
Real-Time Hybrid Visual Servoing
of a Redundant Manipulator via
Deep Reinforcement Learning

Alexander James Williams

Submitted to Swansea University in fulfilment of
the requirements for the Degree of

Master of Engineering

2021

Copyright: The author, Alexander J. Williams, 2023. Released under the terms of a Creative
Commons Attribution-Only (CC-BY) License. Third party content is excluded for use under the
license terms.

A.A.ZASHEVA
New Stamp

Abstract

Fixtureless assembly may be necessary in some manufacturing tasks and environ-
ments due to various constraints but poses challenges for automation due to non-
deterministic characteristics not favoured by traditional approaches to industrial au-
tomation. Visual servoing methods of robotic control could be effective for sensitive
manipulation tasks where the desired end-effector pose can be ascertained via visual
cues. Visual data is complex and computationally expensive to process but deep
reinforcement learning has shown promise for robotic control in vision-based manipu-
lation tasks. However, these methods are rarely used in industry due to the resources
and expertise required to develop application-specific systems and prohibitive train-
ing costs. Training reinforcement learning models in simulated environments offers
a number of benefits for the development of robust robotic control algorithms by
reducing training time and costs, and providing repeatable benchmarks for which
algorithms can be tested, developed and eventually deployed on real robotic control
environments. In this work, we present a new simulated reinforcement learning envi-
ronment for developing accurate robotic manipulation control systems in fixtureless
environments. Our environment incorporates a contemporary collaborative industrial
robot, the KUKA LBR iiwa, with the goal of positioning its end effector in a generic
fixtureless environment based on a visual cue. Observational inputs are comprised of
the robotic joint positions and velocities, as well as two cameras, whose positioning
reflect hybrid visual servoing with one camera attached to the robotic end-effector,
and another observing the workspace respectively. We propose a state-of-the-art deep
reinforcement learning approach to solving the task environment and make prelimi-
nary assessments of the efficacy of this approach to hybrid visual servoing methods
for the defined problem environment. We also conduct a series of experiments ex-
ploring the hyperparameter space in the proposed reinforcement learning method.
Although we could not prove the efficacy of a deep reinforcement approach to solving
the task environment with our initial results, we remain confident that such an ap-
proach could be feasible to solving this industrial manufacturing challenge and that
our contributions in this work in terms of the novel software provide a good basis
for the exploration of reinforcement learning approaches to hybrid visual servoing in
accurate manufacturing contexts.

DECLARATIONS

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed:

Date: 01/10/2021

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A bibliogra-
phy is appended.

Signed:

Date: 01/10/2021

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for interlibrary loan, and for the title and summary to be made available to out-
side organisations.

Signed:

Date: 01/10/2021

The University’s ethical procedures have been followed and, where appropriate, that
ethical approval has been granted.

Signed:

Date: 01/10/2021

1

Contents

Acknowledgements 5

List of Figures 7

List of Tables 9

List of Algorithms 10

1 Introduction 14
1.1 Industry 4.0 and the Factory of the Future 14
1.2 A New Wave of HRC-Compatible Industrial Robots 14
1.3 Automation in Non-deterministic Environments 15
1.4 Challenges in Aerospace Manufacturing 15
1.5 Vision-based Control . 16
1.6 Machine Learning for Visual Servoing 17
1.7 Simulating Robotic Control Tasks . 17
1.8 Research Aims and Scope . 18
1.9 Chapter Summary . 18

2 Literature Review 19
2.1 Industrial Robotic Manipulators . 19
2.2 Computer Vision and Visual Servoing 22

2.2.1 Visual Servoing Methods . 22
2.3 Artificial Neural Networks & Deep Learning 23
2.4 Learning Algorithms . 26

2.4.1 Supervised Learning . 26
2.4.2 Unsupervised Learning . 28
2.4.3 Reinforcement Learning . 28

2.5 Deep Reinforcement Learning in Robotics 37
2.5.1 Parallelised Algorithms . 37
2.5.2 Simulated Environments . 38
2.5.3 Transfer Learning and Associated Methods 39

2.6 Practical Considerations in Deep RL and Robotics 41
2.6.1 Performance Metrics . 41
2.6.2 Reproducibility . 41

2

2.6.3 Ablation Studies . 41
2.6.4 Hyperparameter Optimisation 42
2.6.5 Software Implementation . 43

2.7 Research Gap Discussion . 44
2.8 Novelty . 46
2.9 Chapter Summary . 47

3 Methodology 48
3.1 Methodology Overview . 48
3.2 Literature Review . 50
3.3 Robot Specification . 50
3.4 Deep Reinforcement Learning . 52
3.5 Simulation . 52
3.6 Software Libraries . 53

3.6.1 Machine Learning Library . 53
3.6.2 Simulation Library . 54
3.6.3 Experiment Management Library 54
3.6.4 Programming Language . 55

3.7 Experimental Approach . 55
3.8 Chapter Summary . 56

4 System Design 57
4.1 Task Description . 57
4.2 Environment Modelling - Markov Decision Process 59

4.2.1 States . 60
4.2.2 Goals . 60
4.2.3 Observations . 60
4.2.4 Actions . 62
4.2.5 Initial State-Goal Distribution 62
4.2.6 Rewards . 62

4.3 Reinforcement Learning Algorithm 66
4.3.1 Learning Algorithm . 66
4.3.2 Training Procedure . 67
4.3.3 Exploration Policy . 67

4.4 Neural Network Architecture . 67
4.4.1 Network Description . 68
4.4.2 Network Discussion . 70

4.5 Chapter Summary . 72

5 Software Implementation 73
5.1 3D Modelling . 73
5.2 PyBullet Environment . 74

5.2.1 Constructor . 76
5.2.2 Constants . 77
5.2.3 Observation Spec . 78

3

5.2.4 Action Spec . 79
5.2.5 Observation Function . 79
5.2.6 Reset Function . 79
5.2.7 Step Function . 80
5.2.8 Reward Function . 81
5.2.9 Goal Generation . 82
5.2.10 Termination Function . 83

5.3 Chapter Summary . 83

6 Experiments and Results 85
6.1 Experimental Work . 85
6.2 Data Collection and Evaluation Metrics 86
6.3 List of Experiments . 86
6.4 Results . 90

6.4.1 Summary of all experiments 91
6.4.2 Seeding . 93

6.5 Discussion . 94
6.6 Further Experiments and Ablation Studies 95
6.7 Chapter Summary . 96

7 Project Challenges and Discussion 97
7.1 Environment . 97
7.2 Network . 99
7.3 Algorithmic Choices . 99
7.4 Software Implementation . 100
7.5 3D Render . 101
7.6 Experiments . 101
7.7 Physical Deployment . 103
7.8 Chapter Summary . 103

8 Conclusions and Future Work 104
8.1 Conclusion . 104
8.2 Future Work . 105
8.3 Dissemination . 107
8.4 Chapter Summary . 107

Appendices 109

A SAC Algorithm 110

B Code Repository 112

C Experiment Data 113

4

D Proposed Experiments and Ablation Studies for Future Work 115
D.1 Observation Modularity . 115
D.2 Camera Resolution . 116
D.3 Sim-2-Real . 116
D.4 Reward Sparsity . 116
D.5 Initial State-Goal Distribution . 117
D.6 Curriculum Learning . 118

5

Acknowledgements

I would first like to thank my supervisors, Dr. Christian Griffiths and Dr. Ian
Cameron, for their support, guidance and understanding in writing this thesis and
for allowing me the freedom and time to explore this topic in depth. I would also like
to thank my colleagues in ASTUTE and at Swansea University for the opportunities
to contribute to fantastic research and for all of their support in my academic career
to date, as well as being all-round brilliant people to work with. Finally, I would like
to thank all of my wonderful family and friends for their love, support and company
while I have been writing this thesis, and I would particularly like to thank my parents
David and Ceri, without whom I wouldn’t have been able to get through this thesis
without short-circuiting.

6

List of Figures

2.1 Architecture of a Feedforward Neural Network with three input units,
two output units, and two hidden layers [39] 23

2.2 Structure of a Convolutional Neural Network with 4 hidden layers [41] 25
2.3 Agent-environment interaction in a Markov Decision Process [21, p. 38] 29
2.4 Actor Critic Algorithmic Structure [79] 33

3.1 KUKA LBR iiwa R800 [29] . 50

4.1 Task setup. 58
4.2 Goal attainment. Left: profile view; Right: end-effector view 59
4.3 KUKA LBR iiwa working envelope, side view [142] 65
4.4 KUKA LBR iiwa working envelope, top view [142] 65
4.5 General actor network architecture. 69
4.6 General critic network architecture. 70

5.1 Render of simulated environment in PyBullet GUI showing a typical
placement of the floor, target and robot, with windowed eye-in-hand
and eye-to-hand camera views in the left panel and joint angles A1:7
in degrees in the right panel. 74

6.1 Specific actor network used for experiments. Key for layer types is
shown. Unless stated, the default parameters are used for each layer
type as they appear in [171] and [172] respectively. 89

6.2 Specific critic network used for experiments. Key and other parameters
as defined in Figure 6.3. 90

6.3 Average return across episodes for all experiments 91
6.4 Average episode length across episodes for all experiments 91
6.5 Loss across episodes for experiments where actor / critic / alpha learn-

ing rate = 0.0003 . 92
6.6 Loss across episodes for all experiments 92
6.7 Average return for experiments where all parameters fixed except for

seed . 93
6.8 Loss for experiments where all parameters fixed except for seed 93
6.9 Average episode length for experiments where all parameters fixed ex-

cept for seed . 94

7

A.1 SAC algorithm pseudocode as it appears in [179] 111

B.1 Github repository. 112

C.1 Comet.ML repository with composite graphs and hyperlink access to
each experiment. 113

C.2 Location of recorded data in comet interface for an individual experiment114

8

List of Tables

2.1 Industrial collaborative robot manipulators and their features. Sum-
marised from [30]. 21

3.1 Maximum range and velocities of motion for KUKA LBR iiwa R800
joints [142]. 51

5.1 Environment customisation options available in class constructor. . . 77
5.2 Environment class constants . 77
5.3 Observation Spec Components. 78
5.4 Action Spec . 79

6.1 Non-default hyperparameter settings for each experiment. 87
6.2 (Non-exhaustive) list of hyperparameters including training, reinforce-

ment learning, and environment hyperparameters with their function
and the default value used for experiments. 88

D.1 Possible valid observation permutations. 116
D.2 Reward Function Combinations. 117
D.3 Initial State-Goal Distribution Function Combinations. 118

9

List of Algorithms

1 Observation Spec Function . 78
2 Observation Function . 79
3 Environment Reset Function . 80
4 Step Function . 80
5 Reward Function . 82
6 Random Goal Generation in generateGoal() 83
7 Termination Function . 83

10

Nomenclature

Abreviations

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional

CPU Central Processing Unit

DoF Degrees of Freedom

EIH Eye-In-Hand (Visual Servoing)

ELU Exponential Linear Unit

ETH Eye-to-Hand (Visual Servoing)

FC Fully Connected

GAN Generative Adversarial Network

GPU Graphics Processing Unit

HRC Human-Robot Collaboration

IDE Integrated Development Environment

MAE Mean Absolute Error

MDP Markov Decision Process

MLP Multi-Layer Perceptron

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

POMDP Partially Observable Markov Decision Process

11

ReLU Rectified Linear Unit

RL Reinforcement Learning

ROS Robot Operating System

URDF Unified Robot Description Format

VS Visual Servoing

Markov Decision Processes

α Learning rate

γ Discount rate

A Set of all actions

G Set of all goals

R Set of all possible rewards, a finite subset of R

S Set of all states

S1 Set of initial states

T Set of terminal states

π Policy

π∗ Optimal Policy

πθ Policy with parameters θ

τ Trajectory. e.g. τ = (s0, a0, s1, a1, . . . , sn, an)

a Action

A(s, a) Advantage function

E Environment

G Return (cumulative discounted reward) following time t

g Goal

o Observation

Q(s, a) Action-value (Q) function

r Reward

r∗ Optimal Reward

12

s, s′ States

s0 Initial state

T Final time step of an episode

t Discrete time step

V (s) State-value function

Mathematical Notation

(a1, . . . , an) n-dimensional vector

< Less Than

> Greater Than

≈ Approximately equal

≥ Greater Than Or Equal

∈ Is an element of e.g s ∈ S

∧ Logical And

≤ Less Than or Equal

← Assign to e.g x← 1

∨ Logical Or

R Set of real numbers

Rn n-dimensional real space

⊙ Hadamard Product

⊂ Subset of e.g R ⊂ R

P (x) Probability of x

argmaxaf(a) A value of a at which f(a) takes its maximal value

13

Chapter 1

Introduction

1.1 Industry 4.0 and the Factory of the Future

We are in the midst of the fourth industrial revolution, Industry 4.0, where advanced
digitalisation within factories is being brought about by a combination of Internet
technologies and future-oriented technologies such as ’smart’ machines and prod-
ucts which promise to fundamentally shift modern industrial production towards a
future where manufacturing is ubiquitously equipped with sensors, actuators, and
autonomous systems [1].

This paradigm shift is facilitating progress in industrial practices to transition from
mass production towards mass user-driven customisation in manufacturing, where
buyers more commonly define the conditions of trade leading to increased individu-
alisation of products, and even individual products. These requirement changes in
manufacturing adaptability make flexibility in modern production methods a neces-
sity [1], [2].

Reconfigurable automation technologies such as robots are required to meet this
rise in customisation whilst also producing products within a reasonable time-frame
and they are expected to be one of the main enablers of the transition to the trans-
formable factory of the future. However, current industrial robotics systems are
notoriously difficult to program, which can lead to high changeover times when new
products are introduced. In order to remain competitive, the factory of the future
needs complete production lines that can be effortlessly reconfigured or repurposed
when the need arises and robots that are easily reprogrammable by non-robotics
experts for new tasks [2].

1.2 A New Wave of HRC-Compatible Industrial

Robots

Robot manipulators, which consist of a series of rigid links connected by motor-
actuated joints that extend from a fixed base to an end-effector, are widely used in
manufacturing [3] due to their simplicity, flexibility, versatility, general applicability

14

and reconfigurability.
Traditionally, industrial robotics systems needed to be segregated from human

colleagues using extensive safety equipment (for example, physical cages around their
working area) in order to comply with safety standards such as ISO 10218-1:2011
[4] and ensure human operator protection. However, there are a growing number
of Human-Robot Collaboration (HRC) compatible, collaborative robots, or ’cobots’,
that have been developed for industrial applications.

The typical features of HRC-compatible robots such as joint torque sensors, kine-
matically redundant joint structure, reduced velocity, high accuracy, low weight, and
a variety of hard-and-software-based safety features [5] bring forth a number of ad-
vantages over their non-collaborative industrial counterparts. The most obvious is
their ability to work alongside and in the presence of humans without the need for
extensive / intrusive safety procedures [6]. This capability admits greater opportuni-
ties for semi-automation, where easily-automated task segments may be fulfilled by a
cobot, whilst more onerous tasks can be fulfilled by humans, thus allowing production
lines to flexibly evolve over time whilst making incremental efficiency savings.

Furthermore, a general advantage of newer robots and typically associated with
HRC-compatible robots is that they are programmable in more sophisticated and
modern programming languages compared with many traditional manipulators. The
ability to program more complex behaviour with ease becomes necessary in the do-
main of human-interactive environments and to automate complex and variable tasks.

1.3 Automation in Non-deterministic Environments

Robots perform best at highly repetitive tasks and as such automation is typically
implemented in deterministic environments. This is achieved by the application of
mechanical jigs and fixtures that precisely position each workpiece that the robot is
expected to interact with, but jigs are expensive, time-consuming to manufacture and
arrange, occupy space, and thus hindering to flexible or reconfigurable automation
lines [7, p. 455],[8].

In contrast, fixtureless assembly environments are uncertain for robots to operate
in but are often necessary due to spatial constraints imposed by a plant, or by irregular
or sizeable work piece geometries rendering the installation of specialised tools and
fixtures to be infeasible or expensive. This makes the implementation of automation
systems in such environments challenging.

An example of such a manufacturing environment can be found in the aerospace
manufacturing industry where the enormous workpieces, limited assembly space, and
the relatively high accuracy and precision needed for assembly [9] impose significant
barriers to any potential automation solutions.

1.4 Challenges in Aerospace Manufacturing

The aerospace industry is under pressure to automate its manufacturing processes
to induce higher productivity, improve aircraft quality, and circumvent ergonomic

15

challenges for the workers that construct them. Due to recent developments in their
rigidity and accuracy, manufacturing robots have become the lower-cost tools of choice
for many aerospace manufacturing operations including drilling, fastening, sealing and
painting due to their repeatability and ability to outperform human workers at these
tasks [10]. According to Brumson, drilling holes into components was the largest use
of robotics in the aerospace industry in 2012. Aircraft need thousands of holes drilled
precisely with sub-mm accuracies of +/-0.25 mm [9]. Drilling these holes manually
quickly becomes infeasible as the process requires a skilled and experienced worker
[11]. Furthermore, repetitive tasks such as this can cause ergonomic challenges for
employees, causing injuries such as RSI [10].

Aircraft manufacturing lines can have a lifetime of several decades, so robotic
solutions that are to be integrated into existing production environments should have
little or no dedicated physical infrastructure due to space and weight restrictions
typical within factories [12]. In 2016, Airbus issued the ”Shopfloor Challenge” with
the aim of finding a robot capable of drilling holes in aircraft wings at the required
accuracy with suitably fast speed with minimal setup cost and downtime. The issuing
of this industrial challenge clearly indicates the need for solutions to this problem
[12]. While the results of the competition were promising, no solution was declared
by Airbus to be unilaterally successful or satisfactory [13] and this is still considered
an unsolved problem in the industry.

1.5 Vision-based Control

One potential solution to produce flexible closed loop control in fixtureless assembly
environments is vision-based control, or visual servoing (VS), whereby information
from one or more cameras or other visual sensors [14] can be used to guide a robot
in order to achieve a task, resulting in a dynamic adaptive control system [7], [15],
[16]. Greater control accuracy and environmental awareness can be achieved by em-
ploying a hybrid visual servoing approach whereby two vision sensors provide input
to a control system, with one sensor attached to the robot’s end-effector for accu-
rate positioning and another observing the robot in its work environment for greater
positional awareness.

The maturity of computer vision (CV) applications, which has achieved great
strides in recent years, means that suitably processed vision data can yield complex
environmental insight way beyond the basic positional awareness and immediate touch
of robot manipulators equipped with joint-torque sensors [16]. Vision applications for
industrial manufacturing are wide-ranging. From interpretation of work surface and
component geometry [17], to locating relevant points of interest [18], and detecting
external persons or items within the workspace [19].

Therefore, incorporating vision sensors into robots with kinematic redundancy
could be key to allowing operation in unstructured or dynamically changing envi-
ronments that characterise advanced industrial applications [20] such as aerospace
manufacturing, and it is possible that a new wave of HRC-compatible redundant ma-
nipulators such as the KUKA LBR iiwa can be successfully applied to automation in

16

uncertain fixtureless environments if equipped with visual servoing technologies.
One of the main caveats of using vision sensing is in the complexity and difficulty

of interpreting image data using computational methods and the size of data ob-
tained from vision sensors which makes methods computationally expensive and can
delay robotic responses. Artificial Neural Networks (ANNs) trained with Machine
Learning (ML) methods are able to provide solutions with approximations nearing
more accurate (and computationally expensive) mathematical models [16], providing
computation to complex problems in a fraction of the time.

1.6 Machine Learning for Visual Servoing

ML and ANNs have been successfully applied to many complex image processing and
robotic control tasks. In particular, the paradigm of Reinforcement Learning (RL) -
which frames problems as interactions between an agent and its environment in which
it receives feedback in order to achieve a goal, has found particular success in robotics
due to its natural encapsulation of control problems via Markov Decision Processes
[21, p. 55].

Still, applying AI to robotics systems is challenging for several reasons including
the high dimensionality of control problems, high performance requirements (partic-
ularly in safety-critical systems), and factors associated with physical embodiment
that bring real-world unpredictability and physical and timing constraints. Adequate
performance in the physical world, however, is essential for any robotics controller so
that it is robust to the full set of dynamics and possible disturbances [22].

1.7 Simulating Robotic Control Tasks

Simulators are widely used in the robotics community and in RL as they allow for
real world systems to be quickly and cheaply prototyped without the need for physi-
cal access to hardware. Simulations are particularly advantageous in robotic learning
research as the huge data requirement for deep RL approaches means it can be more
effective to take advantage of increasingly powerful and ubiquitous computational
resources to cheaply and quickly generate synthetic data to accelerate the learning
as opposed to the high costs intrinsic to real-world data collection experiments. Sim-
ulation also carries numerous advantages [23], including alleviating risk of damage
to real-world hardware, faster than real-time operation and parallelisation, instant
access to robots without purchase, easy reconfigurability and limited requirements
for human intervention.

Although simulations cannot capture all dynamics of a real-world environment,
they can provide a basis for evaluating the feasibility of control algorithms for specific
tasks. Furthermore, control systems trained in simulation can often be fine-tuned
to operate in the physical world with a greatly reduced training requirement than
training in the physical environment from scratch [24]. Simulations of control tasks
therefore offer a valuable basis by which to develop complex robotic control systems.

17

1.8 Research Aims and Scope

The overarching aim and motivation of this work is that we wish to generate a solution
to automating accurate fixtureless manufacturing tasks in dynamic, stochastic, non-
deterministic environments. Specifically, we are concerned with addressing challenges
in the automation of highly accurate aerospace manufacturing tasks such as drilling, as
encapsulated by the Airbus Shopfloor Challenge [13]. Whilst solving addressing these
challenges in its entirety is far beyond the scope of this research work, in this work
we would like to be able to examine the potential of particular control algorithms
to this task environment, as a first-step to developing automation systems in this
domain. Assessments of the efficacy of different robotic control approaches can take
place utilising simulations of the task environment, with the view that any control
policy successfully derived via simulation can potentially be applied to a physical
robotic control system with some further tuning.

We hypothesise that a control policy for a dextrous and collaborative robotic ma-
nipulator to act in such an environment can be achieved using a dual-camera visual
servoing-based control methodology and derived through a deep RL algorithm and
using an ANN to model the control policy. Simulations are commonly employed in
RL research for testing the feasibility of and optimising RL learning algorithms to
particular tasks, but at present, no such simulations exist for multi-camera visual ser-
voing for accurate dextrous robotic manipulation in fixtureless manufacturing tasks.
In this work, we seek to develop a simulation that accurately reflects the challenges
of an aerospace fixtureless manufacturing environment, and evaluate whether this
complex control task can be solved using a deep RL learning approach applied to a
dextrous collaborative robot employing hybrid visual servoing.

1.9 Chapter Summary

In this chapter,we have introduced the background to this research, touching on
Industry 4.0, collaborative robots, fixtureless manufacturing environments such as
aerospace manufacturing and the challenges they pose to automation, visual servoing
for robotic control and the application of ML to this domain, as well as the value
of simulations for deriving ML-based control policies. We then identified robotic
control limitations in fixtureless manufacturing environments, specifically in aerospace
manufacturing tasks such as drilling, exemplified by the Airbus Shopfloor Challenge.
We have hypothesised a potential solution to this robotic manufacturing challenge
in the form of a hybrid visual servoing control policy, derived via deep RL and set
out our research aims. In the following section, we perform a literature review of the
state-of-the-art as it relates to our research aims.

18

Chapter 2

Literature Review

In this chapter, we will conduct a literature review of the state-of-the-art as it relates
to industrial robotic control. The review is structured as follows: first we review
the state of contemporary robotic manipulator technology including operation and
models; next we review the state-of-the-art in computer vision and visual servoing
methods; after this, we review the theory and state-of-the-art of ML and ANNs,
with a particular focus on RL; we then dive into the state-of-the-art research in deep
RL for robotics including algorithms, simulations, and simulation-to-reality transfer
methods before reviewing practical considerations in deep RL and robotics research
including as experimental best practice and software implementation libraries; finally,
we discuss gaps in existing research and propose a novel solution to the challenges of
automation in aerospace manufacturing tasks.

2.1 Industrial Robotic Manipulators

Robot manipulators are widely used in manufacturing [3] due to their simplicity, flex-
ibility, versatility, general applicability and reconfigurability. Robotic manipulators
consist of a series of rigid links connected by motor-actuated joints that extend from
a fixed base to an end-effector. Most manipulators built for general application have
six degrees of freedom (DoF) which allow them to position their end-effector at any
point in 3D space within its reach. Each degree of freedom corresponds to transla-
tional movement in the X, Y, Z axes as well as rotational movement about each of
these axes.

There are a growing number of Human-Robot Collaboration (HRC) compatible,
collaborative robots, or ’cobots’, that have been developed for industrial applications.
Collaborative robots is a relatively recent and active field of research with the main
aims of researchers and manufacturers being to improve the aspect of human safety
during human-robot interaction while increasing payload capacity and maintaining
and enhancing the mobility and flexibility of these robots [25], with a close objective
of achieving systems that can recognise, work with, and adapt to human or other
robot behaviours in unstructured environments [26]. Since 2008, this technology
started to emerge in industry with early cobot examples such as Universal Robots UR5

19

[27], Rethink Robotics Baxter [28], and KUKA LBR iiwa [29]. Many manufacturers
have now released their own cobots [30], with some of the major contributors and
manufactures in the field being Universal Robotics, Rethink Robotics, ABB, KUKA,
and Omron [25]. Hentout et al. surveyed a range of industrial collaborative robots,
along with their specification and applications. We summarise this survey, with the
addition of the KUKA KMR iiwa [31] and Fetch Mobile Manipulator [141], in Table
2.1. A detailed overview of the typical architectures and features of collaborative
robots is also given in [5].

Several of the aforementioned robots, such as the LBR iiwa, Baxter, and Yumi
IRB robots are classified as kinematically redundant manipulators as they possess
seven DoF, compared to traditional manipulators which have six DoF respectively.
A kinematically redundant manipulator may be defined as a robot manipulator that
possesses more joints than those required to execute its task such that the same
task at the end-effector level can be executed in several different ways at the joint
level. As 6 DoF is required for a manipulator to reach any point in a 3D workspace,
a seventh degree of freedom provides redundancy that allows the manipulator to
reach any point in its workspace in an infinite number of ways. This provides the
robot with an increased level of dexterity that may be used to avoid singularities,
specific joint limits, and workspace obstacles, as well as minimise joint torque and
energy usage or in general optimise appropriate performance indexes [20], but also
introduces additional complexity into the inverse kinematics calculations required for
motion planning.

While traditional industrial robots have required extensive safety infrastructure
to avoid human injury due to their high speeds and must operate in more open
and predictable workspaces due to their more limited six DoF and sensing capa-
bilities, HRC-compatible robot manipulators can operate in more inhibitive spaces
with minimal safety infrastructure and in the presence of humans due to their kine-
matic redundancy, joint-torque sensors that can detect collisions with sensitivity, and
lighter weight [29]. This allows them to be deployed with more flexibility and thus
faster changeover times, and even opens them up to applications in mobile robotics
as demonstrated with the KUKA KMR iiwa [31].

Finally, a general advantage of newer robots and typically associated with HRC-
compatible robots is that they are programmable in more sophisticated and modern
programming languages than many many traditional manipulators. For example,
software for the KUKA LBR iiwa is written in the Java programming language and
simple programming and configuration is made possible in the Sunrise Workbench
IDE (Integrated Development Environment). Java is an extremely popular object-
orientated language with a thriving ecosystem of documentation and support. Its
application to an industrial robot means that realising complex algorithms and in-
terfacing with a range of external devices suddenly became much easier compared
to traditional industrial robotic programming languages such as KUKA Robot Lan-
guage (KRL). Furthermore, other industrial cobots such as the Universal Robotics
UR series may be programmed in the Python scripting programming language which
is considered to be intuitive, especially for those new to programming.

20

Robot Company Specifications Sensors

Yumi IRB 14000 ABB

Dual-arm body (7-DoF each);
Action resumption only by
human remote control;
Collision-free path;

Camera-based object tracking;
Collision detection through
force sensor;

LBR iiwa KUKA

Contact detection;
Velocity and force reduction
on collision;
Single arm with 7-DoF;

Torque sensors;
Force sensors;

KMR iiwa KUKA
LBR iiwa with omnidirectional
mobile base;

Laser sensors

Baxter Rethink Robotics Dual-arm (7 + 7-dof);

Embedded torque sensors;
Integrated camera per arm;
Vision-guided movement
and object detection;
360 degrees sonar;
Front camera;

UR3 510 Universal Robots

6-DoF in single arm;
Collision detection;
Robot stops upon collision;
Speed reduction to 20%;

Force sensors;
Speed reduction in directly
programming;

Robonaut NASA

Dual arms with complete hands
and fingers;
Each arm has 7-DoF;
Each finger has 3-DoF;
Elastic joints;

Stereo-vision camera;
Infrared camera;
High-resolution auxiliary cameras;
Miniaturised 6-axis load cells;
Force sensing in joints;

APAS Bosch 6-DoF;
Touchless triggering sensor;
3D stereo camera;
2D monochrome camera;

COMAU dual-arm robot COMAU
Dual anthropomorphous arms
with 6-DoF;

Proximity and tactile sensors;
Vision system;
Force/torque sensor;

Rob@Work 3 Fraunhofer IPA
6-DoF arm;
Omnidirectional mobile base;

3D camera;
Stereo-camera systems;
Laser scanners;

DLR-LWR III
Institute of Robotics
and Mechatronics

7-DoF;
Joint torque sensors;
Redundant position sensing;
Wrist force-torque sensor;

DLR LWR 4/5 KUKA-DLR 7-DoF; Torque sensors;

Mobile Manipulator Fetch Robotics
7-Dof arm with gripper and
omnidirectional mobile base

Laser sensors;
Stereoscopic camera;

Table 2.1: Industrial collaborative robot manipulators and their features. Sum-
marised from [30].

21

2.2 Computer Vision and Visual Servoing

Computer Vision includes methods for processing and understanding images, to pro-
duce numeric or symbolic information about an environment [32]. Computer vision
has gained popularity in robotics applications due to the emergence of low-cost 2D and
3D cameras, and breakthroughs in computer vision image processing tasks including
image classification, object detection, image segmentation, path planning, trajectory
generation, environment mapping, as well as visual servoing [33]–[35]. According
to Cherubini, It is one of the most common sensor-based control methodologies for
collaborative robot applications, along with touch-based, audio-based, and distance-
based control [32].

Since 2012, and the breakthrough by Krizhevsky et al. in using artificial neural
networks for image classification [19], as well as the increasing availability of greater
computer processing power it has been observed that research into techniques employ-
ing machine learning and ANNs in the visual servoing domain has increased rapidly.
According to [33], 98% of research in visual servoing in the year 2021 employed some
kind of AI-based technique. Singh states that recently, machine learning methods
combined with optimisation algorithms like model predictive control, genetic algo-
rithms, or Kalman filter techniques are the current state-of-the-art for predicting
optimal and efficient robot trajectories in vision-guided robotics systems but com-
ments on the extent of research happening in the field of deep reinforcement learning
in this research context, viewing it as a future-oriented technology where robots learn
tasks with minimal human intervention [33].

Further detail and applications relating to sensor-based robotic control, including
vision-based control can be found in [32] and [33]. We also direct the reader to the
works of Feng et al. for an overview of state-of-the-art computer vision algorithms
for different image processing tasks [34] and Zhou et al. for an overview of computer
vision applications in manufacturing[35].

2.2.1 Visual Servoing Methods

In terms of camera positioning, there are two possible visual servoing configurations
for robot manipulators [16], [32], [36], [37]:

• Eye-to-Hand An external vision system observes the robot in its environment
and provides perception of both the robot and its wider environment. As these
approaches are necessarily situated at a distance from the robot, their greater
awareness comes at a cost of diminished accuracy and potential view obstruction
by the robot itself.

• Eye-in-Hand A local vision system is attached to the robotic end-effector or
”hand”. This results in a dynamically framed visual input that varies according
to the robot’s specific movements. These methods provide a local perception con-
cerned with the positioning of the robotic end-effector which limits environmental
awareness, but yields detailed feedback and thus greater end-effector accuracy.

22

These methods can be combined to great effect. In the work of [16], a two camera
approach is used for visual guidance and feedback in a manipulator-based pick and
place task. The robot, its workspace, and the target are in the field of view of a fixed
camera providing visual guidance for the control system, meanwhile another camera
attached to the end effector offers feedback. This set up provides the advantage that
even when the end-effector camera cannot see the target due to its specific configura-
tion, the target remains within the field-of-view of the fixed camera. Therefore, the
robot is directed towards the goal with the eye-to-hand camera, and then switches to
visual feedback control when the object is fully visible for the eye-in-hand camera.

Furthermore, the addition of robotic joint position inputs, combined with visual
inputs is established. Termed ’2.5D Visual Servoing’, the technique has been shown
to improve the stability, convergence and overall robustness of visual servoing systems
[38]. Other decompositions of visual servoing are given in [38].

2.3 Artificial Neural Networks & Deep Learning

An Artificial Neural Network (ANN) is a computational model inspired by how
human and animal brains process information and learn from experience. They con-
sist of connected layers of simple computational units known as neurons that process
weighted input values and generate an output vector based on an internal activation
function.

Figure 2.1: Architecture of a Feedforward Neural Network with three input units,
two output units, and two hidden layers [39]

Neural networks are composed of nodes or units connected by directed links. A
link from unit i to unit j serves to propagate the activation ai from i to j. Each link
has a numeric weight wi,j associated with it, which determines the strength and sign
of the connection. Each unit j computes a weighted sum of its inputs:

23

inj =
n∑

i=0

wi,jai (2.1)

Then applies an activation function g to this sum to derive the output [40, p. 728]:

aj = g(inj) = g(
n∑

i=0

wi,jai) (2.2)

Several common activation functions include sigmoid, tanh, ReLU (Rectified Lin-
ear Unit), ELU (Exponential Linear Unit) and Radial Basis Function [41].

Neural networks are usually arranged in layers, such that each unit receives input
only from units in the immediately preceding layer. There are three types of layer in
a neural network: the input layer, output layer, and hidden layer. The input layer is
the means of providing an input vector to the network for it to process. The output
layer outputs the result of the network’s computation. Hidden layers are additional
computational units that are not directly accessible from outside of the network [40,
p. 729].

There are many different types of neural network architecture [42] with endless
variation due to the current popularity of the field. We briefly describe two of the most
common architectures: Feedforward networks and Convolutional Neural Networks:

• Feedforward Networks Also calledMulti-Layer Perceptrons, feedforward
networks have connections in one direction only such that they are a directed
acyclic graph. Every node receives input from “upstream” nodes and delivers
output to “downstream” nodes. There are no loops. Feedforward networks are
usually fully-connected such that every node in a preceding layer acts as input to
every node in the successive layer. A feed-forward network represents a function
of its current input and thus it has no internal state other than the values of the
weights themselves [40, p. 729].

• Convolutional Neural Networks (CNN) Convolutional Neural Networks [43]
are a special type of Feedforward Network that are designed to process data stored
in array format. Many data modalities can be expressed in arrays: signals [44] and
sequences are expressed one-dimensionally, images [19] or audio spectrograms are
expressed bi-dimensionally, and video [45] and volumetric images can be expressed
tri-dimensionally.

Units in a convolutional layer are organised in feature maps, within which each
unit is connected to local patches in the feature maps of the previous layer through
a set of weights. The result of this local weighted sum is then passed through an
activation function (usually ReLU). All units in a feature map share the same set of
weights. Different feature maps in a layer use different weights. This architecture
design is useful for two reasons. First of all in data such as images, local groups
of values are often highly correlated such as being temporally or spatially related,
forming distinctive local features. Second, the local statistics of images and other
signals are invariant to location, such that a feature could appear several times

24

in an input vector, hence the idea of units at different locations sharing the same
weights and detecting the same pattern in different parts of the input vector.

Figure 2.2: Structure of a Convolutional Neural Network with 4 hidden layers [41]

The hidden layers of CNNs may either be convolutional layers or pooling lay-
ers. Convolutional layers perform the mathematical convolution function and are
used to detect local conjunctions of features from the previous layer. In contrast,
pooling layers, merge semantically similar features together by computing the
maximum of a local patch of units in one feature map (or in a few feature maps),
thereby reducing the dimension of the representation and creating an invariance
to small shifts and distortions.

Recent CNN architectures have used as many as 10 to 20 layers of ReLUs, hun-
dreds of millions of weights, and billions of connections between units. Usually,
there are two or three stages of stacked convolution, non-linearity and pooling
layers, followed by more convolutional and fully-connected layers [39].

The behaviour of a model is defined by training the network using a machine
learning algorithm. A Machine Learning (ML) algorithm is is able to learn from
the data presented to it [46, p. 99]. As defined by Mitchell, “[a] computer program
is said to learn from experience E with respect to some class of tasks T and perfor-
mance measure P , if its performance at tasks in T , as measured by P , improves with
experience E” [47, p. 2].

Artificial Neural Networks are one set of methods in the wider field of ML algo-
rithms belonging to Artificial Intelligence (AI).

An ANN with many layers is known as a deep neural network, and training these
kinds of networks has been called Deep Learning.

Deep learning and ML in general have been receiving much attention from the
scientific community, industry, and the wider public in recent years due to many
breakthrough successes in a range of different problems. For instance, deep learning

25

has been making strides in many problems that were previously intractable including
pattern recognition [19], natural language processing [48], speech recognition [49],
object detection [50], games playing [51], [52], and synthesis [53] to name a few, and
it has been found to be generally useful for solving many cross-domain optimisation,
prediction, and control problems as well as for automating a range of tasks.

The success of artificial neural networks in so many wide-ranging domains is due
to their Universal Approximation property which states that a feed-forward network
with a single hidden layer containing a finite number of neurons can approximate
continuous functions arbitrarily well [54]. Or that width-bounded networks with an
increasing depth can approximate any continuous convex function arbitrarily well
[55], [56]. While a feedforward network with a single hidden layer is sufficient to
represent any function, the layer may be infeasibly large and may fail to learn and
generalise correctly. Therefore, in many circumstances, using deeper models reduces
the number of units required to represent a desired function and reduces the amount
of generalisation error [46, p. 199].

Artificial Neural Networks have existed for decades [57], but it is only recently that
they have become much more widely used due to the increase in computing power
informally observed by Moore’s Law, and the advent of computational parallelisation
of ANNs on GPUs (Graphics Processing Units) due to their structure and repetitive
computation lending themselves to be processed more efficiently on a GPU with time-
savings orders of magnitude greater than when compared to equivalent processing on
a CPU (Central Processing Unit) [58] making them feasible for greater use.

Though highly successful at a wide range of tasks, the main caveats of deep
learning models remain that they are relatively difficult to engineer at present with
their theoretical properties relatively unexplored leading to their design often being
more art than science, and the immense amount of data and computational resources
that are often needed to train them.

However, due to the vast quantity of data that is being generated in the digital
age and the seemingly rapid advancement arising from the currently high level of
interest in the field has meant that ML and deep learning are becoming increasingly
viable for solving a wide-range of industrial problems.

2.4 Learning Algorithms

AI Learning algorithms can be classified into three general types depending on the
feedback that is available for the system to learn from [40], however it is also common
to use a combination of these techniques:

2.4.1 Supervised Learning

In Supervised Learning an agent observes a series of example input–output pairs
and learns a function that maps from the input to the output [40, p. 695].

Supervised learning algorithms are trained on a dataset of features where each
example is associated with a label or target. Roughly speaking, supervised learning

26

involves observing several examples of a random vector x and an associated value or
vector y, and learning to predict y from x, usually by estimating P (y|x).

Supervised learning is the most common form of ML used today [39] and is most
commonly used for regression and classification tasks such as object recognition, tran-
scription, linguistic translation, synthesis, and denoising [46, p. 103-105].

An important challenge in Supervised Learning is that of generalisation, that the
model not only classifies the input data correctly but also classifies previously unseen
inputs correctly. These performance metrics are measured by the training error and
the test error respectively, which a supervised learning algorithm seeks to minimise.
The performance of a supervised learning model is assessed by having two distinct
subsets of inputs: the training set, and the test set. We compute the error measure on
the training set, and we reduce the training error. Following this, we test the model
on unseen data and compute the test error. For a model to be performing well, it
must be able to generalise its function to unseen data and it is therefore important
that the model does not underfit or overfit. Underfitting occurs when the model is
not able to obtain a sufficiently low error value on the training set and therefore does
not approximate the target function well enough, whereas overfitting occurs when
the gap between the training error and test error is too large and as such its learned
function is too specific to the training data and not generalisable.

In practice, supervised learning models are assessed using methods such as k-fold
cross validation, where the dataset is partitioned into k non-overlapping subsets and
the test error is estimated by taking the average test error across k trials where on
trial i, the i-th subset of the data is used as the test set and the rest of the data is
used as the training set [46, p. 110-122].

To ensure robust behaviour towards every input faced by a supervised learning
model, you would have to ensure that it had been trained on that specific feature
previously. However, in many real-world scenarios or in situations with complex
input vectors such as vision this is an impossible feat. This is why the concept of
generalisability is so important.

We can consider artificially augmenting the dataset with additional data, as the
best way to make ML models generalise is to train them on more data. This can be
reasonably straightforward in some tasks. For example, in some image-based tasks
there is often a need to be invariant to a wide variety of image transformations such
as lighting, noise, position, or orientation. As these transformations can be easily
simulated, we can generate new (x, y) pairs easily just by transforming the x inputs
in our training set. Operations like translating training images a few pixels in each
direction can often greatly improve generalisation, even if the model has already been
designed to be partially translation invariant by using CNN-based convolution and
pooling techniques. Other operations such as rotating or scaling the image have also
proven quite effective [46, p. 240-241].

Neural networks are typically not very robust to noise. However, injecting noise
into the neural network input has been shown to improve robustness [59], as has
injecting noise within the hidden units themselves given the noise is carefully tuned
[60].

Though demonstrably effective, the main issues associated with supervised learn-

27

ing are the requirement for vast labelled datasets which are difficult to obtain, time-
consuming to produce, (possibly) intrinsically difficult to label correctly and suc-
cinctly, as well as the high computational cost to achieve generalisation that generally
requires specialist hardware [39].

2.4.2 Unsupervised Learning

In Unsupervised Learning an agent learns patterns in its input without being
given any explicit feedback [40, p. 694].

Unsupervised learning algorithms experience a dataset containing many features,
then learn useful properties of the structure of this dataset. In the context of deep
learning, we usually want to learn the entire probability distribution that generated a
dataset, whether explicitly as in density estimation or implicitly for tasks like synthesis
or denoising. Some other unsupervised learning algorithms perform other roles, like
clustering, which consists of dividing the dataset into clusters of similar examples.
Roughly speaking, unsupervised learning involves observing several examples of a
random vector x, and attempting to implicitly or explicitly learn the probability
distribution p(x) or some interesting properties of that distribution.

Despite the popularity of supervised learning today, it is expected that unsuper-
vised learning is likely to play a larger role in the long term as this is more akin to
how humans learn who can generally learn to understand the world unsupervised [39].
Currently, it is most commonly used for density estimation in support of other tasks
such as clustering, anomaly detection, synthesis and denoising. [46, p. 105].

Unsupervised learning can be used to supplement supervised learning models in
an approach known as Semi-supervised Learning where some examples include a
supervision target but others do not. In semi-supervised learning, both unlabelled
examples from P (x) and labelled examples from P (x, y) are used to estimate P (y|x)
or predict y from x. Unsupervised learning can provide useful cues for how to group
examples in the representation space as examples that cluster tightly in the input
space should be mapped to similar representations [46, p. 243-244].

Examples of unsupervised learning include Self-organising maps [61].

2.4.3 Reinforcement Learning

Reinforcement Learning is about learning from interaction how to behave in order
to achieve a goal. [21, p. 55].

The learner and decision maker is an agent who continually interacts with an
external environment. The agent selects actions and the environment responds to
these actions by presenting new states to the agent 1 and returning a scalar numerical
reward signal representing how desirable that state is to the agent which the agent
seeks to maximise over time through its choice of actions.

1The terms agent, environment, and action are equivalent to a controller, controlled system (or
plant), and control signal in engineering terms [21, p. 37].

28

Figure 2.3: Agent-environment interaction in a Markov Decision Process [21, p. 38]

The agent and environment interact in a sequence of discrete time steps, t =
0, 1, 2, 3, At each time step t, the agent receives some representation of the envi-
ronment’s state, St ∈ S, and on that basis selects an action, At ∈ A(s). One time step
later, partly as a consequence of its action, the agent receives a numerical reward,
(rt+1 ∈ R ⊂ R, and finds itself in a new state, St+1.

The boundary between agent and environment is typically not the same as the
physical boundary of a robot and the world around it. For example, the motors and
mechanical linkages of a robot and its sensing hardware are usually considered parts
of the environment rather than the agent. Rewards are computed by the learning
system, but are considered external to the agent. In general, anything that cannot
be changed arbitrarily by the agent is considered to be outside of it and thus part of
its environment.

Definition of Terms

Actions are any decisions that can be made by the agent that affect its state that
it wants to learn how to make. These can range from low-level controls such as the
voltages applied to the motors of a robotic arm, or high-level decisions such as a
change of the agent’s intentions or computation.

States determine all information available to the agent that are relevant for solving
its current task and as such their representation is determined by the task designer:
for example they could be low-level sensations such as direct sensor readings, or they
could be more high-level and abstract such as symbolic descriptions. States can be
immediate or based on memory of past sensations.

In general, actions can be any decisions we want to learn how to make, and the
states can be anything we can know that might be useful in making them.

Rewards are a simple scalar number (rt ∈ R computed by the learning system at
each time step. The agent’s goal is to maximise the total amount of reward it receives,
which means not maximising immediate reward but rather cumulative reward.

It is therefore useful to introduce a value function v as a secondary predictor of
expected rewards which determines the value of a given state as the total amount of
reward an agent can expect to accumulate in the future from that state onwards. Re-
wards determine the immediate, intrinsic desirability of environmental states, whereas

29

values indicate the long-term desirability of states after taking into account the states
that are likely to follow, and the rewards available in those states. For example, a
state might always yield a low immediate reward but still have a high value because
it is regularly followed by other states that yield high rewards, and vice versa. Values
are more useful with regards to making and evaluating decisions, however, they are
much harder to determine as they must be estimated and re-estimated from sequences
of observations over an agent’s entire lifetime, whereas rewards are given directly and
immediately by the environment [21, p. 37-55].

An agent’s behaviour is determined by its policy, πt. A policy is a mapping from
observed environmental states to probabilities of each action that can be taken by
the agent in those states. Given πt, πt(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as a result of
its experience with the goal being to maximise the total amount of reward it receives
over the long run. The reward signal is the primary basis for altering the policy; if
an action selected by the policy is followed by low reward, then the policy may be
changed to select an alternative action in that situation in the future [21, p. 37-55].
Policies can either be deterministic or stochastic in nature, and their implementation
may take several forms, from simple functions and lookup tables [62] to more advanced
approaches such as search processes and neural networks [51].

Some reinforcement learning systems also make use of an environmental model
that allows an agent to make inferences about how an environment behaves over time
and to enable planning of sequenced actions to bring about certain desirable states.
Methods for solving reinforcement learning problems that use models and planning
are model-based methods. Both model-based [44], [63]–[65] and model-free, reactive
methods [51], [66]–[68] are highly successful.

Example

A remarkable variety of problems in robotics may be naturally phrased as problems
of reinforcement learning. Reinforcement learning enables a robot to autonomously
discover optimal behaviour through trial-and-error interactions with its environment
based on an objective function designed by the designer of the control task to measure
the one-step performance of the robot. Thus, reinforcement learning offers a frame-
work and set of tools to robotics for the design of sophisticated and hard-to-engineer
behaviours [69].

An intuitive example of where reinforcement learning may be applied in a robotic
manipulator-based pick-and-place task is described by Barto and Sutton [21, p. 40]:

”Consider using reinforcement learning to control the motion of a robot arm in
a repetitive pick-and-place task. If we want to learn movements that are fast and
smooth, the learning agent will have to control the motors directly and have low-latency
information about the current positions and velocities of the mechanical linkages. The
actions in this case might be the voltages applied to each motor at each joint, and the
states might be the latest readings of joint angles and velocities. The reward might be
+1 for each object successfully picked up and placed. To encourage smooth movements,

30

on each time step a small, negative reward can be given as a function of the moment-
to-moment ”jerkiness” of the motion.”

Applied examples similar to the above include the work of [66], [70], [71].

Markov Decision Processes

The paradigm of RL deals with learning in sequential decision making problems in
which there is limited feedback. Wiering et al. identify three classes of algorithms
that deal with the problem of sequential decision making including programming
solutions, search and planning, and learning. They emphasised learning as the most
advantageous technique for uncertain environments as it encapsulates advantages
including simpler system design, coping with uncertainty and changing situations,
and solving problems generally for every state rather than specific planning from
one state to another. In fact, RL is associated with the most difficult sequential
decision making problems where limited or no prior knowledge about the environment
is known. Although a model of the environment can be used or learned, it is not
necessary in order to compute optimal policies as everything can be learned from
interaction with the environment in RL and the task of the algorithm is to interact
with the environment in order to gain knowledge about how to optimise its behaviour
while being guided by evaluative feedback in the form of rewards.

Markov Decision Processes (MDP) are an intuitive and fundamental formalism
for decision-theoretic planning, reinforcement learning, and other learning problems
in stochastic domains. They can be seen as stochastic extensions of finite automata
and as Markov processes augmented with actions. MDPs have proven a versatile
abstract model for describing reinforcement learning environments and a majority of
the literature focuses on solving reinforcement learning problems in the context of a
MDP [72].

The elements of the RL problem as described in section 2.4.3 can be formalised
using the MDP framework. A MDP is a 5-tuple ⟨S,A,P ,R, γ⟩ with the following
elements:

• S set of all states.

• A set of all actions.

• P the transition dynamics, where P (s′|s, a) defines the distribution of the next
state s′ by taking action a in state s, where s, s′ ∈ S, a ∈ A. We also denote the
initial state distribution P (s0) as p0.

• R set of all possible rewards. In the following, we denote the instantaneous
scalar reward received by the agent by taking action at from state st as rt+1(st, at),
and use rt+1 as short for rt+1(st, at). Other definitions of the reward function exist
that depend only on the state itself, in which r(s) refers to the reward signal that
the agent receives by arriving at state s.

31

• γ a discount factor in the interval [0, 1] determines the present value of future
rewards such that a reward received k time steps in the future is worth only γk−1

times what it would be worth if it were received immediately If γ = 0, the agent
is myopic in the sense it is only concerned with maximising immediate rewards.
As γ approaches 1, future rewards are taken into account more strongly and the
agent becomes more far-sighted.

In an MDP, the agent takes an action at in state st, receives a reward rt+1, and
transitions to the next state st+1 following the transition dynamics P (st+1|st, at).

MDPs may be episodic or continuing. In episodic MDPs there exists a termi-
nal state (such as when achieving a goal) that terminates the current episode once
reached, whereas continuing MDPs do not break down naturally into distinct episodes
with a terminal state, such as process control tasks. For an episodic MDP with a
time horizon T , an episode will still be terminated after a maximum of T time steps,
even if a terminal state was not reached.

The objective of reinforcement learning is to maximise the cumulative future re-
ward or expected return. The discounted return is defined as follows [21, p. 37-55]
[73]:

Gt = rt+1, γrt+2, γ
2rt+3 + ...+ γT−t−1rT (2.3)

Gt =
T∑

k=t

γk−trk+1 (2.4)

There also exist various extensions of MDPs for differing environments. For ex-
ample, Partially Observable Markov Decision Problems (POMDP) are employed in
environments where the state dynamics of the agent are governed by a Markov pro-
cess, but the state is not fully observable and is instead inferred from observations
probabilistically related to the state. In these cases it is possible that the observation
history τt may be required to describe the current state st [74].

Algorithms

Generally, there are two kinds of reinforcement learning algorithms: value-based
policy-based methods [73]:

• Value-based Methods Value-based approaches estimate the values of being
in a given state (known as Q values), and then extract control policies from the
estimated values to produce an optimal action in each state based on the state(s)
that action will probabilistically lead to [73] [40, p. 652].

One of the best-known value-based algorithms is Watkins’ Q-Learning [62]. State-
of-the-art value iteration methods include DQN [51] and its various extensions [75],
and QT-Opt [71].

• Policy-based Methods Policy-based approaches operate on parametrised poli-
cies, and search for a set of parameters that maximise the policy objective func-
tion. Unlike value-based methods, policy-based methods do not maintain value

32

estimations, but work directly on the policies themselves. Policy-based methods
generally give much more effective solutions than value-based approaches in high-
dimensional and continuous action spaces as they can learn stochastic policies
rather than just deterministic policies, and have better convergence properties
[73].

Both algorithmic types have been implemented for both traditional lookup ta-
bles [62] and neural network parametrisations [51]. Recent successes of Deep Rein-
forcement Learning have extended the aforementioned value-based, policy-based and
actor-critic algorithms to high-dimensional domains, by deploying deep neural net-
works as powerful non-linear function approximators for the optimal value functions
V ∗(s), Q∗(s, a), A∗(s, a), and the optimal policies π∗(a|s), µ∗(s). They usually take
the observations as input (e.g, raw pixel images from Atari emulators [51], joint an-
gles of robot arms [76], or a combination [44]), and output either the Q-values, from
which greedy actions are selected, or policies that can be directly used to execute
agents [73]. Convolutional neural networks can be used to directly parametrise a
reinforcement learning policy and have shown to be effective for vision-based control
tasks [77].

Actor-Critic Methods Actor-critic methods [78] are specific types of policy-based
methods combine elements from both value and policy-based methods. They extend
the traditional reinforcement learning paradigm by decomposing the agent into two
separate functions: the actor which is a policy-based function that selects actions; and
the critic which is a value-based function that estimates the value of a given state
the critic must learn about and critique whatever policy is currently being followed
by the actor. This scalar signal is the sole output of the critic and drives all learning
in both actor and critic.

Figure 2.4: Actor Critic Algorithmic Structure [79]

33

The critic learns an advantage function A(s, a) to compute the advantage of taking
an action in a given state compared to remaining in the current state as a means to
reduce variance. The advantage function A(s, a) is defined as:

A(s, a) = Q(s, a)− V (s) (2.5)

where for N states until the terminal state, Q(s, a) is the Q-value function which
estimates the overall expected reward assuming the agent is in state s and performs
action a, and then continues playing until the end of the episode following some policy
π. Defined as:

Q(s, a) =
N∑

n=0

γnrn (2.6)

and V (s) is the value function which estimates the overall expected reward as-
suming the agent is in state s and then continues playing until the end of the episode
following some policy π. Defined as:

V (s) =
N∑

n=0

γnrn (2.7)

While the definitions of Q(s, a) and V (s) are very similar, the reward (r of V (s)
is the expected reward from just being in state s before any action is taken, whereas
r in Q(s, a) is the expected reward after a certain action is taken.

State of the art deep actor-critic methods include the A3C algorithm [80] (and
superseding variant A2C [81]), ACKTR [81], DDPG [67], [70], ACER [82], TD3 [83],
SAC [84], [85], TRPO [86], PPO [87] and SAC [84].

Deep actor-critic architectures may either be separate if the actor and critic are
parametrised as entirely separate networks, or combined if some of their structure
overlaps [67], [81], [88].

While separate architectures are said to be simpler to implement and more stable,
shared architectures are advantageous for their ability to share lower level feature
processing which is particularly useful for large state representations that require a
lot of non-linear interpretation to retrieve meaningful features such as images, audio
or video. Shared architectures threfore encourage better generic learning of the low-
level features and faster processing per network update [88]–[90].

This approach is somewhat reflected in the literature by works including Schulman
et al. and Wu et al. who employ a shared architecture for Atari (pixel-based) tasks
with discrete actions and separate architectures for continuous control tasks with low-
dimensional state-spaces [81], [87], [91]. But contrastingly, Wu et al. also reported
better empirical performance by separated architectures in pixel-based continuous
control tasks [81]. It is unclear why this is the case. It is also unclear what the most
effective architecture for state-spaces comprising both images and low-dimensional
numerical inputs.

34

Challenges

There are several problems that make reinforcement learning challenging:

Exploration-Exploitation Trade-Off To obtain a high cumulative reward, an
agent should repeatedly choose previously tried actions that were found to be suc-
cessful. However, discovering these actions means it has to try actions not selected
before. The agent has to exploit what it has already experienced in order to obtain
reward, but it also has to explore a variety of actions in order to make better action
selections in the future. Therefore, the agent must develop a strategy to try a variety
of actions and progressively favour those that appear to be best [21, p. 2].

Exploration strategies are important for allowing the agent to discover different
states outside of what it has seen before. Different strategies have been proposed
for exploration, however some of the most common approaches are randomly gen-
erating actions, or adding noise to the policy-chosen action [91], [92]. For instance,
Andrychrowicz proposed sampling a random valid action with probability 20% or
otherwise taking the output of the policy network and adding independent noise to
every coordinate with standard deviation equal to 5% of the total range of allowed
values [91].

Ibarz noted that adding uncorrelated random noise into the action space for ex-
ploration can cause jerky motions which are unsafe to execute on physical robots
due to risk of damaging the gearbox and actuators. Jerky actions can be overcome
fairly effectively using a number of approaches including reward shaping, mimicking
smooth reference trajectories, learning additive feedback together with a trajectory
generator, sampling temporal coherent noise, or smoothing the action sequence with
low-pass filters[92].

Credit Assignment Problem Feedback for a desirable or undesirable action in
sequential control problems is often delayed and not instantaneous, so how do you
determine which decision(s) resulted in the final outcome and how do you assign
credit for all actions along a trajectory sequence [21, p. 301][73]?

Sparse Reward Problem The success of a reinforcement learning application
often strongly depends on how well the reward signal frames the problem and how
well it assesses progress in solving it.

The usual way to use reinforcement learning to solve a problem is to reward the
agent according to its success in solving the problem. Whilst this can be easy for
many problems, some problems have goals that are difficult to translate into reward
signals, especially for skilful performance in a complex task.

Even when there is a simple goal that is easy to identify, delivering non-zero re-
wards frequently enough to allow the agent to achieve the goal once, let alone achiev-
ing it efficiently in stochastic environments is challenging. Further, reinforcement
learning agents can discover unexpected ways to make their environments deliver re-
ward, some of which might be undesirable, or even dangerous [21, p.386]. This can
be seen in the work of Popov et al. where a poorly defined reward function for a

35

manipulator-based block-stacking task led to the algorithm finding workarounds for
optimising rewards that were inconsistent with the desired goal [66].

Intuitively, the Sparse Reward Problem could be addressed by rewarding the agent
for achieving subgoals that the designer thinks are important for achieving the overall
goal, but augmenting the reward signal with supplemental rewards may lead the agent
to behave very differently from what was intended and result in not achieving the
overall goal at all. A better method of providing guidance is to augment the value-
function approximation with an initial guess of what it should ultimately be rather
than laboriously shaping the reward signal [93].

Though they can be difficult to learn from, sparse reward signals can be advanta-
geous in terms of observed performance as the learner can discover novel and poten-
tially preferable solutions to a task. Conversely, well-shaped rewards inject bias into
learned control policy which can potentially push the policy in suboptimal directions
[73].

Reward signal design is often left to an informal trial-and-error process in practice.
If the agent fails to learn, learns too slowly, or learns incorrect behaviour, the reward
signal is tweaked by the designer and tries again until the agent produces acceptable
results. The designer is therefore judging the agent’s performance by criteria which
they are attempting to translate into an appropriate reward signal. It is clear that
the hand-coded nature of many reward signals is a hindrance to the scalability of
models and cross-task applicability, yet unfortunately the theory of designing reward
functions is relatively unexplored [21, p.386].

Several supplementary methods have been proposed in the literature to work more
effectively with binary and sparse reward signals. Curriculum learning where a learn-
ing system learns by being exposed to progressively more difficult problems [94] has
been applied to reinforcement learning contexts by Florensa et al. in the form of Re-
verse Curriculum Learning [95] and Generative Adversarial Network (GAN)-based
Automatic Goal Generation [96]. In a similar way, Tavakoli et al. proposed a Pri-
oritised Restart Distribution method where episodic initial states are more carefully
chosen to be related to trajectories leading to ’significant’ past experiences whilst
maintaining exploration (e.g., nearby goals) [97]. Andrychowicz et al. adapt the ex-
perience replay method first proposed with DQN [51] by reassessing previous action
trajectories with a subset of different goal states in a method they call Hindsight
Experience Replay with the underlying idea that just because a trajectory was not
successful for achieving a particular goal, it may still provide useful experience for
achieving an alternative goal [91]. Riedmiller et al. proposed, alongside the policy
learning for the main task, learning policies for a set of auxiliary tasks whose su-
pervision signals can be easily obtained by the activation of certain sensors while
concurrently learning a scheduling policy to sequence these policies in an approach
they called Scheduled Auxiliary Control [98]. Pathak et al. also proposed Curiosity
Driven Learning where extrinsic environmental rewards are supplemented with in-
trinsic agent-generated rewards for environment exploration [99], [100]. Finally, there
are Teach by Demonstration methods such as Imitation Learning where the system
generalises to new scenarios from expert demonstrations in a similar manner to clas-
sification, and Inverse Reinforcement Learning whereby a reward signal is extracted

36

from observation and the agent’s behaviour is optimised according to that reward
signal [101].

2.5 Deep Reinforcement Learning in Robotics

Deep learning and AI algorithms have been applied successfully in robotic control
tasks, and remarkable progress has been made in multi-sensory and visual control-
based tasks [8], [14], [16], [71], [77] particularly considering the sensory complexity of
vision sensors.

Though by no means exhaustive, there are several interesting lines of research
that are being used to improve various aspects of deep RL in robotics.

2.5.1 Parallelised Algorithms

As we have previously mentioned, one of the main caveats of deep learning is the long
time needed to train models due to the vast quantities of data needed. One method for
reducing this training time is using algorithms that take advantage of parallelisation
by learning across multiple agents simultaneously to train a single model such as A3C
/ A2C [80], ACKTR [81] or QT-Opt [71].

For instance, Kalashnikov et al. developed QT-Opt which was a distributed deep
RL algorithm that combined a deep Q-Learning algorithm with large-scale distributed
optimisation so that multiple robotic agents can contribute to learning simultaneously,
thus improving the scalability of training. In the work accompanying the algorithm,
Kalashnikov et al. utilised seven physical LBR iiwa which they trained for 8000 hours
over a period of four months to derive a control system for a vision-based pick-and-
place task that was able to grasp a diverse range of objects with a high success rate
[71].

Their approach demonstrated merit in terms of scalability, general applicability,
self-supervision and demonstrable real-world capability, but the approach generally
suffered in terms of the poor sample efficiency of the Q-Learning based method leading
to long training times, and the work relied on immense computational and robotic
resources. These are significant factors when you consider the specificity of the task
and the fact that you may have to repeat the procedure and derive a new model for
a new task environment.

This demonstrates both the benefits of parallelisation whilst simultaneously high-
lighting the need for sample efficient 2 algorithms [73], [81].

Whilst parallelism as a means of sharing experience is useful, it is limited by the
number of physical agents that are available, and by temporal constraints on data
gathering. Therefore it is useful to consider the use of simulated agents for training.

2The Sample Efficiency of a learning algorithm is defined as the speed of convergence per number
of timesteps [81]

37

2.5.2 Simulated Environments

ML algorithms may be trained either off-line or on-line. Within robotics, off-line
training can be completed by either training with a batch of predefined historically
gathered data or by generating simulation-based experience before task execution,
whereas online training is done by learning in real-time in a physical environment
with unseen temporally-constrained real-world data [24].

Simulators are widely used in the robotics community as they allow for real world
systems to be quickly and cheaply prototyped without the need for physical access
to hardware. Simulations are particularly advantageous in robotic learning research
as the huge data requirement for deep RL approaches means it can be more effective
to take advantage of increasingly powerful and ubiquitous computational resources
to cheaply and quickly generate synthetic data to accelerate the learning as opposed
to the high costs intrinsic to real-world data collection experiments. The use of
simulation over reality carries numerous advantages, including:

� No risk of wear or damage to real-world hardware;

� Many instantiations of a simulation can run in parallel, potentially speeding up
training time through parallelisation;

� Faster than real-time operation (depending on computational resources);

� Instant access to robots without having to purchase;

� Easy reconfigurability;

� Human intervention is not required [23];

Generally, a new simulation needs to be created for each specific task environ-
ment to train robots for new tasks. However, for more generic tasks there exists an
increasing number of publicly available RL environments such as the OpenAI Gym
[102], and numerous others [103]–[105] with the purpose of providing a benchmark
for measuring the effectiveness of various RL algorithms in solving certain types of
environments, hence accelerating research in RL and related areas by standardising
problems and making comparison of results and algorithmic evaluation easier. Their
intent is comparable to the use of standard datasets for benchmarking in supervised
learning problems [19].

Despite the many advantages of simulators in robotic learning, real-world experi-
ence will always be more useful for training as simulations may not capture all the
dynamics of the real-world. In fact, ML algorithms trained exclusively on simulation
may not always translate well to real-world environments [24] due to the Simulation-
Reality Gap where discrepancies between real sensory readings and the modalities
of synthetic renderings brought about by the necessity to abstract, approximate, or
remove certain physical phenomena can impose major challenges and prevent control
systems created in simulation from performing to the same standard in reality due to
underspecification [8], [23], [73], [106].

38

In robotics contexts, these ’gaps’ usually relate to actuators (i.e. torque charac-
teristics, gear backlash,...), sensors (i.e. sensor noise, latencies, and faults), temporal
dynamics, and the physics that govern interactions between robots and objects in
their environment [23].

However, there is research into several methods for overcoming the simulation-
reality gap. Tai et al. gave a thorough overview of the various methods for vision-
based deep RL in robotics including domain adaptation methods utilising generative
adversarial networks [53], [107], noise augmentation to simulate real-world error [8],
[71], [108], and domain randomisation to improve invariance to certain environmental
parameters [109]. For example, Kalashnikov et al. used some of these techniques
during their simulated training by cropping the camera image with a random anchor
to support viewpoint invariance and adjusting the brightness, contrast, and satu-
ration of training images by randomly sampling within bounded limits to simulate
generic visual noise such as lighting fluctuations [71], while Tobin et al. used domain
randomisation during simulation of a pose estimation task to adapt to a physical en-
vironment with no prior training by manipulating simulation settings at random such
as position and texture of objects; position, orientation and field of view of camera;
and the type and amount of random noise added to images [109].

However, perhaps the best method for overcoming the simulation-to-reality gap
is through simulation-based Transfer Learning.

Transfer Learning can be an efficient trade-off of simulated and real-world train-
ing where a control system is initially trained off-line in simulation, before successive
fine-tuning on-line in the physical domain [8], [22], [24]. This approach has the bene-
fits of being able to generate a wide range of experience while also decreasing the time
to learn the general task structure by taking advantage of powerful computational re-
sources unconstrained by the physical realm and efficient parallel algorithms to train
multiple simulated agents simultaneously, and providing opportunity to learn previ-
ously unmodelled environmental dynamics and achieve robust real-world behaviour.

2.5.3 Transfer Learning and Associated Methods

Transfer learning does not only apply to robots trained in simulation and then fine-
tuned in the real world. The general concept of pre-training in a differing environment
before successive fine-tuning in the application environment can be seen in several
competing research areas based on the premise that robots will only become ubiqui-
tously useful when they require just a few attempts to teach themselves to perform
different tasks, even with complex bodies and in dynamic environments [22]. These
research areas include Learning by Demonstration, and Few-Shot Learning methods
based on leveraging prior unsupervised / semi-supervised training.

Learning by Demonstration

Learning by Demonstration is a method of learning tasks where an agent is taught by
another observable agent (possibly human) who is already an expert at the task with
the aim of benefiting from the expert whilst leaving open the possibility of performing

39

even better [21, p.386]. Observation can come in many forms; from sensor-based
teleoperation [110], to visual detection [77], to physical guiding [111], [112].

Learning by Demonstration usually achieved by one of two methods: Imitation
Learning, a supervised learning-based method similar to classification that learns an
expert’s behaviour directly; or Inverse Reinforcement Learning, where a reward signal
is extracted from a demonstration and an RL algorithm is used with that reward
function to learn an optimal policy. Whilst Inverse Reinforcement Learning cannot
extract a reward signal exactly, it is possible to find a plausible set of reward-signal
candidates, with some strong assumptions about the environment required [101].

These methods have been successfully applied to robotic manipulators includ-
ing the KUKA LBR iiwa for the learning, optimisation, and generalisation of task
trajectories [111], [112].

An overview of methods for robotic learning by demonstration is presented in
[113].

Few-shot Learning

Learning by Demonstration is also thematically similar to another line of research
known as Few-Shot Learning where agents learn to perform generalised tasks based
on very few prior demonstrations of that task.

State-of-the-art few-shot learning methods tend to rely on the previously men-
tioned idea of transfer learning where prior experience is utilised to generalise quickly
to new tasks. For instance, both [77] and [22] leverage their few-shot learning with
prior sessions of unsupervised / semi-supervised learning.

In the work of Marjaninejad et al. they devised a new two-phase RL-based algo-
rithm that they call G2P, or General-to-Particular where the initial phase consists of
generating a random unsupervised control sequence of actions, referred to as ’motor
babbling’ to train a multi-layer perceptron representing an inverse map between sys-
tem inputs (motor activation levels) and desired outputs (system kinematics: joint
angles, angular velocities and angular accelerations). This allows the system to gain
a sparse but diverse familiarity with the state-action space without exploring all pos-
sible control sequences before the second phase of the algorithm which is a period of
simple task-specific RL to learn high level control. This technique allowed a 2 DoF
tendon-driven manipulator to achieve rapid proficiency in cyclical control behaviours
such as running with good resilience to perturbations [22].

Finn et al. on the other hand utilise a Meta-Learning approach whereby agents
adapt to new tasks based on pre-trained experience in loosely-related tasks [114]–[116].
In their work, they pre-train a model for general invariant vision-based manipulation
tasks in dynamic environments with a series of prior demonstrations of a range of tasks
through both robotic teleoperation and observation of the human performing a task
without the robot at all in a range of environments, with a range of objects. Following
this, the system was able to adapt to new tasks after a single demonstration even if it
has not completed that specific task before in the specific environment configuration
and even when presented with different camera angles [77].

This work along with others [64] demonstrates the usefulness that unsupervised

40

and semi-supervised methods have in pre-training an RL system, particularly in tasks
with visual input [64], [77].

2.6 Practical Considerations in Deep RL and Robotics

ML and RL research have unique challenges due to the many stochastic aspects of
their application and implementation and the often immense computational resources
required to obtain results. Certain procedures should be considered to not only pro-
duce working models, but also follow best practice and report experimental research
in such a way that is beneficial to the deep RL research community.

2.6.1 Performance Metrics

Determining your goals in terms of which error metric to use and the level of perfor-
mance required is said to be the necessary first step in developing a machine learning
application as it is these metrics that will guide all future actions[46, p. 410-412].
Some common performance metrics in the RL literature include average return and
episode length among others [117].

2.6.2 Reproducibility

Research progress in RL has been impeded by reproducibility problems across the lit-
erature that have produced challenges with verifying the efficacy of methods and thus
make it more difficult to contrasting works. To overcome this, it is recommended that
when reporting RL methodology that all hyperparameters, implementation details,
experimental setup, and evaluation methods for both baseline comparison methods
and novel work are reported and when reporting on the performance data of an al-
gorithm it is helpful to run many trials across different random network seeds and
report performance averages and ranges due to the high variance across trials and
random seeds in RL [118].

2.6.3 Ablation Studies

Recent concerns of reproducibility in deep RL have also led to the increased use of
ablation studies [71]. Ablation studies describe a procedure where certain parts of a
system are removed or altered in order to gain a better understanding of that system’s
behaviour.

There is no one-size-fits-all approach to performing ablation studies in deep learn-
ing as it is dependent on the system, application, and desired performance character-
istics. However, some examples in the literature include:

� Kalashnikov et al. compared the performance sensitivity of their deep learning-
based robotic grasping system by performing several studies including: altering
the state representation; altering the discount factors and time-based reward

41

penalty; altering the episodic termination condition; altering the specific learn-
ing algorithm; altering the size of the training set; performing tasks with differ-
ing characteristics [71].

� Tobin et al. compared the performance sensitivity of their simulation-to-reality-
trained pose estimation system by performing studies such as: altering the num-
ber of training images; altering the number of unique textures seen in training;
altering use of random noise in pre-processing; randomisation of camera posi-
tion in training; and use of pre-trained weights; and found that their system
was sensitive to all of the above except for use of random noise [109].

� Girshick et al. tested the performance of their CNN-based object detection
algorithm by performing studies where different parts of the network were re-
moved and found that removal of significant portions of certain parts of the
network resulted in surprisingly little performance loss [119].

� Fujimoto et al. proposed improvements to deep actor-critic algorithms including
Clipped Double Q-Learning, delayed policy updates, and target policy smooth-
ing under an umbrella algorithm called TD3. Their algorithm’s effectiveness
was empirically proved by comparing the performance of the vanilla network
architecture with the addition of one of their proposed improvements at a time,
and comparing the full TD3 architecture with a single proposed improvement
removed at a time [83].

2.6.4 Hyperparameter Optimisation

Deep learning algorithms are governed by a set of hyperparameters that affect an
algorithm’s behaviour across various performance measures such as runtime, memory
cost, model quality and generalisation capabilities. Hyperparameters can have signif-
icantly different effects across algorithms and environments [118] and as such finding
an optimal set of hyperparameters is extremely difficult as good hyperparameter val-
ues are application dependent. While hyperparameter values can be set manually
based on intuition, this requires expert knowledge of the domain and of how such
parameters can affect various learning algorithms, (although sometimes referencing
values from similar work in the field may suffice [120]). To compensate for this, there
exist automatic hyperparameter tuning methods, however these vary in computa-
tional efficiency, search effectiveness, and implementation complexity that are more
suitable for when suitable values are not known.

The two most common and simple methods to implement are grid search and
random search. Grid searches are generally employed where there are a very small
number of hyperparameters to optimise. Usually, a finite set of values is chosen for
each hyperparameter and a model is trained for every combination of hyperparameter
values with the values yielding the best performance chosen for use. Grid searches
are often performed repeatedly with hyperparameter values iteratively refined to get
closer to an optimal value.

42

However, the main problem with grid searches is that their computational cost
grows exponentially with the number of hyperparameters. While there are some ways
of mitigating this through parallelisation, the fixed hyperparameter values may not
cover the search space effectively in a computationally efficient way. Furthermore, in
practice not all hyperparameters are equally important to tune as some have greater
influence on model sensitivity than others and so it can be redundant to run repeated
tests on nearly identical hyperparameter subsets with no material difference in model
performance and thus no real insight into useful parameter values .

Random searches have been found to converge much faster to good hyperparame-
ters than grid searches where there are several hyperparameters that do not strongly
affect model performance. In a random search, you would define a marginal distribu-
tion over each discrete hyperparameter or a uniform distribution e.g. on a logarithmic
scale for continuous valued hyperparameters and then run a search of randomly sam-
pled hyperparameter values for as many trials as required. Similarly to grid search,
multiple iterations of random search may be carried out with refined parameter values
but the mechanism of random search means sensitive parameters can be identified
more quickly and as a result may be chosen for more thorough exploration in equiv-
alent computational time. Random searches also offer a number of other number of
other benefits for general experimental practice including early termination, asyn-
chronicity, being able to add additional experiments or restart failed experiments
without disruption, and compatibility with additional controlled experiments [46,
p. 415-423][121].

Grid and random searches are the most commonly used methods of hyperparam-
eter optimisation due to their implementation simplicity. More complex hyperpa-
rameter optimisation methods include population (genetic algorithm)-based methods
[122], RL-based methods[123], on the fly methods [124], and Bayesian optimisation
[125], as well as further research in the closely related field of Neural Architecture
Search (NAS) [126], [127].

2.6.5 Software Implementation

There are a multitude of open-source software libraries for developing ML algorithms
and robotic simulations that can vary in terms of their intended application, features,
performance, base language and other facets.

Robotic Simulators

There are many different robotic simulators that can be used, depending on the
application [128]. Collins et al. [23] compared the effectiveness of different simulation
software for simulating robotic manipulation environments in terms of their real-world
reproduction accuracy against a ’ground-truth’ physical robot. In their study, they
created a downselected list comprising of ”mature, well maintained simulators with
active communities and good documentation practices [which also had] a common
programming language [and provided] access to the Robot Operating System (ROS)”
to identify the simulators best suited to facilitate robotics research which left them

43

with the MuJoCo [129], PyBullet [130], and V-Rep [131] simulators, the latter of
which also had three different physics simulators: ODE, Vortex, and Newton.

The results showed that no one simulator was best at reproducing all of the three
tasks that the authors experimented with and that PyBullet was the most accurate in
two out of the three tasks whilst V-Rep running the Newton physics engine performed
better in the other. However, there was very little overall difference in the total error
across all three tasks for Pybullet, V-Rep (Newton) and V-Rep (Vortex). MuJoCo on
the other hand had a much larger cumulative error due to its poor performance in one
particular task. The authors conclude that the simulation of the kinematic model and
control of manipulators is largely solved when compared with the real world, but that
considerable developments are necessary for interactions between simulated objects
as the physics behind contacts remains a complex problem that is difficult to replicate
in simulated environments [23].

Deep Learning Libraries

The development of open-source, industry-backed software libraries for building ML
models written in high-level languages such as Python have contributed to the widespread
research and application of deep learning methods seen today. Shi [132] and Bahram-
pour [133] et al. identified and compared several state-of-the-art and contemporary
deep learning libraries including Tensorflow [134], Torch [135] / PyTorch [136], Deep
Learning4j [137], Caffe [138], and Theano [139] amongst others.

2.7 Research Gap Discussion

Fixtureless assembly environments pose many challenges to automation due to their
non-determinism but are sometimes necessary due to economic factors and / or spatial
and geometric constraints brought about by work pieces and the plants surrounding
them. The use of collaborative and redundant robot manipulators equipped with
visual servoing, and in particular, a hybrid of eye-in-hand and eye-to-hand visual
servoing, could be effective for robotic manipulation tasks in fixtureless environments
that require a high degree of accuracy and where the precise end-effector location
is not known relative to the robot’s coordinate system but instead determined from
specific visual features. Deep reinforcement learning methods have shown promise
in vision-based robotic manipulation tasks but are uncommon in industrial settings
due to the highly task specific setup required and immense computational resources
required for training reinforcement learning models. Progress in the field is being
sped-up by the introduction of better experimental reporting practices for new algo-
rithms and the use of standardised benchmark tasks in the form of simulations to
assess and compare the effectiveness of reinforcement learning algorithms to specific
problems.

We have identified two publicly available, open-source simulated RL environments
for robotic manipulation that encapsulate some elements of the accurate fixtureless
manufacturing problem, but with different goals and different problem framings.

44

One of these environments is the FetchReach environment in the OpenAI Gym
[140], [91]. FetchReach incorporates the Fetch Robotics Mobile Manipulator robot
(described in Table 2.1), a collaborative mobile robot with a 7-Dof manipulator and
gripper end-effector and stereoscopic vision camera. The goal in fetch reach is to move
the robot’s gripper to a target position. The goal is 3-dimensional and describes the
desired position of the end-effector for reaching. Rewards may be either: sparse
and binary, where the agent obtains a reward of 0 if the object is at the target
location (within a tolerance of 5 cm) and -1 otherwise; or dense, where the linear
distance from the goal is returned as a direct reward. Actions are 4-dimensional: 3
dimensions specify the desired gripper movement in Cartesian coordinates and the
last dimension controls opening and closing of the gripper. Observations include
the Cartesian position of the gripper, its linear velocity and the position and linear
velocity of the robot’s gripper.

There are several limitations to this environment which would make it non-
analogous to the challenges of accurate fixtureless manufacturing in aerospace manu-
facturing environments. Firstly, the choice of robot is not suitable for heavy industrial
manufacturing tasks such as those aerospace manufacturing. The Fetch Mobile Ma-
nipulator is designed for warehouse logistics tasks as indicated by its pre-attached
gripper end-effector and low payload capacity (6 kg). Secondly, the dexterity of the
robot is limited by the MDP formulation, which only specifies actions in terms of
a Cartesian coordinate for the end-effector position rather than the joint-level con-
trol which is required to operate in dynamic, changing environments. Thirdly, the
accuracy requirements of the task is extremely generous, within 5 cm of the desired
position. This is nowhere near accurate enough for aerospace manufacturing applica-
tions which require sub mm accuracy [9]. Finally, environment information to direct
the agent’s learning in terms of the state observation and reward signal in the MDP
are too accessible. Both of FetchReach’s reward functions assume knowledge of the
precise distance of the end-effector from the goal to compute the reward, and the ob-
servation vector also explicitly includes the exact goal to inform the agent’s decisions,
thus the state is fully observable. But, it is common in fixtureless manufacturing tasks
that the exact position of a goal may be difficult to communicate as the environment
is non-deterministic and lack of precise knowledge about a desired end-effector posi-
tion introduces considerable difficulty to a control task. The authors of FetchReach
themselves concede their task as ”very easy to learn”.

A practical way to indicate a goal in fixtureless environments if the desired position
is not explicitly known by the control system can be via a visual sensory cue. This
kind of scenario is addressed by the other relevant RL environment we have identified,
KUKACamBulletEnv in the PyBullet RL Gym Environments [130] based on the
work of Kalashnikov et al. [71] (see: Section 2.5) Here the goal of the RL agent
is to learn to perform a pick-and-place task with the KUKA LBR iiwa robot using
observations consisting of a single high resolution eye-to-hand camera image (472x472
pixel) and internal joint position information,and a binary reward based on the success
of grasping an object.

This environment also possesses limitations to learning robotic control polices for
accurate manipulation in fixtureless environment. Firstly, the environment is over-

45

specified to a pick-and-place task rather than a generic positional alignment task
and lacks emphasis on specific alignments or accuracy so long as the goal (grasping
an object) is achieved. Secondly, a high-resolution sensory image is included in the
observation of the MDP specification. High resolution image require large neural
network architectures and lots of training, as demonstrated by the training period of
8000 hours over a period of four months, even after training in simulation [71]. Finally,
only a single eye-to-hand camera image is utilised in the visual servoing configuration
which will place limitations on the accuracy than can be learned by the control policy.

Based on the limitations present in the existing publicly available RL environments
for emulating accurate robotic manipulation in dynamic fixtureless manufacturing en-
vironments and exploring hybrid visual servoing approaches to such problems, we feel
compelled to design and implement a RL environment that more accurately reflects
the challenges of accurate robotic manipulation in fixtureless manufacturing and in-
corporates hybrid visual servoing as a means to overcome these challenges.

2.8 Novelty

Creation of a new benchmark task in the form of a simulated RL gym environment
emulating a generic accurate manipulation task within the aforementioned fixture-
less manufacturing environment can only speed up progress towards solutions in this
area, while assessment of current algorithmic techniques for solving this task to a suit-
able standard and within reasonable computational time and resources will provide
clues to the most effective techniques to use within this particular problem domain.
Therefore, the basis of this work and its novelty is to define and implement a task
environment that uniquely differs in both objective and observation constraints to
the aforementioned RL environments of FetchReach and KUKACamBulletEnv so as
to more accurately reflect the challenges of accurate fixtureless manufacturing, and
to conduct experiments assessing whether deep reinforcement learning is a feasible
methodology for solving this manufacturing challenge. The control policy required
to solve such a task environment encapsulates an end-to-end accurate and efficient
object detection, pose estimation, and robotic trajectory computation algorithm.

Based on limitations of the prior works, our novel RL environment will need to:

� Utilise a robotic manipulator that is suited to heavy industrial manufacturing
tasks;

� Present an environment state that is only partially observable through visual
cues and incorporate a hybrid visual servoing observation;

� Provide a high level of robotic control dexterity to handle a dynamically chang-
ing environment;

� Assess that control policies possess a high degree of accuracy;

� Encapsulate the stochastic nature of the task;

46

� Be generic enough such that a learned control policy can be translated to many
accurate manufacturing tasks that involve robotic manipulation and uncertain
/ dynamic task environments;

� Limit the amount of computation and training that may be required to derive
a feasible control policy via RL;

To the author’s knowledge, such an environment does not yet exist as an openly
available benchmark for RL as the application of deep reinforcement learning for
hybrid VS tasks is relatively unexplored. It is hoped that an implementation of
the described environment will speed up research towards solving tasks where such
a setup may be necessary. This environment may also be used as a test-bed for
the performative and computational effectiveness of low-resolution hybrid VS and
robotic joint sensor-based observations for positional alignment tasks requiring sub
mm accuracy and precision. To the author’s knowledge, the combination of all of
these research elements is a relatively unexplored area of the field.

2.9 Chapter Summary

In this chapter we have performed a literature review examining the state-of-the-art
as it relates to visual servoing and ML methods for robotic control in fixtureless
manufacturing tasks. We have identified gaps in the research and are proposing a
novel solution to the challenges of developing robotic control policies for fixtureless
manufacturing applications such as aerospace manufacturing. In the next chapter,
we will set out the methodology, informed by our literature review, by which we hope
to achieve our research aims and test our hypotheses.

47

Chapter 3

Methodology

In this section, we outline the methodology we have followed in the pursuit of the
research aims stated in Section 1.8. We begin by giving an overview of our methodol-
ogy in terms of the steps required to achieve our research aims in Section 3.1. In the
remaining sections, we will provide the justification for our methodology including:
literature review strategy; the choice of robotic manipulator in 3.3; the reasoning for
a deep reinforcement learning approach in 3.4; the motivation for producing a simu-
lated environment in 3.5; the choice of software for each aspect of our technical work
in 3.6; and our experimental approach in 3.7.

Please note, that in this chapter we only justify the methodology that has been
followed to enable us to test our hypothesis. Justification and discussion of specific
design choices, including the task description, MDP specification, and algorithmic
choices takes place in the following chapter: System Design.

3.1 Methodology Overview

In order to establish whether hybrid visual servoing and deep reinforcement learning
can be applied successfully to the problem of end-effector positioning in robotic fix-
tureless manufacturing environments such as aerospace manufacturing applications,
experiments need to be conducted demonstrating a control policy trained via a rein-
forcement learning algorithm successfully aligning with relevant points in space, as-
certained from visual cues, where it could perform a fixtureless manufacturing task.
In order to conduct these experiments, a series of steps will need to be followed to
produce the required resources and select appropriate infrastructure for testing our
hypothesis.

Firstly, we describe a task encapsulating a fixtureless manufacturing problem
present at facilities such as Airbus, and include in this description our proposed
solution to the problem in terms of physical hardware for which we have selected the
KUKA LBR iiwa robotic manipulator. This will serve as a high-level description of the
research challenge at hand and will reflect the robotic control challenge appropriately.
Then, we will formally model the task as a MDP so that a reinforcement learning
algorithm can interact with the task environment and be used to train a robotic con-

48

trol policy. This modelling will consist of definitions for all key MDP components,
including the observation / state, actions, reward function / goals, and initial and
final state distributions. Following this, we will select an appropriate reinforcement
learning algorithm for solving the task environment given the specified characteristics
of the MDP. Next, we will design a neural network architecture appropriate to the
specification, characteristics and perceived difficulty of the MDP that will serve as
the basis of a robotic control policy, trained via reinforcement learning. The choice
of reinforcement learning algorithm will influence some aspects of the specific neural
network model.

Following this system design, software implementation will take place of the three
aforementioned elements: the MDP as a reinforcement learning environment, the re-
inforcement learning algorithm, and a neural network model. The MDP will serve
as the primary basis for the software implementation of the RL environment in
terms of its function, but the environment itself will adhere to the conventions of
the PyEnvironment class in the TF Agents reinforcement learning library to ensure it
can be used with TF Agents’ built-in reinforcement learning algorithms. The underly-
ing physical modelling of the reinforcement learning environment will be a simulation
in the PyBullet software library. A pre-made 3D model of the KUKA LBR iiwa will
be imported from the PyBullet library to be utilised in the simulation, and additional
assets will be created in the 3D modelling software, Blender. A training script will
then be written in Python and consisting of code for the generation of a neural net-
work using the Tensorflow library, initiation of the reinforcement learning algorithm
and training loop using elements from the TF Agents library, and additional code for
recording experimental data using the Comet.ml library.

Finally, a series of experiments will be conducted to test our hypothesis and deter-
mine the efficacy of deep reinforcement learning and hybrid visual servoing for robotic
manipulation in fixtureless environments. Optimal, or even functional, hyperparam-
eter settings for the reinforcement learning algorithm and specific neural network
architecture will not be known in advance, thus the goal of these experiments will be
to discover, and then optimise, a set of working hyperparameters that allow the RL
agent to derive a control policy, encoded as a deep neural network, to solve the simu-
lated task environment after a period of training using a deep reinforcement learning
algorithm. Hyperparameter optimisation will be conducted using a random search
method across a selection of key algorithm parameters including number of training
episodes, learning rates, random seed, and replay buffer and exploration settings. Ex-
periments will be executed on the Google Colab cloud computing service. Evaluation
of agent performance will take place through visual observation of the agent acting
in the simulation environment at select intervals, the recording of the average return
over the number of episodes - a value that should increase if the agent is solving the
task successfully with increasing frequency, the average episode length - which will
decrease if the agent is solving the environment more efficiently, and the loss - which
dictates convergence of the model during training. Analysis of the collected data will
allow us to evaluate whether deep reinforcement learning and hybrid visual servoing
can be usefully applied to fixtureless manufacturing environments.

Having set out our methodology, in the following sections, we will describe the

49

justification for the methodology followed.

3.2 Literature Review

An idea of the research aims and general hypothesis was already known based on prior
knowledge in related fields and an understanding about the research problem domain
from the advertised Airbus Shopfloor Challenge. Based on this, key words were
identified such as ”deep reinforcement learning”, ”collaborative robotics”, ”aerospace
manufacturing”, ”computer vision”, ”Industry 4.0” and used to guide the initial lit-
erature search. Many of the initial works considered would have included survey and
literature review papers to give a broader view of the various research areas. From
this, more precise terms could be derived to further guide reading including ”fixture-
less manufacturing”, ”visual servoing”, ”redundant manipulators”, and ”simulation-
to-reality gap”, ”transfer learning” and so on until many specific and related works
were identified, and a research gap could be found. From the large number of papers
reviewed, specific research questions had been derived and a general methodology to
approach the problem with had been identified. At this point, very specific works and
resources were identified to address my specific research challenges including looking
at overviews of software methods, defining MDPs, experimental approaches in deep
RL etc. Following on from this, the specific methodology was derived and followed.

3.3 Robot Specification

Figure 3.1: KUKA LBR iiwa R800 [29]

The KUKA LBR iiwa has been selected as an appropriate platform for this research.
While several different robotic manipulators could perhaps be used to similar inten-
tions, the iiwa has been selected for the following suitability reasons.

• Kinematic Redundancy As a redundant manipulator the iiwa is generally
applicable to a wide array of industrial tasks (see: Section 1.2).

50

Joint Range Velocity
A1 ±170◦ ±98◦s
A2 ±120◦ ±98◦s
A3 ±170◦ ±100◦s
A4 ±120◦ ±130◦s
A5 ±170◦ ±140◦s
A6 ±120◦ ±180◦s
A7 ±175◦ ±180◦s

Table 3.1: Maximum range and velocities of motion for KUKA LBR iiwa R800 joints
[142].

• Accuracy The iiwa has an end-effector accuracy of ± 0.1 mm [142] which
makes it suitable for tasks that require a high level of accuracy such as drilling
and other tasks in the aerospace manufacturing domain (see Section 1.4) which
require accuracies of ± .25 mm [9]. In fact, the winners of the previously men-
tioned Shopfloor Challenge utilised a KUKA LBR iiwa robot in their approach,
demonstrating the robot’s promise to the task domain [143].

• Sensors and Hardware The iiwa is equipped with joint torque and position
sensors and its movement can be determined with forces, velocities, angular ro-
tation, or vector coordinates which gives access to several control paradigms and
offers flexibility in formulating the MDP in Section 4.2.

• Industrial Popularity KUKA is one of ’the big four’ globally leading robotics
companies (along with ABB, Fanuc, and Yasukawa). In particular, the KUKA
LBR iiwa has proven very popular due to its innovative technology and has subse-
quently been used in industry [144] and the subject of a swathe of research activity
[70], [71], [107], [110]–[112], [145]–[152]. Adding to the strong base of research on
an already popular and current commercial robot increases the likelihood of fu-
ture application and further research. Furthermore, the popularity of the iiwa has
meant that models of the robot already exist in each of the previously specified
simulation software.

• Ease of Programming and Software Integration Though the iiwa is not
natively as intuitive to program as some other platforms such as Universal Robotics
UR series (which emphasise ease of use), applications for the LBR iiwa are written
in the Java programming language with the tailored Sunrise Workbench IDE and
Java is an extremely popular object-orientated language with a thriving ecosys-
tem of documentation and support [147]. Not only this, the LBR iiwa can also
be integrated with ROS [152] which not only decreases the technical gap between
this work (written in the Python programming language with various open-source
packages) and physical implementation, but better equips it for the challenges of
Industry 4.0 that ROS seeks to bridge [153]. ROS compatibility was highlighted as
a key requirement for selecting appropriate robotic simulation software by Collins
et al. [23] (see: Section 2.6.5).

51

• Safety The LBR iiwa has numerous, highly configurable safety features from
both a hard-and-software point of view that enable it to comply with modern
safety standards including workspace monitoring, velocity monitoring, and colli-
sion detection. While these features do not make an application automatically
safe, for instance when sharp tools are involved, many applications will not re-
quire any further safety equipment [147], thus increasing the likelihood of physical
deployment in industry.

• Connectivity The iiwa has been designed to be Internet of Things compatible
with its external network and hardware connectivity. Not only is this consistent
with vision of Industry 4.0, thus increasing the potential lifetime of the system, this
connectivity is essential for communicating with other systems running computa-
tionally demanding software such as neural networks, and for easily integrating
with sensory hardware. This connectivity will also allow it to communicate with
ROS applications [152].

• Extensibility Some of the fixtureless manufacturing problems we are seeking
to address through this work may require the use of a mobile manipulator in their
solution. The existence of the KMR iiwa, a combination of an LBR iiwa with
a mobile platform [31] would appear to be the most straightforward way of ex-
tending the results of this work to mobile domains due to the tight integration of
manipulation and mobility robotics. While other redundant mobile manipulators,
such as the Fetch Reach [141] exist, it is designed for warehouse logistics tasks
rather than heavy industrial applications such as drilling in aerospace manufactur-
ing and comes pre-attached with a gripper as its end-effector while also possessing
a lower payload capacity (6 kg) than the KUKA LBR iiwa (7 or 14 kg).

3.4 Deep Reinforcement Learning

The complexity of fixtureless manufacturing environments such as aerospace manu-
facturing require the use of artificial neural networks and deep reinforcement learning
to control a robot in which the robot’s working environment is dynamically and
stochastically reconfigured and its precise sensory inputs may be difficult to predict.
Discussion and justification of the specific algorithm and neural network architectures
employed can be found in Sections 4.3 and 4.4.

3.5 Simulation

A simulated reinforcement learning environment will be implemented to provide a
basis for training a neural network-based control policy to solve our fixtureless man-
ufacturing task. The use of simulated environments is also well established in rein-
forcement learning research for benchmarking the performance of RL algorithms and
he role of simulated environments in developing robotic control policies, and their ad-
vantages, was laid out in Section 2.5.2 of the literature review. Although simulations

52

are limited in the sense they lack deployment in the real-world and there are issues
with the simulation-to-reality gap, they are a useful approach for prototyping control
polices that can be used or fine-tuned in the real-world. Their advantages include
faster training time due to the rapid parallelised computation of control scenarios
without real-world encumberment, limiting the risk of damage to robotic hardware,
and rapid reconfigurability [23]. Faster computation simply means that more experi-
ments, and a greater hyperparameter search, can be conducted in a shorter amount
of time. Furthermore, as we described in Section 2.5.3, models trained via simulation
can be fine-tuned in the physical world using methods such as transfer learning, with
less training required in the physical world and fewer of the inconveniences it poses
as a result. In this sense, the simulation presented here is a stepping-stone towards
physical deployment.

The simulation environment will be designed so as to reasonably reflect the real-
world physical challenge. The model of the LBR iiwa present in the PyBullet library
has been donated by KUKA themselves, and so will closely reflect the dynamics of the
physical robot. However, no simulation could fully replicate all real-world dynamics
and stochasticity so the likelishood is that any control policy trained exclusively in
simulation should also be fine-tuned via transfer learning in a physical environment.

We will use Blender [154] for the production of simple assets for use in the PyBullet
environment.

3.6 Software Libraries

The software implementation of this work will leverage prior-written software li-
braries. For simulation of our environment we will be using PyBullet[130], for the
network model and deep learning algorithm we will be using Tensorflow[134] and
Tensorflow Agents[155], and for experiment management we will be using Comet.ml
[156], thus the software will be programmed in Python[157]. Tensorflow, PyBullet,
and Python are all widely used within their respective application with good levels
of online support to ease development and increase the likelihood of code reuse. At
the time of writing, the latest versions of these packages were Tensorflow 2.6, Tensor-
flow Agents 0.9, PyBullet 3.2.0, and Comet.ml 3.15 and these were the versions used
for implementation. Below, we state further justification for the adoption of these
software technologies.

3.6.1 Machine Learning Library

Tensorflow is both the most widely used and fastest growing machine learning frame-
work across a number of measures including wide research and industry usage [158].
In terms of its functionality, features, and ease of use it is fairly similar to other
major industrially backed libraries such as PyTorch and the choice of deep learning
library was fairly arbitrary here. However, it does have a dedicated library for rein-
forcement learning, Tensorflow Agents, which is endorsed for use with PyBullet[159]
thus making it attractive for this work. Though there are several different reinforce-

53

ment learning libraries available, TF Agents is thought to be the best equipped for
the scope of this work due to its ease of integration with other system components,
relative ease of plugging in custom environments, range of high quality contemporary
algorithmic implementations, and its tight integration with Tensorflow that allows
for greater experimentation with network architectures including multimodal inputs,
which was not offered in otherwise similar frameworks such as Stable Baselines at the
time of implementation decision, although has been added since [160], [161].

3.6.2 Simulation Library

PyBullet is an easy to use Python module for physics simulation for robotics and
machine learning with a focus on simulation-to-real transfer. PyBullet can load ar-
ticulated bodies from various file formats and provides forward dynamics simulation,
inverse dynamics computation, forward and inverse kinematics, collision detection,
and supports virtual cameras [130], thus supporting all of the requirements for our
simulated task environment. As discussed in Section 2.6.5, all of the main robotic
simulation software have similar functionality and performance with regards to sim-
ulating robotic manipulation environments but PyBullet had a slight edge in terms
of accuracy for most tasks[23] which is of particular importance to this work.

Furthermore, a related piece of work in the literature by Kalashnikov et al. from
Google[71] (which our work builds upon in some regards), employed PyBullet for the
simulation aspects of their work as a precursor to physical implementation. Their
simulation environment, along with other variations using an LBR iiwa model, are
available in the PyBullet libraries by default which allows us to quickly develop our
simulation by using related examples for guidance as well as circumventing the need
for building our own robotic model by using the included PyBullet KUKA LBR iiwa
URDF model. PyBullet also encourages integration with TF-Agents for reinforcement
learning purposes [159].

3.6.3 Experiment Management Library

Comet.ml is one of the most popular tools used by machine learning practitioners.
It is a cloud-based meta-machine learning platform allowing data scientists to track,
compare, explain, and optimise experiments and models. Comet.ml offers a Python
library for data scientists to integrate their code with Comet and track work in the
application with features including:

� Enabling the sharing of results with guest users

� Integrating well with ML libraries including Tensorflow

� Ability to log code, hyperparameters, metrics, dependencies, system metrics,
and more

� Accessibility and simple experiment comparison

� Visualisation for images, videos, text, and tabular data

54

� Automated approaches for hyperparameter optimisation, including grid, ran-
dom and bayesian methods.

While other experiment management libraries such as Neptune and Tensorboard
do exist [162], the choice is relatively unimportant and Comet.ml fulfils the require-
ments for this work in terms of logging experimental data and assets, generating
graphs for comparison and analysis, integrating with the rest of the deployed software
libraries, and providing an accessible method for the sharing of data for reproducibil-
ity purposes [156]. As we stated in the literature review, reproducibility has been a
serious issue in reinforcement learning research to date [118] so this was considered
an important feature.

3.6.4 Programming Language

Python is generally accepted as the go-to choice for contemporary ML development
as it is free, open-source, offers extensive libraries for scientific computing such as
NumPy [163], and it is regarded as simple to setup, integrate, program, and read
which is useful for quick implementation and prototyping. Its widespread use means
that many community resources are available to ease development [164].

Tensorflow, PyBullet and Comet.ml are all supported in Python which allows
for tight integration between the simulation, learning algorithm, and experimental
management.

3.7 Experimental Approach

Following the algorithmic approach selection, the discovery and optimisation of a
set of hyperparameters that allow an agent to learn to solve a task (in a reasonable
amount of time) is the basis of all current applied reinforcement learning research.
Hyperparameters can have significantly different effects across algorithms and en-
vironments [118] and finding an optimal set of hyperparameters can be extremely
difficult.

In Section 2.6.4 of the literature review, we identified several strategies for hy-
perparameter optimisation including simpler grid and random searches, and more
complex optimisation methods such as Bayesian optimisation, and Neural Architec-
ture Search (NAS). Whilst ideally, we would look to incorporate these promising and
more complex methods, their additional implementation complexity put them out-
side of the scope of this work. We instead employ a random search method, with the
potential for later grid searches should sensitive hyperparameters be identified, due
to their general effectiveness and ease of implementation.

Grid and random searches are amongst the most common methods employed in
hyperparameter optimisation. Random searches have been found to generally con-
verge to good hyperparameters faster than grid searches and the mechanism of ran-
dom search means sensitive parameters can be identified more quickly than a grid
search, and the resulting parameters can be selected for more thorough exploration
than using a grid search method. Grid searches are generally used where there are

55

a very small number of hyperparameters to optimise, which is not the case with the
number of overall parameters the deep reinforcement learning algorithms employed
in this research are comprised of, but could be the case should sensitive hyperpa-
rameters be identified. Random searches also offer a number of other benefits for
general experimental practice including early termination, asynchronicity, the ability
to add additional experiments or restart failed experiments without disruption, and
compatibility within additional controlled experiments [46, p. 415-423][121].

Furthermore, in the hope of reducing the number of trials required to determine
a feasible set of hyperparameters, where possible we will set hyperparameter de-
fault values according to existing work in the literature, a strategy recommended by
Andrychowicz [120]).

3.8 Chapter Summary

In this chapter, we have stated the methodology by which we will test the efficacy
of deep reinforcement learning and hybrid visual servoing for robotic manipulation
in fixtureless environments, and stated the reasoning and justifications by which we
have pursued this methodology. In the following chapter, we will describe, justify and
discuss our specific design choices in the implementation of a specific fixtureless con-
trol task, its MDP specification, and algorithmic choices relating to the reinforcement
learning algorithm and neural network encoding.

56

Chapter 4

System Design

In this chapter we define and describe the objective of this research in terms of in-
troducing a specific task environment representative of the aforementioned research
area and its translation into a reinforcement learning problem before proposing a neu-
ral network-based control policy trained with deep reinforcement learning techniques
within the described task environment to achieve the desired behaviour.

The chapter is organised as follows: In Section 4.1, we formally describe a robotic
manipulation task representative certain problems in fixtureless manufacturing en-
vironments and explain the motivation of this work; in 4.2 we formulate our task
environment as a Markov Decision Process; in 4.3 we describe our algorithm for solv-
ing the MDP with deep reinforcement learning techniques; and in 4.4 we propose a
general neural network architecture for parametrising the agent’s policy.

4.1 Task Description

The task environment consists of a planar work surface and a redundant manipulator,
the KUKA LBR iiwa R800, with its base fixed to the surface. The surface is arbitrarily
sized but the edges are such that they exist outside of the reach of the manipulator
wherever it is attached, and is therefore assumed to at least be in the order of several
metres across.

There are two RGB cameras present in the environment representative of a hybrid
visual servoing (VS) setup: the first, known as the eye-in-hand (EIH) camera, is
attached to the robotic end effector and moves with it; the second, known as the
eye-to-hand (ETH) camera,is in a fixed location elevated above the work surface and
placed behind and to the side of the robot. The ETH camera should be directed
such that it captures the surface area within the working envelope of the LBR iiwa
completely at a sensible position and angle that maximises visual coverage of the
working area, whilst also being close enough so as to capture as much detail as
possible within a given camera resolution, minimise potential for occlusion from the
robotic manipulator, and ensure a good overhead view of the robotic end-effector as
it approaches the work surface. An example of such positioning is given in Figure
4.1 with the ETH camera directed at the workspace from above facing diagonally at

57

the work surface, capturing both the work surface and the manipulator and its end
effector. Depending on the distance from the work surface, the angle of inclination
could be placed between 30° and 60° as an example.

Figure 4.1: Task setup.

A small visual feature will be present on the plane of the work surface in a random
location with reach of the robot manipulator in the form of a simple geometric shape
with a colour / texture that is easily distinguished from the surface itself. The target
feature will remain in its defined position for a set amount of time, after which it will
visually disappear and a new feature will appear on the surface plane in a different,
random location position within the robot’s work envelope. Only one target will be
visible on the work surface at any given time. The system is closed-loop with no
human intervention and targets are automatically generated.

The task within this environment is for the robot to align its end effector with the
focal point of the feature within some bound of accuracy a such that the flat surface
of the end-effector is both facing and parallel with the work plane of the work surface
and a fixed displacement, h above it in the order of several cm for the purpose of
providing space for the EIH camera and some arbitrary end-effector tool. The robot
must not collide with the work surface at any time.

58

Figure 4.2: Goal attainment. Left: profile view; Right: end-effector view

This should be achieved by means of an agent acting within the environment with
access to sensory data including live pixel data from the EIH and ETH cameras and
numerical data from the robot’s internal joint position and joint torque sensors, that
is able to transform the relative orientation and translation of the robotic end-effector
in 3D Space by affecting the positions of the seven actuators / degrees of freedom
of the redundant manipulator. An agent can be said to have completed the task
successfully if the robotic end-effector is aligned with the point in space above the
visual cue at the correct orientation to within a fixed sub mm margin of accuracy and
achieved this within the given time. As only one target is visible at any given time,
tasks can be divided into ’episodes’ based on the position of current visual cue.

4.2 Environment Modelling - Markov Decision Pro-

cess

We model the described task environment E as an agent interacting with a variable-
time episodic Markov Decision Process (MDP) with a state space S, action space A =
RN , transition dynamics P , reward function R, and discount factor γ. Additionally
we define E to have a set of goals G, and an initial state-goal distribution p(s0, g).

Each episode is defined by selecting an initial state and a goal from the distribution
p(s0, g). At each timestep t in the episode the agent receives a representation of the
environment’s state s in the form of an observation ot and updates its internal state
st ∈ S. The agent then executes a an action at ∈ A based on st according to
its parametrised policy πθ(a|st). The environment in turn produces a scalar reward
r(st, at) and transitions to the next state st+1 according to the transition probability
P (st+1|st, at).

The process continues until the agent reaches a state in a set of terminal states
st ∈ T , T ⊂ S. The set of terminal states T in any given episode is defined by the
goal g during that episode. Goals describe the desired outcome of a task and dictate

59

the sequence of actions by the agent’s policy to bring about a goal state such that
π : S×G → A. Every goal g ∈ G corresponds to some reward function rg : S×A → R.
Goals are extracted from the observation o.

In the section below, we define specific elements of the MDP mathematically. We
give details on their technical implementation in Section 5.2.

4.2.1 States

The state of the system is represented in the physics engine and consists of angles and
velocities of all robot joints as well as positions and rotations of all objects including
the robot base, work surface, cameras, and goal.

4.2.2 Goals

Goals represent a desired end-effector position that is a fixed distance above the
work surface within some fixed measure of accuracy ϵ. Since they can only appear
on the surface at constant Z, goals can be described in two dimensions X and Y
corresponding to their 2D position on the work surface in relation to the origin of the
LBR iiwa’s base, the origin point of the environment.

However, the purpose of a goal is that the LBR iiwa should position its end effector
above it. Thus goals must also be generated to be physically attainable with regards
to the LBR iiwa working envelope shown in Figures 4.3 and 4.4 and the constraints
of the agent’s task. Given a minimum and maximum working envelope radius dmin

and dmax and a goal with X and Y coordinates gx and gy, a goal is valid if it satisfies
the following Equations 4.1, 4.2, and 4.3.

−dmax ≤ gx ≤ −dmin ∨ dmin ≤ gx ≤ dmax (4.1)

−dmax ≤ gy ≤ −dmin ∨ dmin ≤ gy ≤ dmax (4.2)

g = (gx, gy), g ∈ G, G = R2 (4.3)

Each goal corresponds to a particular reward signal rg ∈ R and a set of terminal
states T ⊂ S. At least one component of the reward signal rg will rely on a function
fg to measure whether the goal has been achieved to compute a reward signal and
terminate the episode if the agent successfully reaches a terminal goal state.

fg is a binary reward signal based on whether the goal has been achieved or not
within the desired accuracy ϵ. Given sg and se are the respective positions of the goal
and the end-effector in the state:

fg(s) = [|sg − se| ≤ ϵ] (4.4)

4.2.3 Observations

Observations provide information about the state to the agent to inform its decision
making. In our environment, observations are taken using various vision sensors and

60

the robot’s own internal sensors. The observation space is multimodal and at any
given timestep, the agent’s observation o is:

o = (IEIH , IETH , Jp, Jv) (4.5)

where IEIH and IETH are the images from the monocular EIH and ETH cameras and
Jp and Jv are the robot joint positions and velocities respectively at time t.

IEIH and IETH are encoded as ih× iw× id matrices where ih, iw, id are the image’s
height, width, and depth respectively. Note that the dimensions of IEIH and IETH

are not necessarily identical. Meanwhile Jp and Jv are seven dimensional real-valued
vectors of the robotic joint angles and velocities where each component has a value
in the relevant ranges of Table 3.1.

The results of [71] and other work has shown that richer state representation
results in faster convergence and better final performance than purely image-based
states, thus we supplement the images with robotic joint position and velocity in-
formation, similar to approaches such as 2.5D visual servoing [38] Indeed, different
sensors provide complementary information about an environment and to effectively
perform a task, the robot should measure multiple feedback modalities and integrate
multiple sensors into its control system [32].

Remembering that the environment is goal-based, and that at every timestep the
agent should observe as input not only the current state but also the current goal to
determine how it should act. Here, the goal is not given explicitly like some other
work in the literature (e.g [91], [140]), rather it is a feature to be extracted from the
observed images IEIH , IETH and as such the accuracy of the definition may change
based on the observations.

For this reason, the environment may in general be partially observed due to
factors such as occlusion, sensor positioning and sensor resolution. However here,
like some other work in the field ([67], [71]), we assume that the current observation
provides all necessary state information due to the ETH camera configuration and
treat the environment as fully observable such that st = ot

1. While a POMDP (see:
Section 2.4.3) formulation would be most general, it has been found in practice that
resulting control policies have still exhibited moderate robustness to occlusions [71]
and extension to a POMDP is straightforward.

Whilst the observation does not provide all information about the state that could
be provided (see: Section 4.2.1), it provides sufficient extractable information about
variable parameters such as the robot join positions, goal position etc. and omits
fixed parameters such as the robot’s base position, work surface position etc. that
are not required for a representation of the environment to be built. No other prior
knowledge is given about objects, physics, or motion planning is provided to the
model aside from the knowledge can be extracted autonomously from the data.

1Therefore, the terms observation and state are occasionally used interchangeably.

61

4.2.4 Actions

The agent’s actions, a ∈ A consist of a seven dimensional vector where each compo-
nent has a real value in the range [−1, 1] such that A ∈ R7.

a = (a1, . . . , a7), −1 ≤ ai ≤ 1, ai ∈ R (4.6)

Each component in the vector represents an action based on positional control in
the joint space rather than other forms of control for the LBR iiwa such as velocity or
force control, Policy outputs are in the normalised interval [−1, 1] so that they may
then be scaled to the robot’s actual joint value by multiplying the policy output value
by the range of that joint as detailed in Table 3.1. Normalisation is often necessary for
neural network input / output computation and also increases possibility for model
reuse. If we rewrite Table 3.1 as a vector j:

j = (170, 120, 170, 120, 170, 120, 175) (4.7)

Then the vector p of actual robotic joint positions relative to the zero angle is the
Hadamard product of a and j such that

p = a⊙ j (4.8)

It is worth noting that positional actions are not necessarily achieved within a
single timestep as this is dependent on the maximum velocity of the robot and the
length of real time between each algorithmic timestep. The agent will merely act
towards a positional value rather than necessarily achieving it. The velocity input
will indicate the amount of movement occurring at any given timestep.

4.2.5 Initial State-Goal Distribution

Every episode starts by randomly sampling an initial state s0 and goal g pair from
some distribution p(s0, g). Once sampled, the goal remains fixed for that episode.

Studies exploring different strategies for generating the initial state-goal, are also
proposed in Appendix D.

4.2.6 Rewards

The reward function r provides feedback that directs the agent towards achieving its
goals and thus determine how the agent will act. In this environment, the reward
function should encourage behaviour that not only achieves the goal set out in Goals,
but also achieve these goals in a timely and efficient way. Efficiency could be defined
according to several metrics, especially on redundant manipulators as demonstrated
by the LBR iiwa motion planning algorithm which prioritises different metrics de-
pending on whether moving in a linear or point-to-point manner, but here we will
prioritise the time taken to reach a pose, relative to the linear distance from the initial
robot state.

62

It was made clear in Section 2.4.3 that better performance is generally achieved
using sparser reward signals as demonstrated in related work including [71], [91], but
with consequences that the learning is more challenging and may require additional
training time or the use of supplemental algorithmic techniques to make learning
tractable. Here we define several reward subfunctions that reward different kinds of
behaviour with different levels of sparsity that can be combined to shape the reward
function as necessary.

We propose five subfunctions that may be incorporated into an experimental re-
ward function r: rg which provides essential goal-related feedback; rc which provides
feedback relating to collisions; re which encourages the agent to perform efficiently;
and ro and rp which provide rotational and positional feedback to direct the agent
towards achieving its goal along a gradient.

r(s) = rg(s) + rc(s) + re(s) + ro(s) + rp(s) (4.9)

Goal Attainment, rg

The sparsest possible reward function should simply assess whether a goal has been
achieved by implementing the inequality in Equation 4.4. Some implementation of
rg, of knowing that the goal has been achieved, must be included in any variation of
the reward function. It is important that the implementation is binary as described
and not amended to provide continuous feedback as this would yield a gradient that
would make the problem substantially easier to solve. While this information is easily
determined in a parametrised simulation, it is substantially more difficult to determine
in a real world physical environment and the MDP should reflect this.

Collision Evasion, rc

Collisions are highly undesirable as they risk damaging the robot in physical environ-
ments. The agent should not collide with an object under any circumstances and a
collision will be treated as a terminal state, ending the episode and incurring a large
penalty.

rc(st) =

{
−r∗, if collision detected
0, otherwise

}
(4.10)

Efficiency, re

It is well documented in the literature that adding a small reward penalty across
time steps does well to encourage performance from a control system where speed is
desirable, and is more effective for increasing long-term performance than decreasing
the discount factor γ [40], [71].

A small penalty can be applied at every timestep to encourage the agent to achieve
its goal in as few timesteps as possible. Our implementation applies a small negative
reward at every timestep prior to termination where the goal state is not achieved as
shown in Equation 4.11.

63

re(st) = k, k ≤ 0 (4.11)

Rotational Alignment, ro

As a way of providing guidance in the search space and compensating for the other
sparse reward signal rg, reward shaping could be provided via a reward gradient that
encourages movement towards the goal position.

There are two gradients that can be provided. The first is to guide towards the
correct end effector orientation ro and the second is to guide towards the correct
end-effector position

The most simple and intuitive heuristics that could be used for guidance could be
based on Euclidean distances, d in both the orientation and position spaces between
the goal orientation and position and the end-effector orientation and position by
computing the forward kinematics on data attained from the robot’s positional sensors
where the reward inversely changes with regards to the distance magnitude.

The Euclidean distance d between two vectors e, g is described as:

dn(e, g) =
√

(e1 − g1)2 + · · ·+ (en − gn)2 (4.12)

where n is the number of arguments required to describe the vector.
To apply this heuristic to orientation, the agent must orientate its end-effector in

the way seen in Figure 4.1 If the orientation of the goal in relation to the robot’s base
and end-effector is known, as it is in this particular task, then feedback can be given
to the agent to encourage alignment with this orientation.

Given this, we can calculate the absolute maximum rotational distance that the
end-effector may be at any time from the goal orientation and we can reward the
agent proportionally to how close its actual orientation is to the goal value based on
the maximum possible rotational displacement from the goal, θmax = 180− ϵo.

Given we calculate the Euclidean distance between the end-effector orientation eo
and goal orientation go expressed as vectors.

δp = d(eθ − gθ) (4.13)

The rotational reward ro can be calculated:

ro(st) =

{
k × r∗, if δo ≤ ϵo
k × r∗ × (θmax−δo)

θmax
, if δo > ϵo

}
(4.14)

where k is some constant.

Positional Alignment, rp

We employ a similar method to rp as we do ro. However, instead of taking θmax as the
maximum possible distance, we make an approximation based on the robot’s range
as determined by its working envelope in Figures 4.3 and 4.4.

64

Figure 4.3: KUKA LBR iiwa working envelope, side view [142]

Figure 4.4: KUKA LBR iiwa working envelope, top view [142]

We can therefore make the rough assumption that the maximum possible distance
that the robot may be from the goal position is lmax = (2× l)− ϵp where l is the reach
of the robot manipulator.

65

Given we calculate the Euclidean distance between the end-effector position ep
and goal position gp expressed as coordinate vectors.

δp = d(ep − gp) (4.15)

The positional reward rp can be calculated:

rp(st) =

{
k × r∗, if δp ≤ ϵp
k × r∗ × (lmax−δp)

lmax
, if δp > ϵp

}
(4.16)

where k is some constant.
Although, rg, rc and re are sparse enough.that they are unlikely to lead to the

development of suboptimal policies, it is possible that the more heavily shaping func-
tions ro, rd could lead to the agent learning sub-optimal behaviour and performing
sub-optimal trajectories. For example, while the implementations described here gen-
erally reward alignment with a specific final orientation or axis position at any point
in time regardless of whether other measurements are correct, it is possible that more
efficient trajectories exist where divergence from the final orientation, or travelling
non-linearly during the trajectory would be a more efficient trajectory overall due
to the LBR iiwa’s physical constraints. Therefore, the functions ro and rp should be
carefully studied with regards to their shaping potential and may require tuning of the
the discount factor γ to generate more efficient trajectories and movement behaviour.

4.3 Reinforcement Learning Algorithm

4.3.1 Learning Algorithm

There are a number of deep RL algorithms with different efficacies and applicability
to different problem domains [73]. The algorithm we employ needs to be sample
efficient and capable of learning in an environment with high dimensional observation
spaces and continuous action spaces. We believe that the SAC algorithm [165] is best
suited for learning on our particular environment for the following reasons.

Firstly, policy-based RL algorithms are generally much more effective in high-
dimensional and continuous action spaces as there is more generalisation of the envi-
ronment interaction (and thus fewer parameters to learn) and they can learn stochas-
tic policies which are better for interacting with dynamic environments than deter-
ministic policies, and have better convergence properties [73]. Secondly, if using a
policy-based learning algorithm, it is also preferable to use an actor-critic method as
these are known to reduce variance in the reward signal and these methods have been
also been shown to be effective in robotics domains [81], [165]. Thirdly, neural net-
works are necessary for scaling up reinforcement learning methods to high dimensional
state-spaces including computer vision applications, therefore the algorithm employed
must be applicable to training neural network policy parametrisations. Fourthly, the
algorithm should be off-policy as these are known to be generally an order of magni-
tude more sample efficient for training as samples can be reused without overfitting
and sample efficiency is key for robotics applications [92].

66

However, based on these criteria and the current state-of-the-art alone, several
other algorithms could be deemed suitable for this task including ACKTR [81], PPO
[87], or SAC [165] as they have all yielded promising results on robotic control prob-
lems. But the performance of state-of-the-art RL methods depends on careful setting
of the hyperparameters, and even then performance can vary substantially between
runs with off-policy algorithms tending to suffer even more from these issues than
on-policy policy gradient methods [92], [118]. RL algorithms should be robust to
hyperparameter settings through their design, but this is an extremely challenging
area of research. One approach towards this is developing algorithms that automat-
ically tune their own hyperparameters. This is exemplified most recently by SAC
which contains automated temperature tuning and has been demonstrated to greatly
reduce the need for hyperparameter tuning across domains [92]. With SAC requiring
the fewest hyperparameter settings of the three aforementioned algorithms, as well
as being the most recently developed and currently accepted as the state-of-the-art
for general robotics RL applications, this outlines it as the most favourable algorithm
for application.

For reference, the SAC algorithm is given in Appendix A. We will be using the
implementation featured in the TF Agents Library [155].

4.3.2 Training Procedure

The training procedure used follows the same steps as the SAC Minitaur example in
the TF Agents Docs [166]. That is, an initial period of random data collection to
seed the replay buffer followed by training and periodic evaluation.

4.3.3 Exploration Policy

The exploration policy is relatively simple and follows the example used in [166]. We
seed the replay buffer by collecting experience using a random policy for 500 episodes,
or approximately 10,000 steps. The agent will then begin collecting experience using
the neural network-based policy initialised with random (normalised) weights induc-
ing further random exploration.

4.4 Neural Network Architecture

Designing a neural network to parametrise an RL agent can be non-trivial as there
are a multitude of design parameters that affect a network’s performance including:
number of layers, number of nodes in a layer, activation functions, initialisation, and
even its code-base implementation. Choosing good parameters is made more difficult
by inconsistent or incomplete reporting of parameters in the literature making com-
parison of various approaches difficult.[118]. Furthermore, the success of a particular
architecture is somewhat application-dependent, though certain techniques are known
to work well across a range of applications. Although the neural network architecture

67

is not always the most significant contributor to function modelling, the size / depth
of the network must reflect the complexity of the function to approximate. [54]–[56].

In 4.4 we describe the general network architecture that we believe would be
capable and effective in learning to solve our environment and illustrate the general
network architectures for the actor and critic networks in Figures 4.4.1 and 4.4.1
respectively, then in 4.4.1 we discuss some of the reasoning behind some of our chosen
network properties based on other works in the literature, referencing the works [71],
[81], [91], [167] in particular.

We have limited the definition of some network parameters to the experiments
in Section 6. This is to acknowledge that a good network structure with specified
parameters will need to be determined through optimisation and would be the subject
of Future Work.

4.4.1 Network Description

We employ an actor-critic approach with an architecture that contains several sub-
networks and a mixture of convolutional and fully connected layers. The actor and
critic networks are separate but identical with the exception of their inputs and
outputs.

The networks may take as input the pixel values of two RGB images, which may
differ in size, and two arrays of numeric inputs representing the robotic joint position
and velocity values respectively, which in the case of the KUKA LBR iiwa is fixed
at seven joints. All input and output values are continuous and scaled to the range
[−1, 1]. All four inputs are modular and initially processed separately with dedicated
and customised pre-processing layers. The image inputs should be pre-processed with
a convolutional neural network (CNN), while the vector inputs should be processed
by a fully connected, feed forward, multi layer perceptron (MLP).

Following pre-processing, the inputs are flattened (if necessary) and concatenated
into one input array which is processed by another fully-connected, feed forward
MLP before generating the respective network output. The actor network outputs a
normalised action a in the form of a seven-valued array representing a joint position
for each of the robot’s joints as defined in Equation 4.6. The critic network takes an
additional input which is the output of the actor network which can also have its own
dedicated pre-processing prior to concatenation. The critic network outputs a single
value calculating the advantage of the current state and action combination.

All activation functions within the network are ReLUs with the exception of the
output layer of the actor network which uses the tanh activation function.

68

Figure 4.5: General actor network architecture.

69

Figure 4.6: General critic network architecture.

4.4.2 Network Discussion

Structure

The state-action function we wish the agent to learn is complex and not linearly
separable and necessitates deep neural networks with hidden layers. A majority of
contemporary work in ML and RL utilise deep neural networks as we previously
discussed that adding more layers can reduce the overall size of the networks thus
making them more computationally efficient. Recognising the many successes CNNs
have enjoyed in computer vision, our networks will also contain convolutional layers
as we have a partially image-based input.

70

The actor-critic approach was chosen due to the success of such approaches to
robotic control in work such as [67], [80], [81]. Actor-critic architectures can either be
separate networks or contain shared parameters [67], [81], [88]. There is no consensus
in the literature as to whether combined or separate networks are more effective.
However, the main perceived advantage of a combined network is that it is more
computationally efficient to train and store as you only need to update one network
in each training step, whereas the perceived advantage of separate networks is that
they can learn their own dedicated function and thus may be easier to train. Since
we are making use of cloud computing resources and the general size of our networks
is likely to be fairly small, we have opted for separate architectures for simplicity and
the perceived training advantage.

Inputs

Each network can take as input up to two images of size ih× iw× id pixels, as well as
two arrays of seven mono-dimensional numeric inputs representing the robotic joint
position and velocity values (see: Section 4.2.3 . All input values are continuous and
normalised to the range [−1, 1] as neural networks have difficulty dealing with inputs
of different magnitudes and normalisation is recommended by Andrychrowicz [120]
and used across work in the literature.. The modularity of the networks prior to
concatenation mean that inputs can be added or removed as necessary. Hence the
structure of the actor and critic networks are very similar.

Hidden Layers and Outputs

It is currently established in the literature that CNNs are the standard for processing
image-based data in neural networks. However, we believe that our network does not
require extensive convolution because: (i) we are mostly interested in the location of
distinctly coloured features in the input images and thus the features are relatively
simple; (ii) we are not interested in extracting complex features e.g. the robot’s pose
from images as this is encoded by the joint position data and the rest environment
is otherwise static; and (iii) the resolution of our images is be reasonably low for
efficiency reasons which limits the detail of features anyway.

For instance, [81] make use of 42 × 42 pixel images for continuous control tasks
and their entire architecture consisted of two convolutional layers with 32 filters of
size 3×3 with stride 2 followed by a fully connected layer of 256 hidden units. Whilst
this can’t necessarily be translated to our domain due to the added complexity, it
gives an indication of the scale that might be needed.

Furthermore, our networks do not need to be homogeneously convolutional as we
are dealing with low-dimensional numerical inputs which are not spatially related for
the robotic joint positions, velocities, and actions for which simpler processing with
an MLP is more appropriate.

This is reflected in [81] where convolutional layers are used for pixel-based con-
tinuous control tasks but not continuous control tasks with a low-dimensional input.
The structure and scale of our hidden layers is also adapted from [81] where we have

71

used 64 hidden units per layer in a two-layer fully-connected network for the joint
sensor input and two convolutional layers containing 32 filters of size 3×3 and stride
2. It is also common practice to use dense MLP layers to simplify the output of any
neural network as shown frequently in the literature [71], [81], [91], [134].

Concatenation

Our network accepts multiple input sources which requires a concatenation of input
values. Due to their differing formats, it is sensible to group inputs into images and
robotic joint values and process them in similar ways based on their type before con-
catenating them later. However, since one set of inputs should be processed by a
CNN, and the other should be processed by a MLP, concatenation is not straightfor-
ward and there needs to be conversion of one type of format into the other. Though
their network is substantially different, we take a similar approach to Kalashnikov et
al. who concatenate image and low-dimensional sensory data after some initial pro-
cessing on both inputs separately before further processing together [71]. Although
since our network is smaller and also favours modularity, we instead flatten the out-
put from the convolutional layers into a single fully-connected layer to be instantly
processed by the output MLP, rather than convert the sensor data into an additional
convolutional channel and processing with further convolutional layers.

Activation Functions

ReLUs are the most commonly employed activation function for hidden units in CNNs
and we employ them here for every layer except the output layers which use the
tanh activation function and bound output values to the normalised range [-1,1],
which is suitable for scaling. The use of tanh and bounding for the output layers is
recommended by Andrychowicz [91], [120].

4.5 Chapter Summary

In this chapter, we have presented our specific design choices in the implementation of
a specific fixtureless control task, the MDP specification of this task, and algorithmic
choices relating to the reinforcement learning algorithm and neural network encoding,
as well as justifying and discussing the design of each component. In the following
chapter, we describe key features of environment, training algorithm, and 3D models
in terms of their specific software implementation.

72

Chapter 5

Software Implementation

In this chapter, we describe key features of the software implementation for our en-
vironment, training algorithm, and 3D models.

The most relevant resources used for reference during the writing of this software
included the Tensorflow and TF-Agents documentation and examples, in particular
the SAC Minitaur [166], custom network [168], and custom environment [169] ex-
amples, the PyBullet documentation and examples [159] in particular the KukaCam
Environment [170], the Comet.ml docs and examples [156], the Blender documenta-
tion [154], and numerous other online resources for general programming queries such
as the Python documentation and Stack Overflow.

The chapter is organised as follows: In Section 3.6, we describe and explain the
software libraries used for our software implementation; then in 5.1 we describe the
3D models used for modelling and rendering our simulation environment; and in
5.2 we describe our PyBullet environment implementation including key functions,
algorithms and variables.

5.1 3D Modelling

The visual render of the environment requires three 3D models for the KUKA LBR
iiwa, work surface, and target. The LBR iiwa is a .urdf model imported from the
PyBullet library [130] whereas the work surface and target are simple .obj files created
in Blender [154]. The work surface object is a grey square plain of dimensions 2m x
2m. If the robot is placed in the centre of the object, this means that the outside edge
of the work surface is just out of the robot’s reach in any direction. The target object
is a red circular plain with 1cm diameter which will be placed just above the work
surface plain and is clearly visible against the work surface. The simplicity of the
objects means they can scaled easily which may be particularly helpful for different
target sizes and striking the right balance between image input resolution and target
size.

The floor and target .obj files can be found at the code repository in Appendix B.

73

Figure 5.1: Render of simulated environment in PyBullet GUI showing a typical
placement of the floor, target and robot, with windowed eye-in-hand and eye-to-hand
camera views in the left panel and joint angles A1:7 in degrees in the right panel.

5.2 PyBullet Environment

Our RL environment has been implemented as a TF-Agents PyEnvironment class so
that it can interface with the TF Agents RL algorithm implementations. A PyEnvi-
ronment interface was chosen as it is native method for implementing custom environ-
ments in our chosen framework TF Agents, however it would be trivial to convert the
environment to other standards such as an OpenAI Gym which have nearly identical
environment formatting and indeed the TF Agents library also accepts OpenAI Gym
Environments as input. Each custom environment that implements the PyEnviron-
ment interface must contain (as a minimum) custom implementations of the following
methods with inputs and outputs in a defined format[169].

• action spec() Describes the TensorSpecs of the action expected by step(action)

• observation spec() Defines the TensorSpec of observations provided by the
environment.

74

• reset() Returns the current TimeStep after resetting the Environment.

• step(action) Applies the action and returns the new TimeStep

As well as PyEnvironment specific functions, our environment implementation
also contains a number of other functions that are called by the above functions to
assist with modelling the environment.

• getJointStates() Returns the robot’s current position and velocity of all
joints.

• getKukaJointLimits() Returns the robot’s upper and lower joint limits as
described in Table 3.1.

• getKukaVelocityLimits() Returns the robot’s velocity limits.

• setKukaJointAngles(jointPositions) Sets the desired positions for the robot’s
joints which the robot will move towards during the following simulation steps un-
til instructed otherwise at the next algorithmic time step. Will not move beyond
joint physical joint limits in Table 3.1.

• getEyeInHandCamera() Returns an RGB image from the eye in hand camera
with the dimensions set in the environment constructor (see: Section 5.2.1).

• getEyeToHandCamera() Returns an RGB image from the eye in hand camera
with the dimensions and at the location and orientation set in the environment
constructor (see: Section 5.2.1).

• pixelArray2RGBArray(rgba seq, img dep, img res) Converts RGBA data
from getEyeToHandCamera / getEyeInHandCamera into 3 separate arrays of RGB
data.

• getObservation() Collects observations from all enabled sources and concate-
nates them into one observation so as to be in the correct format to be returned
by the RL algorithm.

• normalisedAction2JointAngles(action) Converts normalised joint action val-
ues [0..1] into equivalent radian values for each robotic joint range.

• normaliseJointAngles(jointPositions) Converts a set of robotic joint po-
sitions in radians to their normalised value, relevant to the respective joint range
i.e. 0 is the minimum joint angle for that particular joint and 1 is the maximum,
regardless of if the joint range differs between joints.

• termination() Checks if the conditions for termination have been met. I.e.
if the step counter has exceeded the maximum number of steps in an episode, a
collision has occurred, or the goal has been achieved.

75

• reward(reward goal, reward collision, reward time, reward rotation, reward position)

Calculates the reward for a given timestep (see: 5.2.8).

• generateGoal(x, y, size) Generates a new goal and renders it in the en-
vironment. Goal postion can be set manually with inputs x, y or will other-
wise be randomly generated within the robot’s working envelope as defined by
KUKA MAX RANGE and KUKA MIN RANGE (see: Table 5.2). The size of
the goal can also be set with the size parameter but is set to 1cm diameter by
default.

• generateFloor(size) Renders floor in environment. Size of floor can be set
with the size parameter but is set to 1m2 by default.

• generateRobot(jointPositions) Sets robot’s initial position and renders robot
in environment. Initial position is set 0 for all joint angles i.e. each joint is at the
midpoint of its range and the robot is vertically straight.

We describe in greater detail below the key functions of the implementation, ig-
noring those which are simple and fully explained in functional terms by their short
description above.

5.2.1 Constructor

When creating a new instance of an environment, there are multiple options to tweak
its behaviour which can be set via the constructor method. These variables and their
behaviour are described in Table 5.1 and their effect on algorithmic performance is
described in 6.

76

Variable Data Type Default Value Function

seed int None Randomisation seed

timesteps int 20
The maximum number of steps that can be taken by
the agent per episode. Also written as T

discount float 1.0 RL Discount Factor. Also written as γ
eih input bool True If True, then returns EIH camera input at each timestep.
eth input bool True If True, then returns ETH camera input at each timestep.
position input bool True If True, then returns robotic joint positions at each timestep.
velocity input bool True If True, then returns robotic joint velocities at each timestep.
eih camera resolution int 112 Sets the resolution of the EIH camera input (equal length and width).
eth camera resolution int 112 Sets the resolution of the ETH camera input (equal length and width).

eih channels int 3
Sets the depth of the EIH camera input. This value
should either be 1 or 3 for monochromatic or RGB images.

eth channels int 3
Sets the depth of the ETH camera input. This value
should be 1 for monochromatic or 3 for RGB images.

target position [float, float] None
If set, target is placed in a repeatable position on the
worksurface for each episode.

reward goal bool True
If True, include whether goal has been achieved in
reward signal.

reward collision bool True If True, include collision detection in reward signal.
reward time bool True If True, include time penalties in reward signal.

reward position bool True
If True, include rewards for lateral positioning
towards target position in reward signal.

reward rotation bool True
If True, include penalties for deviation from target
orientation in reward signal.

normalise observation bool True
If True, observations are returned normalised in the
range [0..1] for images and [-1..1] for joint data.

Table 5.1: Environment customisation options available in class constructor.

5.2.2 Constants

As well as all of the accessible variables in Table 5.1 there are also defined several
immutable constants which are described in 5.2.

Constant Data Type Value Function

KUKA MIN RANGE float 0.40
Specifies inner range (M) of LBR iiwa’s working envelope
where a target can be placed and the robot can align

KUKA MAX RANGE float 0.78
Specifies outer range (M) of LBR iiwa’s working envelope
where a target can be placed and the robot can align

KUKA VELOCITY LIMIT float 1.0
Specifies a limit on the maximum velocity.
Required to prevent simulation exceeding joint limits during
a timestep but not linked to the LBR iiwa’s real velocity limits

SIMULATION STEP DELTA float 1
240

Real time between each simulation step.
Also written as δt′.

SIMULATION STEPS PER TIMESTEP int 24
Number of simulation steps in one algorithmic timestep.
Also written as t′.

POSITIONAL TOLERANCE float 0.001
Accuracy requirement for end-effector position to goal in m.
Also written as ϵp.

ROTATIONAL TOLERANCE float 1.0
Accuracy requirement for end-effector orientation to goal in deg.
Also written as ϵo.

VERTICAL DISTANCE float 0.05
Height above work surface to align with in m.
Also written as h.

MAX REWARD float 1.0
The maximum reward that the environment can return.
May be positive or negative.
Also written as r∗.

TIME PENALTY float 0.05 Penalty applied per timestep if reward time is set.

POSITION REWARD float 0.4
Maximum reward that can be awarded for positional alignment
if reward position is set.

ROTATION REWARD float 0.4
Maximum reward that can be awarded for rotational alignment
if reward rotation is set.

Table 5.2: Environment class constants

77

5.2.3 Observation Spec

The agent’s observations are highly customisable and dependent on the relevant input
variables passed to the environment’s constructor including: eih input; eth input;
eih camera resolution; eth camera resolution; eih image depth; eth image depth;
position input; velocity input;

Depending on the variables flagged, the function observation spec() will gener-
ate an observation specification in the format of a list of tf agents.specs.ArraySpec

as required by implementing the PyEnvironment interface. In our particular instance,
each component of the observation is represented as a tf agents.specs.BoundedArraySpec

as shown in table 5.3.

Component Matrix Shape Data Type Minimum Maximum
IEIH iEIH

h × iEIH
w × iEIH

d float 0 255
IETH iETH

h × iETH
w × iETH

d float 0 255
Jp 7× 1 float −ji +ji
Jv 7× 1 float None None

Table 5.3: Observation Spec Components.

There are two aspects of the observation spec that are worth remarking upon.
Firstly, that there are no bounds for joint velocities due to current limitations of
PyBullet not factoring velocity limits into motor control commands. [159, p. 23].
Secondly, that the the RGB data is represented by a matrix of floating point values
even though they could naturially be represented as integers in the range [0..255]
this is for the sake of compatibility and having uniform data types across all possible
observation specifications. Pre-and-post-processing will round floats to their nearest
integer value.

The simple function used to systematically include elements in the observation
specification with their specified customisation is shown in 1.

Algorithm 1 Observation Spec Function

1: observation spec ← []
2: if eih input then
3: Append IEIH(iEIH,h × iEIH,w × iEIH,d) to observation spec
4: end if
5: if eth input then
6: Append IETH(iETH,h × iETH,w × iETH,d) to observation spec
7: end if
8: if position input then
9: Append Jp to observation spec
10: end if
11: if velocity input then
12: Append Jv to observation spec
13: end ifreturn observation spec

78

5.2.4 Action Spec

The action spec is immutable in our environment and not subject to any customisation
options. The action spec() methods is required to return an action spec in the
format of a tf agents.specs.ArraySpec. In our case we have represented it as a
tf agents.specs.BoundedArraySpec with normalised bounds as shown in table 5.4.

Matrix Shape Data Type Minimum Maximum
7× 1 float -1.0 1.0

Table 5.4: Action Spec

5.2.5 Observation Function

The logic in this function is very similar to that of the observation spec function in
that only the specified observations are collected and included in the function output.
Each individual observation is retrieved via a dedicated function that extracts the
observation directly from the PyBullet simulation which are getEyeInHandCamera(),
getEyeToHandCamera(), and getJointStates() repsectively.

Algorithm 2 Observation Function

1: ot ← []
2: if eih input then
3: oeih ← getEyeInHandCamera()
4: Append oeih to ot
5: end if
6: if eth input then
7: oeth ← getEyeToHandCamera()
8: Append oeth to ot
9: end if
10: if position input ∨ velocity input then
11: op, ov ← getJointStates())
12: if position input then
13: Append op to ot
14: end if
15: if velocity input then
16: Append ov to ot
17: end if
18: end if

return ot

5.2.6 Reset Function

The reset function initialises the PyBullet environment for a new episode by reset-
ting the timestep, goal achievement, collision detection, and termination variables,

79

t, goal achieved, collision,and terminated respectively and setting the initial state-
goal by initialising the robot to its initial position and generating a new goal. An
observation o0 of the initial state s0 at initial timestep t0 is then returned.

Algorithm 3 Environment Reset Function

1: terminate ← False ▷ Reset episode variables
2: goal achieved ← False
3: collision ← False
4: t← 0
5: generateRobot() ▷ Initialise 3D Models
6: generateFloor()
7: generateGoal()
8: o0 ← getObservation() ▷ Get initial observation

return o0

5.2.7 Step Function

The step function is responsible for advancing the environment by one algorithmic
time step. It takes as input the action that the agent should perform in the next step,
performs that action and updates the simulation, checks whether the episode should
be terminated, and then returns an observation of the environment and a reward after
completing that action.

Algorithm 4 Step Function

1: setKukaJointAngles(at) ▷ Set desired action position
2: for t′ = 0 to T ′ do ▷ Advance simulation in real-time until next timestep
3: E.stepSimulation()
4: end for
5: t = t+ 1
6: terminate ← termination() ▷ Check if episode should be terminated
7: ot+1 ← getObservation() ▷ Get observation at new timestep
8: rt+1 ← reward() ▷ Calculate Reward in current state

return ot+1, rt+1, terminate

Every episode consists of up to 50 algorithmic timesteps, t. Each algorithmic
timestep t is comprised of 24 PyBullet steps t′ of length δt′1/240 seconds. Therefore,
each episode may have a maximum length of 10 seconds in real-time execution (not
processing time). These values were set based on examples in the literature and
PyBullet examples [71], [91], [130] with the total admissible episode length being
adapted generously to allow the LBR iiwa enough time to satisfactorily position itself
within the simulated velocity settings.

80

5.2.8 Reward Function

The reward function includes the five shaping options described in Section 4.2.6.
Each shaping option can be activated using the environment constructor with the
variables reward goal, reward collision, reward time, reward rotation, reward position
where they are later passed as arguments to the reward function during the step
function (see: Algorithm 4). Assuming each shaping option of the reward function is
activated, the reward function is sequenced such that the collision detection reward
takes precedence and discards any other reward calculations if a collision is detected.
The time penalty also adjusts any other reward calculated before it. The goal reward
and the position / rotation rewards are mutually exclusive as the position / rotation
reward shapings are only calculated if the goal has not been achieved, which is not
the case if the conditions for the goal reward have been met and at this point the
variable goal achieved is True.

81

Algorithm 5 Reward Function
1: rt ← 0
2: se ← computeForwardKinematics() ▷ Determine end-effector state.
3: distance ← d(ep, gp) ▷ Calculate translational distance from goal.
4: rotation ← d(eθ, gθ) ▷ Calculate rotational distance from goal.
5: if reward goal then ▷ Calculate rg
6: if |position| < ϵp ∧ |rotation| < ϵo then
7: rt ← MAX REWARD
8: goal achieved← True
9: end if
10: end if
11: if reward position ∧¬goal achieved then ▷ Calculate rp
12: pmax ← (2× l)− ϵp
13: rp ←POSITION REWARD×MAX REWARD
14: if |distance| ≤POSITIONAL TOLERANCE then
15: rt ← rt + rp
16: else
17: rt ← rt + rp × ((pmax − |distance|)÷ pmax)
18: end if
19: end if
20: if reward rotation ∧¬goal achieved then ▷ Calculate ro
21: omax ← (2× l)− ϵp
22: ro ←ROTATION REWARD×MAX REWARD
23: if |rotation| ≤ROTATIONAL TOLERANCE then
24: rt ← rt + ro
25: else
26: rt ← rt + ro × ((omax − |rotation|)÷ omax)
27: end if
28: end if
29: if reward time ∧¬goal achieved then ▷ Calculate re
30: rt ← rt − TIME PENALTY)
31: end if
32: if reward collision then ▷ Calculate rc
33: if getContactPoints() ≥ 0 then
34: rt ← -MAX REWARD
35: collision ← True
36: end if
37: end if

return rt

5.2.9 Goal Generation

For training, goals are randomly generated (with respect to the seed) within the inner
and outer bounds of the robot’s working envelope which are defined asKUKA MIN RANGE

82

and KUKA MAX RANGE within the code and set to 0.4 m and 0.78 m respectively
as shown in Table 5.2. These bounds conservatively estimate the robot’s working
envelope while also satisfying the task constraints. However,slight adjustment may
also be possible to reflect the robot’s true reach with the ability to satisfy the goal
constraints and edge cases where the robot is at the outer limit of its joint rotation

Unless explicit values of x and y are specified, generation of the goal is carried
out in generateGoal() with the algorithm 6.

Algorithm 6 Random Goal Generation in generateGoal()

1: if x ∧ y then ▷ Manually assign gx and gy if set
2: gx, gy ← x, y
3: Assign goal g(gx, gy)
4: else
5: for i=0; i ≤ 4; i++ do ▷ Generate four random coordinates in range
6: coordinate[i]←random float(KUKA MIN RANGE,KUKA MAX RANGE)
7: end for
8: x coords ← [coordinate[0], -coordinate[1]]
9: y coords ← [coordinate[2], -coordinate[3]]
10: gx ← pick random(x coords) ▷ Pick -tive or +tive coordinate value for gx, gy
11: gy ← pick random(y coords)
12: Assign goal g(gx, gy)
13: end if
14: . . .

5.2.10 Termination Function

There are three conditions that trigger termination of an episode: achieving a goal;
encountering a collision; or exceeding the maximum imposed number of timesteps T .

The termination function only explicitly checks one of these conditions which is
that the number of timesteps has been exceeded, and checks the if the flags collision
or goal achieved have been set when they are checked elsewhere in the reward function
in order to calculate a reward.

Algorithm 7 Termination Function

1: if collision ∨ goal achieved ∨ t > T then
2: terminated ← True
3: end if
4: return terminated

5.3 Chapter Summary

In this chapter, we described key features of the software implementation for our
environment, training algorithm, and 3D models. In the following chapter, we detail

83

the experimental work undertaken to test the hypothesis with the goal of achieving
our research aims.

84

Chapter 6

Experiments and Results

In this chapter, we describe the experimental work undertaken with the goals of (1)
determining if the task environment can be solved using a deep RL approach, and (2)
locating an optimal set of hyperparameters for training a RL agent to solve the task
environment.
The chapter is organised as follows: First, we give an overview of the experimental
work carried out in Section 6.1; then we describe the data we have collected for each
experiment and the manner in which it was collected in 6.2; then, we describe the
parametrisation of the experiments carried out in 6.3, before presenting and discussing
our results in 6.4 and 6.5 respectively.

6.1 Experimental Work

A series of 14 experiments were conducted in line with a random search-based hyper-
parameter optimisation process using a simple random search method. The purpose
of these experiments was to first identify and then further optimise a feasible combi-
nation of hyperparameters that would allow the RL agent to learn a policy for solving
the RL task environment, while also testing parameters across several different ran-
dom seeds.

We present the results of the 14 experiments that were run in the context of
optimisation. (Many more were run and are accessible in Comet.ml but were part
of testing or debugging and are not necessarily useful for comparison). Experiments
were run using the Google Colab cloud computing service and carried out in series
as only one instance is allowed to run at a time. The hardware used by Google
Colab is not consistent so training time is not a useful metric in this instance. The
total amount of computation time for training across all experiments included in
our analysis is approximately 150 hours. The length of experiments varied from
3,000 episodes (~60,000 steps) to 25,000 episodes (~400,000 steps). Some experiments
were intentionally of differing length to trial different training lengths, however some
terminated early for no apparent reason. Several experiments are run for 25,000
episodes as this equates to just under 24 hours training time which is the maximum
length of time you can run a single experiment on Google Colab before termination.

85

The hyperparameters adjusted include random seed, number of episodes, initial
collection episodes, replay buffer size, and actor / critic / alpha learning rates.

6.2 Data Collection and Evaluation Metrics

We have used the Comet.ml platform [156] for the recording and management of all
experimental data. All collected experimental data is available online in an interactive
format in Appendix C. For each experiment, we store the following information for
reproducibility purposes:

• Hyperparameters All hyper parameters will be recorded for each experiment.
This will include the training, RL, and environment hyperparameters outlined in
Table 6.2 as well as a description of the model used.

• Code Both the training script, and the environment code will be recorded in
case of future changes.

• Output Log The output text of each experiment will be recorded. This will
include training updates and any errors or warning encountered.

• Training Time Although training time is purely hardware dependent, anec-
dotally it can be used for general comparison.

• System information Characteristics of the computational hardware will be
recorded.

We will also capture the following data as metrics at fixed intervals (default=500
episodes) to evaluate how well the agent is performing in the environment as it learns.

• Average Reward The average reward the agent earns in an episode calculated
as the sum of rewards in an episode.

• Loss Reward prediction error.

• Average Episode Length Gives an indication of early termination frequency
either due to collisions or achieving the goal if it is less than the maximum number
of timesteps.

• Video Recordings of the EIH and ETH input across five episodes will be made
at each evaluation interval as well as at the beginning and end of training.

6.3 List of Experiments

The hyperparameters adjusted include random seed, number of episodes, initial col-
lection episodes, replay buffer size, and actor / critic / alpha learning rates. Table
6.1 lists the settings used for each experiment across these parameters, along with

86

the key name and colour for that experiment. Unless otherwise stated, the default
values in Table 6.2, and Figures 6.3 and 6.3 are the hyperparameter values and neural
network configurations used during each experiment. As previously stated, the full
list of hyperparameter settings and results can be found in Appendix C.

Key Seed Episodes Init. Coll. Eps. Repl. Buff. Cap. Critic L.R. Actor L.R. Alpha L.R.

A 1234567 10000 1000 10000 0.00003 0.00003 0.00003
B 1234567 25000 5000 10000 0.0003 0.0003 0.0003
C 1234567 20000 10000 50000 0.0003 0.0003 0.0003
D 1234567 3500 1000 50000 0.0003 0.0003 0.0003
E 1234567 13000 500 10000 0.0003 0.0003 0.0003
F 123456 3500 500 10000 0.0003 0.0003 0.0003
G 123456 25000 500 10000 0.0003 0.0003 0.0003
H 12345 6000 500 10000 0.0003 0.0003 0.0003
I 1234 25000 500 10000 0.0003 0.0003 0.0003
J 123 4500 500 10000 0.0003 0.0003 0.0003
K 123 25000 500 10000 0.0003 0.0003 0.0003
L 12 6000 500 10000 0.0003 0.0003 0.0003
M 12 25000 500 10000 0.0003 0.0003 0.0003
N 1234567 25000 500 10000 0.0003 0.0003 0.0003

Table 6.1: Non-default hyperparameter settings for each experiment.

87

Hyperparameter Function Default

Training Hyperparameters

Number of Episodes Number of episodes to train for 25000
Initial Collection Episodes Episodes to seed replay buffer with before training 500
Collect Steps Per Iteration Steps in each episode before termination 20
Number of Evaluation Episodes Episodes over which to evaluate agent performance 20
Log Interval Frequency of agent evaluation 500
Replay Buffer Capacity Amount of steps to store in replay buffer 10000
Batch Size Experience to use for training at each update 256
Seed Randomisation seed for reproducibility 1234567

Reinforcement Learning Hyperparameters

Critic Learning Rate Critic network learning rate 0.0003
Actor Learning Rate Actor network learning rate 0.0003
Alpha Learning Rate Entropy regularization coefficient for SAC 0.0003
Critic Optimiser Critic Optimisation Function ADAM
Actor Optimiser Actor Optimisation Function ADAM
Alpha Optimiser Alpha Optimisation Function ADAM
Target Update Tau Factor for soft update of target networks for SAC 0.005
Target Update Period Period for soft update of target networks for SAC 1
Discount Rate / Gamma Value of future rewards 0.99

Environment Hyperparameters

EIH Input Include EIH input in observation True
ETH Input Include ETH input in observation True
Position Input Include joint positions input in observation True
Velocity Input Include joint velocities in observation True
EIH Resolution Resolution of EIH input 112x112
ETH Resolution Resolution of ETH input 112x112
EIH Channels Colour channels in EIH input 3
ETH Channels Colour channels in ETH input 3
Reward Goal Include goal attainment in reward signal True
Reward Collision Include collision penalty in reward signal True
Reward Time Include time penalty in reward signal True
Reward Position Include positional reward in reward signal True
Reward Rotation include rotational reward in reward signal True

Table 6.2: (Non-exhaustive) list of hyperparameters including training, reinforcement
learning, and environment hyperparameters with their function and the default value
used for experiments.

88

Figure 6.1: Specific actor network used for experiments. Key for layer types is shown.
Unless stated, the default parameters are used for each layer type as they appear in
[171] and [172] respectively.

89

Figure 6.2: Specific critic network used for experiments. Key and other parameters
as defined in Figure 6.3.

6.4 Results

We present the results of our experiments below. In 6.4.1 we present four graphs
illustrating the metrics of all experiments undertaken A-N. Figure 6.4.1 shows the
average return, Figure 6.4.1 shows the average episode length, and Figures 6.4.1 and
6.4.1 show the loss with and without experiment A, which had different learning rate
settings to all other experiments.

In 6.4.2 we present three graphs illustrating the same metrics in the same way,
but we only display experiments G, H, I, K, M and N. All six of these experiments

90

all possessed identical hyperparameters except for their seed and all ran for 25,000
episodes, except for experiment H which ran for 6,000 episodes, so they are readily
comparable.

6.4.1 Summary of all experiments

Figure 6.3: Average return across episodes for all experiments

Figure 6.4: Average episode length across episodes for all experiments

91

Figure 6.5: Loss across episodes for experiments where actor / critic / alpha learning
rate = 0.0003

Figure 6.6: Loss across episodes for all experiments

92

6.4.2 Seeding

Figure 6.7: Average return for experiments where all parameters fixed except for seed

Figure 6.8: Loss for experiments where all parameters fixed except for seed

93

Figure 6.9: Average episode length for experiments where all parameters fixed except
for seed

6.5 Discussion

The results collected were generally quite unremarkable and offer little observable sign
of improvement, let alone of learning a policy capable of attaining the goal. Only a
slim number of experiments were conducted and hyperparameter settings were not
explored in enough depth. As such it is difficult to gain much insight into the efficacy
of our deep reinforcement learning approach to solving this control task as it would be
difficult to argue that the observed behaviour after training is any more advantageous
that the initial random policy in terms of average return and goal attainment as across
all trials of varying training length and parametrisation the goal was not achieved a
single time.

The longest trials were over 25,000 episodes or approximately 500,000 steps with
an initial 500 episodes or 10,000 steps of random exploration. As no observable
improvement is seen in each agent’s average return even with reward shaping, this
suggests that the agent has not trained long enough to learn the mapping between
the observation space and its actions.

The agent’s poor behaviour in this environment, and the training time needed to
solve this could also be influenced by other factors. We list several possibilities (i)
the environment is too challenging, as the randomly positioned goal means the agent
cannot find a correlation between inputs and reward unless difficult-to-process im-
age inputs are included; (ii) efficient algorithm and hyperparameter settings have not
been used; (iii) the exploration strategy is ineffective or inefficient; (iv) the structure
of the neural network is not sufficient to learn the necessary complexity of the con-
trol function. It is clear that simply more experiments are needed to determine the
correct set of hyperparameters and algorithmic features that are needed to solve the

94

control problem as we know that, in principle, a function for such behaviour should
be learnable as demonstrated by other visual servoing works in the literature [71].

However, there was some interesting behaviour to be observed across this set of
experiments. We can see in Figure 6.4.1 the stark differences in the loss between
Experiment A, which had reduced learning rates, and all other experiments, as well
as minor differences in loss. We can also see how all experiments with the same
hyperparameter settings generally follow a similar loss trajectory across different seeds
as can be observed in Figure 6.4.2.

The fairly static average return and episode lengths in Figures 6.4.1 and 6.4.1
also suggest that the agent is not exploring the environment well or that perhaps
the reward function is not well defined. These are concerning results considering the
reward function is heavily shaped for this set of experiments.

The most interesting and promising behaviour is that there does appear to be
some rudimentary training going on to improve the agent’s behaviour in relation
to avoiding collisions. In most experiments, the agent would eventually discover
collisions if training for long enough, usually between 10,000 and 20,000 episodes,
and then go through a period of relatively frequent collisions before generally avoiding
collisions again until training is terminated.1 This suggests that some coarse training
is occurring and the agent is learning to avoid collisions as these have an impact on
average return as observed by the concurrent sharp dips in average return and average
episode lengths in Figure and that since the agent does not discover collisions often
until quite far in the training, that perhaps it is trying to follow some kind of broad
reward gradient, in that moving towards the floor from its fixed initial position is
likely to increase the reward, even if features for the image inputs are not yet learned.
In fact, we can see in all experiments of length 25,000 the loss is being minimised and
therefore that training is taking place. But because it never finds the goal and the
optimal reward, and rarely collides or receives a reward outside of 0.3 to 0.5, the agent
does not have a good idea of its potential return and this training is not particularly
useful.

These observations and their conclusions should be taken with a pinch of salt and
further experiments are needed across a wider range of hyperparameter settings and
training procedures.

6.6 Further Experiments and Ablation Studies

Further experiments were proposed to study agent learning and performance charac-
teristics within differing environmental configurations and parametrisations. Outlines
of these experiments can be found in Appendix D and will be a topic of future work.

1Collisions were reported whenever they occurred during training, but as they did not always
occur during the evaluation period they are not necessarily reflected in the figures above. A collision
is observed in the evaluation period where there is a concurrent dip in both average return and
average episode length, for instance in experiments I and N at Episode 13,000 in Figures 6.4.2 and
6.4.2 and confirmed by video recordings in Appendix C.

95

6.7 Chapter Summary

In this chapter, we have described the experimental work undertaken to test our
hypothesis and discussed what our results mean in the context of our original research
aims. In the following chapter, we critically evaluate and discuss the research work
undertaken.

96

Chapter 7

Project Challenges and Discussion

This research project took place part-time over a period of three years. Over that
length of time, the direction of research and features of the final implementation were
subject to many revisions, refinement and development as more research was carried
out, challenges or limitations became apparent, or technical issues were encountered.
In this section, we describe some of the challenges encountered over the course of the
project, the actions taken to overcome these and different approaches taken, and we
summarise how elements of the system progressed.

7.1 Environment

The definition and scope of the Markov Decision Process changed several times
throughout the project as it became clear what features would be needed to accu-
rately reflect the problem environment and its difficulty, while ensuring that features
were rich enough to possess all information that the environment may be solvable via
reinforcement learning.

While designing the environment, it was clear that there were many ways in
which the task could be customised. Indeed, while the simulated task environment
is intended to contain similarities to specific industrial automation challenges and to
be used as a basis for trialling control algorithms to solve those real-world problems,
it also does not replicate any specific industrial task as we are only concerned with
positioning. With this in mind, rather than make prohibitive design decisions that
would limit the environment in one way or another, it made sense to provide many
customisation options so that the environment is truly extensible and can be tailored
to specific task requirements with default settings in place. This is most apparent
in the observation customisation options where each input in Equation 4.5 can be
toggled to be included in the observation or not, but there are other options too
including image resolution, goal size and requirements, a randomised or fixed initial
state (robot and goal positioning), reward function sparsity and more possible within
the scope of Future Work.

However, even within the included features and scope of customisation, the im-
plementation of many components was subject to much revision over the course of

97

the project. For instance, the reward function went through many iterations. While
it was always essential that the reward function should reward the goal and punish
collisions with these actions being fairly binary and easy to compute, the other sub-
functions were optional and only implemented as means of assisting the agent achieve
the desired behaviour While the time penalty function was based on works such as
Kalashnikov et al. [71], ambiguity in the text left open the interpretation one of
several ways: (i) apply penalty at final timestep only; (ii) apply penalty per timestep
and increase until final step; or the chosen implementation (iii) apply penalty per
timestep. Similarly, while the orientation and positioning reward functions could
have been implemented several ways. While initial ideas pondered the use of a more
complex positioning reward function that rewarded positioning along the X-Y and
Z axes separately to reflect the nature of the goal and the 2D work surface or even
punishing rather than rewarding distance from the goal, eventually a heuristic based
on rewarding linear distance from the end effector in-terms of position and orienta-
tion was derived. However, it is questionable whether this was the best approach
based on some of the preliminary results we have obtained and it is possible that this
heuristic could shape the agent to travel along sub-optimal trajectories. This is also
reflected in the API of the LBR iiwa allowing you to specify whether the robot should
travel linearly in a point-to-point fashion or via a more efficient route [142]. A better
solution could be a heuristic based on inverse-kinematics and the shortest distance in
the joint space to achieve the goal position and orientation, or having a reward that
changes non-linearly with distance to the goal (e.g. exponential) so that there is a
steeper gradient to follow.

It is also possible that the best action parametrisation was not to use the robot’s
joint space. While this gives you direct control of each joint for fine motor control,
it may have been more efficient to encode the action space via 3D coordinates that
describe where the robot’s end-effector should be to achieve the goal and to rely on
a point-to-point inverse kinematics approach to perform an action as used in the
proprietary KUKA API for the LBR iiwa. This would significantly reduce the action
space, at the cost of diminished control and it is not clear which approach would be
more worthwhile.

There were also decisions made on whether to use hard or soft termination. Hard
termination would have penalised the agent once the maximum number of timesteps
had elapsed in an episode, whereas soft termination simply resets the environment
when reaching the final timestep without any special reward behaviour primarily to
gather experience more efficiently. It was decided that soft-termination would be
a more appropriate option as there is no inherent time-limit to the task described
and efficiency is more desirable than necessary and efficiency should be handled by
the time subfunction, rt regardless, however it is possible that hard termination may
produce more efficient learning.

Of course, some of these design decisions may be trivial and may only subtly affect
the overall behaviour of the system and difficulty of the environment but nonetheless
the options are worth mentioning and possibly exploring in future work, along with
exploration of reward function sparsity.

98

7.2 Network

The general design of the network was adjusted several times. Originally the design
envisaged stacking the two image matrices together and passing between 2 and 6 image
layers through a single CNN for preprocessing depending on the respective image
depths, and joining the position and velocity inputs together into a single vector of size
1x14 to be processed by a single FCN before the image pre-preprocessing CNN and the
vector processing FCN were input to another FCN. However this was later replaced in
favour of separate pre-processing networks for each input before connection to a single
FCN. This was employed for two reasons. Firstly it allowed us to leverage pre-existing
network classes in the TF-Agents Library, namely the ActorDistributionNetwork,
and ValueNetwork classes, thus speeding up development time and improving the
likelihood of code stability. Secondly, it allows us to change the input combination
more readily without having to make significant changes to unrelated parts of the
network. For example, using different image depths and resolutions in each camera,
or none, some, or all of the possible input combinations. This design is likely to
be computationally and behaviourally similar to the original design while allowing
freedom for greater input combination. However, it does limit the customisation of
the network class components.

All experiments also made use of separate actor and critic networks, however, it
would also be possible to implement a custom shared architecture and this may be
favourable in some cases where computational power is limited.

Although an original self-contained network was utilised for this work, it is possible
that it would be more effective to instead train small transformer networks for pre-
and-post processing of a pre-trained image classification network or to modify such a
network with transfer learning to speed up the learning of complex image features.

7.3 Algorithmic Choices

ACKTR [81] was originally proposed as the algorithm most likely to be able to solve
the environment as it had shown that it could be applied to simpler visual servoing
problems [173] and is generally seen as one of the state-of-the-art reinforcement learn-
ing algorithms. However, with ACKTR not being supported in TF Agents at the time
of writing and it being out of scope for this project to implement the algorithm from
scratch, this meant it was necessary to adopt a different algorithm. Two algorithms
that presented themselves that are state-of-the-art, meet the criteria for application
described in Section 4.3 and also happened to be available in TF Agents were PPO
[87] and SAC [84]. While either of these algorithms could have been used, SAC was
chosen because it had fewer hyperparameters which should have made optimisation
simpler, and there was tacit implication in various online resources such as [166] that
SAC was well suited for robotics applications. Although, as no conclusive results were
drawn about its efficacy it is impossible to say whether this algorithm is indeed the
most suitable for solving this environment.

Aside from the main learning algorithm, auxiliary parts of the algorithm such as

99

the exploration strategy could also be improved. The current strategy replicates that
used in the TF Agents SAC Minitaur example where the replay buffer is seeded with
experience generated via a random policy for a certain number of timesteps before
tweaking the randomly generated policy, similar to examples such as [22]. Whilst this
approach is probably sufficient for an observation space consisting of joint angles only
and with a fairly dense natural reward signal, it is probably too simple for image-
based observations and more comprehensive exploration, and perhaps initial guiding
should be used. For example, guiding the robot through a reasonable trajectory with
a fixed probability until performance is at a sufficient level [71], selecting a random
action with a fixed probability, and adding randomly generated noise to actions [91],
[92]. Even adjusting the step length so that more frames are elapsed in the simulation
between timesteps could be a way of providing more exploration and reducing jerky
motion.

7.4 Software Implementation

The software implementation took place over the course of about a year with decisions
about suitable software packages taking place in the months prior to that during the
design phase.

Software resources for reinforcement learning are far less developed than for other
machine learning methods such as supervised learning. Many general purpose ma-
chine learning resources are usually tailored towards supervised learning due to its
wider applicability. As such, there were few relevant examples of the necessary soft-
ware packages that could be followed either directly from the documentation, or other
3rd party resources, and there were no comparable end-to-end examples that included
all of the custom features needed for our environment including a custom environment
with multi-modal input and corresponding network configuration, an actor-critic al-
gorithmic implementation, and specific robot required by this project, experiment
logging, and other required features.

The relevant parts of existing examples needed to be pieced together to achieve
the desired result. The process of achieving this was difficult and messy with a steep
learning curve and development was laden with many unintuitive software errors
to debug along the way. As someone new to these libraries and to practical deep
reinforcement learning more generally, TF Agents seemed to require a lot of boiler
plate code and setting of parameters that were not immediately obvious. As a result
there was persistent questioning over whether the right approach and best practice
was being followed and subsequent follow-up research during implementation. In
fact, the setup for TF Agents appears to be more complex and customisable than
other packages such as Stable Baselines. Yet, Stable Baselines did not possess the
functionality required for all required features, notably multimodal input, until they
were included in an update to the library late in the implementation stage, at which
point switching to a new framework would have been unconducive to the project’s
success.

Another hurdle encountered was the platform dependency of some essential pack-

100

ages. The examples studied made use of the Reverb package [174] for the replay
buffer required by the SAC algorithm. However, at the time of writing the package
only works on Linux-based operating systems. A decision was made that rather than
pursue the implementation of an alternative replay buffer system in the limited time
available, that experiments would be exclusively run on the Linux-based Google Co-
lab cloud computing platform [175] instead of the originally planned hybrid approach
using both cloud computing resources and a local GPU-equipped, Windows-based
machine. Although, it was later discovered that a hybrid process could have been set
up through the Colab interface using the local runtime option, but this functionality
was not known about until nearly the end of the project.

7.5 3D Render

The 3D environment created and the objects within it were fairly simple. No doubt,
this environment could be altered to be made more realistic, challenging, and thus
transferable to real-world application such as by adding realistic textures, fleshing out
the 3D objects and background environment, and adding sensor noise to robotic joints
and images, and there were ideas to refine the environment further if a successful
algorithmic approach was derived. Some of these ideas are described in following
chapter in Future Work. Even so, the intrinsic control problem without all these
additional challenges is evidently still quite difficult to solve with a reinforcement
learning approach.

7.6 Experiments

Due to the challenging implementation period, only limited time was left for gathering
data in experiments and unfortunately far fewer experiments were run than desired
or was necessary. Training in reinforcement learning is always challenging for any
non-trivial problem and environments with large observation and action spaces such
as this will always require a lot of training and thus computation time to learn an
effective policy.

Alongside this, the delicacy of hyperparameter settings needing iterative tuning
and the stochastic nature of reinforcement learning requiring running experiments
with the same hyperparameters across multiple seeds [118] means that many long
running experiments were needed to even scratch the surface of finding good hyper-
parameters. For instance, Kalashnikov et al. whose approach had similar aims to ours
stated needing experience in the orders of millions of timesteps, even with a heavily
guided exploration policy [71]. With the time and computational resources available,
it was simply not possible to run the number of experiments needed to explore the
hyperparameter space thoroughly for the length needed.

However, there were also physical limitations that hindered the collection of data
and the running of experiments in the choice of appropriate hardware that was avail-
able. Although the Google Colab cloud computation system did have obvious ad-
vantages in terms of computational power over the local hardware available, it also

101

had limitations. Colab has a maximum allowed time of twenty-four hours for any
single experiment before being terminated, and it also has a tendency to terminate
processes prematurely in line with its scheduling policy. Fortunately, it is not nec-
essary for reinforcement learning experiments to be the same length to be able to
compare them, but it was incredibly frustrating when an experiment would left to
run with the expectation of running for nearly twenty-four hours, and then finding it
had terminated after as little as four which led to the repetition of some experiments.

These limitations could be overcome in some fairly obvious ways if more implemen-
tation time was available. Firstly, implementing a policy saving and recall function
[176] so that we could train a policy for a number of steps, and then recall it and
continue training in a separate instance in the case of premature termination. Sec-
ondly, running on a dedicated local machine would allow unrestricted training time,
but potentially on inferior hardware. Nevertheless, exploring the use of a local run-
time via the Colab interface (thus avoiding package compatibility errors) would be
worthwhile.

If a solution for uninterrupted training was achieved through one of the above
methods, then it would also have been preferable to implement a better strategy for
hyperparameter optimisation. The random search produced very scattergun results in
the limited number of runs. We had attempted to implement a Bayesian optimisation
strategy using the Comet.ml Optimizer function [156] but unfortunately unresolved
errors and the limited time remaining forced us to abandon this approach in favour
of the random search and a series of single experiments.

The metrics used to gain insight into agent behaviour may also be insufficient in
that the average return as it is calculated by default sums rewards across all timesteps
in an episode. For instance, a typical average return for an episode as it is currently
measures is around 8.0 as shown in Section 6.4 which is equivalent to a reward of 0.4
for each timestep for an episode length of 20 timesteps. However, if the agent was
to achieve the goal after say 5 timesteps, its average return may be less than if it
had not achieved the goal but completed all 20 timesteps. Similarly, the agent could
have a collision on the final timestep and still have a higher average return than an
episode in which the goal is achieved. This is clearly unsuitable and should be revised
to better assess goal-based behaviour and while also taking into account shaped and
non-terminal rewards.

It was also intended that additional evaluation metrics would have been collected
to gain a finer understanding of an agents behaviour. However, these metrics are only
useful for comparing agents capable of achieving the goal or performing interesting
behaviour and unfortunately we did not achieve this kind of behaviour. Intended
metrics included measuring the success rate of the agent in terms of the frequency of
achieving its goal, the collision frequency, the accuracy and precision of the agent in
achieving the goal, and the agent’s sample efficiency e.g. how many episodes it takes
to achieve x% success rate.

102

7.7 Physical Deployment

During the original scoping of this research, it was originally envisioned that control
policies learned via simulation would be deployed on a physical KUKA LBR iiwa robot
in a real-world replication of the simulated task environment. This deployment would
have included steps such as setting up relevant hardware such as a laser projector and
vision sensors with the LBR iiwa to replicate the task environment, integrating the
physical hardware with the software produced for simulation, steps to overcome the
simulation-to-reality gap and transfer learning of control policies to work in a physical
environment with the minimal amount of training. This scoping was too ambitious
given the time available and the challenges encountered during project development
so the project scope was revised so as to only cover the implementation of a simulated
environment and RL-based control policy to determine the efficacy of RL for solving
the simulated task environment and optimise algorithmic hyperparameters according
to this, with the view that this work could be used as a stepping stone to physical
deployment in the future. Although, we were not able to take this research as far
as physical deployment, we did review techniques and research relating to sim-2-real
transfer and transfer learning in the literature review of this work in Sections 2.5.2
and 2.5.3 so that it is clear to researchers who may seek to continue this work or
conduct similar work what the next steps are, and how simulated RL environments
fit into the broader picture and necessary end-goal.

7.8 Chapter Summary

In this chapter, we have discussed the challenges experienced while undertaking this
research. In the final chapter, we state our conclusions from this research and outline
avenues for future work, as well as plans for dissemination.

103

Chapter 8

Conclusions and Future Work

In this chapter, we conclude the thesis by summarising what has been achieved in this
research, and its next steps. First, we summarise the contributions and outcomes of
this work and the main conclusions that can be drawn from this research in Section
8.1; then we outline several areas of future work that could be conducted based on the
limitations of this work in 8.2; before stating plans for the dissemination of various
aspects of this work in 8.3.

8.1 Conclusion

In this project we have proposed and implemented a novel reinforcement learning
environment in simulation with a hybrid visual servoing and robotic joint sensor
observation-based approach to a generic yet extensible and customisable fixtureless
robotic positioning task involving a modern collaborative industrial robot, the KUKA
LBR iiwa. This work was motivated by real-world industrial manufacturing challenges
that have not been sufficiently addressed by the current state-of-the-art, with the
aim of progressing research in this area towards developing control systems that can
be deployed on real-world manufacturing problems. To this end, we also trialled
the performance of state-of-the art reinforcement learning methods in solving this
complex task environment and testing the efficacy of hybrid visual servoing methods,
to little success.

The main contribution of this project is the development of an open-source novel
reinforcement learning environment developed to a common reinforcement learning
environment software format, along with an example training script demonstrating
the application of contemporary deep reinforcement learning techniques to a complex
environment. This contribution will surely aid research progress in both the spe-
cific kinds of manufacturing problems encapsulated by the environment, as well as
reinforcement learning more generally. By making the code open-source, we have con-
tributed well documented resources to a relatively slim ecosystem of support for the
development of custom reinforcement learning algorithms and environments in the
contemporary frameworks of TF Agents and PyBullet respectively, which will help
to mitigate implementation challenges faced by other researchers and practitioners in

104

carrying out similar work.
While the initial experiments carried out at the time of writing are somewhat

disappointing in that we were not able to obtain a set of hyperparameters to learn
an effective control function in the given time to solve the task environment and
we were not able to explore the effect of different environmental characteristics on
performance, we remain hopeful that such hyperparameters can be found or that an
alternative algorithmic approach may yield better results or that some elements of the
environment can be fine-tuned to aid learning. We have outlined potential avenues
of exploration in the Future Work section below.

Nonetheless, there are several lessons to take forward from this project which
should also motivate future research. It is clear that the formulation and implemen-
tation of control problems into reinforcement learning environments and subsequent
training of agents remains fairly challenging with a high level of specialist knowledge
required to setup such algorithms, large amounts of computation needed for train-
ing, and limited guarantee of return as opposed to some of the more well resourced
and proven machine learning methods such as supervised learning which has found
common usage in industrial applications [39]. This will remain a barrier to wider
adoption of reinforcement learning methods to industry until methods are more ac-
cessible, well resourced, and better understood. However, the potential application
areas of reinforcement learning are huge and its capability to solve incredibly difficult
problems [52], [71] highlight why it remains such an active area of research.

8.2 Future Work

Below, we outline potential avenues of future work based on the outcomes of this
project.

Implementing a Capable Agent Although it was not possible to learn an ef-
fective control policy in any of the experiments run under this project in the time
available, it is certainly possible that such a policy could be learned if similar work
in the field is anything to go by. Therefore, the obvious direction of future work is
in actually implementing a reinforcement learning agent capable of solving the task
environment with a learned control policy.

There are multiple ways this could be achieved. For instance, simply increasing
the amount of training time with the existing approach could yield results and it is
possible that the agent simply has not gathered enough experience in the experiments
run so far. Alternatively, the existing hyperparameters may just need to be tweaked
to learn more efficiently and perhaps even other algorithmic hyperparameters need
to be explored in such as the behaviour of the experience replay or neural network
components which have not been explored within the scope of this project. We would
also look at implementing a more efficient hyperparameter search such as Bayesian
Optimisation.

Alternative algorithms and supplementary algorithmic techniques could also be
applied to the problem domain. While vanilla SAC was used as the learning algorithm

105

for this work, it is possible that other deep RL algorithms such as ACKTR [81] or
PPO [87] or the addition of supplementary techniques such as Hindsight Experience
Replay [91] or curriculum learning [95] will have effective application to this particular
problem class.

Studying Environment Behaviour The environment code was written with flex-
ibility in mind to enable different specifications of the MDP including subsections of
the full observation space, alternative initial state distributions, and a reward func-
tion with multiple components that can be enabled or not. It would be interesting
to study the characteristics of different environmental specifications and their impact
on agent learning and performance. Some proposed experiments for studying the be-
haviour of different environmental parameters and their effect on agent learning are
described in Appendix D.

Environment Refinement and Extension As we highlighted in 7, it is possi-
ble that elements of the heavily shaped reward function could be improved with an
alternative measure to the linear distance between the end-effector and goal such as
an inverse kinematics-based distance across the joint space or having a reward that
increases non-linearly (e.g. exponentially) with linear distance to the goal.

The environment was also intended to be customisable and extensible and there
are many ways in which the generic task environment could be extended to better cap-
ture some real-world challenges. For instance, the environment could encapsulate all
of the stages of a real-world manufacturing task by including a specific end-effector
attachment and learning to perform a specific task such as e.g. pick-and-place or
drilling. This would also include more objects within the task environment and would
require the agent to learn more comprehensive object detection and spatial reasoning.
You could even make the existing task more challenging, and realistic, by introducing
non-planar surfaces to the working environment, stochastic or restricted workspaces,
multiple simultaneous goals, non-static goals or even a non-static manipulator reflect-
ing the form and function of the KMR iiwa for instance. Some of these extensions
could require additional sensors and actuators to be included in the observation and
action space such as end-effectors, a mobile platform, or 3D vision and might require
learning more challenging behaviour such as complicated sequencing and positioning
or alternative approaches such as force-torque control.

It should also be noted, that generally there are few options for customisation
when importing environments from libraries such as PyBullet or Gym because it is
important for benchmarking that an environments behaviour is repeatable and having
customisation options may obfuscate this. The usual best practice is to have named
variations of the same environment with customised parameters and alternative be-
haviour ’baked in’. It would be useful to come up with a set of named variations
with diverse parametrisations that can be chosen by the user and be used for bench-
marking. The environmental behavioural studies mentioned above and described in
Appendix D could assist in narrowing down potential candidates with marked be-
havioural differences.

106

Software Compatibility Once it was decided that the TF Agents package would
be used for the algorithmic side of the work, the environment was written following
the TF Agents PyEnvironment format [177]. However, it would be useful to add
compatibility for the environment in the OpenAI Gym format to enable it to be used
with alternative RL packages such as Stable Baselines [178]. The difference between
the two formats is trivial but adding compatibility with both would increase ease of
access for practitioners.

Physical Validation The motivation of this work was in providing a solution to-
wards known manufacturing system engineering challenges. Assuming that the task
environment can be solved by a reinforcement learning approach, the logical endpoint
is to transfer a learned control policy to a real-world robot and manufacturing environ-
ment. As discussed in Section 2.5.2, sim-to-real transfer presents its own challenges
and these would need to be explored with regards to applying the learned control
policy to the real world in an efficient way such as transfer learning.

8.3 Dissemination

An academic paper summarising key contributions from this work is intended to be
published in due course to bring attention to the software developed and the various
research challenges surrounding its development with the aim of assisting research
progress in this area. Target publications include journals such as IEEE Transactions
on Industrial Informatics and publication is expected by the end of 2022.

In addition to this, I will be producing a technical guide illustrating the process of
implementing a reinforcement learning environment and applying relevant algorithms
to it in the context of a TF Agents / PyBullet framework in order to improve the
resources available to reinforcement learning practitioners. This will be published in
a less formal, but highly visible forums such as Towards Data Science or Medium -
websites commonly used by practitioners for practical tutorials.

The developed software has already been made open-source and publicly available
(see Apprendix B). However, this work may also be of interest to the developers of
libraries such as PyBullet to include as one of their included reinforcement learning
libraries and offer an additional environment for their users to test. This would
increase the visibility of the software and assist in progressing research in this area,
developing the skills of practitioners, and adding to the code-base of an established
and widely-used project. The developers of this library will be approached following
publication.

8.4 Chapter Summary

In this chapter, we have presented the main contributions and conclusions from this
work, as well as identifying limitations and proposing the next steps for developing this

107

work further towards achieving its aims of solving automation challenges in accurate
fixtureless manufacturing environments.

108

Appendices

109

110

Appendix A

SAC Algorithm

Figure A.1: SAC algorithm pseudocode as it appears in [179]

111

Appendix B

Code Repository

The software relevant to this project including the KukaHybridVisualServoingEnv.py
environment class, RunTraining.py training script, EnvDebugger.py simple debug-
ging script, floor.obj and target.obj 3D object files, and requirements.txt listing the
required software packages can be found at the following publicly available repository:

https: // github. com/ alexjameswilliams/ KukaHybridVisualServoing

Figure B.1: Github repository.

112

https://github.com/alexjameswilliams/KukaHybridVisualServoing

Appendix C

Experiment Data

All experimental data, including hyperparameter settings, results, and videos can be
found at the publicly available Comet.ml repository:

https: // www. comet. ml/ alexjameswilliams/ kukahybridvs/

Figure C.1: Comet.ML repository with composite graphs and hyperlink access to
each experiment.

113

https://www.comet.ml/alexjameswilliams/kukahybridvs/

Figure C.2: Location of recorded data in comet interface for an individual experiment

114

Appendix D

Proposed Experiments and
Ablation Studies for Future Work

Over the course of this project, several experiments were devised to study how the
behaviour, performance, and ability to learn of the agent could be affected by different
parametrisations of the environment. These experiments were out of scope for this
thesis but we briefly describe their motivation and characteristics here as potential
avenues of future work.

D.1 Observation Modularity

Some works have demonstrated that better performance was achievable by adding
domain-specific state features such as robotic sensor information to image observa-
tions rather than simply images by themselves [71]. This experiment seeks to look
at the differences in performance between different observation compositions for our
specific environment by varying the number and combination of the four input sources
described in 4.2.3: EIH and ETH cameras, and joint positions and velocities.

A table of possible input combinations is given in Table D.1. Note, at least one
image input should be present in all permutations, otherwise it is impossible for the
agent to locate the goal.

115

Observation, o

(IEIH)
(IETH)
(IEIH , Jv)
(IETH , Jv)
(IEIH , Jp)
(IETH , Jp)
(IEIH , Jp, Jv)
(IETH , Jp, Jv)
(IEIH , IETH)
(IEIH , IETH , Jp)
(IEIH , IETH , Jv)
(IEIH , IETH , Jp, Jv)

Table D.1: Possible valid observation permutations.

D.2 Camera Resolution

Image processing via convolutional layers is one of the largest contributors to com-
putation time because of the number of pixels that need to be processed (far greater
than the number of variables in joint sensor data). However, at least one image is re-
quired as input for an agent to detect the goal, placing a bottleneck on computation.
Therefore, we will explore how different image resolutions, image depth / colouring
options, and image input combinations affect agent performance and training time.

D.3 Sim-2-Real

The simulated environment will not accurately represent the complexity of a real-
world physical environment. Prior to running any experiments in the real world,
experiments could be run exploring the effect of some well-used techniques for simu-
lating real-world behaviour on agent performance. Such environment augmentations
could include domain randomisation and the addition of noise to actions and obser-
vations.

D.4 Reward Sparsity

The reward function is perhaps the most significant affector of agent behaviour. Func-
tions may either be sparse or shaped with denser and more detailed rewards with
benefits and drawbacks to both approaches as we described in Section 2.4.3. In this
study, we would train an agent using different levels of sparsity and quantitatively and
qualitatively assess how the agent’s performance, behaviour, and training efficiency
is affected.

116

We can affect the sparsity of the overall reward function by toggling the various
sub-functions that comprise it. Five sub-functions were proposed in 4.2.6 to form
the reward function r: (rg, rc, re, ro, and rt). The feedback from each subfunction is
different, but they can generally be split into three groups relating to their intended
objective. These groupings could provide the basis for forming experimental subsets
rather than exhausting every possible implementation of r. rg and rc are the most
minimal requirements that need to be met in order to achieve a goal safely and must
be included in any reward function. re relates to achieving the goal in the most
efficient way. ro and rt provide gradients to direct the agent towards the goal. Based
on these groupings, the following experiments could be carried out:

Goal, rg, rc Efficiency, re Gradient, ro, rt Reward Function, r

Y N N (rg, rc)
Y N * (rg, rc, ro)
Y N * (rg, rc, rt)
Y N Y (rg, rc, ro, rt)
Y Y N (rg, rc, re)
Y Y Y (rg, rc, re, ro, rt)

Table D.2: Reward Function Combinations.

D.5 Initial State-Goal Distribution

The initial state-goal distribution, p(s0, g) could have a significant effect on the level
of performance demonstrated by the agent and the amount of state-space exploration
required to achieve a goal by applying limits on the number of reward-inducing state-
action trajectories, which would reduce training time. Intuitively, fixing the initial
state and goal in each episode so that the robot begins in the same configuration each
time would allow the agent to learn a goal-efficient policy quicker. But, more useful
behaviour would be the ability of the agent to achieve any new goal from any given
start configuration as this removes the need for intermediary reconfiguration, which
would be inefficient (and perhaps impossible) in real-world environments.

For each episode, we can set independently whether p(s1) and p(g) are fixed or
random. If they are fixed then an arbitrary state or goal is generated and used for
all episodes thereafter until the simulation terminates. If they are random then an
arbitrary state or goal is generated and used for that episode only. Permutations for
initial state-goal distribution variations which could be explored are shown in Table
D.3.

117

Initial State, s0 Goal, g

Fixed Fixed
Fixed Random
Random Fixed
Random Random

Table D.3: Initial State-Goal Distribution Function Combinations.

D.6 Curriculum Learning

The focus of this work is achieving a high level of accuracy adoptable in specifically
highly accurate manufacturing processes such as those within the aerospace industry
which may have an accuracy around ± 0.25 mm [9]. The KUKA LBR iiwa also has
a similar accuracy of ± 0.1 mm so ideally goals should be achieved with accuracies
as close to these values as possible, but achieving this level of accuracy, particularly
with sparse reward signals, is challenging. Curriculum learning is a supplemental
technique to RL that assists the agent in learning a complex task by forcing it to
learn tasks that become progressively more difficult [94]–[96].

We propose applying a version of curriculum learning to augment the reward
signal in our environment whereby the relative difficulty of the goal increases relative
to the success rate of the agent over a previous number of episodes reaches a minimum
threshold. ’Difficulty’ could arise in several ways, however the most straightforward
way of increasing the difficulty of the task may be to reduce the accuracy tolerance
ϵ, or increase the initial distance from the goal in the initial state-goal configuration.

118

Bibliography

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–242, Aug.
2014, issn: 1867-0202. doi: 10.1007/s12599-014-0334-4. [Online]. Available:
https://doi.org/10.1007/s12599-014-0334-4.

[2] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, et al., “Robot skills for man-
ufacturing: From concept to industrial deployment,” Robotics and Computer-
Integrated Manufacturing, vol. 37, pp. 282–291, Feb. 2016, issn: 0736-5845.
doi: 10.1016/j.rcim.2015.04.002. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0736584515000575.

[3] P. J. Alhama Blanco, F. J. Abu-Dakka, and M. Abderrahim, “Practical Use of
Robot Manipulators as Intelligent Manufacturing Systems,” Sensors (Basel,
Switzerland), vol. 18, no. 9, p. 2877, Aug. 2018, issn: 1424-8220. doi: 10.3390/
s18092877. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6164753/ (visited on 09/20/2022).

[4] International Organization for Standardization, “ISO 10218-1:2011,” Stan-
dard, 2011. [Online]. Available: http://www.iso.org/cms/render/live/en/
sites/isoorg/contents/data/standard/05/13/51330.html.

[5] F. Vicentini, “Collaborative Robotics: A Survey,” Journal of Mechanical De-
sign, vol. 143, no. 4, Oct. 2020, issn: 1050-0472. doi: 10.1115/1.4046238. [On-
line]. Available: https://doi.org/10.1115/1.4046238 (visited on 09/30/2022).

[6] International Organization for Standardization, “ISO/TS 15066:2016,” Stan-
dard, 2016. [Online]. Available: http://www.iso.org/cms/render/live/en/
sites/isoorg/contents/data/standard/06/29/62996.html.

[7] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB,
1st. Springer Publishing Company, Incorporated, 2013, isbn: 3-642-20143-1
978-3-642-20143-1.

[8] Y. Litvak, A. Biess, and A. Bar-Hillel, “Learning Pose Estimation for High-
Precision Robotic Assembly Using Simulated Depth Images,” arXiv:1809.10699
[cs], p. 8, Sep. 2018, arXiv: 1809.10699. [Online]. Available: http://arxiv.org/
abs/1809.10699 (visited on 07/10/2019).

119

https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1016/j.rcim.2015.04.002
http://www.sciencedirect.com/science/article/pii/S0736584515000575
http://www.sciencedirect.com/science/article/pii/S0736584515000575
https://doi.org/10.3390/s18092877
https://doi.org/10.3390/s18092877
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164753/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164753/
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/13/51330.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/13/51330.html
https://doi.org/10.1115/1.4046238
https://doi.org/10.1115/1.4046238
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/29/62996.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/29/62996.html
http://arxiv.org/abs/1809.10699
http://arxiv.org/abs/1809.10699

[9] R. Devlieg, “Expanding the Use of Robotics in Airframe Assembly Via Accu-
rate Robot Technology,” SAE Int. J. Aerosp., vol. 3, pp. 198–203, 2010. doi:
10.4271/2010-01-1846. [Online]. Available: https://doi.org/10.4271/2010-01-
1846.

[10] T. M. Anandan, Aerospace Manufacturing on Board with Robots, en, Feb.
2016. [Online]. Available: https : //www. robotics . org/ content - detail . cfm/
Industrial-Robotics-Industry-Insights/Aerospace-Manufacturing-on-Board-
with-Robots/content id/5960 (visited on 08/21/2018).

[11] B. Brumson, Robots in Aerospace Applications, Jul. 2012. [Online]. Available:
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-
Insights / Robots - in - Aerospace - Applications / content id / 3591 (visited on
08/21/2018).

[12] Airbus Group, Registration now open for #ICRA16’s Airbus Shopfloor Chal-
lenge — Robohub, Oct. 2015. [Online]. Available: https : / / robohub . org /
registration - now- open - for - icra16s - airbus - shopfloor - challenge/ (visited on
08/21/2018).

[13] Airbus Group, The Airbus Shopfloor Challenge, en, 2016. [Online]. Available:
http://company.airbus.com/careers/Working-for-Airbus/Airbus-Shopfloor-
Challenge-2016.html (visited on 08/21/2018).

[14] O. Zettinig, B. Fuerst, R. Kojcev, et al., “Toward real-time 3D ultrasound
registration-based visual servoing for interventional navigation,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), Stockholm:
IEEE, May 2016, pp. 945–950, isbn: 978-1-4673-8026-3. doi: 10.1109/ICRA.
2016 .7487226. [Online]. Available: https : // ieeexplore . ieee . org/document/
7487226.

[15] F. Janabi-Sharifi, “Visual Servoing: Theory and Applications,” inOpto-Mechatronic
Systems Handbook, H. Cho, Ed., vol. 20025549, CRC Press, Sep. 2002, isbn:
978-0-8493-1162-8 978-1-4200-4069-2. doi: 10.1201/9781420040692.ch15. [On-
line]. Available: http://www.crcnetbase.com/doi/abs/10.1201/9781420040692.
ch15.

[16] A. T. Vijayan, A. Sankar, and S. A. P., “A comparative study on the per-
formance of neural networks in visual guidance and feedback applications,”
Automatika, vol. 58, no. 3, pp. 336–346, Jul. 2017, issn: 0005-1144, 1848-3380.
doi: 10 . 1080/00051144 . 2018 . 1437683. [Online]. Available: https : / /www .
tandfonline.com/doi/full/10.1080/00051144.2018.1437683.

[17] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, Nov. 1986, issn: 0162-8828. doi: 10.1109/TPAMI.1986.4767851.

120

https://doi.org/10.4271/2010-01-1846
https://doi.org/10.4271/2010-01-1846
https://doi.org/10.4271/2010-01-1846
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Aerospace-Manufacturing-on-Board-with-Robots/content_id/5960
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Aerospace-Manufacturing-on-Board-with-Robots/content_id/5960
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Aerospace-Manufacturing-on-Board-with-Robots/content_id/5960
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Robots-in-Aerospace-Applications/content_id/3591
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Robots-in-Aerospace-Applications/content_id/3591
https://robohub.org/registration-now-open-for-icra16s-airbus-shopfloor-challenge/
https://robohub.org/registration-now-open-for-icra16s-airbus-shopfloor-challenge/
http://company.airbus.com/careers/Working-for-Airbus/Airbus-Shopfloor-Challenge-2016.html
http://company.airbus.com/careers/Working-for-Airbus/Airbus-Shopfloor-Challenge-2016.html
https://doi.org/10.1109/ICRA.2016.7487226
https://doi.org/10.1109/ICRA.2016.7487226
https://ieeexplore.ieee.org/document/7487226
https://ieeexplore.ieee.org/document/7487226
https://doi.org/10.1201/9781420040692.ch15
http://www.crcnetbase.com/doi/abs/10.1201/9781420040692.ch15
http://www.crcnetbase.com/doi/abs/10.1201/9781420040692.ch15
https://doi.org/10.1080/00051144.2018.1437683
https://www.tandfonline.com/doi/full/10.1080/00051144.2018.1437683
https://www.tandfonline.com/doi/full/10.1080/00051144.2018.1437683
https://doi.org/10.1109/TPAMI.1986.4767851

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds., Curran Associates, Inc., 2015, pp. 91–99.
[Online]. Available: http://papers.nips.cc/paper/5638-faster-r-cnn-towards-
real-time-object-detection-with-region-proposal-networks.pdf.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2012, issn: 00010782. doi: 10.1145/3065386. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?doid=3098997.3065386.

[20] S. Chiaverini, G. Oriolo, and I. D. Walker, “Kinematically Redundant Ma-
nipulators,” in Springer Handbook of Robotics, B. Siciliano and O. Khatib,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 245–268, isbn:
978-3-540-30301-5. doi: 10.1007/978-3-540-30301-5 12. [Online]. Available:
https://doi.org/10.1007/978-3-540-30301-5 12.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, Nov. 2018, isbn: 978-0-262-03924-6. [Online]. Available:
https://mitpress.mit.edu/books/reinforcement-learning-second-edition.

[22] A. Marjaninejad, D. Urbina-Meléndez, B. A. Cohn, and F. J. Valero-Cuevas,
“Autonomous functional movements in a tendon-driven limb via limited ex-
perience,” Nature Machine Intelligence, vol. 1, no. 3, p. 144, Mar. 2019, issn:
2522-5839. doi: 10 .1038/s42256- 019- 0029- 0. [Online]. Available: https ://
www.nature.com/articles/s42256-019-0029-0.

[23] J. Collins, D. Howard, and J. Leitner, “Quantifying the Reality Gap in Robotic
Manipulation Tasks,” en, arXiv:1811.01484 [cs], Nov. 2018, arXiv: 1811.01484.
[Online]. Available: http://arxiv.org/abs/1811.01484 (visited on 02/24/2020).

[24] L. Jin, S. Li, J. Yu, and J. He, “Robot manipulator control using neural
networks: A survey,” Neurocomputing, vol. 285, pp. 23–34, Apr. 2018, issn:
09252312. doi: 10 .1016/j .neucom.2018 .01 .002. [Online]. Available: https :
//linkinghub.elsevier.com/retrieve/pii/S0925231218300158.

[25] F. Sherwani, M. M. Asad, and B. Ibrahim, “Collaborative Robots and Indus-
trial Revolution 4.0 (IR 4.0),” in 2020 International Conference on Emerging
Trends in Smart Technologies (ICETST), Mar. 2020, pp. 1–5. doi: 10.1109/
ICETST49965.2020.9080724.

[26] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced robots:
A survey,” en, Robotics and Autonomous Systems, vol. 94, pp. 43–52, Aug.
2017, issn: 0921-8890. doi: 10 .1016/ j . robot .2017 .04 .004. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0921889016300768
(visited on 09/30/2022).

[27] Universal Robotics, Universal Robotics, Company Website. [Online]. Available:
https://www.universal-robots.com/ (visited on 04/25/2019).

121

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://doi.org/10.1145/3065386
http://dl.acm.org/citation.cfm?doid=3098997.3065386
https://doi.org/10.1007/978-3-540-30301-5_12
https://doi.org/10.1007/978-3-540-30301-5_12
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://doi.org/10.1038/s42256-019-0029-0
https://www.nature.com/articles/s42256-019-0029-0
https://www.nature.com/articles/s42256-019-0029-0
http://arxiv.org/abs/1811.01484
https://doi.org/10.1016/j.neucom.2018.01.002
https://linkinghub.elsevier.com/retrieve/pii/S0925231218300158
https://linkinghub.elsevier.com/retrieve/pii/S0925231218300158
https://doi.org/10.1109/ICETST49965.2020.9080724
https://doi.org/10.1109/ICETST49965.2020.9080724
https://doi.org/10.1016/j.robot.2017.04.004
https://www.sciencedirect.com/science/article/pii/S0921889016300768
https://www.universal-robots.com/

[28] Rethink Robotics, Rethink Robotics, Company Website. [Online]. Available:
https://www.rethinkrobotics.com/ (visited on 04/25/2019).

[29] KUKA Roboter GmbH, KUKA LBR iiwa Brochure, English, 2017. [Online].
Available: https : / / www . kuka . com / en - gb / products / robotics - systems /
industrial-robots/lbr-iiwa.

[30] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot interaction in
industrial collaborative robotics: A literature review of the decade 2008–2017,”
Advanced Robotics, vol. 33, no. 15-16, pp. 764–799, Aug. 2019, Publisher: Tay-
lor & Francis eprint: https://doi.org/10.1080/01691864.2019.1636714, issn:
0169-1864. doi: 10.1080/01691864.2019.1636714. [Online]. Available: https:
//doi.org/10.1080/01691864.2019.1636714 (visited on 09/30/2022).

[31] KUKA, KMR iiwa, en-GB, 2018. [Online]. Available: https://www.kuka.com/
en-gb/products/mobility/mobile-robots/kmr-iiwa (visited on 08/09/2018).

[32] A. Cherubini and D. Navarro-Alarcon, “Sensor-Based Control for Collabora-
tive Robots: Fundamentals, Challenges, and Opportunities,” Frontiers in Neu-
rorobotics, vol. 14, 2021, issn: 1662-5218. [Online]. Available: https://www.
frontiersin.org/articles/10.3389/fnbot.2020.576846 (visited on 09/30/2022).

[33] A. Singh, V. Kalaichelvi, and R. Karthikeyan, “A survey on vision guided
robotic systems with intelligent control strategies for autonomous tasks,” Co-
gent Engineering, vol. 9, no. 1, A. H. Darwish, Ed., p. 2 050 020, Dec. 2022,
Publisher: Cogent OA eprint: https://doi.org/10.1080/23311916.2022.2050020,
issn: null. doi: 10.1080/23311916.2022.2050020. [Online]. Available: https:
//doi.org/10.1080/23311916.2022.2050020 (visited on 10/03/2022).

[34] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algorithms
and hardware implementations: A survey,” en, Integration, vol. 69, pp. 309–
320, Nov. 2019, issn: 0167-9260. doi: 10.1016/j.vlsi.2019.07.005. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0167926019301762
(visited on 10/03/2022).

[35] L. Zhou, L. Zhang, and N. Konz, “Computer Vision Techniques in Manu-
facturing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
pp. 1–13, 2022, Conference Name: IEEE Transactions on Systems, Man, and
Cybernetics: Systems, issn: 2168-2232. doi: 10.1109/TSMC.2022.3166397.

[36] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic approaches,”
IEEE Robotics Automation Magazine, vol. 13, no. 4, pp. 82–90, Dec. 2006,
issn: 1070-9932. doi: 10.1109/MRA.2006.250573.

[37] F. Chaumette and S. Hutchinson, “Visual servo control. II. Advanced ap-
proaches [Tutorial],” IEEE Robotics Automation Magazine, vol. 14, no. 1,
pp. 109–118, Mar. 2007, issn: 1070-9932. doi: 10.1109/MRA.2007.339609.

[38] X. Sun, X. Zhu, P. Wang, and H. Chen, “A Review of Robot Control with
Visual Servoing,” in 2018 IEEE 8th Annual International Conference on CY-
BER Technology in Automation, Control, and Intelligent Systems (CYBER),
ISSN: 2379-7711, Jul. 2018, pp. 116–121. doi: 10.1109/CYBER.2018.8688060.

122

https://www.rethinkrobotics.com/
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1080/01691864.2019.1636714
https://www.kuka.com/en-gb/products/mobility/mobile-robots/kmr-iiwa
https://www.kuka.com/en-gb/products/mobility/mobile-robots/kmr-iiwa
https://www.frontiersin.org/articles/10.3389/fnbot.2020.576846
https://www.frontiersin.org/articles/10.3389/fnbot.2020.576846
https://doi.org/10.1080/23311916.2022.2050020
https://doi.org/10.1080/23311916.2022.2050020
https://doi.org/10.1080/23311916.2022.2050020
https://doi.org/10.1016/j.vlsi.2019.07.005
https://www.sciencedirect.com/science/article/pii/S0167926019301762
https://doi.org/10.1109/TSMC.2022.3166397
https://doi.org/10.1109/MRA.2006.250573
https://doi.org/10.1109/MRA.2007.339609
https://doi.org/10.1109/CYBER.2018.8688060

[39] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015, issn: 0028-0836, 1476-4687. doi: 10.1038/
nature14539. [Online]. Available: http://www.nature.com/articles/nature14539.

[40] P. Norvig and S. Russell, Artificial Intelligence: A Modern Approach, 3rd.
Prentice Hall, 2009, isbn: 978-0-13-207148-2.

[41] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomputing,
vol. 234, pp. 11–26, Apr. 2017, issn: 0925-2312. doi: 10.1016/j.neucom.2016.
12.038. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0925231216315533.

[42] F. v. Veen, The Neural Network Zoo, Sep. 2016. [Online]. Available: https :
//www.asimovinstitute.org/neural-network-zoo/ (visited on 07/03/2019).

[43] Y. Lecun, “Generalization and network design strategies,” English (US), Con-
nectionism in perspective, 1989. [Online]. Available: https://nyuscholars.nyu.
edu/en/publications/generalization-and-network-design-strategies.

[44] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end Training of Deep
Visuomotor Policies,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373, Jan.
2016, issn: 1532-4435. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2946645.2946684.

[45] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-Scale Video Classification with Convolutional Neural Networks,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition, Jun.
2014, pp. 1725–1732. doi: 10.1109/CVPR.2014.223.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[47] T. M. Mitchell, Machine Learning (McGraw-Hill series in computer science).
New York: McGraw-Hill, 1997, isbn: 978-0-07-042807-2.

[48] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
Models are Unsupervised Multitask Learners,” p. 24, 2019.

[49] G. Hinton, L. Deng, D. Yu, et al., “Deep Neural Networks for Acoustic Mod-
eling in Speech Recognition: The Shared Views of Four Research Groups,”
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, Nov. 2012, issn:
1053-5888. doi: 10.1109/MSP.2012.2205597.

[50] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once:
Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun.
2016, pp. 779–788, isbn: 978-1-4673-8851-1. doi: 10 .1109/CVPR.2016 .91.
[Online]. Available: http://ieeexplore.ieee.org/document/7780460/.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015,
issn: 0028-0836, 1476-4687. doi: 10 .1038/nature14236. [Online]. Available:
http://www.nature.com/articles/nature14236.

123

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.nature.com/articles/nature14539
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
http://www.sciencedirect.com/science/article/pii/S0925231216315533
http://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/
https://nyuscholars.nyu.edu/en/publications/generalization-and-network-design-strategies
https://nyuscholars.nyu.edu/en/publications/generalization-and-network-design-strategies
http://dl.acm.org/citation.cfm?id=2946645.2946684
http://dl.acm.org/citation.cfm?id=2946645.2946684
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/CVPR.2016.91
http://ieeexplore.ieee.org/document/7780460/
https://doi.org/10.1038/nature14236
http://www.nature.com/articles/nature14236

[52] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of Go
without human knowledge,” Nature, vol. 550, no. 7676, p. 354, Oct. 2017,
issn: 1476-4687. doi: 10.1038/nature24270. [Online]. Available: https://www.
nature.com/articles/nature24270.

[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative Adversarial
Nets,” in Advances in Neural Information Processing Systems 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.,
Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: http : / /
papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[54] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, vol. 4, no. 2, pp. 251–257, Jan. 1991, issn: 0893-6080. doi: 10.
1016/0893-6080(91)90009-T. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/089360809190009T.

[55] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The Expressive Power of Neural
Networks: A View from the Width,” in Advances in Neural Information Pro-
cessing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, et al., Eds., Curran
Associates, Inc., 2017, pp. 6231–6239. [Online]. Available: http://papers.nips.
cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-
width.pdf.

[56] B. Hanin, “Universal Function Approximation by Deep Neural Nets with
Bounded Width and ReLU Activations,” arXiv:1708.02691 [cs, math, stat],
Aug. 2017, arXiv: 1708.02691. [Online]. Available: http://arxiv.org/abs/1708.
02691 (visited on 06/27/2019).

[57] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological Review, vol. 65, no. 6, pp. 386–
408, 1958, issn: 1939-1471, 0033-295X. doi: 10.1037/h0042519. [Online]. Avail-
able: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519.

[58] K.-S. Oh and K. Jung, “GPU implementation of neural networks,” Pattern
Recognition, vol. 37, no. 6, pp. 1311–1314, Jun. 2004, issn: 0031-3203. doi:
10.1016/j.patcog.2004.01.013. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0031320304000524.

[59] J. Sietsma and R. J. Dow, “Creating artificial neural networks that generalize,”
Neural Networks, vol. 4, no. 1, pp. 67–79, 1991, issn: 0893-6080(Print). doi:
10.1016/0893-6080(91)90033-2.

[60] B. Poole, J. Sohl-Dickstein, and S. Ganguli, “Analyzing noise in autoencoders
and deep networks,” arXiv:1406.1831 [cs], Jun. 2014, arXiv: 1406.1831. [On-
line]. Available: http://arxiv.org/abs/1406.1831 (visited on 08/09/2019).

[61] T. Kohonen, “Self-organized formation of topologically correct feature maps,”
Biological Cybernetics, vol. 43, no. 1, pp. 59–69, Jan. 1982, issn: 1432-0770.
doi: 10 .1007/BF00337288. [Online]. Available: https ://doi .org/10 .1007/
BF00337288.

124

https://doi.org/10.1038/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://arxiv.org/abs/1708.02691
http://arxiv.org/abs/1708.02691
https://doi.org/10.1037/h0042519
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519
https://doi.org/10.1016/j.patcog.2004.01.013
http://www.sciencedirect.com/science/article/pii/S0031320304000524
http://www.sciencedirect.com/science/article/pii/S0031320304000524
https://doi.org/10.1016/0893-6080(91)90033-2
http://arxiv.org/abs/1406.1831
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288

[62] C. J. C. H. Watkins, “Learning from delayed rewards,” PhD Thesis, King’s
College, Cambridge, 1989.

[63] C. Finn, Xin Yu Tan, Yan Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep
spatial autoencoders for visuomotor learning,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden: IEEE,
May 2016, pp. 512–519, isbn: 978-1-4673-8026-3. doi: 10.1109/ICRA.2016.
7487173. [Online]. Available: http://ieeexplore.ieee.org/document/7487173/.

[64] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual Foresight:
Model-Based Deep Reinforcement Learning for Vision-Based Robotic Con-
trol,” arXiv:1812.00568 [cs], Dec. 2018, arXiv: 1812.00568. [Online]. Available:
http://arxiv.org/abs/1812.00568 (visited on 06/26/2019).

[65] D. Hafner, T. Lillicrap, I. Fischer, et al., “Learning Latent Dynamics for Plan-
ning from Pixels,” en, in International Conference on Machine Learning, May
2019, pp. 2555–2565. [Online]. Available: http://proceedings.mlr.press/v97/
hafner19a.html (visited on 10/01/2019).

[66] I. Popov, N. Heess, T. Lillicrap, et al., “Data-efficient Deep Reinforcement
Learning for Dexterous Manipulation,” arXiv:1704.03073 [cs], Apr. 2017, arXiv:
1704.03073. [Online]. Available: http://arxiv.org/abs/1704.03073 (visited on
06/30/2019).

[67] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep rein-
forcement learning,” arXiv:1509.02971 [cs, stat], Sep. 2015, arXiv: 1509.02971.
[Online]. Available: http://arxiv.org/abs/1509.02971 (visited on 04/25/2019).

[68] I. Siradjuddin, L. Behera, T. M. McGinnity, and S. Coleman, “Image-Based
Visual Servoing of a 7-DOF Robot Manipulator Using an Adaptive Distributed
Fuzzy PD Controller,” IEEE/ASME Transactions on Mechatronics, vol. 19,
no. 2, pp. 512–523, Apr. 2014, issn: 1083-4435. doi: 10.1109/TMECH.2013.
2245337.

[69] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, Sep. 2013, issn: 0278-3649, 1741-3176. doi: 10.1177/0278364913495721.
[Online]. Available: http://journals.sagepub.com/doi/10.1177/0278364913495721.

[70] A. Wilson, Learning Inverse Kinematics of Kuka iiwa using Deep Reinforce-
ment Learning using DDPG, in pyBullet, Nov. 2017. [Online]. Available: https:
//www.youtube.com/watch?v=httoZpXy4nw.

[71] D. Kalashnikov, A. Irpan, P. Pastor, et al., “Scalable Deep Reinforcement
Learning for Vision-Based Robotic Manipulation,” in Conference on Robot
Learning, Oct. 2018, pp. 651–673. [Online]. Available: http://proceedings.mlr.
press/v87/kalashnikov18a.html (visited on 08/29/2019).

125

https://doi.org/10.1109/ICRA.2016.7487173
https://doi.org/10.1109/ICRA.2016.7487173
http://ieeexplore.ieee.org/document/7487173/
http://arxiv.org/abs/1812.00568
http://proceedings.mlr.press/v97/hafner19a.html
http://proceedings.mlr.press/v97/hafner19a.html
http://arxiv.org/abs/1704.03073
http://arxiv.org/abs/1509.02971
https://doi.org/10.1109/TMECH.2013.2245337
https://doi.org/10.1109/TMECH.2013.2245337
https://doi.org/10.1177/0278364913495721
http://journals.sagepub.com/doi/10.1177/0278364913495721
https://www.youtube.com/watch?v=httoZpXy4nw
https://www.youtube.com/watch?v=httoZpXy4nw
http://proceedings.mlr.press/v87/kalashnikov18a.html
http://proceedings.mlr.press/v87/kalashnikov18a.html

[72] M. van Otterlo and M. Wiering, “Reinforcement Learning and Markov De-
cision Processes,” en, in Reinforcement Learning, M. Wiering and M. van
Otterlo, Eds., vol. 12, Series Title: Adaptation, Learning, and Optimization,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3–42, isbn: 978-3-
642-27644-6 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-3 1. [Online].
Available: http://link.springer.com/10.1007/978-3-642-27645-3 1 (visited on
09/25/2022).

[73] L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A Survey of Deep
Network Solutions for Learning Control in Robotics : From Reinforcement to
Imitation,” in arXiv:1612.07139 [cs], arXiv: 1612.07139, Dec. 2016. [Online].
Available: http://arxiv.org/abs/1612.07139 (visited on 03/03/2019).

[74] H. Li, X. Liao, and L. Carin, “Multi-task Reinforcement Learning in Partially
Observable Stochastic Environments,” The Journal of Machine Learning Re-
search, vol. 10, pp. 1131–1186, Jun. 2009, issn: 1532-4435.

[75] M. Hessel, J. Modayil, H. v. Hasselt, et al., “Rainbow: Combining Improve-
ments in Deep Reinforcement Learning,” in Thirty-Second AAAI Conference
on Artificial Intelligence, Apr. 2018. [Online]. Available: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17204 (visited on 08/29/2019).

[76] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May 2017,
pp. 3389–3396. doi: 10.1109/ICRA.2017.7989385.

[77] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-Shot Visual Im-
itation Learning via Meta-Learning,” in Conference on Robot Learning, Oct.
2017, pp. 357–368. [Online]. Available: http://proceedings.mlr .press/v78/
finn17a.html.

[78] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive ele-
ments that can solve difficult learning control problems,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-13, no. 5, pp. 834–846, Sep. 1983,
issn: 0018-9472. doi: 10.1109/TSMC.1983.6313077.

[79] E. Diederichs, “Reinforcement Learning - A Technical Introduction,” en, Jour-
nal of Autonomous Intelligence, vol. 2, no. 2, p. 25, Jul. 2019, issn: 2630-5046.
doi: 10.32629/jai.v2i2.45. [Online]. Available: http://jai.front-sci.com/index.
php/jai/article/view/45 (visited on 09/26/2022).

[80] V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous Methods for Deep Rein-
forcement Learning,” in Proceedings of The 33rd International Conference on
Machine Learning, M. F. Balcan and K. Q. Weinberger, Eds., ser. Proceedings
of Machine Learning Research, vol. 48, New York, New York, USA: PMLR,
Jun. 2016, pp. 1928–1937. [Online]. Available: http://proceedings.mlr.press/
v48/mniha16.html.

126

https://doi.org/10.1007/978-3-642-27645-3_1
http://link.springer.com/10.1007/978-3-642-27645-3_1
http://arxiv.org/abs/1612.07139
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://doi.org/10.1109/ICRA.2017.7989385
http://proceedings.mlr.press/v78/finn17a.html
http://proceedings.mlr.press/v78/finn17a.html
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.32629/jai.v2i2.45
http://jai.front-sci.com/index.php/jai/article/view/45
http://jai.front-sci.com/index.php/jai/article/view/45
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html

[81] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-region
method for deep reinforcement learning using Kronecker-factored approxima-
tion,” in Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, et al., Eds., Curran Associates, Inc., 2017, pp. 5279–
5288. [Online]. Available: http://papers.nips.cc/paper/7112-scalable-trust-
region-method- for- deep- reinforcement- learning- using- kronecker- factored-
approximation.pdf.

[82] Z. Wang, V. Bapst, N. Heess, et al., “Sample Efficient Actor-Critic with Expe-
rience Replay,” arXiv:1611.01224 [cs], Nov. 2016, arXiv: 1611.01224. [Online].
Available: http://arxiv.org/abs/1611.01224 (visited on 03/12/2019).

[83] S. Fujimoto, H. Hoof, and D. Meger, “Addressing Function Approximation
Error in Actor-Critic Methods,” en, in International Conference on Machine
Learning, Jul. 2018, pp. 1587–1596. [Online]. Available: http://proceedings.
mlr.press/v80/fujimoto18a.html (visited on 01/15/2020).

[84] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,”
arXiv:1801.01290 [cs, stat], Jan. 2018, arXiv: 1801.01290. [Online]. Available:
http://arxiv.org/abs/1801.01290 (visited on 03/12/2019).

[85] T. Haarnoja, A. Zhou, K. Hartikainen, et al., “Soft Actor-Critic Algorithms
and Applications,” arXiv:1812.05905 [cs, stat], Jan. 2019, arXiv: 1812.05905.
[Online]. Available: http://arxiv.org/abs/1812.05905 (visited on 11/01/2020).

[86] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust Region
Policy Optimization,” in Proceedings of the 32nd International Conference on
Machine Learning, F. Bach and D. Blei, Eds., ser. Proceedings of Machine
Learning Research, vol. 37, Lille, France: PMLR, Jul. 2015, pp. 1889–1897.
[Online]. Available: http://proceedings.mlr.press/v37/schulman15.html.

[87] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proxi-
mal Policy Optimization Algorithms,” arXiv:1707.06347 [cs], Jul. 2017, arXiv:
1707.06347. [Online]. Available: http://arxiv.org/abs/1707.06347 (visited on
06/29/2019).

[88] S. Levine, CS 294-112: Actor-Critic Algorithms, Lecture Slides, University of
California, Berkeley, Sep. 2017. [Online]. Available: http://rail.eecs.berkeley.
edu/deeprlcourse-fa17/f17docs/lecture 5 actor critic pdf (visited on 05/31/2020).

[89] Reinforcement learning - How do shared parameters in actor-critic models
work? Library Catalog: stackoverflow.com. [Online]. Available: https://stackoverflow.
com/questions/56312962/how-do-shared-parameters-in-actor-critic-models-
work (visited on 05/31/2020).

[90] Tensorflow - Confusion about neural network architecture for the actor critic
reinforcement learning algorithm, Library Catalog: datascience.stackexchange.com.
[Online]. Available: https://datascience.stackexchange.com/questions/35814/
confusion-about-neural-network-architecture-for-the-actor-critic-reinforcement-
l (visited on 05/29/2020).

127

http://papers.nips.cc/paper/7112-scalable-trust-region-method-for-deep-reinforcement-learning-using-kronecker-factored-approximation.pdf
http://papers.nips.cc/paper/7112-scalable-trust-region-method-for-deep-reinforcement-learning-using-kronecker-factored-approximation.pdf
http://papers.nips.cc/paper/7112-scalable-trust-region-method-for-deep-reinforcement-learning-using-kronecker-factored-approximation.pdf
http://arxiv.org/abs/1611.01224
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1812.05905
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_5_actor_critic_pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_5_actor_critic_pdf
https://stackoverflow.com/questions/56312962/how-do-shared-parameters-in-actor-critic-models-work
https://stackoverflow.com/questions/56312962/how-do-shared-parameters-in-actor-critic-models-work
https://stackoverflow.com/questions/56312962/how-do-shared-parameters-in-actor-critic-models-work
https://datascience.stackexchange.com/questions/35814/confusion-about-neural-network-architecture-for-the-actor-critic-reinforcement-l
https://datascience.stackexchange.com/questions/35814/confusion-about-neural-network-architecture-for-the-actor-critic-reinforcement-l
https://datascience.stackexchange.com/questions/35814/confusion-about-neural-network-architecture-for-the-actor-critic-reinforcement-l

[91] M. Andrychowicz, F. Wolski, A. Ray, et al., “Hindsight Experience Replay,”
en, arXiv:1707.01495 [cs], Feb. 2018, arXiv: 1707.01495. [Online]. Available:
http://arxiv.org/abs/1707.01495 (visited on 01/28/2020).

[92] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to
train your robot with deep reinforcement learning: Lessons we have learned,”
en, The International Journal of Robotics Research, vol. 40, no. 4-5, pp. 698–
721, Apr. 2021, Publisher: SAGE Publications Ltd STM, issn: 0278-3649. doi:
10.1177/0278364920987859. [Online]. Available: https://doi .org/10.1177/
0278364920987859 (visited on 06/07/2021).

[93] E. Wiewiora, “Potential-Based Shaping and Q-Value Initialization are Equiv-
alent,” Journal of Artificial Intelligence Research, vol. 19, pp. 205–208, Sep.
2003, issn: 1076-9757. doi: 10 . 1613 / jair . 1190. [Online]. Available: https :
//jair.org/index.php/jair/article/view/10338.

[94] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in Proceedings of the 26th Annual International Conference on Machine
Learning - ICML ’09, Montreal, Quebec, Canada: ACM Press, 2009, pp. 1–8,
isbn: 978-1-60558-516-1. doi: 10.1145/1553374.1553380. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1553374.1553380.

[95] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse Cur-
riculum Generation for Reinforcement Learning,” arXiv:1707.05300 [cs], Jul.
2017, arXiv: 1707.05300. [Online]. Available: http://arxiv.org/abs/1707.05300
(visited on 07/16/2019).

[96] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic Goal Generation for
Reinforcement Learning Agents,” en, arXiv:1705.06366 [cs], Jul. 2018, arXiv:
1705.06366. [Online]. Available: http://arxiv.org/abs/1705.06366 (visited on
01/28/2020).

[97] A. Tavakoli, V. Levdik, R. Islam, and P. Kormushev, “Prioritizing Starting
States for Reinforcement Learning,” en, arXiv:1811.11298 [cs, stat], Jan. 2019,
arXiv: 1811.11298. [Online]. Available: http : / / arxiv . org / abs / 1811 . 11298
(visited on 03/10/2020).

[98] M. Riedmiller, R. Hafner, T. Lampe, et al., “Learning by Playing Solving
Sparse Reward Tasks from Scratch,” in International Conference on Machine
Learning, Jul. 2018, pp. 4344–4353. [Online]. Available: http://proceedings.
mlr.press/v80/riedmiller18a.html.

[99] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven Explo-
ration by Self-supervised Prediction,” in International Conference on Machine
Learning, Jul. 2017, pp. 2778–2787. [Online]. Available: http://proceedings.
mlr.press/v70/pathak17a.html (visited on 08/29/2019).

[100] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros,
“Large-Scale Study of Curiosity-Driven Learning,” arXiv:1808.04355 [cs, stat],
Aug. 2018, arXiv: 1808.04355. [Online]. Available: http://arxiv.org/abs/1808.
04355 (visited on 03/11/2019).

128

http://arxiv.org/abs/1707.01495
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1613/jair.1190
https://jair.org/index.php/jair/article/view/10338
https://jair.org/index.php/jair/article/view/10338
https://doi.org/10.1145/1553374.1553380
http://portal.acm.org/citation.cfm?doid=1553374.1553380
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1811.11298
http://proceedings.mlr.press/v80/riedmiller18a.html
http://proceedings.mlr.press/v80/riedmiller18a.html
http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1808.04355

[101] B. Piot, M. Geist, and O. Pietquin, “Bridging the Gap Between Imitation
Learning and Inverse Reinforcement Learning,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 8, pp. 1814–1826, Aug. 2017,
issn: 2162-237X, 2162-2388. doi: 10 .1109/TNNLS.2016.2543000. [Online].
Available: http://ieeexplore.ieee.org/document/7464854/.

[102] G. Brockman, V. Cheung, L. Pettersson, et al., “OpenAI Gym,” arXiv:1606.01540
[cs], Jun. 2016, arXiv: 1606.01540. [Online]. Available: http://arxiv.org/abs/
1606.01540 (visited on 07/15/2019).

[103] Bullet Real-Time Physics Simulation — Home of Bullet and PyBullet: Physics
simulation for games, visual effects, robotics and reinforcement learning. [On-
line]. Available: https://pybullet.org/wordpress/ (visited on 07/15/2019).

[104] X. Gao, R. Gong, T. Shu, X. Xie, S. Wang, and S.-C. Zhu, “VRKitchen: An In-
teractive 3D Virtual Environment for Task-oriented Learning,” arXiv:1903.05757
[cs], Mar. 2019, arXiv: 1903.05757. [Online]. Available: http://arxiv.org/abs/
1903.05757 (visited on 10/07/2020).

[105] J. K. Terry, B. Black, M. Jayakumar, et al., “PettingZoo: Gym for Multi-Agent
Reinforcement Learning,” arXiv preprint arXiv:2009.14471, 2020.

[106] A. D’Amour, K. Heller, D. Moldovan, et al., “Underspecification Presents
Challenges for Credibility in Modern Machine Learning,” arXiv:2011.03395
[cs, stat], Nov. 2020, arXiv: 2011.03395. [Online]. Available: http://arxiv.org/
abs/2011.03395 (visited on 11/20/2020).

[107] S. James, P. Wohlhart, M. Kalakrishnan, et al., “Sim-To-Real via Sim-To-
Sim: Data-Efficient Robotic Grasping via Randomized-To-Canonical Adap-
tation Networks,” en, in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, Jun. 2019,
pp. 12 619–12 629, isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.01291.
[Online]. Available: https://ieeexplore.ieee.org/document/8954361/ (visited
on 01/14/2020).

[108] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke, “Training
Deep Neural Networks for Visual Servoing,” in 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE, May 2018, pp. 1–8. doi:
10.1109/ICRA.2018.8461068.

[109] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the real
world,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), ISSN: 2153-0866, Sep. 2017, pp. 23–30. doi: 10.1109/IROS.
2017.8202133.

[110] J. Grasshoff, L. Hansen, I. Kuhlemann, and K. Ehlers, “7DoF Hand and Arm
Tracking for Teleoperation of Anthropomorphic Robots,” in Proceedings of
ISR 2016: 47st International Symposium on Robotics, Jun. 2016, pp. 1–8.

129

https://doi.org/10.1109/TNNLS.2016.2543000
http://ieeexplore.ieee.org/document/7464854/
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://pybullet.org/wordpress/
http://arxiv.org/abs/1903.05757
http://arxiv.org/abs/1903.05757
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/2011.03395
https://doi.org/10.1109/CVPR.2019.01291
https://ieeexplore.ieee.org/document/8954361/
https://doi.org/10.1109/ICRA.2018.8461068
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133

[111] C. Li, C. Yang, Z. Ju, and A. S. K. Annamalai, “An enhanced teaching inter-
face for a robot using DMP and GMR,” International Journal of Intelligent
Robotics and Applications, vol. 2, no. 1, pp. 110–121, Mar. 2018, issn: 2366-
598X. doi: 10.1007/s41315-018-0046-x. [Online]. Available: https://doi.org/
10.1007/s41315-018-0046-x.

[112] C. Li, C. Yang, and C. Giannetti, “Segmentation and generalisation for writing
skills transfer from humans to robots,” Cognitive Computation and Systems,
vol. 1, no. 1, pp. 20–25, 2019, issn: 2517-7567. doi: 10.1049/ccs.2018.0005.

[113] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol. 57,
no. 5, pp. 469–483, May 2009, issn: 09218890. doi: 10.1016/j.robot.2008.
10 .024. [Online]. Available: https :// linkinghub.elsevier . com/retrieve/pii/
S0921889008001772.

[114] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, et al., “Learning to reinforcement
learn,” arXiv:1611.05763 [cs, stat], Nov. 2016, arXiv: 1611.05763. [Online].
Available: http://arxiv.org/abs/1611.05763 (visited on 02/21/2019).

[115] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein, “Meta-
Learning Update Rules for Unsupervised Representation Learning,” arXiv:1804.00222
[cs, stat], Mar. 2018, arXiv: 1804.00222. [Online]. Available: http://arxiv.org/
abs/1804.00222 (visited on 02/27/2019).

[116] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks,” in International Conference on Machine Learn-
ing, Jul. 2017, pp. 1126–1135. [Online]. Available: http://proceedings .mlr .
press/v70/finn17a.html.

[117] S. M. Jordan, Y. Chandak, D. Cohen, M. Zhang, and P. S. Thomas, “Evaluat-
ing the Performance of Reinforcement Learning Algorithms,” arXiv:2006.16958
[cs, stat], Aug. 2020, arXiv: 2006.16958. [Online]. Available: http://arxiv.org/
abs/2006.16958 (visited on 11/23/2020).

[118] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep Reinforcement Learning that Matters,” en, arXiv:1709.06560 [cs, stat],
Jan. 2019, arXiv: 1709.06560. [Online]. Available: http://arxiv.org/abs/1709.
06560 (visited on 01/06/2020).

[119] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation,” en, in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH,
USA: IEEE, Jun. 2014, pp. 580–587, isbn: 978-1-4799-5118-5. doi: 10.1109/
CVPR.2014.81. [Online]. Available: http://ieeexplore. ieee.org/document/
6909475/ (visited on 01/15/2020).

[120] M. Andrychowicz, A. Raichuk, P. Stańczyk, et al., “What Matters In On-Policy
Reinforcement Learning? A Large-Scale Empirical Study,” arXiv:2006.05990
[cs, stat], Jun. 2020, arXiv: 2006.05990. [Online]. Available: http://arxiv.org/
abs/2006.05990 (visited on 02/07/2021).

130

https://doi.org/10.1007/s41315-018-0046-x
https://doi.org/10.1007/s41315-018-0046-x
https://doi.org/10.1007/s41315-018-0046-x
https://doi.org/10.1049/ccs.2018.0005
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://linkinghub.elsevier.com/retrieve/pii/S0921889008001772
https://linkinghub.elsevier.com/retrieve/pii/S0921889008001772
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1804.00222
http://arxiv.org/abs/1804.00222
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://arxiv.org/abs/2006.16958
http://arxiv.org/abs/2006.16958
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
http://ieeexplore.ieee.org/document/6909475/
http://ieeexplore.ieee.org/document/6909475/
http://arxiv.org/abs/2006.05990
http://arxiv.org/abs/2006.05990

[121] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimiza-
tion,” Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305,
2012, issn: 1533-7928. [Online]. Available: http : / / jmlr . org / papers / v13 /
bergstra12a.html (visited on 10/31/2020).

[122] M. Jaderberg, V. Dalibard, S. Osindero, et al., “Population Based Training
of Neural Networks,” arXiv:1711.09846 [cs], Nov. 2017, arXiv: 1711.09846.
[Online]. Available: http://arxiv.org/abs/1711.09846 (visited on 11/08/2020).

[123] H. S. Jomaa, J. Grabocka, and L. Schmidt-Thieme, “Hyp-RL : Hyperparam-
eter Optimization by Reinforcement Learning,” arXiv:1906.11527 [cs, stat],
Jun. 2019, arXiv: 1906.11527. [Online]. Available: http://arxiv.org/abs/1906.
11527 (visited on 11/08/2020).

[124] S. Paul, V. Kurin, and S. Whiteson, “Fast Efficient Hyperparameter Tuning for
Policy Gradients,” arXiv:1902.06583 [cs, stat], Sep. 2019, arXiv: 1902.06583.
[Online]. Available: http://arxiv.org/abs/1902.06583 (visited on 11/08/2020).

[125] I. Dewancker, M. McCourt, and S. Clark, “Bayesian Optimization for Machine
Learning : A Practical Guidebook,” arXiv:1612.04858 [cs], Dec. 2016, arXiv:
1612.04858. [Online]. Available: http://arxiv.org/abs/1612.04858 (visited on
11/08/2020).

[126] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Archi-
tectures for Scalable Image Recognition,” en, arXiv:1707.07012 [cs, stat], Jul.
2017, arXiv: 1707.07012. [Online]. Available: http://arxiv.org/abs/1707.07012
(visited on 03/27/2019).

[127] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct Neural Architecture Search
on Target Task and Hardware,” arXiv:1812.00332 [cs, stat], Dec. 2018, arXiv:
1812.00332. [Online]. Available: http://arxiv.org/abs/1812.00332 (visited on
03/27/2019).

[128] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A Review of Physics Sim-
ulators for Robotic Applications,” IEEE Access, vol. 9, pp. 51 416–51 431, 2021,
Conference Name: IEEE Access, issn: 2169-3536. doi: 10.1109/ACCESS.2021.
3068769.

[129] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-
based control,” en, in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura-Algarve, Portugal: IEEE, Oct. 2012, pp. 5026–
5033, isbn: 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-1735-1. doi: 10.
1109/IROS.2012.6386109. [Online]. Available: http :// ieeexplore . ieee .org/
document/6386109/ (visited on 02/24/2020).

[130] E. Coumans and Y. Bai, PyBullet, a Python module for physics simulation
for games, robotics and machine learning. 2016. [Online]. Available: http://
pybullet.org.

131

http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1906.11527
http://arxiv.org/abs/1906.11527
http://arxiv.org/abs/1902.06583
http://arxiv.org/abs/1612.04858
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1812.00332
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/
http://pybullet.org
http://pybullet.org

[131] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Tokyo: IEEE, Nov. 2013, pp. 1321–1326,
isbn: 978-1-4673-6358-7 978-1-4673-6357-0. doi: 10.1109/IROS.2013.6696520.
[Online]. Available: http://ieeexplore.ieee.org/document/6696520/.

[132] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking State-of-the-Art Deep
Learning Software Tools,” in 2016 7th International Conference on Cloud
Computing and Big Data (CCBD), Nov. 2016, pp. 99–104. doi: 10 . 1109 /
CCBD.2016.029.

[133] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative
Study of Deep Learning Software Frameworks,” arXiv:1511.06435 [cs], Nov.
2015, arXiv: 1511.06435. [Online]. Available: http://arxiv.org/abs/1511.06435
(visited on 07/02/2019).

[134] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems,” arXiv:1603.04467 [cs], Mar.
2016, arXiv: 1603.04467. [Online]. Available: http://arxiv.org/abs/1603.04467
(visited on 07/02/2019).

[135] R. Collobert, S. Bengio, and J. Marithoz, Torch: A Modular Machine Learning
Software Library. 2002.

[136] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in Py-
Torch,” 2017.

[137] Eclipse Deeplearning4j Development Team, Deeplearning4j: Open-source dis-
tributed deep learning for the JVM. [Online]. Available: http://deeplearning4j.
org.

[138] Y. Jia, E. Shelhamer, J. Donahue, et al., “Caffe: Convolutional Architecture
for Fast Feature Embedding,” in Proceedings of the ACM International Con-
ference on Multimedia - MM ’14, Orlando, Florida, USA: ACM Press, 2014,
pp. 675–678, isbn: 978-1-4503-3063-3. doi: 10.1145/2647868.2654889. [On-
line]. Available: http://dl.acm.org/citation.cfm?doid=2647868.2654889.

[139] T. T. D. Team, R. Al-Rfou, G. Alain, et al., “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv:1605.02688 [cs], May
2016, arXiv: 1605.02688. [Online]. Available: http://arxiv.org/abs/1605.02688
(visited on 07/10/2019).

[140] M. Plappert, M. Andrychowicz, A. Ray, et al., “Multi-Goal Reinforcement
Learning: Challenging Robotics Environments and Request for Research,” en,
arXiv:1802.09464 [cs], Mar. 2018, arXiv: 1802.09464. [Online]. Available: http:
//arxiv.org/abs/1802.09464 (visited on 02/24/2020).

[141] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch & Freight:
Standard Platforms for Service Robot Applications,” en, p. 6, 2016. [Online].
Available: http://docs.fetchrobotics.com/FetchAndFreight2016.pdf.

132

https://doi.org/10.1109/IROS.2013.6696520
http://ieeexplore.ieee.org/document/6696520/
https://doi.org/10.1109/CCBD.2016.029
https://doi.org/10.1109/CCBD.2016.029
http://arxiv.org/abs/1511.06435
http://arxiv.org/abs/1603.04467
http://deeplearning4j.org
http://deeplearning4j.org
https://doi.org/10.1145/2647868.2654889
http://dl.acm.org/citation.cfm?doid=2647868.2654889
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1802.09464
http://docs.fetchrobotics.com/FetchAndFreight2016.pdf

[142] KUKA, “LBR iiwa 7 R800, LBR iiwa 14 R820 Specification,” Tech. Rep., May
2016.

[143] F. v. Drigalski, Meet the winners from the 2016 Airbus Shopfloor Challenge,
2016. [Online]. Available: http://company.airbus.com/dam/assets/airbusgroup/
int / en / jobs - and - careers / working - at - airbus - group / Airbus - Shopfloor -
challenge/Meet - the -winners - from- the - 2016-Airbus - Shopfloor -Challenge -
-Robohub/Meet%20the%20winners%20from%20the%202016%20Airbus%
20Shopfloor%20Challenge%20 %20Robohub.pdf.

[144] KUKA Roboter GmbH, HRC system at BMW’s production plant, en-GB, Jun.
2017. [Online]. Available: https://www.kuka.com/en-gb/industries/solutions-
database/2017/06/solution-systems-bmw-dingolfing (visited on 01/03/2020).

[145] V. Chawda and G. Niemeyer, “Toward torque control of a KUKA LBR IIWA
for physical human-robot interaction,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Vancouver, BC: IEEE,
Sep. 2017, pp. 6387–6392, isbn: 978-1-5386-2682-5. doi: 10.1109/IROS.2017.
8206543. [Online]. Available: http://ieeexplore.ieee.org/document/8206543/.

[146] V. Chawda and G. Niemeyer, “Toward controlling a KUKA LBR IIWA for
interactive tracking,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), Singapore, Singapore: IEEE, May 2017, pp. 1808–1814,
isbn: 978-1-5090-4633-1. doi: 10.1109/ICRA.2017.7989213. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/7989213/.

[147] J. Braumann, S. Stumm, and S. Brell-Cokcan, “Towards New Robotic Design
Tools: Using Collaborative Robots within the Creative Industry,” in ACA-
DIA//2016: Posthuman Frontiers: Data, Designers, and Cognitive Machines,
Proceedings of the 36th Annual Conference of the Association for Computer
Aided Design in Architecture, 2016, pp. 164–173.

[148] J. Hallersbro and N. Josefsson, “Vision supported collaborative robot in pick-
and-place operations: A coexistent material handling station between humans
and a collaborative robot supported by vision systems,” English, M.S. the-
sis, Chalmers University of Technology, Gothenburg, Sweden, 2018. [Online].
Available: http : / / publications . lib . chalmers . se / records / fulltext / 255167 /
255167.pdf (visited on 01/31/2019).

[149] J. Guérin, O. Gibaru, E. Nyiri, and S. Thiery, “Learning local trajectories
for high precision robotic tasks: Application to KUKA LBR iiwa Cartesian
positioning,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial
Electronics Society, Oct. 2016, pp. 5316–5321. doi: 10 .1109/IECON.2016.
7793388.

[150] W. K. H. Ko, Y. Wu, K. P. Tee, and J. Buchli, “Towards Industrial Robot
Learning from Demonstration,” in Proceedings of the 3rd International Confer-
ence on Human-Agent Interaction, ser. HAI ’15, New York, NY, USA: ACM,
2015, pp. 235–238, isbn: 978-1-4503-3527-0. doi: 10.1145/2814940.2814984.
[Online]. Available: http://doi.acm.org/10.1145/2814940.2814984.

133

http://company.airbus.com/dam/assets/airbusgroup/int/en/jobs-and-careers/working-at-airbus-group/Airbus-Shopfloor-challenge/Meet-the-winners-from-the-2016-Airbus-Shopfloor-Challenge-_-Robohub/Meet%20the%20winners%20from%20the%202016%20Airbus%20Shopfloor%20Challenge%20_%20Robohub.pdf
http://company.airbus.com/dam/assets/airbusgroup/int/en/jobs-and-careers/working-at-airbus-group/Airbus-Shopfloor-challenge/Meet-the-winners-from-the-2016-Airbus-Shopfloor-Challenge-_-Robohub/Meet%20the%20winners%20from%20the%202016%20Airbus%20Shopfloor%20Challenge%20_%20Robohub.pdf
http://company.airbus.com/dam/assets/airbusgroup/int/en/jobs-and-careers/working-at-airbus-group/Airbus-Shopfloor-challenge/Meet-the-winners-from-the-2016-Airbus-Shopfloor-Challenge-_-Robohub/Meet%20the%20winners%20from%20the%202016%20Airbus%20Shopfloor%20Challenge%20_%20Robohub.pdf
http://company.airbus.com/dam/assets/airbusgroup/int/en/jobs-and-careers/working-at-airbus-group/Airbus-Shopfloor-challenge/Meet-the-winners-from-the-2016-Airbus-Shopfloor-Challenge-_-Robohub/Meet%20the%20winners%20from%20the%202016%20Airbus%20Shopfloor%20Challenge%20_%20Robohub.pdf
http://company.airbus.com/dam/assets/airbusgroup/int/en/jobs-and-careers/working-at-airbus-group/Airbus-Shopfloor-challenge/Meet-the-winners-from-the-2016-Airbus-Shopfloor-Challenge-_-Robohub/Meet%20the%20winners%20from%20the%202016%20Airbus%20Shopfloor%20Challenge%20_%20Robohub.pdf
https://www.kuka.com/en-gb/industries/solutions-database/2017/06/solution-systems-bmw-dingolfing
https://www.kuka.com/en-gb/industries/solutions-database/2017/06/solution-systems-bmw-dingolfing
https://doi.org/10.1109/IROS.2017.8206543
https://doi.org/10.1109/IROS.2017.8206543
http://ieeexplore.ieee.org/document/8206543/
https://doi.org/10.1109/ICRA.2017.7989213
http://ieeexplore.ieee.org/document/7989213/
http://publications.lib.chalmers.se/records/fulltext/255167/255167.pdf
http://publications.lib.chalmers.se/records/fulltext/255167/255167.pdf
https://doi.org/10.1109/IECON.2016.7793388
https://doi.org/10.1109/IECON.2016.7793388
https://doi.org/10.1145/2814940.2814984
http://doi.acm.org/10.1145/2814940.2814984

[151] R. Madhavan, “The 2016 Airbus Shopfloor Challenge [Competitions],” IEEE
Robotics Automation Magazine, vol. 23, no. 3, pp. 21–22, Sep. 2016, issn:
1558-223X. doi: 10.1109/MRA.2016.2587919.

[152] S. Mokaram, J. M. Aitken, U. Martinez-Hernandez, et al., “A ROS-integrated
API for the KUKA LBR iiwa collaborative robot**The authors acknowl-
edge support from the EPSRC Centre for Innovative Manufacturing in In-
telligent Automation, in undertaking this research work under grant refer-
ence number EP/I033467/1, and the University of Sheffield Impact, Inno-
vation and Knowledge Exchange grant ”Human Robot Interaction Develop-
ment”. Equipment has been provided under the EPSRC Great Technologies
Capital Call: Robotics and Autonomous Systems.,” en, IFAC-PapersOnLine,
20th IFAC World Congress, vol. 50, no. 1, pp. 15 859–15 864, Jul. 2017, issn:
2405-8963. doi: 10 . 1016 / j . ifacol . 2017 . 08 . 2331. [Online]. Available: http :
//www.sciencedirect.com/science/article/pii/S2405896317331464 (visited on
02/26/2020).

[153] Stanford Artificial Intelligence Laboratory et al., Robotic Operating System,
May 2018. [Online]. Available: https://www.ros.org.

[154] B. O. Community, Blender - A 3D modelling and rendering package. Stichting
Blender Foundation, Amsterdam: Blender Foundation, 2018. [Online]. Avail-
able: http://www.blender.org.

[155] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, et al., TF-Agents: A
library for Reinforcement Learning in TensorFlow, 2018. [Online]. Available:
https://github.com/tensorflow/agents.

[156] Comet.ML, Comet.ML home page, 2021. [Online]. Available: https://www.
comet.ml/.

[157] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009, isbn: 1-4414-1269-7.

[158] J. Hale, Which Deep Learning Framework is Growing Fastest? en-US, May
2019. [Online]. Available: https://www.kdnuggets.com/which-deep-learning-
framework-is-growing-fastest.html/ (visited on 11/08/2020).

[159] E. Coumans and Y. Bai, PyBullet Quickstart Guide, en-GB, 2016. [Online].
Available: https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA
(visited on 01/29/2020).

[160] T. Simonini, Choosing a Deep Reinforcement Learning Library, en, Jun. 2019.
[Online]. Available: https://medium.com/data-from-the-trenches/choosing-a-
deep-reinforcement-learning-library-890fb0307092 (visited on 11/19/2020).

[161] P. Winder, A Comparison of Reinforcement Learning Frameworks: Dopamine,
RLLib, Keras-RL, Coach, TRFL, Tensorforce, Coach and more, en-gb, Jul.
2019. [Online]. Available: https ://WinderResearch .com/a- comparison- of -
reinforcement - learning - frameworks - dopamine - rllib - keras - rl - coach - trfl -
tensorforce-coach-and-more/ (visited on 11/19/2020).

134

https://doi.org/10.1109/MRA.2016.2587919
https://doi.org/10.1016/j.ifacol.2017.08.2331
http://www.sciencedirect.com/science/article/pii/S2405896317331464
http://www.sciencedirect.com/science/article/pii/S2405896317331464
https://www.ros.org
http://www.blender.org
https://github.com/tensorflow/agents
https://www.comet.ml/
https://www.comet.ml/
https://www.kdnuggets.com/which-deep-learning-framework-is-growing-fastest.html/
https://www.kdnuggets.com/which-deep-learning-framework-is-growing-fastest.html/
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA
https://medium.com/data-from-the-trenches/choosing-a-deep-reinforcement-learning-library-890fb0307092
https://medium.com/data-from-the-trenches/choosing-a-deep-reinforcement-learning-library-890fb0307092
https://WinderResearch.com/a-comparison-of-reinforcement-learning-frameworks-dopamine-rllib-keras-rl-coach-trfl-tensorforce-coach-and-more/
https://WinderResearch.com/a-comparison-of-reinforcement-learning-frameworks-dopamine-rllib-keras-rl-coach-trfl-tensorforce-coach-and-more/
https://WinderResearch.com/a-comparison-of-reinforcement-learning-frameworks-dopamine-rllib-keras-rl-coach-trfl-tensorforce-coach-and-more/

[162] P. Jenkner, The Best Comet.ml Alternatives, en-US, May 2020. [Online]. Avail-
able: https://neptune.ai/blog/the-best- comet-ml- alternatives (visited on
10/04/2022).

[163] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with NumPy,” en, Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020, Number:
7825 Publisher: Nature Publishing Group, issn: 1476-4687. doi: 10 . 1038 /
s41586-020-2649-2. [Online]. Available: https://www.nature.com/articles/
s41586-020-2649-2 (visited on 11/08/2020).

[164] C. D. Costa, Best Python Libraries for Machine Learning and Deep Learn-
ing, en, Mar. 2020. [Online]. Available: https://towardsdatascience.com/best-
python- libraries- for-machine- learning-and-deep- learning-b0bd40c7e8c (vis-
ited on 11/08/2020).

[165] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning to
Walk Via Deep Reinforcement Learning,” en, in Robotics: Science and Sys-
tems XV, Robotics: Science and Systems Foundation, Jun. 2019, isbn: 978-
0-9923747-5-4. doi: 10.15607/RSS.2019.XV.011. [Online]. Available: http:
//www.roboticsproceedings.org/rss15/p11.pdf (visited on 06/07/2021).

[166] Tensorflow, SAC minitaur with the Actor-Learner API — TensorFlow Agents,
Aug. 2021. [Online]. Available: https://www.tensorflow.org/agents/tutorials/
7 SAC minitaur tutorial (visited on 09/13/2021).

[167] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video Super-Resolution
With Convolutional Neural Networks,” IEEE Transactions on Computational
Imaging, vol. 2, no. 2, pp. 109–122, Jun. 2016, Conference Name: IEEE Trans-
actions on Computational Imaging, issn: 2333-9403. doi: 10.1109/TCI.2016.
2532323.

[168] Tensorflow, Networks — TensorFlow Agents, May 2021. [Online]. Available:
https://www.tensorflow.org/agents/tutorials/8 networks tutorial (visited on
09/13/2021).

[169] Tensorflow, Environments — TensorFlow Agents, May 2021. [Online]. Avail-
able: https://www.tensorflow.org/agents/tutorials/2 environments tutorial
(visited on 09/13/2021).

[170] Bullet Physics SDK, kukaCamGymEnv - Bullet Physics SDK, original-date:
2011-04-12T18:45:08Z, Sep. 2021. [Online]. Available: https ://github.com/
bulletphysics / bullet3 / blob / b638300fe41f0a44d3edb766772044c7b3056d7d /
examples/pybullet/gym/pybullet envs/bullet/kukaCamGymEnv.py (visited
on 09/13/2021).

[171] Tensorflow, Tf.keras.layers.Dense — TensorFlow Core v2.6.0, Sep. 2021. [On-
line]. Available: https : //www. tensorflow .org/api docs/python/ tf /keras/
layers/Dense (visited on 10/28/2021).

[172] Tensorflow, Tf.keras.layers.Conv2D — TensorFlow Core v2.6.0, Oct. 2021.
[Online]. Available: https://www.tensorflow.org/api docs/python/tf/keras/
layers/Conv2D (visited on 10/28/2021).

135

https://neptune.ai/blog/the-best-comet-ml-alternatives
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c
https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c
https://doi.org/10.15607/RSS.2019.XV.011
http://www.roboticsproceedings.org/rss15/p11.pdf
http://www.roboticsproceedings.org/rss15/p11.pdf
https://www.tensorflow.org/agents/tutorials/7_SAC_minitaur_tutorial
https://www.tensorflow.org/agents/tutorials/7_SAC_minitaur_tutorial
https://doi.org/10.1109/TCI.2016.2532323
https://doi.org/10.1109/TCI.2016.2532323
https://www.tensorflow.org/agents/tutorials/8_networks_tutorial
https://www.tensorflow.org/agents/tutorials/2_environments_tutorial
https://github.com/bulletphysics/bullet3/blob/b638300fe41f0a44d3edb766772044c7b3056d7d/examples/pybullet/gym/pybullet_envs/bullet/kukaCamGymEnv.py
https://github.com/bulletphysics/bullet3/blob/b638300fe41f0a44d3edb766772044c7b3056d7d/examples/pybullet/gym/pybullet_envs/bullet/kukaCamGymEnv.py
https://github.com/bulletphysics/bullet3/blob/b638300fe41f0a44d3edb766772044c7b3056d7d/examples/pybullet/gym/pybullet_envs/bullet/kukaCamGymEnv.py
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

[173] Y. Wu, E. Mansimov, S. Liao, A. Radford, and J. Schulman, OpenAI Baselines:
ACKTR & A2C, Aug. 2017. [Online]. Available: https://blog.openai.com/
baselines-acktr-a2c/ (visited on 02/20/2019).

[174] Reverb, original-date: 2020-05-01T09:17:02Z, Sep. 2021. [Online]. Available:
https://github.com/deepmind/reverb (visited on 09/15/2021).

[175] Google Colaboratory, en. [Online]. Available: https://colab.research.google.
com/ (visited on 05/16/2021).

[176] Tensorflow, Checkpointer and PolicySaver — TensorFlow Agents, Sep. 2021.
[Online]. Available: https://www.tensorflow.org/agents/tutorials/10 checkpointer
policysaver tutorial (visited on 09/30/2021).

[177] Tensorflow, Tf agents.environments.PyEnvironment — TensorFlow Agents, Aug.
2021. [Online]. Available: https : / /www . tensorflow . org / agents / api docs /
python/tf agents/environments/PyEnvironment (visited on 09/21/2021).

[178] A. Hill, A. Raffin, M. Ernestus, et al., Stable Baselines, Publication Title:
GitHub repository, 2018. [Online]. Available: https : //github . com/hill - a /
stable-baselines.

[179] Soft Actor-Critic — Spinning Up documentation. [Online]. Available: https://
spinningup.openai.com/en/latest/algorithms/sac.html (visited on 09/25/2021).

136

https://blog.openai.com/baselines-acktr-a2c/
https://blog.openai.com/baselines-acktr-a2c/
https://github.com/deepmind/reverb
https://colab.research.google.com/
https://colab.research.google.com/
https://www.tensorflow.org/agents/tutorials/10_checkpointer_policysaver_tutorial
https://www.tensorflow.org/agents/tutorials/10_checkpointer_policysaver_tutorial
https://www.tensorflow.org/agents/api_docs/python/tf_agents/environments/PyEnvironment
https://www.tensorflow.org/agents/api_docs/python/tf_agents/environments/PyEnvironment
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://spinningup.openai.com/en/latest/algorithms/sac.html

	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Industry 4.0 and the Factory of the Future
	A New Wave of HRC-Compatible Industrial Robots
	Automation in Non-deterministic Environments
	Challenges in Aerospace Manufacturing
	Vision-based Control
	Machine Learning for Visual Servoing
	Simulating Robotic Control Tasks
	Research Aims and Scope
	Chapter Summary

	Literature Review
	Industrial Robotic Manipulators
	Computer Vision and Visual Servoing
	Visual Servoing Methods

	Artificial Neural Networks & Deep Learning
	Learning Algorithms
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Deep Reinforcement Learning in Robotics
	Parallelised Algorithms
	Simulated Environments
	Transfer Learning and Associated Methods

	Practical Considerations in Deep RL and Robotics
	Performance Metrics
	Reproducibility
	Ablation Studies
	Hyperparameter Optimisation
	Software Implementation

	Research Gap Discussion
	Novelty
	Chapter Summary

	Methodology
	Methodology Overview
	Literature Review
	Robot Specification
	Deep Reinforcement Learning
	Simulation
	Software Libraries
	Machine Learning Library
	Simulation Library
	Experiment Management Library
	Programming Language

	Experimental Approach
	Chapter Summary

	System Design
	Task Description
	Environment Modelling - Markov Decision Process
	States
	Goals
	Observations
	Actions
	Initial State-Goal Distribution
	Rewards

	Reinforcement Learning Algorithm
	Learning Algorithm
	Training Procedure
	Exploration Policy

	Neural Network Architecture
	Network Description
	Network Discussion

	Chapter Summary

	Software Implementation
	3D Modelling
	PyBullet Environment
	Constructor
	Constants
	Observation Spec
	Action Spec
	Observation Function
	Reset Function
	Step Function
	Reward Function
	Goal Generation
	Termination Function

	Chapter Summary

	Experiments and Results
	Experimental Work
	Data Collection and Evaluation Metrics
	List of Experiments
	Results
	Summary of all experiments
	Seeding

	Discussion
	Further Experiments and Ablation Studies
	Chapter Summary

	Project Challenges and Discussion
	Environment
	Network
	Algorithmic Choices
	Software Implementation
	3D Render
	Experiments
	Physical Deployment
	Chapter Summary

	Conclusions and Future Work
	Conclusion
	Future Work
	Dissemination
	Chapter Summary

	Appendices
	SAC Algorithm
	Code Repository
	Experiment Data
	Proposed Experiments and Ablation Studies for Future Work
	Observation Modularity
	Camera Resolution
	Sim-2-Real
	Reward Sparsity
	Initial State-Goal Distribution
	Curriculum Learning

