7,942 research outputs found

    Shape manipulation using physically based wire deformations

    Get PDF
    This paper develops an efficient, physically based shape manipulation technique. It defines a 3D model with profile curves, and uses spine curves generated from the profile curves to control the motion and global shape of 3D models. Profile and spine curves are changed into profile and spine wires by specifying proper material and geometric properties together with external forces. The underlying physics is introduced to deform profile and spine wires through the closed form solution to ordinary differential equations for axial and bending deformations. With the proposed approach, global shape changes are achieved through manipulating spine wires, and local surface details are created by deforming profile wires. A number of examples are presented to demonstrate the applications of our proposed approach in shape manipulation

    Graphic study and geovisualization of the old windmills of La Mancha (Spain)

    Get PDF
    In Spain, one can find geographical diversity and unique sites of great significance and cultural heritage. Many of the nation’s treasured places, however, have deteriorated or have even disappeared. What is left, then, should be studied and documented both graphically and infographically. It is important to preserve and document Spain’s unique locations, especially those related to vernacular heritage, to transhumance and visual impact assessment in many national infrastructures projects. Windmills are important examples of agro-industrial heritage and are sometimes found in the beds of streams and rivers but can also be found high in the hills. Their presence is constant throughout the Iberian Peninsula. These mills are no longer in use due to technological advances and the emergence of new grinding systems. The aim of this study was to present a specific methodology for the documentation of windmills, to create a graphical representation using computer graphics, as well as to disseminate knowledge of this agro-industrial heritage. This research has integrated graphic materials, including freehand sketches, photographs, digital orthophotos, computer graphics and multimedia in the creation of a specific methodology based on cutting-edge technology such as a digital photogrammetric workstation (DPW), global navigation satellite systems (GNSS), computer-aided design (CAD) and computer animation

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Thinking like a director: Film editing paterns for virtual cinematographic storytelling

    Get PDF
    International audienceThis paper introduces Film Editing Patterns (FEP), a language to formalize film editing practices and stylistic choices found in movies. FEP constructs are constraints, expressed over one or more shots from a movie sequence that characterize changes in cinematographic visual properties such as shot sizes, camera angles, or layout of actors on the screen. We present the vocabulary of the FEP language, introduce its usage in analyzing styles from annotated film data, and describe how it can support users in the creative design of film sequences in 3D. More specifically, (i) we define the FEP language, (ii) we present an application to craft filmic sequences from 3D animated scenes that uses FEPs as a high level mean to select cameras and perform cuts between cameras that follow best practices in cinema and (iii) we evaluate the benefits of FEPs by performing user experiments in which professional filmmakers and amateurs had to create cinematographic sequences. The evaluation suggests that users generally appreciate the idea of FEPs, and that it can effectively help novice and medium experienced users in crafting film sequences with little training

    Efficient utilization of graphics technology for space animation

    Get PDF
    Efficient utilization of computer graphics technology has become a major investment in the work of aerospace engineers and mission designers. These new tools are having a significant impact in the development and analysis of complex tasks and procedures which must be prepared prior to actual space flight. Design and implementation of useful methods in applying these tools has evolved into a complex interaction of hardware, software, network, video and various user interfaces. Because few people can understand every aspect of this broad mix of technology, many specialists are required to build, train, maintain and adapt these tools to changing user needs. Researchers have set out to create systems where an engineering designer can easily work to achieve goals with a minimum of technological distraction. This was accomplished with high-performance flight simulation visual systems and supercomputer computational horsepower. Control throughout the creative process is judiciously applied while maintaining generality and ease of use to accommodate a wide variety of engineering needs
    corecore