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Abstract: In the design of the supply chain, the use of the returned products and their recycling in 
the production and consumption network is called reverse logistics. The proposed model aims to 
optimize the fow of materials in the supply chain network (SCN), and determine the amount and 
location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, 
maximizing the total proft of operation, minimizing adverse environmental effects, and maximizing 
customer and supplier service levels have been considered as the main objectives. Accordingly, 
fnding symmetry (balance) among the proft of operation, the environmental effects and customer 
and supplier service levels is considered in this research. To deal with the uncertainty of the model, 
scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve 
the model with actual data from a case study of the steel industry in Iran. The results obtained 
from the model, solving and validating, compared with actual data indicated that the model could 
optimize the objectives seamlessly and determine the amount and location of the necessary facilities 
for the steel industry more appropriately. 

Keywords: multi-objective planning; reverse supply chain; robust optimization; uncertainty; 
meta-heuristic algorithm; steel making industry 

1. Introduction 

With the expansion of the competitive environment, optimal supply chain (SC) design has 
become one of the fundamental issues business communities are facing [1]. This has affected all of 
the organization’s activities to produce products, improve quality, reduce costs and provide the required 
services. On the other hand, with increasing greenhouse gas emissions and pollutants, managers 
of organizations and researchers are planning to set up networks that, in addition to considering 
economic optimization, have a special focus on environmental factors and the reduction of pollutants 
in all sectors [2]. 

The reverse logistics network, as part of the SC, means the accurate, correct and timely transmission 
of materials and the kinds of goods that are usable and unusable from the endpoint (last consumer or 
end-user) through the SC to the appropriate plant. In other words, reverse logistics is the process of 
moving and transferring goods and products that can be returned through the SC [3]. In this regard, 
the most important factor that is recognized in technical and economic studies of supply chains is 
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the demand parameter, which should be considered in the design of forward or reverse supply chain 
networks (SCNs) [4–7]. 

Moreover, many countries have an increasing interest in protecting the environment and applying 
environmental laws. Hence, industry owners and manufacturers have turned their attention to 
the design and development of the SC, taking into account environmental factors [8–12]. Green 
SC Design, integrating SC management with environmental requirements at all stages of product 
design, the selection and delivery of raw materials, production and manufacturing, distribution 
and transfer processes, delivery to the customer, and the management of recycling and reuse after 
consumption to maximize energy efficiency and the efficient use of resources are associated with 
improving the performance of the entire SC [8,13–20]. 

Several reasons justify the notion of reverse logistics and using recycled material in a reverse supply 
chain. The steel industry, with more than 2.5 trillion dollars worth of products, is important [21]. Usually, 
different economic, cost reduction, governmental regulatory, and social responsibility motivations 
encourage organizations to follow reverse logistic notions. Generally, the steel industry supply chain 
includes several stages of mining, processing, distributing and recycling. The concern of sustainability 
is very important in this industry. For instance, directly producing reduced iron instead of scrap 
requires 1120 cubic meters of water, 300,000 cubic meters of natural gas and 130,000 kilowatt-hours 
of electricity. This potential amount of saving has led to the introduction of a reverse logistic supply 
chain in the steel industry. 

In this research, scenario planning was used to deal with uncertainty in the demand parameter due 
to unpredictable changes that have occurred during the research period in the studied case. To realize 
the economic, environmental and social effects of the reverse SCN and to optimize the model, three 
objectives were laid out, including maximizing operating proft, minimizing adverse environmental 
impacts and maximizing the level of service to suppliers and customers. To consider uncertainty, 
the multi-echelon supply chain, reverse logistics, and green supply design, the logistics network 
presented in this study consisted of four levels. The frst level was the waste providers, considered as 
returning product suppliers, which could be the customers of previous periods who have returned 
their remaining products or can be new suppliers of scrap supplies. The second level was the gathering 
centers of the returned products, being responsible for supplying the scrap from the frst-level suppliers 
of the chain, and in particular, being responsible for supplying the returned product, inspection, 
sorting, storage, and transferring the product to the recycling plants (product factories). The third 
level was the recycling plants for the production of new products, based on the received scrap from 
the gathering centers, which were responsible for producing new products. Finally, the fourth level was 
the customers. According to the given explanation, the proposed network is shown as a framework in 
Figure 1. 
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Figure 1. The considered supply chain (SC) scheme. 
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Figure 1. The considered supply chain (SC) scheme. 

The overall aim of this study was to design a sustainable reverse logistics integrated model 
in conditions of demand uncertainty, to optimize the fow of materials throughout the SC, and to 
determine the number and location of facilities and the planning of SC transportation. In this regard, 
the following objectives were considered in this research: 

1. Identifying and categorizing the necessary processes to implement the reverse logistics network 
of the steel industry; 

2. Maximizing the operating proft of the SC so as to meet economic requirements; 
3. Minimizing the adverse environmental impacts to meet environmental requirements; 
4. Maximizing the satisfaction of suppliers and customers to meet social requirements. 

This study presents a multi-objective mathematical model for reverse SC design. The proposed 
model allows the NSGA-II algorithm to plan the recycling of products in the Iranian steel industry 
based on the modifed approach of Feito Cespon et al. (2017) with their model. The proposed model 
has the following features [22]: 

1. Using a robust optimization approach and NSGA-II algorithm for the multi-objective modeling 
of the reverse SCN, including the fows of materials and transportation planning in conditions of 
uncertain demand; 

2. Evaluating environmental indicators based on CO2 emissions as one of the most important 
greenhouse gas emissions in the environment; 

3. Evaluating customer service levels (CSLs) based on maximizing the received products returned 
from suppliers/previous customers and selling new products to customers; 

4. Defning different scenarios for dealing with uncertainty of demand and quantifying them 
according to expert opinion. 

A reverse logistics network as part of the SC means the accurate, correct and timely transmission 
of materials and the types of goods that are usable and unusable from the endpoint (last consumer or 
end-user) through the SC to the appropriate plant. In this regard, many types of research have been 
previously illustrated. Table 1 compares the illustrated pieces of research with the proposed method, 
from different perspectives. 

http:plant.In
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Table 1. Previous related research. 

Network Flow Network Design Attributes of the Mathematical Model Objective Function 

Solution Method Collecting Repair Customer ResearcherLimited Multi- Multi- Environmental MinimizingReverse Forward and Transport Facilities and Recycling Uncertainty ServiceCapacity Period Product Issues the Cost Distribution Recovery Level 

Mathematical Programming X X X X [23] 
New Optimization Model X X X X X [24] 

Mathematical Programming and Goal 
X X X X X [25]Programming Technique 

Genetic Algorithm X X X [26] 
Multi-Objective Programming X X X X [27] 

Metaheuristic Method X X X X X [28] 
Multi-Objective Linear Fuzzy 

X X X X [29]Programming 
Multi-Objective Genetic Algorithm X X X X X X X [30] 

Fuzzy Optimization X X X X X [31] 
Mixed Integer Nonlinear 

X X X X X X X [32]Programming Model 
Column Generation Paradigm X X X X X X X [33] 

Robust Optimization X X X X X X [22] 
Mathematical Programming X X X X X X [34] 

Two-Stage Stochastic Programming X X X X X [20] 
Mathematical Programming and 

X X X X X [35]Lagrange Algorithm 
Mathematical Programming X X X X X X [36] 
Complex Integer Nonlinear 

X X X X [37]Programming, HGA and HHS 
Single Objective Programming, 

X X X [38]Genetic and Neighborhood Search 
Mathematical Programming X X X X X [39] 
Mathematical Programming X X X X X X [40] 
Mathematical Programming, 

X X X X X X [41]Two-Phase Stochastic Programming 
Mathematical Programming, 

X X X X X X X X X X X [42]Lp-Metric Based Method 
Multi-Objective X X X X X X X [43] 

Queueing Network Model X X X X X X X X [44] 
De Novo Programming Method X X X X X X X X [45] 

Current Robust Optimization X X X X X X X X X X Study 
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According to previous research, although many studies and articles have focused on the issue of 
sustainable SCN, there are some knowledge gaps in this area that are briefy summarized as follows: 

1. Most research focuses on the design of a new SC, and there exists a shortage of network redesign; 
2. The impact of the number and location of facilities on the environment is not considered; 
3. There are very few models that consider reconstructing reverse SC with a simultaneous analysis 

of social, economic, and environmental goals; 
4. Uncertainty about the number of resources and demand for recycled products, along with 

the management of diverse materials, are issues that require investigation in the future. 

Based on the above-mentioned gaps, the present study expresses a multi-objective mathematical 
model for redesigning the reverse SC network. The proposed model allows the use of a robustness 
approach to recycling multiple products. The proposed model has the following features: 

• The use of a robust optimization approach for redesigning a recycling SC network, including 
multiple fows of materials and uncertainties regarding the waste products used as raw materials, 
and the fnal demand for recycled products; 

• The structure of the expected functional index for evaluating a confguration for a new SC 
considering the economic and environmental objectives in different scenarios. 

2. Methods and Materials 

Based on the above mentioned theoretical background and defned problem, to resolve 
the uncertainty of the model parameters, a scenario-based robust optimization by the augmented 
epsilon constraint method was developed using the General Algebraic Modeling System (GAMS) 
software. An augmented epsilon constraint method was used for cases of multi-objective optimization 
in which one of the objective functions was more important than the other functions, and based on 
this, the optimization of other functions was performed. In this study, due to the greater importance 
of the frst objective function compared to the others, this method was used. Since the main model 
with the network and the actual data of the case study by the GAMS cannot be solved, the objectives 
were defned based on an initial model on a smaller scale; they were solved by a scenario-based robust 
optimization, and the comparison and validation of the model were investigated by the NSGA-II 
algorithm in MATLAB. 

2.1. Assumptions 

• Uncertainty in the demand parameter has been considered; 
• The studied SC consists of four levels when acting in a single period; 
• The capacity of the gathering centers is unlimited, and the capacity of the recycling plants is limited; 
• The numbers of gathering centers and recycling plant candidates are limited; 
• Fixed and variable costs (gathering, recycling and transportation) and the number and capacity of 

the transportation modes are determined; 
• The fow of material between two non-consecutive levels is not allowed; 
• The numbers of suppliers and customers are fxed and are fve and three, respectively; 
• The nominated locations for selecting gathering centers and recycling plants are fve and three, 

respectively. These will determine the exact number of centers during the process of solving 
the model [22]. 

2.2. Model Notations 

Based on the SC structure shown in Figure 1, the problem is formulated as a multi-objective 
optimization model. The list of indices, parameters and decision variables of the model are presented 
in this section. This proposed model is based upon the work of Feito Cespon et al. 2017 [22] by using 
different objective functions, and case study and solving approaches, to compare the results. 
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The notations used in the paper are as follows. 

Indexes 

i ∈ I A set of renewable waste suppliers 
j ∈ J A set of location candidates for gathering centers 
k ∈ K A set of location candidates for recycling plants 
l ∈ L A set of customers 
m ∈ M A set of transportation modes 
p ∈ P A set of fnal products 
s ∈ S A set of scenarios 

Parameters 

Gip The amount of product supply (p) by the supplier (i), in tons per month 
The capacity of the transportation mode (m) for the transfer of product (p), in tons, on 

CTmp the trip 
Ckp The capacity of the recycling plant (k) to produce the product (p), in tons per month 

The amount of product (p) which is demanded by the customer (l) under the scenario (s), 
Dlps in tons per month 
NVm Total number of trips available for each mode (m) 

The environmental impact of moving materials in the transportation mode (m) on 
ITm the environmental index, per ton-km 

The environmental effect of the total gas consumption of the system on the environmental 
IE 

index, per normal cubic meter per hour 
IP The environmental impact of infrastructure in the environmental index 

The environmental impact generated by water consumption on the whole system in 
IA 

the environmental index, per cubic meter 
Stable gas consumption at the recycling plant (k) in relation to normal condtions, in cubic 

Cfek meters per hour 
Fixed gas consumption of the gathering center (j) in normal conditions, in cubic meters per 

Cfej hour 
Variable gas consumption to produce a unit of product (p) in normal conditions, in cubic 

Cvep meters per hour 
Cvap Variable water consumption to obtain a unit of product (p), in cubic meters 
αk·β j Gathering center (j) and recycling plant (k) capacity ratio 
dSR Distance between supplier (i) and the gathering center (j), in km i j 
dRP Distance between gathering center (j) and recycling plant (k), in km jk 
dPC 

kl Distance between recycling plant (k) and customer (l), in km 
CURjp The cost of production (p) in the gathering center (j), in rials per ton 
CUPkp The cost of production (p) in the recycling plant (k), in rials per ton 
CUTm The variable cost of the transport mode (m), in rials per km 
CFRj Fixed cost of using the gathering center (j), in rials 
CFPk Fixed cost of using a recycling plant (k), in rials 
PSs Probability of scenario (s) 
PRIp Product sales price (p) 
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Variables 

The amount of product supply (p) that is transmitted in the transportation mode (m) 
QSRijmps between the waste supplier (i) and the gathering center (j) under the scenario (s), in tons 

The amount of product (p) that is transmitted in the transportation mode (m) between 
QRPjkmps the gathering center (j) and the recycling plant (k) under the scenario (s), in tons 

The amount of product (p) transmitted in the transportation mode (m) between 
QPCklmps the recycling plant (k) and customer (l) under the scenario (s), in tons 

The number of trips between the waste supplier (i) and the gathering center (j) using 
VSRijms the transportation mode (m) under the scenario (s) 

The number of trips between the gathering center (j) and the recycling plant (k) using 
VRPjkms the transportation mode (m) under the scenario (s) 

The number of trips between the recycling plant (k) to the customer (l) using 
VPCklms the transportation mode (m) under the scenario (s) 
HSRijms Variables that indicate the number of trips (excess or defect) to balance between 
HRPjkms the transportation modes 
HPCklms 
Rj Variable; 1 if the gathering center (j) is used, otherwise it is zero 
Pk Variable; 1 if the recycling plant (k) is used, otherwise it is zero 

2.3. Model Objective Functions 

Equation (1) maximizes the operating proft of the SC. P PP PP 
max f1 = PSs( PRIp QPCklmps 

s k p l mP PP 
− ( CUTm ·( VRPjkmsdPC 

jkm j kPP 
VPCklmsdPC+ kl Pk Pl (1)

+ VSRijmsdSR
ij )) 

i jP PP PP 
− CFPkPk − CUPkp QPCklmps 

k k p l mP PP PP 
− CFRjRj − CURjp QRPjkmps 

j j p k m 

Equation (2) minimizes the adverse environmental impacts of the SC. P 
min f2 = PSs( P s PPP 

ITm( QSRijmpsdSR
ij m i j pPPP 

QRPjkmpsdRP+ jkj k pPPP 
+ QPCklmpsdPC) (2)kl 

k l pP P P PPP 
+ IE( C f ekPk + C f ejRj + Cvep QPCklmps) 

k j p k l m P P P PPP 
+ IP( αkPk + β jRj) + IA Cvap QPCklmps) 

k j p k l m 
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Equation (3) maximizes the supplier’s and customers’ service levels, being different from that in 
the work of Feito Cespon et al. 2017 [22]: ⎡ ⎤ PPPP PPPP⎢⎢⎢⎢ ⎥⎥⎥⎥X ⎣ QPCklmps + QSRijmps⎦ 

k l m p i j m p 
max f3 = Ps( " # ) (3)PP PP s Dlps + Gip

l p i p 

2.4. Model Constraints 

The model constraints are shown in Equations (4) to (19). Each constraint has been discussed 
below [22]: 

• Equations (4) to (6) guarantee the fow of materials through the SCN. The output from each center 
is, at most, equal to the inputs from different centers at the previous level of the SC; XX 

QSRijmps ≤ Gip ∀i, p, s (4) 
j m XX XX 

QRPjkmps ≤ QSRijmps ∀ j, p, s (5) 
k m i m XX XX 

QPCklmps ≤ QRPjkmps ∀k, p, s (6) 
l m j m 

• Equations (7) and (8) respectively guarantee that the fow of materials rate does not exceed 
the maximum capacity of the recycling plants and the product demand; XX 

QPCklmps ≤ Ckp ∀k, p, s (7) 
l m XX 

QPCklmps ≤ Dlps ∀l, p, s (8) 
k m 

• Equations (9) to (11) maintain the balance between two facilities concerning the number of 
transportation. Since the number of transport must be an integer value, a series of inactive 
variables have been suggested to maintain the model’s probability; 

X QSRijmps 
+ HSRijms = VSRijms ∀i, j, m, s (9) 

p CTmp 

X QRPjkmps 
+ HRPjkms = VRPjkms ∀ j, k, m, s (10) 

p CTmp X QPCklmps 
+ HPCklms = VPCklms ∀k, l, m, s (11) 

p CTmp 

• Equations (12) to (14) guarantee that ineffective variables focus only on differences in the number 
of transport; 

∀i, j, m, s,
VSRijms + HSRijms ≥ 0 (12)

(−1 < HSRijms < 1) 
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VRPjkms + HRPjkms ≥ 0 

VPCklms + HPCklms ≥ 0 

∀ j, k, m, s, 
(−1 < HRPjkms < 1) 

∀k, l, m, s, 
(−1 < HPCklm < 1) 

(13) 

(14) 

• Equation (15) limits the number of trips per transportation mode [21]; X X X X X X 
VSRijms + VRPjkms + VPCklms ≤ NVm ∀m, s 

i j j k k l 

(15) 

• According to Equations (16) and (17), binary variables should be assumed, such that if a gathering 
center or recycling plant is used in the model, then the value is 1, and otherwise it is zero; XXX 

QRPjkmps ≤ M Rj ∀ j, s (16) 
k m p XXX 

QPCklmps ≤ MPk ∀k, s (17) 
l m p 

• Finally, Equations (18) and (19) show the nature of the variables. 

QRPjkmps, QPCklmps, QSRijmps, VPCklms, (18)
VRPjkms, VSRijms ≥ 0 

Rj, Pk ∈ {0, 1} (19) 

3. Results 

This proposed model is based upon the work of Feito Cespon et al. 2017 [22] by using a different 
objective function and case study and different solving approaches to compare the results. This is 
due to the main model (real-world case study) not being solvable with mathematical programming 
methods. At frst, a smaller scale research model with fewer data called the “Initial Model” can be 
solved by an augmented epsilon constraint method, and subsequently, it is solved by the NSGA-II 
algorithm [46,47]. Furthermore, the performance of the NSGA-II algorithm is evaluated by solving 
several examples in the proposed research model, and the corresponding criteria are calculated. 
Afterwards, with the confdence of the model’s validity, and since the main problem is Np-hard, 
the model of the real-world case study called “Main Model” is solved by the NSGA-II algorithm and 
will be analyzed at the end. Note that sensitivity analysis will be implemented on the initial model. 
Before solving the model, the method for determining the chromosome in the NSGA-II algorithm is 
presented. The algorithmic scheme of this section is illustrated in Figure 2. 
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Figure 2. The algorithmic scheme of empirical research. 

3.1. Defnition of Chromosomes in the NSGA-II Algorithm 

The matrix of the answer in the model has two sections, called allocation and assignment. 
The allocation section has two parts, the frst part of which is the location of the gathering centers (J), 
and the second part is the location of the recycling plants (K). The cells of the matrix are flled with 
numbers 0 or 1, for example, if J = 5 and K = 3; an example of this matrix is given in Table 2. 

According to Table 2, gathering center No. 5 has been constructed, and gathering centers No. 1, 
2, 3 and 4 have not been constructed. Moreover, the recycling plant No.1 has been constructed and 
the recycling centers No. 2 and 3 have not been constructed. Each set is the answer that is called 
a chromosome. The assignment section shows the fow rate from the waste supplier to the gathering 
centers, from the gathering centers to the recycling plants and from the recycling plants to the customers. 
In Figure 3, the assignment section is shown. As a case in point, in the frst part of the following table, 
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which is a K ∗ L dimensional matrix, the fow rates from the recycling plants (k) to the customer (l) for 
the transportation mode (m), that is m = 1, p = 1 and s = 1, are shown. 

Table 2. The allocation matrix. 

X1 

J1 

0 

J2 

0 

J3 

0 

J4 

0 

J5 

1 

X2 

K1 

1 

K2 

0 

K3 

0 
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Based on Table 3, it is obvious that the fow rate of product 1 from the recycling plant 1 to customer 
1 by transportation mode 1 in scenario 1 is 3. In this regard, each answer set is called a chromosome, 
and each cell is a gene. 

Table 3. The assignment matrix. 

X3 L1 L2 L3 

K1 3 2 1 
K2 0 0 0 
K3 0 0 0 

X4 K1 K2 K3 

J1 0 0 0 
J2 0 0 0 
J3 0 0 0 
J4 0 0 0 
J5 4 0 0 

X5 J1 J2 J3 J4 J5 

I1 0 0 0 0 3 
I2 0 0 0 0 2 
I3 0 0 0 0 5 
I4 0 0 0 0 1 
I5 0 0 0 0 1 

3.2. NSGA-II Operator Selection 

Achieving a high performance of genetic algorithms is highly dependent on the performance of 
the genetic operators. One of the main operators in genetic algorithms is crossover. The crossover 
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operator is used to generate a new chromosome by crossing over two selected chromosomes. Different 
crossover operators are represented in previous studies. Here in this paper, the single point crossover 
is used. The next important operator is a mutation to assure diversity. Beyond the mutation probability 
that is tuned in Section 3.6, in this study, the reverse and replace operators are used randomly to mutate 
the selected chromosomes. In reverse mutation, two genes are selected in the considered chromosome, 
and the values of remaining genes between these two selected genes are reversed from right to left. In 
the replacement mutation, two genes are selected, and their positions are swapped with one another’s. 

3.3. Initial Model Solving Results 

Table 4 indicates SC characteristics in the initial model. Furthermore, the probability of 
the occurrence of each scenario is obtained using the analytical hierarchical process (hereafter AHP) 
method, which for scenarios 1 to 2, is 52.4% and 47.6%, respectively. Moreover, in the initial model, 
a big M value is 10,000. 

Table 4. The specifcations and parameters of the initial model. 

Number of Suppliers 2 Number of Gathering 
Center 2 Number of products 2 

Number of Recycling Plant 2 Number of Customers 2 
Number of Transportation 

modes 2 Number of Scenarios 2 

The Pareto result according to the GAMS and NSGA-II algorithm of fve sets of answers derived 
from the initial model solving is shown in Tables 5 and 6. Figures 3 and 4 show these Pareto points. 
It is conceivable that the results obtained for the small scale problems by GAMS will outperform 
the NSGA-II results, as this can be seen in similar studies [48–50]; however, as it is illustrated in the next 
sections, the main advantage of NSGA-II is in its ability to solve large scale and real-world problems. 
The time of the GAMS solving in this model, although the problem dimensions are low, is 326 seconds, 
which is increased sharply by increasing the dimensions of the problem. 

Table 5. Pareto points set by the GAMS for the initial model. 

Answer No. The Value of the First 
Objective Function 

The Value of the Second 
Objective Function 

The Value of the Third 
Objective Function 

1 −128.17 2271.64 0.8 
2 −247.05 1135.82 0.6 
3 −92.47 801.17 0.41 
4 67.78 1135.82 0.2 
5 87.77 2271.64 0.6 

Table 6. Pareto points set by the NSGA-II algorithm for the initial model. 

Answer No. The Value of the First 
Objective Function 

The Value of the Second 
Objective Function 

The Value of the Third 
Objective Function 

1 −21.51 1961.65 0.4876 
2 −8.1 1944.2 0.4819 
3 3.65 1920.59 0.46 
4 3.85 1896.37 0.4706 
5 13.4 1860.68 0.4607 
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Tables 3 and 4 show that when the values of the frst objective function deteriorate, the values of 
the other objectives function do not. In other words, these values remain either constant or close to 
their optimal values, which is the expected process that the multi-objective models suggest. 

3.4. Model Validation 

To evaluate the performance of the model and to compare the performance of the NSGA-II 
algorithm with the augmented epsilon constraint method, fve examples with different dimensions 
randomly compiled on the research model, and the criteria for comparing the efficiency of 
the multi-objective algorithms, are calculated, the results of which are shown in Table 5. The results 
are obtained by running the proposed algorithm in a single trial with a population size of 10,000 
and 250 repetitions. As the results indicate, it can be seen that using the NSGA-II algorithm has 
the necessary validity to solve the main model. 

In this table, fve measures are reported. Mean Idear Distance (MID) measures the convergence of 
an algorithm by averaging the distances of solutions from the best feasible solution [51,52]. Spacing 
measures the standard deviation of the distances among the Pareto front solution [52]. Diversity 
evaluates the spread of the Pareto front [52]. The Number of solutions (NoS) is the number of 
different Pareto solutions [53,54]. Time(s) is the time for which the algorithm needs to be run to reach 
the near-optimal solution [53,54]. 

The lower the index MID, the better the research results. As can be seen, the performance of 
the Epsilon Constraint (E.C). method in two sets of responses is better than that of the NSGA-II algorithm; 
however, with increasing dimensions of the problem, the method of E.C. loses its effectiveness. Since 
this difference is not very high, both indicators have shown good performance. 

The lower the index spacing, the better the research results. According to Table 7, the performance 
of the NSGA-II algorithm is better than that of the E.C. method. The higher the index (diversity), 
the better the research results. Based on the results, it can be seen that the proposed E.C method is 
better than the NSGA-II algorithm. 
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Table 7. Comparison of indices for fve examples with NSGA-II algorithms and the Epsilon 
Constraint method. 

Item 
MID 

Epsilon Constraint 

Spacing Diversity NoS Time(s) MID 

NSGA-II 

Spacing Diversity NoS Time(s) 

1 8556.59 51.73 2562.22 14 8 7283.27 13.05 2858.35 96 55.96 
2 7574.8 73.37 3820.57 16 13 7749.36 79.91 2247.99 97 63.73 
3 5383.46 181.73 6709.34 23 48 6720.7 30.82 3616.23 98 58.43 
4 6317.78 181.41 5209.74 16 93 7150.89 28.77 2423.52 99 57.68 
5 7109.71 242.98 5219.62 18 407 7903.34 13.88 1650.52 95 58.53 

The higher the index NoS, the better the research results. Based on the results, the NSGA-II 
algorithm obtained a greater number of Pareto members. It is logical to increase the solution time of 
the algorithms by increasing the dimensions of the problem. 

Therefore, according to the results, the same trend is observed; with an increase in the dimensions 
of the problems, the time taken to solve by the method of E.C. increases exponentially, and this method 
loses its efficiency in high-dimensional issues. However, it is almost constant for the NSGA-II algorithm. 

3.5. The Parameter Adjustment of the NSGA-II Algorithm 

Under the meta-heuristic algorithms that do not guarantee an exact optimal solution, the algorithm 
may be followed by a different response at any time by solving it. Therefore, a meta-heuristic algorithm 
is good when used, with almost identical answers each time. The most infuential parameters in 
the NSGA-II algorithm are the number of initial population (nPop), the number of repetitions (MaxIt), 
the intersection rate (Pc) and the rate of mutation (Pm). With using the Taguchi design of experiments 
method, the parameters of this algorithm are based on comparative criteria for nine exams that have 
been determined under the following steps. 

3.6. Taguchi Design of Experiment 

In the NSGA-II algorithm, the four factors/parameters MaxIt, nPop, Pc, and Pm should be set 
to optimal levels. For this purpose, at frst, for each parameter, three levels of low (1), medium (2) 
and high (3) are considered, as shown in Table 8. The proposed Taguchi experiments for four factors 
at three levels are shown in Table 9 for nine experiments. These experiments are designed based on 
Taguchi methods [55]. 

Table 8. The setting up NSGA-II parameters at three levels. 

NSGA-II Parameters Low Level (1) Middle Level (2) High Level (3) 

MaxIt 60 80 100 
nPop 50 70 100 

Pc 0.7 0.8 0.9 
Pm 0.15 0.25 0.35 
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Table 9. Taguchi designed experiments to adjust the parameters of the NSGA-II algorithm. 

Exam No. MaxIt nPop Pc Pm 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

Table 8 reveals the levels of the NSGA-II parameters, for each parameter considering three different 
levels. Table 9 demonstrates the experiments designed to adjust the parameters of the NSGA-II 
algorithm. In Table 10, the results of the NSGA-II algorithm for nine independent experiments 
are presented. 

Table 10. Results from the experiments of the NSGA-II algorithm. 

No. MID Spacing Diversity NoS Time(s) 

1 7636.4 23.4 1869.3 50 27.4 
2 7725.7 19.6 2329.9 68 48.4 
3 7677.5 22.4 2453.4 100 130.4 
4 7745.1 70.8 2677.1 49 42.7 
5 7615.1 58.1 3041.4 69 69.5 
6 7801.7 91.8 3019.3 97 125.9 
7 7640.1 32.1 1924.5 48 48.7 
8 7670.5 39.2 2856.5 70 85.5 
9 7678.4 30.6 2598.7 98 152.9 

According to Table 10, to create an output from each test and for fve criteria, using the fuzzy 
unambiguous technique and the ideal planning approach, all indicators become responses after 
normalization. The normalization of the results and the calculation of the response variable are shown 
in Table 11. 

Table 11. Normalized results and the calculation of responses for setting the parameter of 
the NSGA-II algorithm. 

No. MID Spacing Diversity Nos Time(s) Response 

1 0. 11 0.05 1.00 0.96 0.00 22.46 
2 0.59 0.00 0.61 0.62 0.17 65.89 
3 0.33 0.04 0.5 0.00 0.82 39.22 
4 0.7 0.71 0.31 0.98 0.12 81.30 
5 0.00 0.53 0.00 0.6 0.34 6.24 
6 1.00 1.00 0.02 0.06 0.79 111.05 
7 0.13 0.17 0.95 1.00 0.17 25.37 
8 0.3 0.26 0.16 0.58 0.46 35.24 
9 0.34 0.15 0.38 0.04 1.00 40.34 

In the last step, based on the calculated response variable in the previous step, the S/N rate is 
calculated, and the optimal levels of the input parameters are determined. This operation is performed 
by the MINITAB software, and the results are illustrated in Figure 5. This fgure illustrates the main 
effect plot of different algorithm parameters. The plots are plotted by fxing parameters at their three 
levels, and then comparing the means of the S/N ratios against those at different levels. 
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The optimal levels for the parameters of the algorithm examined according to Figure 5 and 
the above tables are shown in Table 12. 

Table 12. Optimized levels for the NSGA-II algorithm. 

MaxIt nPop Pc Pm 

Level 3 Level 2 Level 3 Level 1 
NSGA-II 100 70 0.9 0.15 

3.7. Results of Solving the Main Model (Case Study) 

Table 13 shows the main model of the case study. The case study is related to a steel production 
company with 8.1 million tons of yearly capacity in Iran. The company produced a set of intermediate 
and fnal products. The considered network includes suppliers, recycling plants, transportation modes 
and gathering centers. Additionally, fve types of product are identifed to be delivered to three types 
of customer. The problem parameters are gathered from the company’s databases, which are not 
presented due to their large magnitude. The problem specifcation and its parameters are illustrated in 
Table 13. 

Table 13. The specifcations and parameters of the model in a case study. 

Number of Suppliers 5 Number of Gathering 
Centers 5 Number of Products 5 

Number of Recycling 
Plants 3 Number of Customers 3 

Number of 
Transportation Modes 225 Number of Scenarios 5 

According to the requirements of the considered organization as the case study, fve incidental 
conditions are defned for these conditions, which are considered as a scenario for each mode, providing 
different data. Moreover, the probabilities of occurrence of each scenario are obtained using the AHP 
method, which are—for scenarios 1 to 5—16%, 22%, 48%, 9% and 5%, respectively. Furthermore, in 
the main model, a big M value of 10,000 is considered. 
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As stated above, since the size of the case study is high and the GAMS software is not able to solve 
it at an acceptable time, the original model in the MATLAB software is solved based on the NSGA-II 
algorithm, the Pareto points from which are presented in Table 14 and Figure 6. 

Table 14. A set of the Pareto points generated by algorithm NSGA-II for the case study. 

Answer No. The Value of the First 
Objective Function 

The Value of the Second 
Objective Function 

The Value of the Third 
Objective Function 

1 
2 
3 
4 
5 

1,168,678,032,301 
1,535,360,428,421 
1,532,610,197,259 
1,226,611,751,948 
1,534,765,140,449 

17,570,971,633 
18,258,944,734 
18,179,813,506 
17,585,580,845 
18,251,470,312 

0.4738 
0.5864 
0.5912 
0.3662 
0.5337 
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Figure 6. The reverse supply chain (SC) after a solution. 

As expected, due to the high cost of constructing facilities in the steel industry, one center (center 
number 5) of the fve candidates was selected, and one factory (factory number 1) of the three nominated 
recycling/production plants for construction is calculated, and it provides an excellent answer to 
the case study. In this way, the schematic of the reverse SC model is changed after the solution, as 
shown in Figure 6. 

Besides, the values of the parameters of the NSGA-II algorithm are described in Table 15 in 
the main model. 

Table 15. The values of the algorithm NSGA-II operators for the case study. 

MaxIt nPop Pc Pm 

NSGA-II 100 100 0.6 0.3 

For any Pareto optimal solution, the optimal values of decision variables are obtained(see Figure 7). 
For instance, the magnitudes of some decision variables for the frst Pareto solution in Table 14 are 
represented in Table 16. According to this table, under the frst scenario, a magnitude of 2.4605 of 
the frst product type should be transported from the frst supplier to the ffth gathering center. Other 
values can be interpreted similarly. For each Pareto optimal solution, a similar set of optimal decision 
variables is obtained. 
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3.8. Sensitivity Analysis 

To investigate how the values of the objective functions varied, sensitivity analysis should be 
performed on some of the parameters. Regarding the multiplicity of the model, two types of analysis are 
performed. The frst type is the change in Pareto’s values relative to the change in one of the parameters. 
In the present study, this type of analysis—as compared to the change in the demand parameter in 
the initial model, which decreased by 10%—and the results of this sensitivity analysis are shown in 
Table 17 and Figure 9. 

Table 17. Changes in Pareto points for the initial model induced by changing the value of demand. 

Before Changing the Demand Parameter After Changing the Demand Parameter 
No. Amount of Amount of Amount of Amount of Amount of Amount of 

1st O.F. 2nd O.F. 3rd. O.F. 1st O.F. 2nd O.F. 3rd. O.F. 

1 −128.17 2271.64 0.8 −170.57 2117.32 0.8 
2 −247.05 1135.82 0.6 −92.47 801.17 0.41 
3 −92.47 801.17 0.41 42.57 1058.66 0.2 
4 67.78 1135.82 0.2 49.15 2117.32 0.6 
5 87.77 2271.64 0.6 158.82 1058.66 0.08 
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As demonstrated, with the decrease in the average demand, the value of the objective function 
decreased. By virtue of shipping costs, other items are reduced by decreasing demand. In Figure 4, 
the stars represent the Pareto before the change, and the circles represent the Pareto after the change. 

The second type of sensitivity analysis is employed for one Pareto point (here, for the tenth Pareto 
point), which is done for the demand parameter. The variability of the value of the objective function 
concerning demand in the initial model is shown in Table 18 and Figure 10. 
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Table 18. Changes to the frst objective function for the initial model induced by changing the amount 
of demand. 

Item The Amount of Demand Average The Amount of First Objective 
Function 

1 9.57 459.08 
2 17.76 423.237 
3 30.765 369.45 
4 51.994 276.155 
5 82.643 90.683 

Symmetry 2020, 12, x FOR PEER REVIEW 22 of 25 

 

As demonstrated, with the decrease in the average demand, the value of the objective function 

decreased. By virtue of shipping costs, other items are reduced by decreasing demand. In Figure 4, 

the stars represent the Pareto before the change, and the circles represent the Pareto after the change. 

The second type of sensitivity analysis is employed for one Pareto point (here, for the tenth 

Pareto point), which is done for the demand parameter. The variability of the value of the objective 

function concerning demand in the initial model is shown in Table 18 and Figure 10. 

Table 18. Changes to the first objective function for the initial model induced by changing the amount 

of demand. 

The Amount of First Objective Function The Amount of Demand Average Item 

459.08 9.57 1 

423.237 17.76 2 

369.45 30.765 3 

276.155 51.994 4 

90.683 82.643 5 

In Table 18, by assuming that the second and third objective functions are fixed, and that only 

the changes in the first objective function have been investigated, it is seen that with increasing 

average demand, the first objective function is reduced. In fact, with increasing demand, the amount 

of cost is higher than the amount of income. 

 

Figure 10. Sensitivity analysis of the first objective function in terms of the demand average. 

4. Discussion and Conclusions 

In the present study, the model was defined as multi-objective functions based on the conditions 

of the uncertainty of demand and five scenarios; the model was solved by an augmented epsilon 

constraint method and the NSGA-II algorithm, and finally analyzed. This proposed model is based 

upon the work of Feito Cespon et al. 2017 [22] by using a different objective function and case study 

and different solving approaches to compare the results. Because the number of levels and actual 

data of the model would be Np-hard by solving the GAMS, and it would not be able to achieve the 

optimal response, model validation and sensitivity analysis were done on a smaller scale. The results 

of the comparative indices showed that solving the model with the NSGA-II algorithm yielded 

acceptable results, and the main model was solved accordingly. Additionally, the optimal levels of 

the NSGA-II algorithm parameters were adjusted in the original model, based on the Taguchi design 

of experiments method. In analyzing the results, as expected, in the locating facility, one gathering 

center was selected from five candidates, and one recycling plant was selected from three candidate 

plants. The number of objective functions in different Pareto points has been obtained with a suitable 

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90

T
h

e 
am

o
u

n
t 

o
f 

fi
rs

t 
o

b
je

ct
iv

e 
fu

n
ct

io
n

Demand average

Figure 10. Sensitivity analysis of the frst objective function in terms of the demand average. 

In Table 18, by assuming that the second and third objective functions are fxed, and that only 
the changes in the frst objective function have been investigated, it is seen that with increasing average 
demand, the frst objective function is reduced. In fact, with increasing demand, the amount of cost is 
higher than the amount of income. 

4. Discussion and Conclusions 

In the present study, the model was defned as multi-objective functions based on the conditions 
of the uncertainty of demand and fve scenarios; the model was solved by an augmented epsilon 
constraint method and the NSGA-II algorithm, and fnally analyzed. This proposed model is based 
upon the work of Feito Cespon et al. 2017 [22] by using a different objective function and case 
study and different solving approaches to compare the results. Because the number of levels and 
actual data of the model would be Np-hard by solving the GAMS, and it would not be able to 
achieve the optimal response, model validation and sensitivity analysis were done on a smaller scale. 
The results of the comparative indices showed that solving the model with the NSGA-II algorithm 
yielded acceptable results, and the main model was solved accordingly. Additionally, the optimal 
levels of the NSGA-II algorithm parameters were adjusted in the original model, based on the Taguchi 
design of experiments method. In analyzing the results, as expected, in the locating facility, one 
gathering center was selected from fve candidates, and one recycling plant was selected from three 
candidate plants. The number of objective functions in different Pareto points has been obtained with 
a suitable and acceptable dispersion criterion. The model showed that it could be integrated into 
optimizing the objectives, determining the number and location of necessary facilities and planning 
the transportation between different levels of the steel industry. Some of the assumptions implied 
in the current study can be adjusted in future studies. First, there are some general assumptions 
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including the uncertainty of demand parameter, the determinedness of costs, the number and capacity 
of transportation modes and the number of supply chain levels. These assumptions can be generalized 
straightforwardly, by considering the uncertainty of other parameters and extending the model into 
more levels. Additionally, in the current paper, it is assumed that the number of suppliers, customers, 
gathering centers and recycling plants are determined. However, in some cases, the problem can be 
formulated to select different markets, suppliers, and gathering and recycling centers in a broader 
scope. These extensions will not change the structure of the proposed method drastically. However, 
altering some assumptions requires fundamental changes in the proposed model. Among these 
assumptions, reference to transshipment among levels (ignoring the sixth assumption) and limiting 
the capacity of gathering centers and recycling plants can be made. Further research can be done on 
the above-mentioned problems by changing the current model’s assumptions. 
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