evolutionary Algorithm (SPEA) in obtaining186

a more diverse set of solutions.187

NRGA is a modification to the NSGA-II algorithm by exchanging its selection strategy. It was first presented by Al Jadaan

et al. (2008) and operates with two tiers of rank-based roulette wheel selection strategies. The probability of selecting a front

(Pf ) and the probability of selecting a solution in a front (Pfs) are found using equations (32) and (33) respectively where NF
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and NSf are the number of fronts and the number of solutions in the front f respectively.

Pf =
2× rankf

NF × (NF + 1)
f = 1, ..., NF (32)

Pfs =
2× rankfs

NSf × (NSf + 1)
f = 1, ..., NF ; s = 1, .., NS (33)

NRGA works based on a ranking of the individuals in a front and then employs roulette wheel selection to choose individuals for188

the next iteration. It shares a fundamental feature with NSGA-II where both algorithms penalise infeasible solutions during their189

iterations. It is also used in several publications to date and its performance has been compared against other multi-objective190

optimisation heuristics such as NSGA-II (Sadeghi et al., 2014) and MOPSO (Alikar et al., 2017).191

4.1 Non-dominated sorting and crowding distance192

In sorting the non-dominated solutions, a population is ranked by using the concept of predominance. In general, to sort a193

population by size on the basis of non-dominated levels, each solution is compared with all the other solutions in the population194

to determine whether or not the solution is dominated. This leads to generation of a set of solutions that neither dominate nor195

defeat each other. This process is repeated until all the remaining solutions are in the non-dominated front. To estimate the196

solution around a particular solution in the population, the average distance from both adjacent solutions is calculated based197

on the values of the objective functions (crowding distance). The notion of crowding distance is one of the major proxies for198

an algorithm which estimates the density of solutions surrounding a particular solution. To calculate the crowding distance, we199

used an approach similar to Deb et al. (2002) by estimating the perimeter of the cuboid formed by using the nearest neighbours200

of a solution as the vertices. Algorithm 1 presents the computational procedure of the crowding distance where L[i]m refers to201

the value of the mth objective function of the ith individual in set L. Figure 1 depicts a sample efficient frontier in a bi-objective202

problem where the crowding distance for individual X1 is larger than X2, hence, individual X1 has more probability to be chosen203

as a parent.204

Algorithm 1 Cuboid along locally non-dominated frontier (Moradi et al., 2011)

1: procedure
2: Crowding-distance-assignment (L)
3: l = |L|
4: for each i, set L[i]distance=0
5: for each objective m:
6: L = sort(L,m) sort using each objective value
7: L[1]distance = L[l]distance =∞ boundary points are always selected for all other points
8: for i = 2 to (l = 1)
9: L[i]distance=L[i]distance+(L[i+ 1].m+L[i− 1].m)
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Min1t Max1t

Min2t

Max2t

X1

X2

f1

f 2
Frontier 1
Frontier 2
Frontier 3

Figure 1: Cuboid along locally non-dominated frontier

4.2 Solution representation205

Solution representation is a key factor influencing the performance of any heuristic algorithm. In our study, a chromosome is206

composed of two vectors S1, S3, and a matrix S2. The size of vector S1 equals the number of customers, and the value of each207

element is the index of the depot the customer is allocated to. Matrix S2 indicates the service priority of each customer where208

its number of rows equals the number of periods and the number of its columns equals the number of customers. The size of209

vector S3 is similar to vector S1 and its elements denote the possible combination of days to serve a customer. For instance, if a210

customer can be served in two days and there are two different combinations of days for its service such as (1, 2) and (2, 3) the211

index of the first combination is one and the second combination has an index of two. Each element of this vector specifies the212

index of customer’s combination to serve in the appropriate period (day). In a nutshell, the allocation of customers to depots is213

determined using S1, the priority of customers in each service day is represented with S2 and the service day combinations are214

defined with S3. Figure 2 demonstrates a sample solution with four customers and two periods to clarify the encoding procedure215

further.216

2 2 1 1
2 3 1 4

3 1 4 2
2 3 4 5

S1

S2
S3

Figure 2: Solution representation
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4.3 Genetic operators217

Using the chromosome structure defined for the bi-objective PCL-NDP, we propose two crossover and two mutation operators218

which are explained in the following sections.219

4.3.1 Crossover operator on vectors S1 and S3220

For the two one-dimensional vectors of the solution representation (S1 and S3), we applied a uniform crossover. To this end and221

for each solution, we first generated a binary mask vector of the same size as the chromosome. The offspring is then generated222

from one of the two parents depending on the corresponding value of the mask vector. To put it in simple terms, a gene of the223

first parent is transferred to the first offspring if the corresponding gene of the mask vector is zero and from the second otherwise.224

Figures 3 and 4 are illustrative examples of how these two operators work. For the sake of consistency, we kept the example of225

Figure 2 as the first parent in both figures226

2 2 1 1 1 1 2 2 0 1 0 1 2 1 1 2 1 2 2 1

Parent 1 Parent 2 Mask Vector Offspring 1 Offspring 2

Figure 3: Applying uniform Crossover on S1 for a sample solution with four nodes

2 3 4 5 1 3 4 6 0 1 0 1 2 3 4 6 1 3 4 5

Parent 1 Parent 2 Mask Vector Offspring 1 Offspring 2

Figure 4: Applying uniform Crossover on S3 for a sample solution with four nodes

4.3.2 Crossover operator on matrix S2227

To apply a crossover operator on S2, we used a single-point crossover owing to its permutation structure. In each iteration of228

the algorithm, each row of S2, which indicates a period, undergoes a single-point crossover guaranteeing the feasibility of the229

offspring and preventing a repetition of genes. To operate this, two parent chromosomes are selected from the current population230

by applying a roulette wheel approach, while the crossover point is randomly chosen among the genes. The crossover point231

splits chromosomes into two parts (not necessarily identically-sized) which are used to build the offspring. To generate the first232

offspring, all genes of the first parent to the left of the crossover point are transferred respectively to produce the first part of233

the first offspring before it is combined with a second part which is generated by comparing the genes of the second parent with234

the genes of the first offspring already created. After ignoring duplicate genes, all non-repetitive genes are transferred to create235

the second part after the crossover point. A similar approach is adopted to generate the second offspring. Figure 5 demonstrates236

this process on two sample parent chromosomes. For the sake of consistency, we kept the example of Figure 2 as the first parent237

in Figure 5.238
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2 3 1 4

3 1 4 2

1 4 3 2

4 2 3 1

2 1 4 3

3 4 2 1

1 2 3 4

4 3 1 2

Parent 1 Parent 2 Offspring 1 Offspring 2

Figure 5: Applying single point Crossover on S2 for a sample solution with four nodes

4.3.3 Mutation on vectors S1 and S3239

For mutation of the first and third parts of the solution representation, we implemented a procedure which can be summarised240

as follows.241

Algorithm 2 The mutation steps

1: procedure Mutation
2: Randomly determine the number of genes to mutate. This number, denoted by l, is obtained by the following procedure.
3: Randomly generate an integer number h, between 1 and dim(S1/S3), where dim(S1/S3) is the dimension of vector
4: S1/S3.
5: Calculate hr by multiplying h with a mutation rate r.
6: Round hr to the least integer number larger than or equal to it.
7: Choose randomly l genes of vector S1/S3.
8: Generate randomly l integer numbers between 1 and the number of all depots.
9: Replace the l genes of vector S1/S3 obtained in Step 2 by the l integer numbers obtained in Step 3.

4.3.4 Mutation on Matrix S2242

For the mutation of the second part of a solution, two genes of a vector are randomly chosen first and then, one of the three243

operators (insertion, swap or reversion) is applied to the solution. We did not use all the three operators simultaneously to avoid244

an over-complication of the solution procedure. Instead, in each run, we used a random selection rule to choose one of these245

three operators. While the swap operator basically exchanges the position of two randomly chosen bits in a solution, a reversion246

operator is performed in order to get a more diversified solution by taking a random section of a solution and reversing it. The247

inversion operator also randomly chooses a bit and replaces its value with a new random value.248

5 Computational study249

To the best of the authors’ knowledge, no standard dataset exists in the literature to investigate the performance of the solution250

algorithms in solving the problem. Hence, we adopted 45 problems from Karaoglan et al. (2012) to examine the performance251

of the solution procedures. Moreover, to incorporate pickup and delivery in the test problems, we used a similar approach to252

Angelelli and Mansini (2002). To do so, the demand of each node (delivery) is set as qi and the demand of a pickup node is253

calculated by (1− b)qi if i is even and (1 + b)qi if i is odd, with the value of b set as 0.8. Table 6 summarises these test problems254

and their specifications including a code assigned to each instance, the number of customers in each instance, the capacity of255

vehicles and the number of potential depots. All the experiments were implemented in MatLab 2013 on a laptop with an Intel256

core i5 CPU and 4.00 GB RAM on Windows 7.0.257
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Table 6: The specifications of our test problems
Instances # Customers Capacity of vehicles # Potential depots
A1-A11 50 200 9
B1-B11 100 1,000 9
C1-C8 100 200 16
D1-D7 100 1,000 16
E1-E8 125 1,000 16

5.1 Comparison metrics for multi-objective optimisation algorithms258

In order to test the performance of the algorithms, five criteria were used including spacing, diversification measure, number of259

solutions, runtime and Main Ideal Distance (MID).260

• Spacing

Spacing which can be defined as (34), is defined as the variance of the distance of each member of an efficient Pareto

frontier to its closest neighbour and was first proposed by Scott (1995). It is preferred to be as low as possible with an

ideal value of zero showing that all members of the efficient frontier are equally spaced.

Spacing =

√√√√√
n∑

i=1

(di − d̄)2

n− 1
(34)

where di = min
k∈n
k 6=1

M∑
m=1
|f im − fkm|, f im is the ith objective function value of the mth solution in the Pareto front, and d̄ is the261

mean value of these distances as d̄ =
|n|∑
i=1

di

|n| .262

• Diversification measure

The diversification metric measures the spread of the solutions found (Govindan et al., 2015) and is computed as follows

where n is number of Pareto front solutions and ||κ1i−κ2i || is the Euclidean distance between the best front of non-dominated

solutions, κ1i and κ2i .

DM =

√√√√
n∑

i=1

max(||κ1i − κ2i ||) (35)

• The number of Pareto solutions (NOS)263

This metric enumerates the number of Pareto solutions in the optimal front. One issue with some multi-objective optimi-264

sation algorithms is the generation of far too many non-dominated solutions which renders the outputs impractical for a265

decision maker and leads to confusion. Hence, finding a limited number of Pareto solutions is preferred in many real-world266

instances. Various strategies have been used in the literature to this end such as Subtractive clustering by Zio and Bazzo267

(2012) and fuzzy preference assignment by Abido (2003) and level diagram analysis by Blasco et al. (2008).268

• Main Ideal Distance (MID)

This criterion aims at finding the average distance of the Pareto solutions to the ideal solution which equals (0, 0) in our
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problem and is computed as equation (36) where fji is the value of the jth objective function in the ith solution of optimal

front. One should note that a lower value for the MID index is more desirable.

MID =
1

NOS

NOS∑

i=1

Ci where Ci =

√√√√
2∑

j=1

f2ji (36)

5.2 Algorithm parameter tuning269

We expected the performance of both algorithms to be influenced by their parameter settings. Hence, we used the Taguchi270

method as the preferred technique in finding the best combination of parameters for each algorithm owing to its strength in271

providing results with fewer experiments. We performed 18 independent runs for each algorithm. To compare the two proposed272

multi-objective optimisation algorithms, we considered computational time and mean ideal instance (MID) as two metrics to273

evaluate the convergence of the algorithms. Diversity and MID can be aggregated as a single metric called Multi-objective274

Coefficient of Variation, as set out in equation (37) and as a measure for the Taguchi method.275

MOCV =
MID

Diversity
(37)

To apply the Taguchi method, three levels were considered for each factor as given in Table 7 and based on the existing literature276

as well as a set of preliminary experiments. In this table, npop denotes the population size, nIt is the number of iterations in277

each run, Pc and Pm are the probabilities of crossover and mutation respectively and Um represents mutation rate. For each278

algorithm, the effect plots for Signal to Noise (S/N) ratio are presented in Figures 6 and 7 where the horizontal axis indicates279

the index of the setting for the parameter and the vertical axis represents the S/N ratio. Our experiments have led to selection280

of optimal conditions to use for each algorithm as given in Table 8. These results were then adopted to run the numerical281

experiments.282

Table 7: The domain of candidate parameters of NSGA-II and NRGA for calibration
Methodology Parameter Range Low (1) Medium (2) High (3)

NSGA-II

npop 50-200 50 100 200
nIt 100-300 100 200 300
Pc 0.6-0.8 0.6 0.7 0.8
Pm 0.2-0.6 0.2 0.4 0.6
Um 0.1-0.4 0.1 0.2 0.4

NRGA

npop 50-200 50 100 200
nIt 100-300 100 200 300
Pc 0.6-0.85 0.6 0.75 0.85
Pm 0.1-0.5 0.1 0.3 0.5
Um 0.1-0.4 0.1 0.2 0.4
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Figure 6: Outputs of the Taguchi ratio for NSGA-II

1 2 3

−131.8

−132

−132.2

−132.4

−132.6

−132.8

nPop

1 2 3

−131.8

−132

−132.2

−132.4

−132.6

−132.8

Pc

1 2 3

−131.8

−132

−132.2

−132.4

−132.6

−132.8

nIt

1 2 3

−131.8

−132

−132.2

−132.4

−132.6

−132.8

Pm

1 2 3

−131.8

−132

−132.2

−132.4

−132.6

−132.8

Umu

Figure 7: Outputs of the Taguchi ratio for NRGA
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Table 8: Calibrated parameters of the algorithms
NSGA-II NRGA

um 0.2 0.2
Pm 0.4 0.3
nIt 300 300
Pc 0.7 0.75
npop 200 200

5.3 Results and discussion283

Using the fine-tuned parameters identified in an earlier stage, we turned our attention to compare the outputs of the two284

algorithms. To do so, we have operated each algorithm three times and removed the effect of problem size by utilising the RPD285

index as given in Equation (38) where CriterionBest and CriterionAlg indicate the best value of a criterion obtained and the286

best value of the same criterion achieved by the algorithm respectively.287

RPD =
|CriterionBest - CriterionAlg|

CriterionBest
× 100 (38)

One should note that in calculation of RPD in terms of NOS and diversity, the algorithm with the large value of NOS and288

Diversity has better performance whereas in comparison of the algorithms in terms of MID, spacing, and runtime the algorithm289

with small values of have better performance. However, regardless of the metric to use, a lower RPD is preferred as it shows a290

lower distance to the ideal point.291

Figure 8 shows the non-dominated solutions obtained from each algorithm for one sample problem with 100 customers (thicker292

line denotes NSGA-II) showing the superiority of NSGA-II in terms of the number of solutions. However, to quantitatively293

measure the performance of each algorithm and to have a better understanding of how significant possible differences are, we294

carried out a set of additional experiments.295
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Figure 8: A comparison of the Pareto frontiers for NRGA and NSGA-II for a case with 100 customers

17

                  



To shed light on the performance of NSGA-II and NRGA, we compared the results from different perspectives including296

diversity, MID, number of solutions (NOS), spacing and runtime. As discussed earlier, time and Main Ideal Distance (MID) are297

metrics used to show the convergence of an algorithm whereas spacing, number of solution and diversity indicate the diversification298

of a algorithm. Figures 9-13 illustrate the performance of each algorithm in each metric which are quite revealing in several299

ways.300

In terms of spacing (Figure 9), we observed that NSGA-II performs relatively better with a lower spacing for the majority301

of the test problems. The results of comparing the two algorithms with regards to MID does not lend itself to a meaningful302

comparison as shown in Figure 10. Both algorithms performed well in this criterion with average RPDs around 8%. NRGA303

showed a more consistent performance though as NSGA-II has led to pretty high RPDs for two large-scale test instances (C1304

and D3). In terms of diversity and looking at Figure 11, we observed that the performance of NRGA is relatively better for305

the larger instances D and E while for the other three groups of problems, there is not a specific dominance by any of the two306

algorithms. When it comes to the number of solutions generated by each algorithm, Figure 12 illustrates that although NSGA-II307

seems to generate less Pareto-efficient solutions for some of the small-scale cases, the difference between the two algorithms is308

not significant for larger instances and hence, the results using this metric are not conclusive. This is in tandem with findings309

of Rahmati et al. (2013) (although on a different problem) with regards to the number of solutions generated by NSGA-II and310

NRGA. Nevertheless, this figure is revealing in another way as the performance of NRGA is relatively better for those instances311

with a smaller capacity of vehicles (A and C). Moreover, Figure 13 reveals that on average, the runtime for the NRGA algorithm312

is up to ten times more than NSGA-II for the small-scale problems (instances of groups A and B) and for the one third of313

large-scale ones (instances of group D) while the difference is not considerable for two other large-scale instances of groups C314

and E.315

Taken together, we conclude that the performance of NSGA-II is relatively better than NRGA in terms of spacing and runtime;316

however, NRGA demonstrates a better performance in terms of diversity. In order to investigate this further, we carried out317

an additional examination by conducting an Analysis of Variance (ANOVA) test to investigate the potential difference between318

the two algorithms and if these differences are statistically significant at s 95% confidence level. According to the results in319

Table 9, the null hypothesis of no difference between the algorithms is rejected for spacing and runtime, showing that the two320

algorithms are significantly different; however, the differences of the two algorithms are not statistically significant for the other321

three measures.322
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Figure 9: Graphical comparisons of Spacing metric for NSGA-II and NRGA algorithms on all test problems
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Figure 10: Graphical comparisons of MID for NSGA-II and NRGA algorithms on all test problems
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Figure 11: Graphical comparisons of diversity for NSGA-II and NRGA algorithms on all test problems
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Figure 12: Graphical comparisons of NOS for NSGA-II and NRGA algorithms on all test problems
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Figure 13: Graphical comparisons of time for NSGA-II and NRGA algorithms on all test problems

Table 9: The results of ANOVA test over the studied bi-objective mathematical model
Metrics Source df SS MS F -test p-value Results

Diversity
Algorithm 1 681.0 681.0 0.95 0.332 Null hypothesis is not rejected
Error 90 64,292.3 714.4
Total 91 64,973.3

Time
Algorithm 1 1,827 1,827.44 25.70 0.000 Null hypothesis is rejected
Error 90 6,399 71.10
Total 91 8,226

NOS
Algorithm 1 199.4 199.4 1.29 0.260 Null hypothesis is not rejected
Error 90 13,940.3 154.9
Total 91 14,139.7

Spacing
Algorithm 1 1,827 1,827.44 25.70 0.000 Null hypothesis is rejected
Error 90 6,399 71.10
Total 91 8,226

MID
Algorithm 1 15.67 15.67 0.20 0.655 Null hypothesis is not rejected
Error 90 7,001.97 77.80
Total 91 7,017.65

6 Conclusion323

In this paper, we have focused on a new variant of PLRP in which simultaneous pickups and deliveries must be made to a set of324

customers who have their time windows of being served and with two conflicting objectives of minimising cost and maximising325

customer satisfaction. We have presented a novel mathematical model for the problem and solved it using two meta-heuristic326

algorithms on a set of standard test problems. We then compared the two algorithms according to well-known metrics and the327

performance of each is reported on the set of test problems. Our results revealed that while NRGA outperforms NSGA-II with328

regards to diversity of solutions (although not statistically significant), NSGA-II performs better when it comes to spacing and329

runtime. In terms of number of solutions generated and MID, the results are inconclusive and the difference between the two330
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algorithms is not statistically significant.331

No model is perfect and we are aware that ours is not an exception. Therefore, there are several ways this work can be332

improved in future. Firstly, we assumed the travel times to be known and deterministic, while in real-world applications, they333

can be uncertain due to unforeseen events and this can be integrated into the model. This will make the problem stochastic334

and more difficult to solve though. Although the set of vehicles in our study was homogeneous, one can consider the case that335

vehicles are heterogeneous with varying capacities. Additionally, inter-related routes among depots and transferring loads can336

be added to our model.. Furthermore, a comparison of other multi-objective optimisation methods with the two addressed in337

this paper can be a potential area for further research. Including CO2 emissions in the model as a variant of pollution-routing338

problem will also add to the value of our research. Last but not least, it would be interesting to solve a real-world instance of339

our model with potentially another objective.340
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