1,179 research outputs found

    Hierarchical reinforcement learning for adaptive and autonomous decision-making in robotics

    Get PDF
    In recent years, Reinforcement Learning has been able to solve extremely complex games in simulation, but with limited success in deployment to real-world scenarios. The goal of this work is create an ecosystem in which Reinforcement Learning algorithms can be deployed onto real robots in complex games. The ecosystem begins with the creation of a development pipeline which can be used to progressively train Reinforcement Learning Algorithms in increasingly realistic scenarios, culminating with the deployment of these algorithm onto a real system. The pipeline is paired with the novel Reinforcement Learning algorithms that are better able to adapt to new scenarios than traditional methods for autonomy and robotic planning.We implement two techniques to enable this adaptation. First, we implement a hierarchical Reinforcement Learning architecture that uses differentiated sub-policies governed by a hierarchical controller to enable fast adaptation. Second we introduce a confidence-based training process for the hierarchical controller which improves training stability and convergence times. These algorithmic contributions were evaluated using our development pipeline

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF

    Reinforcement Learning Embedded in Brains and Robots

    Get PDF
    In many ways and in various tasks, computers are able to outperform humans. They can store and retrieve much larger amounts of data or even beat humans at chess. However, when looking at robots they are still far behind even a small child in terms of their performance capabilities. Even a sophisticated robot, such as ASIMO, is limited to mostl

    Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for Early Design Validation

    Get PDF
    During mission design, the concept of operations (ConOps) describes how the system operates during various life cycle phases to meet stakeholder expectations. ConOps is sometimes declined in a simple evaluation of the power consumption or data generation per mode. Different operational timelines are typically developed based on expert knowledge. This approach is robust when designing an automated system or a system with a low level of autonomy. However, when studying highly autonomous systems, designers may be interested in understanding how the system would react in an operational scenario when provided with knowledge about its actions and operational environment. These considerations can help verify and validate the proposed ConOps architecture, highlight shortcomings in both physical and functional design, and help better formulate detailed requirements. Hence, this study aims to provide a framework for the simulation and validation of operational scenarios for autonomous robotic space exploration systems during the preliminary design phases. This study extends current efforts in autonomy technology for planetary systems by focusing on testing their operability and assessing their performances in different scenarios early in the design process. The framework uses Model-Based Systems Engineering (MBSE) as the knowledge base for the studied system and its operations. It then leverages a Markov Decision Process (MDP) to simulate a set of system operations in a relevant scenario. It then outputs a feasible plan with the associated variation of a set of considered resources as step functions. This method was applied to simulate the operations of a small rover exploring an unknown environment to observe and sample a set of targets

    Real-Time Hybrid Visual Servoing of a Redundant Manipulator via Deep Reinforcement Learning

    Get PDF
    Fixtureless assembly may be necessary in some manufacturing tasks and environ-ments due to various constraints but poses challenges for automation due to non-deterministic characteristics not favoured by traditional approaches to industrial au-tomation. Visual servoing methods of robotic control could be effective for sensitive manipulation tasks where the desired end-effector pose can be ascertained via visual cues. Visual data is complex and computationally expensive to process but deep reinforcement learning has shown promise for robotic control in vision-based manipu-lation tasks. However, these methods are rarely used in industry due to the resources and expertise required to develop application-specific systems and prohibitive train-ing costs. Training reinforcement learning models in simulated environments offers a number of benefits for the development of robust robotic control algorithms by reducing training time and costs, and providing repeatable benchmarks for which algorithms can be tested, developed and eventually deployed on real robotic control environments. In this work, we present a new simulated reinforcement learning envi-ronment for developing accurate robotic manipulation control systems in fixtureless environments. Our environment incorporates a contemporary collaborative industrial robot, the KUKA LBR iiwa, with the goal of positioning its end effector in a generic fixtureless environment based on a visual cue. Observational inputs are comprised of the robotic joint positions and velocities, as well as two cameras, whose positioning reflect hybrid visual servoing with one camera attached to the robotic end-effector, and another observing the workspace respectively. We propose a state-of-the-art deep reinforcement learning approach to solving the task environment and make prelimi-nary assessments of the efficacy of this approach to hybrid visual servoing methods for the defined problem environment. We also conduct a series of experiments ex-ploring the hyperparameter space in the proposed reinforcement learning method. Although we could not prove the efficacy of a deep reinforcement approach to solving the task environment with our initial results, we remain confident that such an ap-proach could be feasible to solving this industrial manufacturing challenge and that our contributions in this work in terms of the novel software provide a good basis for the exploration of reinforcement learning approaches to hybrid visual servoing in accurate manufacturing contexts
    • …
    corecore