4,206 research outputs found

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Bi-Modality Anxiety Emotion Recognition with PSO-CSVM

    Get PDF

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Identification of intermediate debonding damage in FRP-plated RC beams based on multi-objective particle swarm optimization without updated baseline model

    Get PDF
    Fiber reinforced polymer composites (FRP) have found widespread usage in the repair and strengthening of concrete structures. FRP composites exhibit high strength-to-weight ratio, corrosion resistance, and are convenient to use in repair applications. Externally bonded FRP flexural strengthening of concrete beams is the most extended application of this technique. A common cause of failure in such members is associated with intermediate crack-induced debonding (IC debonding) of the FRP substrate from the concrete in an abrupt manner. Continuous monitoring of the concrete?FRP interface is essential to pre- vent IC debonding. Objective condition assessment and performance evaluation are challenging activities since they require some type of monitoring to track the response over a period of time. In this paper, a multi-objective model updating method integrated in the context of structural health monitoring is demonstrated as promising technology for the safety and reliability of this kind of strengthening technique. The proposed method, solved by a multi-objective extension of the particle swarm optimization method, is based on strain measurements under controlled loading. The use of permanently installed fiber Bragg grating (FBG) sensors embedded into the FRP-concrete interface or bonded onto the FRP strip together with the proposed methodology results in an automated method able to operate in an unsupervised mode

    Automatic Malware Detection

    Get PDF
    The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system.The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system
    corecore