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Abstract

The growing reliance on robots in modern society, especially in sectors involving laborious or
hazardous tasks, has accentuated the limitations of single-robot systems in dynamic and complex en-
vironments. Swarm robotics emerges as a promising alternative, leveraging the collective capability
and decentralised nature akin to social insects to address these challenges, thus paving the way for
robust, adaptable, and resilient systems capable of handling real-world complexities autonomously.
Consequently, the urgent need to design adept and adaptive controllers for swarm robotic systems
has spurred rapid advancements in the domain of automatic controller design.

This thesis focuses on the pivotal role of automatic controller designs in advancing swarm robotic
systems. Despite substantial advancements, the current approaches face a vital trade-off between
performance efficacy and pragmatic design processes. This research emphasises the development
and enhancement of Deep Reinforcement Learning (DRL)-driven automatic controller designs,
which encapsulate the potential merits of both on-line and off-line processes, aiming to bridge the
reality gap encountered in the transition from simulated to real-world environments.

To address the centralisation issues in the traditional Multi-Agent Reinforcement Learning (MARL)
frameworks, which contradict the decentralised essence of swarm robotic systems, this thesis
proposes a Federated Learning (FL)-based DRL training strategy. The main objective is to foster
a decentralised approach in DRL-driven automatic controller design, potentially motivating the
evolution of more proficient and adaptive swarm robotic systems.

Structured into three primary aims with corresponding objectives, the thesis endeavors to scrutinise
the impacts of realistic factors on swarm robotic systems, advocate for DRL-driven automatic
controller designs, and propose a novel FL-based DRL strategy to alleviate the centralisation
issues inherent in conventional MARL approaches. Through a methodical investigation and critical
analysis, this thesis aspires to encourage a new direction in swarm robotics research, steering closer
to the realisation of systems proficiently navigating complex real-world scenarios.

Keywords: Swarm Robotics, Automatic Controller Design, Robot Learning, Deep Reinforcement
Learning, Multi-Agent Reinforcement Learning, Federated Learning, Decentralisation.
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Chapter 1

Introduction

1.1 Swarm Robotics

Robots have become an integral part of modern society, notable for performing tasks autonomously
thanks to their programmable nature and the capabilities to sense and act accordingly. They are
especially prominent in sectors demanding laborious tasks or operations in environments that are
dangerous for humans. This includes roles in manufacturing and rescue missions, amongst others.

However, deploying a single robot has its set of limitations, especially in large-scale, complex,
dynamic and hazardous environments. The chances of successfully completing a mission in such
conditions diminish significantly when relying on just one robot. Enhancing a single robot’s
hardware and software could be a solution, but it involves considerable costs and time.

An alternate and potentially more effective strategy is to employ a group of robots, an approach
known as Swarm Robotics [1]. This approach not only allows for coverage of a larger area but
also offers redundancy with the increased number of robots. This ensures the mission’s continuity
even if a part of the group fails and adaptivity to diverse and unpredictable requirements of real-
world missions. This collective capability, featuring social insects in nature, fosters collaboration
that exceeds the potential of individual entities. For instance, a group of robots can carry out
collaborative transportation tasks, adapting to the specific needs of the environment and task, which
resembles the self-organising behaviour of army ants that construct artefacts with their bodies to
adapt to the environments [2].

However, designing such a system is more complex than creating a single-robot system. It requires
decentralisation, where robots function independently, communicating only with nearby robots or
interacting directly with the environment. This decentralisation creates a resilient and adaptable
system, with robots capable of undertaking similar tasks and adjusting the group size as needed,
enhancing the system’s resilience and adaptability.

Creating an effective swarm robotic system, though promising, presents several challenges. A
pivotal aspect is developing a competent control system, an aspect that directly influences individual
and collective behaviours. Recognising the potential of swarm robotics in real-world applications,
developing this control system has emerged as a crucial research area [3], [4].
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While controlling a single robot has been researched extensively over the years, ensuring collective
behaviour without escalating complexity remains a significant challenge [5]. Much of the existing
research in swarm robotics has been confined to controlled environments, not equipping real-
world complexities. The next step in this field involves creating a system where robots can work
harmoniously without human intervention, showcasing resilience and adaptability in dynamic and
potentially hazardous environments.

1.2 Automatic Controller Design

With the realisation of swarm robotic systems that exclude the need of human designers, automatic
control design methods have stood as a vital area of focus in the advancement of swarm robotics.
Automatic controller design is a study that seeks to devise control systems for swarm robots with
minimal human intervention. This facet of research has been highlighted as a pivotal component
for the successful deployment of swarm robotic systems in real-world missions [3], [5]. Despite
substantial advancements, the quest for a universally effective methodology remains, with current
approaches grappling with a balance between performance efficacy and pragmatic design pro-
cesses [6], [7].

To circumnavigate the challenges inherent in ”on-line” designs, which involve real-time controller
development during missions and risk prolonged design periods and potential physical damage, an
”off-line” approach has been considered. This entails the preliminary design of controllers within
simulated environments, removing the need of physical robots involved in the design process.
However, it increases the degree of reality gap issues, a phenomenon where controllers fail to
transition successfully from simulated to real-world environments.

At the forefront of this evolving landscape is robot learning-based automatic controller design, a
paradigm that integrates the merits of both on-line and off-line design processes to bridge the reality
gap. Reinforcement Learning (RL) and its more sophisticated counterpart, Deep Reinforcement
Learning (DRL), which employ Artificial Neural Networks (ANNs) as function approximators,
stand as potent techniques in this realm. These methods are equipped to facilitate seamless tran-
sitions between simulated training environments and actual operational contexts. Nevertheless,
the deployment of robot learning methodologies, particularly DRL-driven automatic controller
design, has been somewhat limited, a scenario that signals the necessity for intensified research and
development in this domain [7].

However, the widespread adoption of DRL-driven automatic controller design has encountered
resistance, primarily due to its incompatibility with the decentralised framework characteristic of
swarm robotics systems. The prevalent Multi-Agent Reinforcement Learning (MARL) framework
necessitates a degree of centralisation, a requirement that contradicts the inherent decentralised
structure of swarm robotic systems. Consequently, this has hindered the progression and effective-
ness of DRL applications within this context. As such, fostering a decentralised approach in DRL-
driven automatic controller design emerges as a vital topic, a move that promises to catalyse the
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development of more proficient and adaptive swarm robotic systems capable of tackling complex
real-world challenges.

1.3 Aims, Objectives and Overall Structure

This thesis focuses on the further development and enhancement of DRL-driven automatic con-
troller designs, a critical component in advancing the functionality of swarm robotic systems. The
primary contribution is the advancement of DRL-driven automatic controller designs alongside ad-
dressing the centralisation issues noted in the MARL-based robot learning for automatic controller
design.

The structure of this thesis is delineated into three distinct aims, each complemented by specific
objectives that are meticulously crafted to fulfil the respective aims. These aims and objectives are
detailed as follows:

• Aim 1: To identify the need for automatic controller design for swarm robotic systems in a setting
close to real-world environments.

– Objective 1: To investigate the impact of real-world conditions on the collective behaviour of
swarm robotic systems.

• Aim 2: To develop a DRL-driven automatic controller design, proving its viability and showcasing
its advantage over traditional methods.

– Objective 2: To formulate a DRL-driven automatic controller design for swarm robotic
systems utilising realistic scenarios in a simulated environment.

• Aim 3: To devise a strategy for DRL-driven automatic controller design to alleviate the centralisa-
tion issue in the MARL framework.

– Objective 3: To propose and evaluate a Federated Learning (FL)-based DRL training strategy
to reduce centralisation while improving performance efficacy.

This thesis begins with a comprehensive literature review, followed by three main chapters, each
dedicated to addressing the respective aims and accompanying objectives outlined above.

• In Chapter 2, a detailed literature review is presented to give readers a foundational understanding
of both DRL-driven automatic controller design and the potential of an FL-based DRL-training
strategy for swarm robotic automatic controller design.
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• In Chapter 3, a systematic exploration of the impacts of simulated real-world conditions on the
collective behaviour of swarm robotic systems is undertaken. Capitalising artificial pheromone
communication that mimics communication of nature swarms that lead higher adaptivity, the effect
of real-world conditions on a complex swarm robotic system is investigated. This investigation
highlighted the imperative need for automatic controller designs capable of operating in real-world
conditions within the field of swarm robotics.

• Chapter 4 advocates for the DRL-driven automatic controller design, which is currently a promising
yet underexplored method within the domain of robot learning. This approach is introduced and ap-
plied to facilitate basic low-level behaviours in swarm robotic systems with the realistic scenario of
autonomous vehicles, formulated as a swarm system, showcasing its effectiveness and highlighting
existing issue of centralisation due to the intrinsic nature of the MARL framework, where the issue
hinders its establishment as a universal methodology for automatic controller designs.

• Chapter 5 addresses the issue of centralisation stressed in Chapter 4, intrinsic to the MARL method.
Here, a Federated Learning (FL)-based DRL training strategy is presented as a viable alternative to
MARL. This chapter explores the potential of the proposed FL-based DRL strategy to counteract the
centralisation issues inherent in MARL, aiding the progression of DRL-driven automatic controller
designs into a universal methodology, aligning with the grand challenges identified in swarm
robotics [4].
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Chapter 2

Literature Review

In this chapter, a comprehensive literature review is provided to equip appropriate background
information to understand the context of this thesis and relevant technical details. This chapter
begins with a broad overview of swarm robotics, followed by an in-depth discussion on artificial
pheromone communication, highlighting the specific system adopted in this thesis. Subsequently,
the topic transitions to the realm of automatic controller design, outlining prevailing methods and
emphasising the imperative need for advancing DRL-driven designs. Detailed technical insights
into DRL are provided, with a focus on the specific algorithm underpinning this thesis. To address
the centralisation challenges of DRL, the concept of Federated Learning (FL) is introduced, under-
scoring its efficacy in reducing centralisation while highlighting its added benefits observed in other
domains.

2.1 Swarm Robotics

Swarm robotics is a field of study of how to make a group of individual robots collaborate or
collectively solve a common task without any forms of centralised communication [1], [8]. The early
motivation and inspiration for studying swarm robotics comes from the prosperity of social animals
utilising collective behaviours such as ants, bees and birds [3]. In recent decades, researchers
have identified that such complex collective behaviours performed by social animals emerge from
individuals who lack of global representation or knowledge of the task [9]. Furthermore, it has
been observed that no leader that guides the rest of the group exists in the collective behaviours of
social insects. Although they can only utilise limited local observations and interactions for large-
scale complex tasks, they can perform collective task very effectively with high redundancy resulted
from the large number of individuals. The high redundancy in social animals promoted that they
perform complex behaviours and maintain a large group in nature. Adopting the mechanism of
social animals featuring high redundancy, researchers have devised and developed swarm robotics to
design a robotic system effective for complex environments and tasks where and what nature swarms
thrive [10].

High redundancy in swarm robotics creates three unique characteristics of swarm robotics: ro-
bustness, scalability and flexibility. In swarm robotics, robustness describes the system’s tolerance
to failures and its ability to maintain safety; it is often used synonymously with fault-tolerance.
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In swarm robotic system, high degree of robustness is achieved by massive redundancy of quasi-
homogeneous agents and the avoidance of single point of failures that divides a swarm into sub-
groups. It leads the swarm robotic system to be tolerant from failure even when the proportion of
individuals in the swarm fail. Scalability is achieved as quasi-homogeneous individuals require
only local communication without the access to the global information to be involved in a swarm.
This property allows the entire swarm to maintain its functionality without resetting the way the
existing members interact regardless the number of members increases or decreases. Flexibility
(also often called adaptivity) in a swarm is also achieved by quasi-homogeneous individuals who
are not assigned a specific role in a swarm. Since there is no specialisation of individuals in a
swarm, robots can dynamically allocate themselves to different tasks to match the requirements of
specific environment and operating conditions. The three advantages of swarm robotics are crucial
where the environment causes failures of individuals, requires diverse sizes of the swarm, and
changes dynamically. Thus, swarm robotic systems are highly promising for the domains where the
task and operating condition is too hazardous for humans or single robot to perform task without
failure, or the environment is large-scale and complex and dynamic. The examples of such task or
environments include eradicating oil leaks in the vast ocean, extraterrestrial planetary exploration,
and large-scale surveillance.

Since the emergence of swarm robotics, various research directions have been explored. These
encompass the collective behavior exhibited by swarm robotic systems, the development of robotic
platforms for swarm robotics research, the methodologies for individual robot controller design,
communication strategies, and additional interdisciplinary studies that facilitate the operation of
swarm robotic systems in real-world environments. Together, these directions constitute the most
prominent areas of focus in the field [4], [11].

2.2 Artificial Pheromone Communication System for Swarm Robotics

In Chapters 3 and 4 of this thesis, biologically inspired pheromone-based communication is incor-
porated as an important part for swarm robotic systems to perform complex collective behaviour,
though it is not a central focus of investigation in the research studies. This section illuminates the
inherent characteristics of biological pheromones, illustrating their successful manifestations in
nature, which in turn underscores their potential efficacy as a communication tool within swarm
robotic systems. Subsequently, a range of artificial pheromone systems is presented, highlighting
various experimental demonstrations and the gradual advancements made in this nascent yet
promising field, holding significant potential for future applications.

Drawing closer to the specific framework of this thesis, COS-Φ, an artificial pheromone system
that serves as an essential part of the research studies conducted in this thesis, is detailed. This part
distinguishes COS-Φ against other existing artificial pheromone systems, facilitating delineation of
its features and functionalities.
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2.2.1 Pheromone in Biology

Pheromone is defined as chemical substance secreted to the outside of an individual and detected by
conspecifics triggering them to conduct stereotyped behaviour and/or have developmental changes
[12]. Pheromones are essential factors in animal communication and trigger physiological change in
a wide range of behavioural and ecological contexts in nature [13]–[17]. Pheromones play important
roles as communication means for diverse taxonomic groups from yeast and insects to mammals
[18].

Pheromonal communications were found in vertebrate animals [19]. For example, 2-methylbut-
2-enal, which is contained in rabbit milk, improves nipple-search behaviour of rabbit pups [20].
Several studies have found that the physiological and psychological effects elicited by chemosignals
arise also in humans [21]–[24]. For example, it is found that female reproductory state is affected
by male axillary extract which mediates the hormonal change in female brain [23]. These results
showed that pheromonal communication is widely used across diverse taxonomic groups including
human beings.

Although a broad spectrum of animals use pheromonal communication as their communication
mechanism, social insects utilise pheromone most effectively [25]. Pheromone enables a whole
group of social insects to communicate effectively as an externalised and spatialised shared memory
although the individuals have limited memory and sensory-motor capability. Also, agents only
need local sensing ability to detect pheromone rather than global sensing. Moreover, a collective
behaviour in a group of social insects can be optimised appropriately deploying pheromones [26],
[27]. For example, the Argentine ant Iridomyrmex humilis finds the shortest path from its colony to
the food source using pheromone and its feedback mechanisms [25], [27].

Monomorium pharaonis, called Pharaoh’s ants, which are usually found in human habitats, utilise
multiple pheromones that are vital for food-foraging behaviour in dynamic and competitive en-
vironments [28]. They create pheromone trails to fetch to and return from the food source using
three types of trail pheromones: non-volatile attractive pheromone, volatile attractive pheromone
and repellent pheromone. The three different kinds of pheromones work respectively as long-term
memory of the trail, attraction leading to the currently rewarding trail and a stop-sign. The sophis-
ticated use of the three types of pheromones enables the ant colony to create optimal pheromone
trails from the nest to the food source in dynamically changing environments. Bombus hortorum,
known as bumblebee, leaves chemical cue on flowers which allows detection and avoidance of
recently depleted flowers [29]. Similarly, the use of chemical cue enhances the efficiency of foraging
behaviours of bee colonies since it prevents meaningless visits of depleted flowers. Majority of
social insects utilise queen pheromones. This type of pheromones characterise queen and other
reproductive individuals and are extremely important to maintain the whole colony [30], [31]. For
example, a queen-pheromone of Lasius niger, known as the black garden ant, regulates worker
sterility so that the reproduction behaviour of the colony is controlled by the queen [32]. As another
example, if the queen of a colony fails by any reasons including viruses and pesticides, the secretion
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of queen pheromone in the colony decreases, and as a result the colony might collapse [33]. The
above examples clearly show the efficacy of pheromone as a communication strategy for social
insects.

2.2.2 Pheromone in Swarm Robotics

The efficacy of pheromone in social animals is applicable in swarm robotic systems as both of
them consists of a group of individuals without a central leader, explained more specifically with
the following reasons. First of all, pheromone communication requires only local information for
individual robots that can mitigate the needs of functionality to obtain global information, e.g.
precise localisation in global coordinate system, long-range communication [34]. Second, regardless
of the complexity and scale of the task and environments, the individuals only need to have a rela-
tively lower memory capacity since deposited pheromone embeds information in the environment
not requiring individual robots to store the information [35]. Third, its potential to optimise the
performance of a group task via the use of a combination of multiple types of pheromone and
feedback mechanisms is a highly desirable feature for robot swarms to encrypt complex sets of
information with different strengths and lengths of expiration [26]. Finally, pheromone allows for
robot swarms to have fully decentralised communication [36].

The potential of pheromone communication has been realised in the field of swarm robotics; thus,
research studies to capitalise on pheromone communication in swarm robotic systems have emerged.
The seminal work that implemented pheromone communication in robot swarm was introduced
in 1999 [37]. This work employed Cinnamomum camphora, known as Camphor, as the medium
of artificial pheromone for trail following behaviours for the robotic systems which embodied
odour releasing and sensing functionality. The results of this work introduced the feasibility of
using pheromones in robotic systems as a communication medium. From the emergence of this
seminal work, research studies have investigated the feasibility of various means to actualise
artificial pheromones including chemical substances, RFIC tags and light-emitting devices. The
research studies introduced in the following paragraphs show the feasibility and characteristics of the
medium used as an artificial pheromone. These works are categorised based on the type of artificial
pheromone employed, rather than a chronological or developmental progression. It is important
to note that there is no temporal connection between these methods; they have emerged in parallel
to actualise similar ideas. Their development was not driven by a sequential improvement or by
overcoming the limitations of one method in favour of another. Rather, these different approaches
were implemented independently, each characterised by its unique features and attributes.

The seminal work introduced in this study employs chemical substances as a medium for artificial
pheromones, specifically utilising ethanol as an artificial pheromone in swarm robotic systems
as demonstrated in the two early studies [38], [39]. These cited works illustrate the feasibility of
creating a fully autonomous robotic system capable of collective behaviours, such as trail-following,
through pheromone communication. Although chemical-based artificial pheromones bear a strong
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resemblance to those found in nature, there are essential differences that render their utilisation in
engineered systems less effective.

Firstly, the fundamental disparities between biological and engineered systems mean that robots
require specialised types of sensors and actuators not commonly used in conventional robotic sys-
tems. The rarity of these components can hinder development in comparison to systems employing
standard sensors and actuators. Secondly, unlike natural swarms that operate without external
guidance, robot swarms are designed to perform human-directed tasks and thus require a certain
level of control. The chemical nature of the substances makes them highly susceptible to environ-
mental influences, complicating the precise execution of desired behaviours. Lastly, the utilisation
of chemical substances as artificial pheromones presents potential risks to human operators, given
that they may be adversely affected by them. This issue adds a layer of complexity and further
emphasises the inherent challenges in aligning chemical substance-based artificial pheromones with
the efficacy of their natural counterparts.

Drawing on the principle of pheromones, which leave information in the environment, RFID sys-
tems have been employed as a means of pheromone communication in swarm robotics [34], [40]. In
these studies, RFID tags were strategically distributed across the operational floor space. As robots
passed over these tags, they transmitted data that was then stored. The subsequent behaviour of the
robotic swarm was guided by this previously transmitted data, functioning in a manner analogous
to natural pheromones. A research study by Alfeo et al. [41] illustrates the practical applicability
of RFID tags as a medium of pheromone communication in real-world scenarios, specifically for
autonomous waste management in urban environments. The research validated the effectiveness
of RFID-based pheromone communication, showing that this approach outperformed traditional
centralised control methods for waste management vehicles. However, while RFID-based swarm
robotic systems have shown promise, their deployment in real-world scenarios presents challenges.
Specifically, these systems require environments to be appropriately equipped with RFID tags,
which are necessary items that may limit their use in potential operating settings for swarm robotics.

Virtualisation offers a novel approach to actualising pheromone-based communication in swarm
robotic systems through the use of virtually generated pheromones. This method enables individual
robots to access and interact with virtual pheromones. Recent studies have explored virtualisa-
tion for the implementation of artificial pheromones in swarm robotic systems. For example, the
study [42] introduced a mechanism for path selection by a foraging robot swarm using ”virtual
ants.” In this model, robots locally transmitted messages, referred to as virtual ants, which deposited
virtual pheromones, guiding the path selection.

Other research has expanded this concept by creating virtual maps to mark deposited pheromones,
making them accessible to all robots. The augmented reality for Kilobots (ARK) system, introduced
by the study utilising Kilobots [43], provides a striking example. It establishes a virtual environment
where Kilobots, designed for large-scale robotics experiments, can transmit and sense information
in real-time. Through ARK, robots are equipped with virtual sensors and actuators, granting
them access to shared virtual environments where they can release and detect virtual pheromones.
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Subsequent works, such as the study that leveraged this system to investigate quality-based foraging
[44].

Similar to the ARK system, Kilogrid [45] was proposed as a virtualisation system that primarily
uses bidirectional infrared communication between Kilobots and grids mounted under the arena.
This system also enables the creation of virtual pheromones, accessible to both the robots and a
remote PC in real-time. Virtualisation simplifies the use of various pheromone types, allowing for
easy modification in sophisticated experimental settings.

Despite these advancements, virtualisation systems like ARK and Kilogrid do have their limitations.
Notably, both systems suffer from low communication frequency, leading to significant delays in
communication. This constraint must be considered when harnessing these methods in the rapidly
evolving field of swarm robotics.

RFID systems and virtualisation each present distinct advantages for pheromone communication,
with the former facilitating the manipulation of pheromone information and the latter providing
flexibility. Light, as a medium, combines the benefits of both RFID and virtualisation. Garnier et
al. [9] pioneered the use of projected light from the video projector mounted above the operating
arena as an artificial pheromone, demonstrating its advantages. From a design standpoint, light
sensors and emitters are more accessible and deployable compared to the technologies required for
RFID and virtualisation systems. Additionally, the control and modification of light emitted from
engineered devices offer flexibility in implementing various types of pheromone and their spatio-
temporal development, a key aspect in mimicking natural pheromone-based communication.

COSΦ represents a light-based artificial pheromone system designed for swarm robotics [46]. It
functions through the computation of a 2D matrix that depicts the distribution of pheromone within
a rectangular field. The system deploys a displayable screen as an interactive arena, enabling robots
to engage with the emulated pheromone patterns. Additionally, COSΦ facilitates the deposition
of pheromones by employing a tracking system to identify the position, orientation, and ID of the
robots. A notable advantage of COSΦ is its capability to provide high-resolution emulation of
pheromones, as the resolution is determined by the display device itself. This allows for a more nu-
anced influence on robot behaviour, beyond what low-resolution methods can achieve. Furthermore,
the conversion of artificial pheromones from the computed 2D matrix simplifies the manipulation of
various pheromone types with distinct properties and facilitates simulation at different time speeds.
Such features render COSΦ suitable for both simulating and studying artificial pheromone-based
swarm robotic systems. It also offers a platform for experimental testing of prospective pheromone-
based swarm robotic systems, which, although not yet capitalised for the real-world applications
due to technical limitations, appear promising for future development with the advent of supporting
technologies.

Subsequent research has expanded upon the COS Φ system to explore various collective robotic
behaviours. Sun et al. [47] adapted the system to simulate multiple types of pheromones through
the use of multi-color hues, enabling the investigation of food-foraging and aggregation behaviours
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via both attractive and repellent pheromones.

2.3 Automatic Controller Design in Swarm Robotics

Swarm robotic system controller design plays an important role in the manifestation of intricate
collective behaviours, transforming preliminary system specifications into actionable robotic
behaviours. A significant challenge in swarm robotics is not just ensuring individual robot be-
haviour, but also realising emergent properties from collective interactions. Deriving a desired
global collective behaviour from local behaviours and vice versa is challenging due to the non-
linear dynamics of the swarm robotic system performing collective behaviours [48]. Therefore,
controller design is an important topic of research in swarm robotics requiring developing diverse
effective design methods [49]. In this section, overview of swarm robotic controller design is
introduced, highlighting automatic controller design as a topic of interest. the taxonomy of swarm
robotic controller design is illustrated in Figure 2.1. For a more detailed classification of automatic
controller design methods, the design phase is also marked with different edge colours. For easy
reference, the corresponding section number for each method introduced in this section is marked
and the taxonomical location of the main topic of this thesis is coloured red.

While there is an absence of standardised methodologies in controller design, the prevailing
paradigms can be primarily bifurcated into manual and automatic design methods [3]. The manual
controller design is the most basic form of controller design, predominantly used in many swarm
robotics research studies [10], [49]. Manual controller design includes any type of methodologies
that require human designers to design the microscopic behaviour of a robot swarm to lead a desired
macroscopic behaviours. Typical methodologies adopted as manual controller design are design-
ing microscopic behaviours based on finite-state machines or behaviour trees using biologically
identified behaviours and modelling approaches [49]. Automatic controller design encompasses
any approach that excludes the intervention of the human designer during the design process after
initial specification phase [3]. Available methods for automatic controller design are introduced in
the following sections in depth.

The salient difference between manual and automatic controller design is the degree of human
intervention during the iterative design phase. Manual design, despite its efficacy in elementary
scenarios, tends to be impotent against the escalating complexities inherent in real-world swarm
robotic system implementations. Contrarily, automatic design augments efficiency and scalability
by automating behavioural adjustments, thereby addressing challenges presented by complex
and unpredictable real-world scenarios. The pivotal shift towards automatic controller design
entails converting the design process into an optimisation problem, where an objective function is
optimised for the best performance.

The semi-automatic design blends elements of both manual and automatic controller design. Early
research studies of automatic controller design adopted semi-automatic design [50]–[53]. In this
method, a human designer remains involved, periodically adjusting the controller based on obser-
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Figure 2.1. An overview of swarm robotic controller design taxonomy

vations. For example, they may tweak parameters to boost exploration when necessary. Though
semi-automatic design provides a glimpse into the potential of full automation, it shares manual
design’s pitfalls: the controller’s quality is contingent upon the designer’s skill and direction [7].
Consequently, reproducibility may vary with the intricacy of the controller design [54].

Fully automatic controller design eliminates human involvement post the initial mission specifi-
cation [5]. Essentially, it ensures total automation throughout the design process [55]. There is
no general methodology for automatic controller design, but several design methods have been
developed with different pros and cons. Automatic controller designs can be bifurcated into on-
line and off-line approaches based on when the design process is executed [7]. In the on-line
design method, the design process is executed while the swarm performs the mission in the target
environment; in contrast, in off-line design, the design process is executed before the swarm operates
the mission in the target environment.

While on-line methods utilise real-world data, they can suffer from lengthy design process, potential
robot harm, and a narrow emphasis on local behaviors, neglecting overall system efficacy due to the
robot’s limited local data access. Off-line methods, conversely, leverage simulated environments
for controller design prior to real-world deployment, ameliorating many of the on-line method’s
limitations. However, the persistent challenge remains the reality gap—the divergence between
simulated and real-world environments. The repercussions of this gap range from necessitating
minor modifications to rendering controllers ineffectual.

Carefully considering the challenges inherent in each design phase is crucial when developing
automatic controller design methods, as it determines the effectiveness of the designed controller
of a robot swarm deployed for the mission in the target environment. Birattari et al. [5] envisages
futuristic real-world applications of swarm robotic systems, exemplified by garden management
business scenarios. Such applications underscore the flexibility offered by off-line methods, where
multiple pre-designed controllers can be readied in anticipation of varied tasks, effectively navigat-
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ing operational time constraints.

In the following sections, four methods for automatic controller design are introduced sequentially:
Neuro-evolution, embodied evolution, automatic modular design and robot learning. The char-
acteristics, pros and cons and representative research studies are described for each method with
discussion, altogether justifying the importance of developing DRL-driven automatic controller
design, which is a subcategory of robot learning, under an automatic controller design perspective.

2.3.1 Neuro-evolution

The prevailing method in swarm robotics for automatic controller design is the evolutionary swarm
robotics approach [56]. This method integrates the concepts of evolutionary robotics [57] into
swarm robotic systems. In evolutionary robotics, robot controllers are optimized using evolutionary
algorithms based on a mission-specific objective function, often termed as the fitness function.
The objective function evaluates the performance of the control instance based on the pre-defined
evaluation metrics. Within a pool of diverse options of control instances, poorly performing
controllers are discarded; conversely, best performing controllers are selected for the next iteration
until it reaches the defined termination condition. During the iteration, control instances can vary
based on recombination and mutation rules to explore wide parameter spaces for obtaining better
controller instances. This process resembles evolutionary process in nature, that is why it is named
evolutionary algorithm.

Werner and Dyer [58], [59] introduced the seminal studies of collective behaviours using evolution-
ary robotics techniques. In these works, they observed the successful emergence of communication
strategies necessary for the defined mating and herding tasks. Reynolds, who developed the famous
boids [60], which are the virtual creatures widely used for studying flocking, utilised evolutionary
robotics for the virtual creatures to avoid static obstacles and a manually programmed predator [61].
Not only the virtual agents that do not have physicality, but also evolutionary robotics approach
succeeded in designing swarm robotic tasks with diverse simulated robots, e.g. Khepera [62],
ALICE [63].

Although the research studies using virtual agents or simulated robots showed the feasibility of
evolutionary robotics techniques to develop useful collective behaviours, only a few case studies
have demonstrated the usefulness of evolutionary robotics in swarm robotic scenarios. A seminal
work using real robots to show the feasibility and effectiveness was presented by Quinn et al. [52].
With a group of three simulated and physical robots that rely on noisy data from infrared sensors,
navigation in formation was successfully performed. Similarly, Nelson et al. [64] used evolutionary
robotics algorithm to develop robotic swarms playing the “capture the flag” game. In the setting of
two robotic teams playing the game against each other, good competitive strategies were developed
in simulated environment and deployed in the robot teams, demonstrating playing games in the
target environment.

One most famous research project that evolutionary swarm robotics approach developed by large
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volume of research studies is the SWARM-BOTS project [2], [65]. The aim of the project is to study
innovative approaches to the design and implementation of self-organising and self-assembling
artifacts. In this project, several collective behaviours have been designed using evolutionary robotic
techniques, e.g. collective alignment, hole avoidance and self-organising synchronisation. The
controllers were designed in the simulated environments and deployed both in the simulated and
physical experimental setup. For the implementation of the designed controllers in the physical
robots, a mobile robotic platform with a gripper, called s-bot [65], was deployed. Through this
seminal project, evolutionary swarm robotics approach demonstrated its potential to design complex
collective behaviours working in the real-world environment.

In the SWARM-BOTS project, artificial neural network (ANN) was adopted as a control instance to
be optimised using the evolutionary robotics techniques. The case where artificial neural network is
used as the control instance of evolutionary robotics techniques is called neuro-evolution. ANNs are
non-linear function approximators that are aimed to approximate any types of functions expressing
only with the sum of the product of first-order functions. Depending on the design of ANNs, various
types of controllers can be designed. For this reason, ANNs are popular for the evolutionary robotics
techniques and the cases where evolutionary robotics techniques use ANNs are further categorised
as neuro-evolution.

More recently, neuro-evolution approach has been introduced to more diverse scenario and environ-
ments to develop demonstrating its adaptivity for the real-world missions, which cannot be found
in the manual controller design methods. Duarte et al. [6] developed a controller for a swarm of
unmanned aquatic surface vehicles for homing, dispersion, clustering and area inspection tasks, that
are sub-tasks for the marine environmental monitoring system. Using NEAT [66] as an algorithm
to implement neuro-evolution based controller design, controllers were designed in the specially
designed simulated environment. The best three controller were selected after evolutionary process,
and deployed for the real robot experiments. The performance of the selected controllers for the
real environmental monitoring tasks was demonstrated at a similar level of those in the simulated
environment, showing that neuro-evolution approach is effective for the highly realistic applications
whereas only simulated or highly controlled environments were used for validation of neuro-
evolution approaches previously.

Hasselmann et al. [67] presented a comprehensive comparative analysis on diverse available
techniques to implement off-line neuro-evolution approach, including NEAT [66], Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [68], Exponential Natural Evolution Strategies
(xNES) [69] and EvoStick [70]. Taking diverse behavioural scenarios that are widely adopted for the
missions of robot swarms, requirements for neuro-evolution approaches to design mission-specific
behaviours were investigated.

Although successful application scenarios have been demonstrated using neuro-evolution ap-
proaches, following with further detailed comparative analyses, neuro-evolution approaches have
encountered two major challenges: fitness engineering and the reality-gap [7].
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Fitness engineering refers to the process and method of computing fitness score of the family of
evolutionary algorithm methods. In other words, fitness engineering is about how to generate an
appropriate objective function that drives the evolutionary process. Two specific challenges are
well-known as a result of incorrectly designed objective function: bootstrapping and deception [6].
Bootstrapping is a phenomenon where the objective function cannot provide effective selection
pressure when the instance is in low-performance region of the search space. Absence of evacuation
from low-performance region causes the controller instance falls in the suboptimal performance.
The issue of deception causes when the case of local optima is not considered. When deception
exists, the design process converges to the easily reachable local optima rather than the global
optimum that is intended to be found. It is commonly known that a priori knowledge of designers
can help the objective functions mitigate bootstrapping and deception issues, which the process is
called feature engineering. However, the necessity of a priori knowledge counteracts against the
purpose of automatic controller design, to minimise human expertise and intervention during the
design process.

Reality-gap means the discrepancy between the simulated environments where the controller is
designed and the target environment where the designed controller is deployed in the physical
robot in the target environment, occurring performance drop. Reality-gap is unavoidable for off-
line design method as it requires the simulated environment to design the controller for the sake of
effective and safe design. The catastrophic effect of reality-gap has been observed even in the case
of sophisticated off-line neuro-evolution method. The discovery of catastrophic effect of reality-
gap has raised the investigation of off-line design methods that demonstrated good performance in
the simulated environments or highly controlled laboratory environments [5], [67]. The substantial
effect of reality-gap demonstrated that off-line design methods without mitigation strategies would
not be useful for the missions for a robot swarm in the target environment.

2.3.2 Embodied Evolution

The most straightforward method to overcome the reality-gap problem is to avoid using an al-
ternative environment (i.e. simulated environment) and to design the controller directly in the
target environment. To mitigate the issue of reality-gap of off-line neuro-evolution approaches,
the counterpart design method which is conducted on-line has been developed, called embodied
evolution [7], [71]–[73]. In embodied evolution, individual robots execute a decentralised and
asynchronous evolutionary algorithm whereas a centralised neuro-evolution algorithm is run in an
off-line method. During the design process, the robots periodically select new control instances from
their own pool and exchange the designed controllers with neighbour robots. The aim of embodied
evolution is also to obtain the single best version of the controller instances, typically composed with
ANNs.

Thanks to the on-line and decentralised nature of the design process, embodied evolution coun-
teracts the limitation of off-line design methods. Since the design process is executed in the target
environment directly, no reality-gap exists to be concerned. Furthermore, the design process can be
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accelerated as the decentralised and asynchronous evolutionary algorithm is executed on individual
robots in parallel. By exchanging control instances among individuals, the best control instance
can be found faster than the centralised on-line algorithm is utilised. Additionally, the nature of
decentralisation and asynchronicity enables the swarm scalable. The scalability that embodied
evolution can offer is highly desirable for a robot swarm as this property allows a robot swarm to
be adaptive to diverse scenarios as well as the swarm becomes fault-tolerant. Despite the promising
aspect of embodied evolution, the number of research studies is low that use real robots than those
studied off-line neuro-evolution approaches due to the intricacy of using real robots. In the seminal
study where the term embodied evolution is coined, a swarm of mobile robots performed phototaxis
tasks outperforming manually designed controllers [71], [72]. Using embodied evolution for more
practical tasks, Prieto et al. [74] designed a swarm of e-puck robots to perform collective cleaning
tasks. To leverage the existing evolutionary algorithm that demonstrated effectiveness in the case
of off-line neuro-evolutionary approaches, Silva et al. [75] proposed an on-line and decentralised
variant of NEAT [66], called odNEAT, and evidenced that it approximated the performance of
rtNEAT [76], the improved version of NEAT, and outperformed existing on-line version of neuro-
evolution methods in the three tasks: aggregation, integrated navigation and obstacle avoidance, and
phototaxis. Notably, odNEAT presented higher fault-tolerance than the centralised counterpart, dis-
playing greater generalisation. More recently, Cambier et al. [77] proposed an evolutionary language
model for the effective exchange of information to tune the parameters of a probabilistic controller
performing aggregation tasks. The recent case study of embodied evolution for designing practical
foraging task [78], where the concept of embodied evolution is framed as a form of robot learning
coined as social learning, highlights the benefits of embodied evolution approaches accompanied
with effective communication strategies to overcome the issue of reality-gap.

Though the existing research studies have demonstrated that embodied evolution can provide a
more adaptive and fault-tolerant design process than the off-line and centralised counterpart neuro-
evolution methods, major challenges of on-line methods remain [7], [55]. First, the requirement
of embodied evolution burdens the robotic platform. Individual robots must carry software that
executes the design process as well as the control software. Typical robotic platforms used in swarm
robotic research embody limited hardware; therefore, additional requirements on memory and
computation to the control instances could not be viable. Second, the on-line design process may
take a relatively long time. The lengthy design process may consume power more than the batteries
can provide. Also, when the mission requires timely execution, a long design process must be
avoided, e.g. rescue missions. Third, the on-line design process might cause permanent damage to
physical robots. Since the purpose of the design process is to find the best controller by deriving
an optimal solution in the given search space, robots under the execution of embodied evolution
must explore the controller instances that may cause physical damage. Finally, the individual robot
may not effectively assess the performance of the chosen genome run on itself. It is challenging to
evaluate the chosen genome for the individual in terms of global performance as robots utilise local
perception only.

Existing research studies in embodied evolution have not devised solutions for the first three

32



challenges, which are caused by the intrinsic nature of the mechanism of embodied evolution.
On the other hand, the challenge of having no global knowledge of performance assessment of
individual robots has been addressed with three solutions: open-ended evolution, decomposition
and simulation-based assessment. Open-ended evolution is an evolutionary algorithm that has no
explicit objective function but assesses the controller instance based on its ability to reproduce [74],
[79], [80]. In other words, it works under the principle of “Survival of the fittest”. In open-ended
evolution, implicit selection pressure is exerted based on the survivability of genomes of controller
instances than explicit selection pressure with the fitness function. Over time, the genomes with
the highest survivability will remain last. Open-ended evolution does not aim to generate desired
behaviour, but it encourages the complex behaviours to emerge based on survivability.

Decomposition of the global objective function into rewards for the actions of individual robots [75]
is another solution to mitigate the lack of performance assessment by individuals at a global level.
Despite its plausibility, it is particularly difficult for the tasks where cooperation is required or de-
layed reward is given to individual robots. In these tasks, the contribution of the action of individual
robots is not clear. Therefore, optimisation upon the decomposed objective function may not lead
the optimal global behaviour of a robot swarm. This challenge is also highlighted in the field of
robot learning with a different name: credit assignment.

Simulation-based assessment alleviates the credit assignment problem of decomposition of the
global objective function. It is a relatively new method that utilises simulation to evaluate the quality
of individual genomes. Jones et al. [81] proposed a behaviour-tree based on-line evolution algorithm
that uses on-board simulator to assess the quality of the genome. Using a simple 2D physics-based
simulator that is executed on the onboard computer of robots, the performance of the controller
instance is assessed in a holistic view. Although it mitigates the credit assignment problem, it might
encounter the issue of computational burden as it runs a simulator in the onboard computer where
the control instance and design process are executed. Furthermore, another type of reality-gap
between the assessment in the simulated environment and the reality can cause inaccuracy. For
example, the actual behaviour of the neighbouring robots might differ from those in the simulated
assessment of collective behaviours.

2.3.3 Automatic Modular Design

The issue of reality-gap has emerged from the off-line controller design methods. Online methods
including embodied evolution attempt to minimise the reality-gap by implementing a design process
in the target environment. Although the reality-gap may be alleviated through on-line methods,
several inherent challenges including possible harm and time constraints that a robot swarm could
encounter during the design process still remain.

Automatic modular design is a more recently highlighted design method that provides pre-designed
modules utilising domain knowledge in the automatic design process to achieve better results [5],
[7], [70], in contrast to neuro-evolutionary approaches that require no a priori domain knowledge.
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Instead of using ANNs as a controller instance, automatic modular design methods utilise con-
trollers constituted of multiple software modules that form a greater complex architecture. Typical
examples of the software modules used for automatic modular design are finite state machines
(FSMs) and behaviour trees (BTs). The software modules are pre-designed by human experts
harnessing the domain knowledge.

Not only does integration of domain knowledge contribute to better controller performance, but
its modular structure alleviates the issue of reality-gap of off-line design methods. The problem of
reality-gap in off-line neuro-evolution approach is deemed as the issue of over-fitting, which means
that the parameters of control instances are excessively specialised to perform the task in the setting
where the controller is designed [5], [54], [67]. In the fields of statistics or machine learning, over-
fitting refers to the state of modelling error when a function is too closely tailored to a limited set of
data points. When the function that forms a model from the given set of data points is over-fitted, it
generates output with a large error when a new data point is input. Likewise, from the point of view
where the problem of reality-gap is regarded as an over-fitting issue, the controller designed with
neuro-evolution is too optimised for the simulated environment to produce useful output in the target
environment while a robot swarm is deployed for the mission. In other words, ANNs provide a large
representational power which leads to counter-productive results when it is deployed in the target
environment. By intentionally decreasing the representational power of the control instance, the
issue of reality-gap can be mitigated. Automatic modular design methods reduce representational
power by using a combination of software modules that define low-level behaviour of a robot instead
of ANNs.

AutoMoDe [70] is a general framework of automatic controller design where a modular software
architecture is generated by assembling predefined low-level modules. In AutoMoDe, room for
choosing predefined modules and optimisation algorithms for assembling and fine-tuning is given
to designers for further specification.

In the first original paper, the proof-of-concept reference model of AutoMoDe, called
AutoMoDe-vanilla [70], is proposed adopting finite state machine as the modular architecture and
F-race [82] as the optimisation algorithm. Six low-level behaviours and six conditions constitute
the modular architecture. For more detail, please see … In comparison with the baseline off-line
automatic design method called EvoStick [70], AutoMoDe was outperformed by EvoStick in the
simulated environment, but surpassing the performance in the real environment. AutoMoDe is
also compared with the two other methods in which human experts were involved: U-Human and
C-Human. In U-Human, the human expert was left free to design controllers. Less flexibly, in
C-Human, the human experts designed controller with the same modules given for AutoMoDe.
In other words, the human experts played the role of optimisation in C-Human. AutoMoDe out-
performed U-Human but was outperformed by C-Human. This comparison in results between
AutoMoDe and two human designed controllers present that the modular structure of AutoMoDe
provided benefit in designing controllers over manual controller design, which is the main point of
automatic controller design, but the optimisation algorithm used in AutoMoDe was limited.
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One variant of AutoMoDe-vanilla is called AutoMoDe-chocolate [83].
In AutoMoDe-chocolate, an improved version of F-race algorithm, called Iterative F-race [84],
is used and showed the greater performance than the AutoMoDe-vanilla and C-Human algorithm.
This result shows that the choice of optimisation algorithm is a major factor of the performance of
AutoMoDe.

Another variant of AutoMoDe-vanilla, called AutoMoDe-maple [85], replaced finite state ma-
chine based architecture with behaviour tree. Comparative analysis on the performance of the swarm
between AutoMoDe-vanilla and AutoMoDe-maple presented that there is no distinguishable
difference in terms of overcoming reality-gap. This means that the mitigating effect from reality-gap
of AutoMoDe series is obtained from the modular structure of the design, not a specific choice of
modular architecture.

Apart from the introduced variants, several more variants have been proposed to improve Au-
toMoDe, for instance, by considering economic trade-offs [86], different modules for specific
exploration tasks, different optimisation algorithm choices.

Although AutoMoDe families showed that the low representational power of automatic modular
design mitigated reality-gap, several limitations exist inherently in the mechanism of automatic
modular design. Unlike neuro-evolution approaches that do not necessitate pre-designed modules,
automatic modular design requires the design cost of low-level modules for specific missions.
Designing low-level modules not only requires substantial cost but also restricts the generalisation of
the swarm to perform diverse missions. Since the low-level modules are specialised for performing
the tasks aimed during the design process, the swarm is likely to perform the tasks out of consid-
eration. Ironically, this shortcoming of automatic modular design is identical to the problem of
manual controller design. To resolve this limitation, a general set of modular architecture must be
proposed [7], [54].

2.3.4 Robot Learning

Robot learning presents a viable alternative to robot evolution methodologies for automatic con-
troller design, as detailed in recent trends in robot learning and swarm studies [7]. Many robot
learning techniques capitalise on Reinforcement Learning (RL) to fine-tune the robot controllers
to enact desired behaviours. RL employs data acquired from interactions between an agent and
target environments to optimise the controller [87]. The success rate is determined by a predefined
objective function that utilises the gathered data. The designated optimisation function enhances the
controller in such a way that the calculated score is maximised. For further insight into the working
principles of RL, please refer to Section 2.4.

Pioneering applications of RL in swarm robotics were introduced by Mataric [88], [89]. In the
initial study, four robots executed a foraging task in a noisy and dynamic environment utilising
RL [88]. This approach encountered complexities in state space, prompting the introduction of
state clustering methods to streamline the input space for the RL algorithm. However, it maintained
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a centralised RL structure, clashing with the decentralised nature of swarm robotics. Subsequent
research proposed communication strategies to facilitate decentralised RL, addressing critical issues
in multi-agent RL environments [89].

Several notable instances demonstrate the application of RL in multi-robot systems with a limited
number of agents. For example, Chen et al. put forward decentralised multi-robot collision avoid-
ance algorithms using DRL for up to six robots, showcasing significant advantages, particularly as
task complexity increased [90]. Meanwhile, Hu et al. developed a multi-robot navigation system
capable of manoeuvring in a realistic domestic setting, significantly outperforming traditional
control methods [91]. Huttenrauch et al. were the first to apply DRL within a swarm robotics
context, introducing a method to address the fluctuating state space inherent in swarm robotics [92].
Despite the promising results in simulated environments, real-world validations remain scarce.

While the studies mentioned above undeniably highlight the advantages of DRL-based automatic
controller design over traditional manual approaches, they also unveil several limitations. Typically,
these works employ a Multi-Agent Reinforcement Learning (MARL) framework, with controllers
undergoing centralised training before decentralised deployment. This centralised aspect contradicts
the decentralised principles of swarm robotics, potentially making real-time updates unfeasible
during actual swarm robotic missions. Moreover, the predominance of centralised training restricts
online design adaptations, potentially hindering applications in more realistic settings due to the lack
of real-time, decentralised training capabilities.

Both robot evolution and learning methods optimise controller instances based on a predefined
objective or fitness function crafted by designers to achieve a specific collective behaviour. Robot
learning, however, offers a more direct approach to optimising controllers using this function,
whereas robot evolution primarily evaluates controllers to select the optimal instances. During the
design process, robot evolution methods are not influenced by the objective function, allowing for a
broader exploration of search space. In contrast, robot learning strives to maximise the score derived
from the objective function, facilitating quicker optimisation but potentially limiting exploration to
narrower spaces. Despite these benefits, the reliance on real-world data remains crucial, with the
majority of current research utilising simulated environments, a practice that may exacerbate the
reality gap.

Automated modular design techniques can potentially bridge this gap by employing modular
structures to adjust the bias-variance trade-off more effectively. This adds more complexity and
expert knowledge that counteract with the purpose of automatic controller design. On the other
hand, robot learning methods could offer more direct and simple measures to manage bias-variance
trade-off, such as managing Artificial Neural Network sizes or introducing early stopping during
training.

Unlike the clear delineation between off-line and on-line design strategies in robot evolution meth-
ods, robot learning offers a more integrated approach to the design process. While initial designs
can be developed off-line using simulated environments, data from real-world scenarios can be
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integrated to enhance the generalisation of controller instances, thereby mitigating the reality gap.
Furthermore, robot learning techniques can exclusively utilise real-world data for on-line design,
potentially reducing design time and safeguarding robots from physical damage or battery depletion
during missions [93], [94].

Applying transfer learning, a method that leverages pre-trained models for quicker adaptation to
target tasks, can further reduce design time and the likelihood of robot damage during on-line design
processes, helping to bridge the reality gap [95], [96]. Though integrating both off-line and on-line
design methods within robot learning for swarm robotic systems remains an unresolved challenge,
various applications in other robotic domains suggest that a hybrid approach could potentially
enhance the design of swarm robotic systems, effectively reducing both reality gap issues and risks
associated with exploration in target environments.

One critical aspect in the development of evolutionary swarm robotics is the challenge of creating
suitable objective functions that guide individual agents to produce desired collective behaviours.
This process is notably more complex within the realm of robot learning, where agents are not only
assessed but optimised based on these functions. Strategies to simplify the design of these functions
are being developed, including imitation learning, which uses example trajectories as a blueprint
for controller instance optimisation [97], [98]. Learning from demonstration techniques, which
analyse individual agent behaviours from supplied videos to optimise controllers, are also being ex-
plored [99]–[101]. Though these techniques provide avenues for developing effective solutions, they
are contingent upon the availability of optimal behaviour examples, potentially limiting exploratory
advancements. Nonetheless, promising results can still be achieved with simplistic reward designs
and appropriate robot learning algorithms [102].

Despite the benefits demonstrated by robot learning methods, the current reliance on the centralised
MARL framework restricts further progress, especially concerning on-line design processes. The
development of decentralised implementation strategies is therefore critical to advancing robot
learning methods, fostering real-world applications in complex and dynamic environments while
minimising the reality gap.

In comparison to robot evolution, robot learning remains in its infancy, albeit with significant
potential to emerge as a comprehensive methodology for automatic controller design, addressing
major shortcomings of existing strategies. Given the limited number of studies that specifically
apply robot learning to swarm robotic systems, further research is necessary to validate its efficacy
as a universal approach for automatic controller design, encompassing the development of fully
decentralised robot learning implementations.

2.4 Deep Reinforcement Learning

In the section 2.3.4, Deep Reinforcement Learning (DRL) emerges as a predominant strategy in
the domain of robot learning methods, holding promise despite its infancy in the field of automatic
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controller design. This section delves deeper, providing a comprehensive and technical illustration
to facilitate a better understanding of the principles governing DRL-driven automatic controller
designs, as a prerequisite for Chapters 4 and 5.

Reinforcement learning (RL) is an automated approach for finding the best solution to a task by
maximising a numerical reward signal [87]. In RL, a subject that performs a task is defined as an
agent. An agent interacts with the environment and obtains transition samples. Based on the current
state information, an agent decides what action it should take and in response the environment
returns a numerical reward signal and information regarding the next state. This process involves
the transfer of information relating to the transition from one state to another, as well as action and
reward data and hence is referred to as a transition sample. Using the transition samples, RL can be
applied to find the best solution for an agent to maximise total cumulative reward, i.e. an optimal
policy, where policy refers to the mapping between states and actions.

In RL, the problem is generally modelled as a Markov Decision Process (MDP) defined by a tuple
(S,A, P,R, γ) [103], where:

• S: the state space, representing all possible states the environment can return to the agent.

• A: the action space, representing all possible actions the agent can take.

• P : the state transition probability, P (s′|s, a), describing the probability of transitioning to state s′

from state s by taking action a.

• R: the reward function, R(s, a, s′), indicating the expected reward for transitioning from state s to
state s′ by taking action a.

• γ: the discount factor, a value between 0 and 1, representing the importance rate of future rewards in
the current state.

This tuple based on the MDP framework, called as transition sample, is collected and used for
further computation to derive controller. Value function and policy of an agent can be computed
using the transition samples.

The value function is central to RL. Value function evaluates how good a state or a state-action pair
is in a given environment. There are two main types of value functions:

1. State-Value function (V π(s)): It represents the expected cumulative reward of starting from state s
and following policy π, mathematically defined as:

V π(s) = Eπ

[︄
∞∑︂
t=0

γtRt | S0 = s

]︄
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2. Action-Value function (Qπ(s, a)): It represents the expected cumulative reward of starting from state
s, taking action a, and thereafter following policy π, mathematically defined as:

Qπ(s, a) = Eπ

[︄
∞∑︂
t=0

γtRt | S0 = s, A0 = a

]︄

A policy (π) is a strategy that the agent uses to determine its actions. It is mathematically rep-
resented as a mapping from states to actions. The goal in RL is to find an optimal policy π∗ that
maximises the expected cumulative reward.

The recursive nature of the value functions can be described by the Bellman equations. Bellman
equations characterises the relationship between the value of a state and the value of its successor
state. For the state-value function, it is given by:

V π(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r + γV π(s′)

]︁

For the action-value function, it is given by:

Qπ(s, a) =
∑︂
s′,r

p(s′, r|s, a)

⎡⎣r + γ
∑︂
a′

π(a′|s′)Qπ(s′, a′)

⎤⎦
Since the goal of RL is to find the optimal policy that maximises total cumulative reward that an
agent receives in an episode.

Several algorithms have been devised to find the optimal policy. The following three algorithms are
the most basic algorithms to derive optimal policy [87]:

1. Value Iteration: A dynamic programming method that iteratively updates the value function until it
converges to find the optimal value function and thereby the optimal policy.

2. Policy Iteration: Another dynamic programming method that alternatively updates the policy and
the value function to find the optimal policy.

3. Q-Learning: A model-free method that iteratively learns the Q-value function, converging to the
optimal Q-value function and thereby facilitating the discovery of the optimal policy [104].

RL has manifested its efficacy in several domains where optimal solutions are vital, encompassing
areas such as robotics [105] and industrial process control [106]. Despite RL’s demonstrated ability
to derive optimal solutions, there exist limitations that pose significant challenges for its application.

A fundamental challenge in RL is the ‘curse of dimensionality’. This refers to the exponential
increase in computational demands as the state or action space within a problem expands, rendering
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RL unsuitable for many real-world contexts. Given that real-world problems are characterised by
an extensive number of states and actions, the task of computing such vast state and action spaces,
along with the ensuing complexity, becomes extremely intricate.

In recent times, the emergence of Deep Learning (DL) and advancements in infrastructure facili-
tating high-speed computations have given rise to the rapid development of Deep Reinforcement
Learning (DRL). DRL, which integrates Artificial Neural Networks (ANNs) to approximate value
functions and policies in environments with high-dimensional state and action spaces, was first
introduced in [107], showcasing its ability to play video games with high-dimensional inputs,
surpassing human experts. This seminal work rapidly encouraged the application of DRL in
applications and algorithmic developments across various sectors including robotics [108], [109],
autonomous vehicles [110], healthcare [111], finance [112], and chip design [113].

Current DRL algorithms can be categorised into three distinct branches, depending on the functions
that are approximated by the neural networks utilised to ascertain the optimal policy. The first
method, known as the policy-based method, employs the neural network to approximate the policy
function, which is optimised subsequently [114], [115]. The second strategy, deemed as the value-
based method, cultivates a value network to derive an optimal policy [107]. Here, the value network
delineates the merit of an agent being in a particular state, directing the policy to steer the agent
towards states with the highest values. The third branch is the actor-critic method [116], which
nurtures both policy and value networks, utilising them together to craft an optimal policy. These
networks, referred to as actor and critic networks, undertake the roles of action execution and
evaluation in respective states.

2.4.1 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradients (DDPG) [117] algorithm played a vital role as a foundational
backbone of DRL-driven automatic controller design in Chapter 4 and 5 of this thesis. Here, the
justification of the choice and technical detail of DDPG is elaborated.

A critical prerequisite for real-world deployment of swarm robotic systems is the adaptability to
inherent complexity and unpredictability. This adaptability necessitates the development of an auto-
matic controller tailored to the unique dynamics of swarm robotic systems. DRL serves this need by
providing a data-driven approach to automatic controller design, capable of effectively adapting to
unforeseen changes and uncertainties. The selection of a specific DRL algorithm requires a thorough
analysis of the characteristics of the agent, the environment, and the intended task. Considerations
must include the properties of the robots’ input sensory systems, the desired output format, a careful
balance between task exploration and exploitation, and the challenges associated with obtaining
environmental samples.

DDPG, an actor-critic based DRL algorithm, emerges as a suitable solution for the previously
delineated prerequisites of continuous state and action spaces, as well as the need for high sample
efficiency. Specifically designed for continuous control tasks, DDPG has been proven to excel in
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both simulated and real-world applications [91]. One of its key characteristics is the utilisation of an
experience replay buffer, where transition samples are stored and subsequently reused. This feature
enhances sample efficiency, a vital specification previously emphasised for swarm robotic systems.

Algorithm 1: DDPG algorithm
1 Randomly initialise critic neural network with normal linear layers, Q(s, a|θQ) and actor neural network layers

π(s|θπ) with parameters θQ and θπ

2 Initialise target network Q′ and π′ with parameters θQ
′ ← θQ, θπ

′ ← θπ

3 Initialise replay buffer R
4 for episode = 1, ..., M do
5 Initialise the states st = s1
6 for t = 1, ..., T do
7 Run K actors and collect transition samples Dt = (st, at, rt, st+1) into a replay buffer
8 if t = 0 mod ttrain then
9 Sample N transitions (si, ai, ri, si+1) from a replay buffer with the sampling probability P (i)

10 Set yi = ri + γQ′(si, π
′(si+1|θπ

′
)|θQ′

)

11 Set weighted updates for networks: ωi = ( 1
B ·

1
P (i) )

β

12 Update critic network by minimising the loss: LQ = 1
N ω

∑︁
i(yi −Q(si, ai|θQ))2

13 Update actor network using the sampled policy gradient: ∇θπJ ≈ 1
N ω

∑︁
i∇aQ(s, a|θQ)|s=si,a=π(si)

14 ·∇θππ(si|θπ)|s=si

15 end
16 if t = 0 mod ttarget then
17 Update the target networks: θQ

′ ← θQ,θπ
′ ← θπ

18 end
19 end
20 end

Moreover, the experience replay buffer’s design within DDPG allows for the random selection
of transition samples, effectively breaking temporal correlations that could otherwise hinder the
training of the neural network. Since correlated data can lead to training failure, this decoupling of
consecutive transition samples underscores the necessity of the experience replay buffer [107].

Building upon the foundational concept of experience replay, several research works have further
refined this mechanism through diverse sampling strategies, such as hindsight experience replay
[118], attentive experience replay [119], and prioritised experience replay [120]. These strategies are
tailored to optimisation objectives; for instance, hindsight experience replay is specialised for multi-
goal learning scenarios. Among them, Prioritized Experience Replay (PER) [120] stands out as a
widely adopted strategy to enhance performance and reduce training time, measuring the importance
of transitions through the magnitude of temporal difference error (TD-error) for an effective neural
network model update. The probability of sampling transition in PER, i is defined as:

P (i) =
pαi∑︁
k p

α
k

, (2.1)

where α is a probability constant. Higher priority leads to a higher probability of that sample being
used during training. Higher sample efficiency and performance has been reported using PER,
compared to uniform sampling strategies. Due to its sample efficiency, this sampling strategy is
used with DDPG in several continuous control domains including robotics [91], [121]. Algorithm 1
describes the process of DDPG algorithm.
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2.5 Federated Learning

Federated Learning (FL) is an advanced decentralised approach to machine learning that facilitates
the training of models across multiple devices without necessitating the centralisation of data on
a primary server [122]–[124]. This innovative method was principally developed to augment the
privacy and security of individual agents, thereby substantially mitigating the risk of data breaches
during the training phase. Initially, FL was conceptualised to refine machine learning models
involved in the autofill functionalities of smartphone keyboards, with a focus on enhancing the
performance of local agents without compromising personal data security at a global server level,
whilst capitalising on diversity of multiple heterogenous trained model of local agents [123].

Within the structure of FL, diverse devices, denoted as nodes, independently compute modifications
to the model at a local level. Subsequently, these modifications are transmitted to a central server
where they are amalgamated to formulate an improved comprehensive global model.

The decentralised operating methodology of FL provides three major benefits: i) privacy preser-
vation, ii) reduction in communication with the central server, iii) customisation of models. No
exchange of local training data safeguards the privacy and security of local agent. Moreover,
exclusion of data exchange reduce the volume of communication. Although the global model is
obtained as a collective of locally trained models, locally trained models are specialised for the local
data.

Domains where the aforementioned advantages are particularly helpful have adopted FL-based
training strategies for machine learning applications. The two example domains are introduced
below.

In the medical sector, Federated Learning (FL) presents substantial advantages, particularly in
harnessing data for medical diagnoses without violating privacy norms [125]. Traditionally, local
medical authorities have been restricted by the limited diversity and volume of patient data available
for training diagnostic models. This is mainly due to the stringent policies that prevent the sharing
of patient data beyond local confines. FL stands as a transformative solution to this challenge,
empowering local medical authorities to enhance their diagnostic models by leveraging the locally
trained models with diverse datasets held by other authorities, all while protecting data privacy and
security.

Brisimi et al. [126] devised a binary classifier capable of predicting hospitalisations due to cardiac
events by leveraging the extensive network of Electronic Heart Records data dispersed across
various hospitals and individuals. This innovative approach not only addresses the inherent privacy
and security concerns but also significantly reduces communication costs. Furthermore, it has been
observed to hasten the convergence rate when compared to centralised benchmarks.

Warnat-Herresthal et al. [127] have successfully employed classifiers developed through FL-based
strategies for the diagnosis of four prominent diseases: COVID-19, tuberculosis, leukaemia, and var-
ious lung pathologies. Utilising a comprehensive dataset composed of 16,400 blood transcriptomes
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and 95,000 x-ray images sourced from multiple institutions, the study showcased that the proposed
classifiers exhibited superior performance compared to those restricted to data from individual sites
alone.

The Internet of Things (IoT) is a network where various physical devices and objects are linked to-
gether. These items are fitted with sensors and software that help them to share data and information
with one another, and with other systems over the internet. Since these devices gather data locally
and communicate with other devices, maintaining privacy and security becomes very important. In
this scenario, IoT systems can greatly benefit from Federated Learning (FL), a method that can help
improve the performance of IoT devices by using data more efficiently and securely. Recently, the
use of FL in different IoT systems has grown significantly [128], [129].

Illustrating this, a research study by Yu et al. [130] developed a model for detecting objects using
FL. This model used a collection of image data from various IoT devices, showing that the proposed
method was more adept than the standard Single Shot MultiBox Detector approach.

Similarly, a project by Elbir et al [131]. devised traffic predictors by implementing machine learning
models directly at the peripheral devices, such as vehicles, drawing upon data sets encompassing
road layouts, traffic dynamics, and meteorological conditions. Their case studies, which involved the
training of 3D object detection models and the selection of Millimeter-Wave Beams for establishing
communication links, revealed that the FL-based traffic prediction models surpassed their counter-
parts that employed centralised training strategies.

FL is predominantly used for supervised learning applications. Including the two aforementioned
example domains, most of the current FL applications have been adopted for regression and classi-
fication tasks. More recently, FL has also been applied for the domains where local agent performs
sequential decision-making, e.g. control, and time-series prediction, and adaptivity is required in
dynamic environments, where the dataset cannot be given before operation. For an effective training
model that performs sequential decision-making well, DRL can be used. FL framework for DRL
has been proposed for the collective of local agents performing sequential decision-making tasks.
IoT is the typical application domain as FL-based DRL provides the capability for highly complex
decision-making to orchestrate multiple resource-intensive devices [111], [132], [133].

With the proven performance in classification tasks and the potential that enhance decision-making
capability when multiple agents are collaborating without privacy concerns, the nascent FL-based
methods show great promise in robotics applications [134], [135]. Liu et al. [134] utilised FL-based
DRL for designing the controller of a robot for navigation and collision avoidance tasks over diverse
environments. The trained controller showed a greater performance than when trained by DRL
without FL framework. However, the robot learns the controller sequentially, rather than multiple
robots in separate environments learning controllers simultaneously harnessing FL. Yu et al. [135]
proposed FL-based image classifiers used for collaborative robotic systems. While the end-to-end
controller is learned utilising FL in [134], FL is used to learn image classifiers to detect obstacles for
navigation and collision avoidance behaviour. Importantly, the results demonstrated that reality-gap
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is reduced as the FL-based method enables continuous updates to the deployed models in the real
mission, showing promises to mitigate reality-gap through the FL-based approaches.

As introduced in the existing literature, FL is an emerging framework where a system with multiple
agents requires an aggregated model preserving privacy and security and reducing communications,
yet leveraging collective capability that results in greater generalisation and faster speed of conver-
gence than single agent is used.
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Chapter 3

The Imperative Need of Automatic

Controller Design for Swarm Robotic

Systems in Real-World Conditions

This chapter unveils a research study underscoring the vital need for automatic control design in
swarm robotic systems. The investigation delves deeply into the behaviours exhibited by swarm
robots in various real-world factors that have not been fully explored in laboratory settings where
past research has predominantly been situated. In this study, a mobile-robot-based swarm robotic
system demonstrates aggregation behaviour through the use of artificial pheromones as a medium
of communication. Building upon the foundations laid by previous research, which employed
static artificial pheromone cues to analyse aggregation behaviours, this study incorporates positive
feedback mechanisms and realistic environmental factors to create a more realistic representation
of swarm aggregation behaviours. Specifically, environmental factors such as diffusion and wind
effects have been integrated into the emulated artificial pheromone. A set of experiments of swarm
robotic systems with varying population sizes was conducted to unravel the intricate effects of these
factors on aggregation behaviour. The experimental findings indicate a substantial variations in ag-
gregation behaviour when confronted with realistic factors, thereby advocating for the development
of more adaptive control design methodologies. Such advancements are essential in facilitating the
actualisation of desired swarm behaviours in real-world scenarios, highlighting a promising pathway
towards more robust and adaptive swarm robotic systems.
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3.1 Background

Capitalising pheromone communication that enable nature swarms thrive, swarm robotic systems
that utilises artificial pheromone have been gradually developed. One of the past studies proposed
COSΦ [46], a light-based artificial pheromone system that leverages low-cost components to build a
physical platform to experiment with real robots easily. Given versatility of the system, it is easy to
emulate artificial pheromone under diverse simulated scenarios with arbitrary properties.

Previously, a seminal study [46] explored foraging behaviours of a mobile robot swarm relying
on pheromone communication [136]. The successful implementation of foraging behaviour via
artificial pheromone communication leaves two directions of subsequent studies: (1) the exploration
of diverse behaviours and (2) the replication of realistic factors to examine the viability of artificial
pheromone-based swarm robotic systems in real-world environments. Through branching out in
these research directions, it is anticipated that critical insights necessary to development of a swarm
robotic system capitalising on artificial pheromones in real-world settings will be unveiled.

In this research study, aggregation behaviour, which is a basic self-organising pattern of swarm
robotic system, is investigated. To replicate realistic environmental factors, diffusion and wind ef-
fects have been applied into the dynamics of artificial pheromone. For further advancement, positive
feedback loop for strengthening aggregation behaviours has been added. A detailed comparative
analysis has been undertaken to dissect the influence of each integrated real-world factor on the
swarm behaviours. The experimental findings suggest that these factors not only induce significant
variations in aggregation behaviours but their interplay further exacerbates the complexity of
behavioural patterns. The highlighted influence of realistic factors underscores the imperative
need for more adaptive controllers, capable of maintaining the desired behavioural attributes with
changing environmental dynamics.

To summarise, this research study contains the following contributions and findings:

• Positive feedback (pheromone injection), diffusion and wind effects are added to the existing light-
based artificial pheromone system [46]. The system is extended to emulate the phenomena where
pheromones in the real world are exposed.

• The effect of positive feedback, diffusion and wind effects are investigated on aggregation be-
haviours of a swarm of mobile robots with different population sizes, concluding that the interplay
of factors influences aggregation behaviours in a complex and unpredictable manner.

• Complex interplay of realistic factors necessitates more adaptive controllers for swarm robotic
systems to achieve desired performance efficacy.
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3.1.1 Technical Detail of COSΦ System

The COSΦ system simulates the several types of artificial pheromone and their interaction si-
multaneously. The resultant artificial pheromone is displayed on an LCD screen, which plays a
role of ground arena for robots, and it triggers predefined responsive behaviours of the employed
robots. The system displays the resultant pheromone and the rest part of the arena as a gray-scale
image with the size of the screen. The degree of brightness of all pixels in a grey-scale image is
represented as I, which is a two dimensional matrix with the size of resolution of the LCD screen.
It is determined by Φ, which is a two dimensional matrix representing the intensity of pheromone
having same size with I. Each element of I, is equivalent to brightness of the corresponding pixel.
The brightness of the image at position (x, y), I(x, y), is defined as:

I(x, y) =
n∑︂

i=1

ciΦi(x, y) , (3.1)

where Φi(x, y) represents the intensity of the ith pheromone at position (x, y) and ci denotes the
influence of the ith pheromone on the screen. I(x, y) is determined by the summation of multipli-
cation of Φi(x, y) and ci, describing that multiple n number of individual pheromone fields can be
overlapped. As an example of how the model works, the combination of three different pheromones
having different influence to the screen can be displayed on a single pixel after the calculation of
I(x, y) by Equation 3.1.

Individual pheromone field is updated every time step in the system. To replicate spatio-temporal
development of the pheromone in the real world, the spatio-temporal developement model is derived
from the simplified version of Navier-Stokes equation, which characterises the model of fluid flow
[137], [138]. The spatio-temporal development model of pheromone is given by

Φ k+1
i (x, y) =− u · Φgrad k

i (x, y)−
ln(2)
eiΦ

Φ k
i (x, y)

+ κi∇ Φgrad k
i (x, y) + ιi(x, y) ,

(3.2)

where Φk+1
i (x, y) is the intensity of ith pheromone at the discrete time k + 1, Φk

i (x, y) is
the intensity of ith pheromone at the discrete time k, Φgrad k

i (x, y) is a two dimensional vector
quantity that characterises the gradient of pheromone intensity at a given position (x, y), where it
is mathematically defined by Equation 3.3, u represents the velocity vector which linearly shifts the
pheromone on the arena, resembling the effect of wind, eiΦ determines the evaporation rate of ith

pheromone which is characterised by half-life, κi is the diffusion constant of ith pheromone, and
ιi(x, y) corresponds to newly injected pheromone at the position (x, y) on the screen.

Φgrad k
i (x, y) =

Φ k
i (x+ 1, y)−Φ k

i (x− 1, y)

2
i+

Φ k
i (x, y + 1)−Φ k

i (x, y − 1)

2
j ,

(3.3)

47



Computing Equation 3.2 for every values of x, y allows to calculate new intensities of pheromones
from their previous state, which, in turn, determines the new pixel values of the gray-scale image
displayed on the screen.

The parameters shown in the right-hand side of Equation 3.2 can be divided into two categories: i)
environmental effects and ii) pheromone injection. Environmental effects include evaporation rate,
eΦ, diffusion constant, κ, and velocity vector, u, where i is omitted to generalise. They influence in
the pheromone released on the arena unconditionally and constantly while the system is running.
Their effects are described in the next subsection. While the environmental effects have constant
influences in the arena, the injection of pheromone, ι(x, y) affects the intensity of pheromone in
the arena only when the pheromone is injected by the predefined conditions. Under the conditions,
the pheromone is injected with a circular shape with a given intensity. The injection of pheromone,
ιi(x, y), is defined as:

ιi(x, y) =

⎧⎨⎩sΦ, if
√︁

(x− xr)2 + (y − yr)2 ≤ lΦ/2

0, otherwise
(3.4)

where (xr, yr) respectively represent the x and y coordinates of a robot in the arena, sΦ is the
intensity of injected pheromone at a time and lΦ is the diameter of injected pheromone. Within
a circle with the diameter, lΦ, where the centre of the circle is the position of the robot, (xr, yr),
the pheromone is uniformly injected with sΦ. Pheromone injection is used as a mean of positive
feedback in the computational model of artificial pheromone.

3.2 Artificial Pheromone System

In this section, the extended part of COSΦ artificial pheromone communication system, and the
auxiliary tracking system used to provide positional information of individual robots and the
artificial pheromone cue are explained. For the COSΦ system, the mechanism of the system and the
mathematical model to express the property of artificial pheromone are described with a detailed
explanation of each environmental effect applied on spatio-temporal development of artificial
pheromone. Following the description of the COSΦ system, the open-source localisation system for
swarm robotic system, SwarmCon [139], and integration between the tracking system and the COSΦ
system are described.

3.2.1 Environmental Effects on Pheromone

In the dynamics model of artificial pheromone described in Section 2.2.3, environmental effects,
evaporation, diffusion and wind effect, are included, but not fully utilised. Here, each environmental
effect is described and the practical implementation detail is elucidated.

The environmental effects contribute to the versatility of the system in emulating realistic conditions
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that affect the distribution of the pheromones in the environment over time. More importantly, the
implementation of diffusion and wind effect is crucial in this research study to investigate the swarm
aggregation behaviour under realistic conditions. Here, the four phenomena included in the spatio-
temporal development model are introduced and explained with its implementation detail in the
system.

Evaporation:

Evaporation is the process by which the surface of a liquid turns into the gas phase. As volatile
chemical substances, evaporation occurs in secreted pheromones. In several works on the kinetic
properties of pheromones, the half-life of pheromones, which is the time required for pheromones
to decay by half, is investigated as a metric [140]. Conforming this practice, the half-life of the
pheromone is adopted, i.e. eiΦ represents the half-life of the pheromone, see Equation 3.2.

Diffusion:

Diffusion is a movement of molecules from a region of higher concentration to a region of lower
concentration. Implementing diffusion in the pheromone system is indispensable to be a realistic
system since diffused pheromone from the source has a great impact on swarm behaviour [141]. In
this work, diffusion is implemented using Gaussian blur instead of directly using the term, κi ▽2

Φi(x, y), which is a mathematical definition of diffusion. The advantage of Gaussian blur over the
original definition is it can emulate faster diffusion with lower computational costs. The intensity of
pheromone at the position (x, y) after application of the Gaussian blur is given by

Φk+1
i (x, y) =

(︁
ω ∗Φk

i

)︁
(x, y) =

a∑︂
s=−a

b∑︂
t=−b

ω(s, t)Φk
i (x− s, y − t),

(3.5)

where Φk+1
i (x, y) is the intensity of ith pheromone at the discrete time k+1, Φk

i (x, y) is the intensity
of ith pheromone at the discrete time k and ω is a two dimensional kernel matrix with the size of
(2a+ 1)× (2b+ 1) defined as:

ω(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , w ∈ R2a+1×2b+1, (3.6)

where σ is a standard deviation of the Gaussian distribution of the kernel matrix. Equation 3.6
shows that the elements of ω are determined by the Gaussian distribution. Apart from the com-
putational efficiency, the Gaussian blur allows more intuitive control of the diffusion rate and
area. Adopting Gaussian blur into the pheromone system does not principally violate properties of
diffusion for two reasons: i) The higher intensity of pheromone decreases and the lower intensity of
pheromone increases after computation of Gaussian blur and ii) the total amount of pheromone is
preserved after every computation.
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Wind Effect:

In real and dynamic environments, the position of the released pheromone can be shifted. A
natural cause of the shift in nature is advection, which is the flow of any fluid, e.g. air, that transfers
pheromone from one position to another. As it is described as wind effect, the shift in the spatio-
temporal model is named as wind effect. The movement of released pheromone in the same direc-
tion is modelled as u · ∇(x, y). The two dimensional velocity vector is defined as:

u · ∇i(x, y) = ux ·
∂Φi(x, y)

∂x
+ uy ·

∂Φi(x, y)

∂y
, (3.7)

where ux, uy respectively represents the speed along x-axis and y-axis.

3.2.2 Tracking System

The modified version of fast and precise open-source localisation system [139], called SwarmCon, is
used to track the position, orientation and ID of the robots, thereby precisely injecting pheromone
at the position of the robots on the LCD screen in real-time. The system captures images using
a digital camera mounted above the screen, searches for black-and-white roundel patterns, and
converts their image coordinates into the real-world coordinates in the Cartesian plane. By attaching
unique patterns on the individual robots, each robot can have unique ID. The localisation precision
can achieve millimeters scales and hundreds of patterns can be tracked simultaneously in real-time
[139].

By transforming the captured images into the coordinates of the tracked patterns in the defined area
and sending the data to the pheromone system, the tracking system allows the pheromone system
to release the pheromone at precise positions of the robots in real-time. Precise localisation of the
patterns can be achieved through auto-calibration of the system that makes the pheromone system
robust under any circumstances. e.g. external disturbance during experiments. The system defines
the area of the arena in the coordinate system from the image by setting the four corner tags attached
on the corners of the frame placed on the screen, and determine the coordinates of patterns inside
of the defined area. Since the system requires less than 50 µs to calculate one robot position, the
difference between the pheromone injection position and the actual robot position is determined by
the time required to transfer the image via the USB interface and the delay caused by the graphic
interface driver. Nevertheless, the difference between the expected pheromone positions and the
actual positions is negligible.

3.3 Experimental Setup

With the expanded COSΦ system, experiments were designed to investigate the impact of positive
feedback and environmental effects on collective behaviours in swarm robotic systems.
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Figure 3.1. Experimental setup used for the pheromone system, including a PC for tracking robots and generating
pheromone, a digital camera for tracking robots position, a horizontally placed 42” LCD screen, aluminium frame

around the arena and Colias mobile robots.

In this section, the physical configuration of the COSΦ system and the robotic platform is explained.
Following the explanation of hardware components used for the systems, the experimental design
is described. Not only the description of the experimental design, the metrics to evaluate the
performance of the collective behaviours and the statistical analysis method are also explained.

3.3.1 System Configuration

To implement the COSΦ system used for experiments, a physical arena built with the off-the-shelf
components was used. In the physical arena, mobile robots were deployed as agents performing
collective behaviours as a swarm. The specification of the physical arena and mobile robot is
explained in detail.

Arena

In the physical artificial pheromone system, a high-definition (HD) 42” LCD screen with the size of
92 × 50 cm2 is used as an arena on which the pheromones are displayed and robots operated. The
light sensors of the robots face the screen, hence the sensors allow the robot to read the illuminance
at the current position of the robot. On the top of the screen, the aluminium arena frame is set on
the edge. The frame allows the robots to detect the boundary of the arena, therefore, they can turn
in another direction when they are close to the boundary. The four corner tags are attached to the
frame which allows the tracking system to define the arena. A low-cost digital camera is mounted
on the frame above the centre of the arena. By receiving the images from the arena in real-time,
the tracking system determines the robots’ positions and status if the robots are randomly moving
or waiting. Figure 3.1 shows the arena setup with a PC which controls the pheromone system,
connected to the LCD screen.
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Figure 3.2. Colias micro-robot, a swarm robotic platform (left) frontal view of the robot and (right) bottom board of
Colias with pheromone sensing ability. Different modules of Colias are: A) main processor, B) IR proximity sensors, C)
digital camera, D) micro-motors with gearhead, E) 22 mm wheels, F) pheromone detectors (light intensity sensors), G)

battery recharging unit, H) main switch, and J) ISP programming port.

Figure 3.3. State machine of the implemented swarm scenario

Robotic Platform

Colias micro-robot [142] which was developed for swarm robotic applications, was used as a robotic
platform. The front and bottom view of the robot is shown in Figure 3.2. It is a small robot with a
diameter of 4 cm and has simple functionalities. The robot is a differential wheeled robot whose
movement is determined by two micro DC gearhead motors directly connected to the wheel with a
diameter of 2.2 cm. The speed of the robot in the forward motion is a maximum of 35 cm/s. The
rotational speed of each motor is controlled by pulse-width modulation (PWM). Each motor is
driven by the embedded H-bridge DC motor driver which draws an average current of 35±5 mA
when there is no load and 150±20 mA at maximum in stall conditions. For its sensing, the robot
has three infrared (IR) proximity sensors which include pairs of IR emitter and receiver in front of
the robot. It is used to detect objects, obstacles or other robots, within a distance of approximately
2±0.5 cm. Additionally, the robot has two light (illuminance) sensors at the bottom next to the
wheels. The light sensors are used to read light intensity on the ground where the robot is located,
i.e. read the intensity of the pheromone in this research study. The robot’s power consumption is
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approximately 800 mW.

In this research study, the behaviour of the robot was determined for achieving pheromone-based
aggregation adopted from one of the previous studies [143]. The state machine of the scenario is
described in Figure 3.3. The robot begins to move forward after it is switched on. The rotational
speed of the left and right wheels, Nl and Nr, are defined as:

Nl =
sl − sr
α

+ β ,

Nr =
sr − sl
α

+ β ,
(3.8)

where α is the velocity sensitivity coefficient, β is the biasing speed and sl and sr are the sensor
readings from the left and right light sensors. β is defined as:

β = 100− sr + sl
2

. (3.9)

β is modelled in order for the robot to have a slower speed where the average intensity detected by
both the sensors is higher so that the robot stops where the robot reaches the area with the consid-
erably high intensity of pheromone. As depicted in Figure 3.3, the robot has two different states
transited after it detects an object. If the object is an obstacle, it rotates in the opposite direction at
which the obstacle is. The robot distinguishes whether the object is an obstacle or another robot by
checking if the IR signal detected by sensors is emitted from other robots, not from ones embodied
in the robot itself. If the object is another robot, it transits to the waiting state and starts to inject a
pheromone at the position of the robot. The waiting time tw is defined as:

tw = twmax
savg

savg + 25
, (3.10)

where twmax is the maximum waiting time, 20 s, which happens at the highest pheromone intensity,
savg is the averaged value of sl and sr. Depending on the illuminance on the bottom of the robot, the
robot can wait between 0 to 20 s. While the robot is waiting, pheromone of a circular shape with a
diameter of 2.5 cm is injected to the environment. The rate of pheromone injection is approximately
20% of the maximum intensity per second, which suggests that it takes approximately 5 s to reach
the maximum intensity.

3.3.2 Experiments

Following the objective that is to investigate the impact of realistic conditions on collective be-
haviour of swarm robotic system, the experiments are systematically designed to ablate the effect
of each variable in the extended COSΦ system, i.e. positive feedback and environmental effects.
The set of experiments adopted the pheromone-based aggregation scenario as a specific collective
behaviour of a swarm. To investigate the effect of the positive feedback (pheromone injection)
and the environmental effects (diffusion and wind effect), the settings of positive feedback and
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Figure 3.4. The collection of 6 randomly selected screenshots during experiments. The first row shows the screenshots
from an experiment with no diffusion and fast cue speed without pheromone injection and the second row shows the
screenshots from an experiment with medium diffusion and fast cue speed with pheromone injection taken at t = 0 s,

t = 100 s, t = 200 s from left to right.

environmental effects are varied.

The experiments have four independent variables: i) pheromone injection, ii) diffusion, iii) wind
effect and iv) population of a robot swarm. The experiments are organised into two main settings
based on the presence of wind effect, referred to as static and dynamic cue configurations, describ-
ing whether wind effect exists or not. Each cue configuration has three different settings of diffusion
coefficients to investigate the interplay of diffusion and wind effect on the aggregation behaviour
of the swarm robotic system. For each setting of cue configuration and diffusion coefficient, the
presence of pheromone injection called without Φ and with Φ respectively in the following sections,
is varied. Finally, every combination of wind effect, diffusion and pheromone injection is experi-
mented with two population sizes, 4 and 6.

In every set of experiments, the identical initial condition was provided for the pheromone-based
aggregation scenario. A circular artificial pheromone cue with a diameter of 25 cm was generated
at the beginning of the experiments at the position (xc, yc) = (70, 25) cm of the arena, which exists
in the right half of the screen, where the coordinates (0, 0) refers to the bottom left corner of the
arena. The markers indicating the position and orientation of robots were randomly generated within
the left half of the screen. Before the experiment began, the robots were placed on the markers, and
when the experiments started, the markers disappeared, the robots then started to move and the main
circular cue was generated on the specified position simultaneously. The duration of an experiment
is T = 300 s. Note that, in the experiments in the configuration without Φ, the pheromone was
not injected while the robot was waiting after colliding with another robot. This is to investigate
the impact of pheromone injection on the collective behaviour of the swarm. The screenshots from
experiments with different configuration are shown in Figure 3.4. Table 3.1 shows the parameters
and their values used in the experiments.

Static cue configuration

In static cue configuration, the position of the cue (xc, yc) remained the same during the experi-
ments. In other words, the cue did not move (u = 0 cm/s). In this configuration, three different
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diffusion coefficients, κ ∈ {0%, 50%, 75%}/T with two swarm sizes of N ∈ {4, 6} robot
were investigated. To show the effect of diffusion intuitively, how much pheromone at the centre of
the cue is diffused over the duration of the experiment, T , is given as a constant κ. Each diffusion
coefficient κ ∈ {0%, 50%, 75%}/T , described in Equation 3.2 is equivalent to σ ∈ {0, 6, 20},
a, b = 7 for the Gaussian blur kernel matrix, which is characterised in Equation 3.5 and 3.6. To
help the readers to understand the impact of each parameter value easily, the three different diffusion
coefficients, κ ∈ {0%, 50%, 75%}/T , are named “No Diffusion”, “Medium Diffusion” and “Fast
Diffusion” respectively. For each different diffusion setting in this configuration, 5 independent runs
of experiment for T were carried out.

Dynamic cue configuration

In dynamic cue configuration, the position of the cue (xc, yc) was moved horizontally with a constant
speed. Moreover, the injected pheromone during the experiments also moved at the same speed as
the cue. In this configuration, two different cue speeds were applied: i) the centre of the cue moves
with speed of u = 0.1 cm/s on the arena and the centre of the cue moves with speed of u = 0.2

cm/s. The two cue speed is named as “Medium Cue Speed” and “Fast Cue Speed” respectively
to increase readability for readers. Similar to the static cue configuration, 5 independent runs of
experiments with three different diffusion, κ ∈ {0%, 50%, 75%} / T , and two swarm sizes,
N ∈ {4, 6}, for duration of T were conducted.

Metrics

To evaluate the aggregating behaviour of the swarm, two parameters were defined: i) size of
aggregate, na, and ii) cohesiveness, dcoh. The size of the aggregate determines how many robots
are aggregated, which is equivalent to the number of robots waiting on the circular cue. The robots
that are waiting on the outside of the cue because of the injected pheromone are not counted.
Cohesiveness determines the quality of the aggregation behaviour of the swarm. Cohesiveness is
the reciprocal of the average value of the distances of the robots from the centre of the cue. Higher
cohesiveness means the robots stay closer to each other. The cohesiveness is defined as:

dcoh =
1

1

N

∑︁N
i=1 ∥(xi, yi), (xc, yc)∥

, (3.11)

where (xi, yi) is the Cartesian coordinates of the ith robot of N robots.

Statistical Analysis

To statistically analyse the observed results from experiments, Analysis of Variance (ANOVA) test
was conducted. ANOVA test is used to analyse the difference among groups caused by differences
in factors [144]. F -statistic (F ) in ANOVA indicates how the factor makes a difference between the
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Table 3.1. List of parameters and their values.

Parameter Description Value / range Setting

N Population {4, 6} robots
T Duration of experiments 300 s
u Cue speed {0, 0.1, 0.2} cm/s No, Medium, Fast Cue Speed
κ Diffusion coefficient {0%, 50%, 75%}/T
textitNo, Medium, Fast Diffusion
eΦ Pheromone half-life 1000 s
t Time {0− 300} s
rc Radius of the cue 12.5 cm
twmax Maximum waiting time of robot 20 s
tw Waiting time of robot {0− 20} s

means of the samples of different groups. If F -statistic is high, the factor is regarded as a significant
factor for sample means. Typically, F > 1 is considered a high F-statistic. Additionally, p-value,
which is the smallest significance level at which the hypothesis that the factor does not significantly
impact on samples is rejected. When p < 0.05, it is regarded that the impact of the factor is
significant. In thiss set of experiments, multiple independent variables, population, diffusion, cue
speed and time, exist for two dependent variables, size of aggregate and cohesiveness. To analyse of
each independent variable among multiple independent variables, Factorial ANOVA was adopted.

3.4 Results

The experimental results were depicted in line plots showing the aggregation performance, both size
of aggregate and cohesiveness. In the line plots, a line represents the median of the observed data
from 5 repetitions and the shaded region surrounding the line represents the inter-quartile range of
the data.

3.4.1 Static Cue Configuration

Here, the variance of the aggregation performance of robots is depicted with different diffusion
rates in static cue configuration. In each plot, the observed data from experiments with no diffusion,
medium diffusion and Fast Diffusion are represented as red, blue and green lines, respectively.
Figures 3.9, 3.10, 3.11 and 3.12 show the size of aggregate and cohesiveness with N ∈ {4, 6}
robots.

Diffusion

First, the impact of diffusion on swarm behaviour is investigated. Figures 3.5 and 3.7 shows the size
of aggregate with three different diffusion rates (No Diffusion, Medium Diffusion and Fast Diffusion)
in two different population sizes N ∈ {4, 6} both without Φ and with Φ. In both figures, a decrease
in the size of the aggregate was observed when Medium Diffusion and Fast Diffusion was applied
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Figure 3.5. The size of aggregate in experiments with static cue configuration, different diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion and (a) without and (b) with pheromone Φ injection in N = 4 robots

.

Figure 3.6. The cohesiveness in experiments with static cue configuration, different diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 4 robots.

without Φ. In Figure 3.5(a), the size of aggregate with Medium Diffusion and Fast Diffusion began
to decrease after a certain time (t = 70 s) while the size of aggregate with No Diffusion stably stayed
in the range from 2 to 4 throughout the experiment. Moreover, the decrease in the size of aggregate
with Fast Diffusion was more rapid than the decrease with Medium Diffusion. In Figure 3.5(a), the
size of aggregate with Fast Diffusion decreased at about t = 50 s and it reached zero at t = 105 s
whereas the size of aggregate with Medium Diffusion started to decrease clearly at t = 225 s. These
phenomena are also shown in Figure 3.7 with N = 6 robots. The size of aggregate with Medium
Diffusion and Fast Diffusion decayed after a certain time whereas the size of aggregate with No
Diffusion stayed in a range from 3 to 5 quite stably.Fast Diffusion caused a radical decrease in the
size of aggregate from t = 30 s while Medium Diffusion led less steep decrease than Fast Diffusion.

Different diffusion rates led to different cohesiveness in the robots. In Figure 3.6(a), cohesiveness
with Fast Diffusion before t = 50 s was considerably higher than with the two other diffusion rates.
A similar phenomenon was observed in Figure 3.8(a), where cohesiveness with Fast Diffusion was
the highest among three different diffusion parameters before t = 30 s.
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Figure 3.7. The size of aggregate in experiments with static cue configuration, different diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 6 robots.

Figure 3.8. The cohesiveness in experiments with static cue configuration, different diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 6 robots.

As it was expected, diffusion led to a gradual decay in pheromone intensity in the system, therefore,
robots decreased their speed when the cue was diffused than when there was no diffusion. The
degree of decay in intensity was higher in the outer parts of the cue than in the inner parts. When
the robots reached the edge of the diffused cue, they kept moving forward while they stayed on the
edge of the cue that was not diffused. As a result, the robots approached closer to the centre of the
cue in experiments with diffusion than in experiments without diffusion. Therefore, diffusion led to
high cohesiveness of the swarm while the intensity of the pheromone was sufficient for robots to stay
on the cue.

Pheromone

Comparing Figures 3.5(a) and 3.5(b), it is shown that robots aggregated in higher probability on the
cue throughout the experiments regardless of diffusion rates with Φ than without Φ. Moreover, the
decrease in size of aggregate in experiments with N = 4 robots in the case of Fast Diffusion with
Φ was considerably delayed. This difference caused by pheromone injection was also observed in
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experiments with N = 6 robots. In Figure 3.7, it is shown that the decay in the size of aggregate
with Medium Diffusion and Fast Diffusion was slower with Φ than without Φ. The impact of diffu-
sion that increases the cohesiveness of robots was amplified by pheromone injection. In Figure 3.6,
it is observed that the range of cohesiveness was remarkably higher with Φ than without Φ. For the
cases without being subjected by the amount of diffusion – No Diffusion and Medium Diffusion–
the cohesiveness was above 6 with Φ while most of the time it ranged from 2 to 4 without Φ. The
increase in cohesiveness with Φ in N = 6 is also shown in Figure 3.8, although it seems not as
influential as in N = 4.

The results suggested that the pheromone injection offsets the impact of diffusion on the size of
aggregate. Since the intensity of the cue increases when a pheromone is injected, the robots are
likely to stay on the cue. Hence, the size of the aggregate is higher with Φ than without Φ. Due to
the higher size of the aggregate, the cohesiveness also increases. In experiments with diffusion,
robots are more likely to inject pheromone while they are waiting close to the centre, therefore, the
cohesiveness is higher.

Statistical Analysis

To statistically analyse the results, a fully nested ANOVA test with factors of population, diffusion
and time was carried out to find the significance of the factors. Also, the most effective factor on
the size of aggregate and cohesiveness in both configurations: i) with Φ and ii) without Φ was
determined. Tables 3.2 and 3.3 show the results of ANOVA tests on the size of aggregate and the
cohesiveness with different cue configurations respectively. For the size of aggregate, diffusion and
time were the significant factors while the population had no effects on the size of aggregate in both
configurations (p > 0.05). Diffusion had the most significant influence in both configurations. The
significance of time suggests that the size of aggregate was time-variant. In accordance with the
results of ANOVA test on the size of aggregate, diffusion and time were the significant factors in the
cohesiveness. The most influential factor for the cohesiveness is also diffusion in both configurations
(F = 12.66 for with Φ and F = 30.58 for without Φ). Population size did not have a significant
impact on the cohesiveness and time had a weaker impact than diffusion as identical to the results
in the ANOVA test on the size of aggregate.

3.4.2 Dynamic Cue Configuration

In this section, the aggregation performance of the robots with three different diffusion rates (No
Diffusion, Medium Diffusion and Fast Diffusion) and different cue speeds (u ∈ {0.1, 0.2} cm/s)
is presented in the dynamic cue configuration. The dynamic cue configuration with two different
speeds: i) Medium Cue Speed and ii) Fast Cue Speed. Figures 3.9, 3.10, 3.11 and 3.12 show the
size of aggregate and cohesiveness with N ∈ {4, 6} robots with Medium Cue Speed respectively.
The subsequent four figures, Figures 3.13, 3.14, 3.15 and 3.16 show the size of aggregate and
cohesiveness with N ∈ {4, 6} robots with Fast Cue Speed respectively.
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Figure 3.9. The size of aggregate in experiments with Medium Cue Speed, different diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 4 robots.

Figure 3.10. The cohesiveness in experiments with Medium Cue Speed, different diffusion rates (No Diffusion, Medium
Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 4 robots.

Diffusion:

The results shown in Figures 3.9(a), 3.11(a), 3.13(a) and 3.15(a) display the impact of diffusion on
the size of aggregate in dynamic cue configuration with two population sizes (N ∈ {4, 6} robot) and
two cue speeds (Medium cue speed and Fast Cue Speed). The decrease in the size of aggregate ap-
peared in Fast Diffusion in all the four figures regardless of the cue speed and population. Moreover,
this effect only arose in Fast Diffusion. The size of aggregate with Medium Diffusion with different
population size and cue speed which is displayed in Figures 3.9(a), 3.11(a), 3.13(a) and 3.15(a), did
not have notable different trends compared to the size of aggregate with No Diffusion in both cue
speed.

The results shown in Figures 3.10(a), 3.12(a), 3.14(a) and 3.16(a) demonstrated the impact of
diffusion on the cohesiveness in dynamic cue configuration with two population (N ∈ {4, 6} robots)
and two cue speeds, Medium cue speed and Fast Cue Speed. In Figure 3.10(a), it is shown that
with Medium Cue Speed, the cohesiveness with diffusion was higher than with No Diffusion. The
cohesiveness with Medium Diffusion was higher than with No Diffusion throughout the experiment.
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Figure 3.11. The size of aggregate in experiments with Medium Cue Speed, different diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 6 robots.

Figure 3.12. The cohesiveness in experiments with Medium Cue Speed, different diffusion rates (No Diffusion, Medium
Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 6 robots.

Although the median of the cohesiveness with Fast Diffusion was lower than with No Diffusion
after t = 80 s, the inter-quartile range suggests that the cohesiveness with]Fast Diffusion was
higher than with No Diffusion in two sets of experiments. Especially, it was high with Fast Diffusion
when the cue still remained. Likewise, with population N = 6 robots, the cohesiveness was
higher with diffusion than No Diffusion (see Figure 3.12(a)). When the cue was still not diffused
over a certain amount, the cohesiveness with Fast Diffusion surpassed the other two diffusion
rates. With Medium Diffusion, the cohesiveness was higher than the other two diffusion rates at the
end of the experiments. The increase in the cohesiveness resulting from increasing diffusion rate
does not clearly appear in experiments with Fast Cue Speed. In Figure 3.14, the difference in the
cohesiveness between experiments with No Diffusion and Medium Diffusion and Fast Diffusion is
not as clear as seen in medium-speed cases.

The results showed that the effect of diffusion led to decay in the size of aggregate and an increase in
the cohesiveness as seen in static cue configuration, however, the degree of the effect was smaller in
dynamic cue configuration than in static cue configuration. As the cue speed increased, the diffusion
effect became less influential. It is because the moving cue dragged the robots in the same direction
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Figure 3.13. The size of aggregate in experiments with Fast Cue Speed, different diffusion rates (No Diffusion, Medium
Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 4 robots.

Figure 3.14. The cohesiveness in experiments with Fast Cue Speed, different diffusion rates (No Diffusion, Medium
Diffusion and ]Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 4 robots.

as the cue and it hampered robots staying closer to the centre of the cue.

Pheromone

The impact of pheromone injection on the size of aggregate is displayed in Figures 3.9, 3.11, 3.13
and 3.15. In the three Figures 3.9, 3.11 and 3.15, the size of aggregate in experiments with Fast
Diffusion slowly decreased later with Φ than without Φ. This effect of pheromone injection seemed
greater in experiments with N = 6 robots than N = 4 robots. Figures 3.10, 3.12, 3.14 and 3.16
depict the difference in the cohesiveness in experiments with three diffusion rates (No Diffusion,
Medium Diffusion and Fast Diffusion) between with Φ and without Φ. Pheromone injection had a
greater impact on the cohesiveness with N = 4 than N = 6 regardless of cue speed. The impact of
pheromone injection seemed stronger in experiments with N = 4 robots than N = 6 robots with
smaller differences in different cue speeds.

The reason that the effect of pheromone injection that cancelled the effect of diffusion is greater in
experiments with N = 6 robots than N = 4 robots is that the probability of collision rose as the
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Figure 3.15. The size of aggregate in experiments with Fast Cue Speed, different diffusion rates (No Diffusion, Medium
Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 6 robots.

Figure 3.16. The cohesiveness in experiments with Fast Cue Speed, different diffusion rates (No Diffusion, Medium
Diffusion and Fast Diffusion) and (a) without and (b) with pheromone Φ injection in N = 6 robots.

population increased. Similarly, the impact of pheromone injection on the cohesiveness in N = 4

can be explained that rather than they collided with each other outside of the cue, they collided with
higher probability when they were close to the centre of the cue, therefore, the cohesiveness was
higher with Φ. However, with N = 6 robots, the robots collided with each other more frequently
in the outer part of the cue than with N = 4 robots, thus, there was no remarkable increase in the
cohesiveness.

Cue speed

The impact of cue speed was also investigated by comparing Figures 3.9, 3.10, 3.11, and 3.12 with
Figures 3.13, 3.14, 3.15 and 3.16 respectively. The first four figures show the size of aggregate and
the cohesiveness in experiments with N ∈ {4, 6} robots with Medium Cue Speed and the last four
figures show the size of aggregate and the cohesiveness in experiments with N ∈ {4, 6} robots with
Fast Cue Speed. The diminished impact of pheromone injection on the size of aggregate is observed
as caused by the increase in the cue speed. Comparing Figures 3.9(b) and 3.13(b), the decay of the
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size of aggregate with Fast Diffusion occurred faster with Fast Cue Speed than with Medium Cue
Speed. Similarly, the smaller impact of pheromone injection on the size of aggregate with Fast Cue
Speed than Medium Cue Speed was observed in experiments with N = 6 robots comparing Figures
3.11 and 3.15. Whereas the pheromone injection with Medium Cue Speed seemed to have an impact
only with Fast Diffusion (see Figure 3.10 and 3.12, the pheromone injection with Fast Cue Speed
affected the size of aggregate with No Diffusion (see Figure 3.16. It is also seen the increase in the
cue speed causes a decrease in the cohesiveness. This observation is not clearly shown in N = 4.
Comparing Figures 3.10 and 3.14, the cohesiveness rather increased as the cue speed increased
with Φ, whereas the cohesiveness slightly decreased without Φ for all diffusion rates. However, the
cohesiveness considerably decreased in experiments with N = 6 robots (see Figures 3.12 and
3.16). The difference notably featured the cohesiveness with Fast Diffusion, the difference was not
as remarkable in experiments with No Diffusion and Medium Diffusion.

The difference observed between the experiments with two different cue speeds was likely to occur
because the cue moved away from the robots which were in the waiting phase more quickly with
the faster cue speed. The position at which the pheromone was injected was always where the robot
was waiting. Therefore, the position of injected pheromone and the cue moved away further from
each other in experiments with Fast Cue Speed than Medium Cue Speed. As a result, the greater
number of robots tended to stay on the injected pheromone outside the cue with Fast Cue Speed,
thereby the decrease in the size of aggregate. The decrease in cohesiveness by increasing the cue
speed was also caused by the same reason why the impact of pheromone injection decreased. Since
the cue passed the robots too fast while they were waiting after the collision at the centre of the cue,
the cohesiveness rapidly decreased especially when it was high. This observation also supports why
there was no considerable difference of the cohesiveness between experiments with Medium Cue
Speed and Fast Cue Speed, where in both cases of No Diffusion and Medium Diffusion was applied.

Statistical Analysis

The results from the experiments in the dynamic cue configuration with two different cue speeds
were also analysed using ANOVA test (see Tables 3.2 and 3.3). The statistical analysis revealed that
diffusion and time were two significant factors (p < 0.05) for both experiments with and without
Φ. Diffusion was the most significant factor in both the size of aggregate and cohesiveness, both
with and without Φ regardless of the cue speed. It is also shown that this system was time-variant
(p < 0.05). Although both the size of aggregate and cohesiveness with two different cue speeds
were influenced by diffusion the most, the impact of diffusion on cohesiveness with Medium Cue
Speed is the lowest. F = 13.6 and 13.0 for experiments with and without Φ respectively, while F is
greater than 30 in the test of size of aggregate with Medium Cue Speed and both the metrics with
Fast Cue Speed.
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Table 3.2. Results of ANOVA test for size of aggregate with different cue speeds, u.

Factor With Φ Without Φ
F p F p

Static, u = 0 cm/s
Population (N ) 0.46 0.54 0.00 0.96
Diffusion (κ) 17.00 0.00 64.81 0.00
Time (t) 3.14 0.00 6.41 0.00
Medium, u = 0.1 cm/s
Population (N ) 0.20 0.68 0.01 0.95
Diffusion (κ) 39.98 0.00 43.05 0.00
Time (t) 2.76 0.00 4.64 0.00
Fast, u = 0.2 cm/s
Population (N ) 0.06 0.82 0.07 0.81
Diffusion (κ) 32.88 0.00 50.31 0.00
Time (t) 3.55 0.00 3.65 0.00

Table 3.3. Results of ANOVA test for cohesiveness with different cue speeds, u.

Factor With Φ Without Φ
F p F p

Static, u = 0 cm/s
Population (N ) 0.42 0.55 1.37 0.31
Diffusion (κ) 12.66 0.00 30.58 0.00
Time (t) 3.23 0.00 3.28 0.00
Medium, u = 0.1 cm/s
Population (N ) 0.30 0.61 4.80 0.10
Diffusion (κ) 13.60 0.00 13.00 0.00
Time (t) 2.84 0.00 3.28 0.00
Fast, u = 0.2 cm/s
Population (N ) 0.14 0.73 2.22 0.21
Diffusion (κ) 31.90 0.00 29.56 0.00
Time (t) 3.30 0.00 3.38 0.00

3.5 Discussion

The observation made from the results suggests that positive feedback and environmental effects
have an impact on the performance of collective behaviour of robots. The impact of positive
feedback and the environmental effects of robot swarm across different population sizes is discussed
in more detail.

3.5.1 Static Cue Configuration

In the static cue configuration, the trend of swarm behaviour did not noticeably vary between two
population sizes (N ∈ {4, 6} robot). Statistical analysis of the results showed that the population
size did not affect the size of aggregate and cohesiveness. It means that the ratio of the size of aggre-
gate given the population size did not differ by the population size. In other words, the aggregation
performance increased linearly with the population size. This relationship between the population
and aggregation performance efficacy was also reported in other research studies [143], [145].
While the decrease in aggregation performance efficacy using pheromone-based communication
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with high-density robot swarms was reported in the studies [146], [147], this work did not showcase
the decrease in the performance due to relatively small sizes of robot swarms. This means that more
investigation with large sizes of swarms is required to investigate aggregation performance efficacy
with realistic conditions.

In the set of experiments without Φ, the effect of diffusion on the swarm aggregation performance
is investigated when there is no feedback provided. In the plots, the decrease in the size of the
aggregate and increase in the cohesiveness with the increased diffusion rate was observed. It was re-
vealed that diffusion had the most significant impact both on the size of aggregate and cohesiveness.
This result is identically showcased to the impact of diffusion on the swarm behaviour of robots
reported in the earlier study [143]. Such impact of diffusion indicates that the pheromone-based
aggregation behaviour of the swarm robotic system is susceptible to the effect of diffusion, implying
its susceptibility to achieve the desired behaviour [148].

In the set of experiments with Φ, the impact of pheromone injection as a positive feedback mecha-
nism on the aggregation performance is reported with different diffusion rates. The results revealed
that activation of the feedback mechanism had a substantial impact on the swarm behaviour. The
effect of diffusion that reduces the size of aggregate was diminished by the feedback via pheromone
injection. The statistical analysis confirmed that pheromone injection was one of the significant
factors affecting the swarm aggregation performance (see Table 3.4). This result implies that the
positive feedback mechanism is a great way to compensate for the environmental effect. Positive
feedback can be used as a mitigating strategy for robotic swarms to overcome environmental effects
when they are used in real-world conditions. On the other hand, it also means that the positive
feedback adds more complexity to analyse and predict the behaviours of the swarm. A similar
impact of the pheromone injection that increases the swarm behaviour was reported in research
studies both in biology [141], [149] and robotics [143], [150].

3.5.2 Dynamic Cue Configuration

As identical in the static cue configuration, the population size did not have a significant impact on
the swarm performance according to the statistical analysis (see Tables 3.2 and 3.3)

In the set of experiments without Φ, similar results in the experiments with the static cue configura-
tion were observed for both two cue speeds. The increase in the diffusion rate led to a decrease both
in the size of aggregate and the cohesiveness. Although the identical impact of diffusion appeared
in both static and dynamic cue configurations, the degree of impact was differently observed. In
the dynamic cue configuration, it is shown that the time taken for the robots to completely leave the
cue was delayed than in the static cue configuration. This delay indicates the moving cue dragged
the robots to the cue rather than randomly moving. Despite the mitigating effect of dynamic cues
by wind effect, the statistical analysis confirmed that diffusion was the most influential factor of the
swarm performance. Nevertheless, the impact of the interplay between dynamic cue and diffusion
generates more complex variation in the aggregation behaviour. This counterbalancing effect of
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wind and diffusion effects reinforces the unpredictability of aggregation behaviour of pheromone-
based swarm robotic systems operating under realistic conditions.

The effect of pheromone injection in the dynamic cue configuration was investigated in the same
manner used in the static cue configuration. The results demonstrated that the pheromone injection
affected the swarm performance. Although the observed impact was identical to the static cue
configuration, the observation in the dynamic cue configuration was not as clear as in the static cue
configuration. In Figures 3.9 and 3.13, the trend of the size of aggregate in experiments with Φ was
not clearly distinguished from experiments without Φ whereas the impact of pheromone injection
weakening the diffusion effect was clearly shown in the other configurations.

Despite this vagueness of the impact of pheromone injection shown in the mentioned figures, the
results in corresponding figures displaying cohesiveness still showed that the pheromone injection
had an impact. As seen in Figures 3.10 and 3.14, the increased cohesiveness in experiments with Φ

compared to without Φ is described. This result posited that pheromone injection allowed the robots
to stay close to the cue rather than randomly roaming around. The impact of pheromone injection
was significant on the swarm performance according to the statistical analysis. The robustness of the
swarm using the feedback via pheromone injection against the environmental factors was similarly
reported in the studies both in robotics and biology [150], [151]. Nonetheless, the relative subtlety
of the effect of positive feedback on the aggregation behaviour with the dynamic cue configuration
hinders achieving the targeted aggregation behaviour supported by positive feedback.

Figure 3.17 shows the impact of cue speed comprehensively. The results depict that the cue speed
did not deteriorate the size of aggregate. Interestingly, with the medium cue speed, the size of
aggregate reached the highest regardless of diffusion and pheromone injection. This observation
suggests that the gradient made by moving pheromone with a moderate speed leads to the highest
responsiveness on the pheromone cue for robots. This guidance effect by using the gradient in
pheromone trails was reported in a study on bee communication [152]. As well as the observation
of the maximised dragging effect with the medium cue speed, it is worth noting that the size of
aggregate with the fast cue speed fluctuated shown in Figure 3.17(d). As mentioned in the previous
results section, it is shown that the swarm aggregate was formed around the cue. Although the
swarm was still forming aggregation under the higher intensity of cue movement, it deteriorates the
quality of aggregation, supported by low cohesiveness shown in Figure 3.14 and 3.15. The statistical
analysis showed the cue speed was significantly influential to the robot swarm. The intensity of
the environmental effect determines the influence on the collective behaviour of swarm robotic
systems. As the degree of environmental effect varies unpredictably in real-world conditions, the
collective behaviour of a swarm robotic system is likely to be unstable under such conditions when
no mitigating strategies exist for relieving environmental effects to obtain the desired behaviours.

Summarising the in-depth analysis of the impact of the variables, The substantial impact of the
complex interplay of positive feedback and environmental factors necessitates more adaptive
controllers for swarm robotic systems in real-world applications.
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Figure 3.17. The size aggregate in experiments with different cue speeds (u ∈ {0, 0.1, 0.2} cm/s), diffusion rates
(κ ∈ {0, 50, 75}%/T ) and without and with pheromone (Φ) injection in N = 6 robots.

Table 3.4. Results of fully-nested ANOVA test.

Factor Size of Aggregate Cohesiveness
F p F p

Population (N ) 0.05 0.83 0.55 0.50
Diffusion (κ) 12.37 0.01 1.17 0.41
Pheromone (Φ) 3.27 0.02 5.48 0.00
Cue Speed (u) 5.55 0.00 13.32 0.00
Time (t) 3.91 0.00 3.22 0.00

3.6 Summary

In this chapter, Aim 1 and the following Objective 1 are achieved by investigating the aggrega-
tion behaviour of a pheromone-based swarm robotic system with the emulated realistic factors.
Specifically, the effects of four independent variables: positive feedback (pheromone injection),
environmental effects (wind and diffusion), and population were systematically investigated. The
experimental results show that these variables significantly impact aggregation performance, leading
to complex effects. The interplay between real-world factors creates a more intricate impact than
individual factors alone. For example, medium diffusion and wind effect increase aggregate size,
while their sole presence reduces it.

The significant influence of realistic conditions on swarm robotic systems highlights their potential
to deviate unpredictably from desired behaviour in real-world scenarios. To address this, sophisti-
cated controllers for individual robots must be designed to overcome and adapt to adverse effects
while achieving desired behaviours. This chapter’s findings spur the research in the next chapter,
where automatic controller design is adopted to enhance adaptivity for pheromone-based swarm
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robotic systems in diverse realistic conditions. Compared to the manual controller design, which
is used to design aggregation behaviour in this chapter, automatic controller design is expected to
be more adaptive and robust in a complex environment. In conclusion, this chapter successfully
identifies the effect of realistic conditions, confirming the need for automatic controller design.
Therefore, this chapter supports the next chapter, whose aim is to propose a DRL-driven automatic
controller for swarm robotic scenarios.
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Chapter 4

Deep Reinforcement Learning-Driven

Automatic Controller Design

In Chapter 3, the impact of realistic conditions on the collective behaviour of a pheromone-based
swarm robotic system was examined. The findings revealed that these conditions significantly
influence collective behaviour, making the system more susceptible to real-world operating environ-
ments. Consequently, the results underscore the need for a more sophisticated, adaptive controller
that can respond to the complexities of actual conditions.

In this chapter, the Deep Reinforcement Learning (DRL)-driven automatic controller design is
proposed as a promising type of adaptive controller. About the scenario, the focus shifts from the
simple aggregation scenario in the previous chapter to the application of an artificial pheromone
system for a realistic scenario involving swarm robotic systems, envisioned as a future transportation
model. In this context, a multitude of autonomous vehicles on the road is treated as a swarm system.
Pheromone-based communication is employed to manage this system, providing scalability and
flexibility in alignment with the inherent characteristics of pheromone-based interactions. This
approach facilitates essential tasks such as collision avoidance for individual autonomous vehicles.

Building on this scenario, this chapter introduces a research study that proposes a DRL-driven
automatic controller design to enhance performance efficacy. The investigation delves into the
effectiveness of the proposed model as complexity increases, aligning with the preceding chapter’s
emphasis on the importance of adaptive controller design in complex real-world conditions. Finally,
this chapter validates the potential of DRL for automatic controller design in swarm robotic systems
under realistic constraints. It concludes by outlining a new direction for mitigating the issue of
centralisation, a further real-world constraint in promising operating environments.
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4.1 Background

Although pheromone-based swarm robotic systems are in a nascent stage, many potential appli-
cation domains exist in the real world. Traffic management for autonomous vehicles is one of the
domains where pheromone-based swarm robotic systems can benefit.

With the emergence of machine learning and other new technologies, the development of au-
tonomous vehicles has been drawing greater attention as a possible method of future transportation
[153]. The wide deployment of autonomous vehicles is expected to bring invaluable benefits to
society across diverse aspects including reduced traffic congestion, savings in fuel/battery usage
and most importantly, increased safety. However, if autonomous vehicles are to receive widespread
acceptance for use on roads then robust collision avoidance mechanisms in general operating
environments are essential [154], [155].

Large numbers of autonomous vehicles operating together on a network of roads can be regarded
as a swarm, where a swarm is a system that consists of a large number of agents, controlled in a
decentralised manner using local communication between individual agents or agents and the envi-
ronment, that work towards a common goal [156]. Swarms are frequently observed in nature where
they perform complex tasks using large numbers of agents, all with limited capabilities, such as the
colonies of ants, bees and termites. Since autonomous vehicles can be controlled independently and
use local communication to achieve a common goal, e.g. minimising collisions, whilst optimising
other driving factors, such as congestion and travel times, they can be regarded as a swarm system.

Like a wide range of practical domains including optimisation [157], vehicle routing [158] and
robotics [45], [159]–[161], which adopted pheromone-based communication systems to address
particular challenges, traffic management for autonomous vehicles as a swarm system, pheromone-
based communication can thrive thanks to its decentralised, scalable and optimising features.
Despite the potential of pheromone-based communication facilitating traffic management for au-
tonomous vehicles, the issue of intricacy for controller design arises. Designing an individual con-
troller for a fleet of autonomous vehicles is not a trivial task especially when indirect pheromone-
based communication is widely used for coordination. As demonstrated in Chapter 3, pheromone-
based swarm systems are particularly vulnerable in real-world environments, which makes designing
controllers with manual controller design an almost insurmountable challenge.

The two widely recognised basic low-level behaviours of autonomous vehicles and similar fields
are collision avoidance and waypoint navigation. To design effective collision avoidance including
navigation, a wide range of techniques including control theory [162], potential fields [163], trajec-
tory planning [164], [165], adaptive control [166], [167], velocity-based approaches [168]–[170] and
biologically-inspired method [171] have been proposed.

More recently, DRL-based approaches have been proposed that utilise large amounts of data to
derive optimal controllers particularly effective on complex and dynamic environments [90],
[91], [172], [173]. The recent success of DRL-based approaches in diverse multi-agent domains
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incentivises the use of DRL in automatic controller design for swarm systems. From a technical
perspective, the use of DRL-based controller design can be regarded as effective for the traffic
management scenario of autonomous vehicles with added complexity from pheromone-based
communication. Also from the perspective of automatic controller design, the application of DRL
for this swarm system gives an opportunity to investigate DRL-driven automatic controller design
as a viable option for real-world scenario. In this research study, DRL-driven automatic controller
design is proposed for traffic management scenarios for autonomous vehicles and investigated via
comparative analysis with two conventional approaches in a classic multi-agent and swarm system
perspective respectively.

This research study contains three major contributions as follows:

• A bio-inspired PhERS (Pheromone for Every Robot Swarm) framework is proposed for a collision
avoidance scheme in swarm systems. The framework is validated using three traffic scenarios with
increasing complexity in a realistic simulated environment. Through experiments, the controllers
using this framework showed greater performance and flexibility than the traditional centralised
control method.

• A DRL-driven automatic controller design is proposed for pheromone-based swarm systems. The
DRL-driven controller is designed to provide collision avoidance and navigation in pheromone-
based swarm systems. Comparisons show that the proposed controller performs better than the
traditional centralised controller, NH-ORCA [169], and the manually-tuned controller.

• A novel bio-inspired sampling strategy for experience replay buffer, Highlight Experience Re-
play (HLER), is proposed and integrated with the Deep Deterministic Policy Gradient algorithm
(DDPG). The obtained results from this work showed the proposed HLER sampling strategy
outperformed the Prioritized Experience Replay (PER) [120] sampling strategy in terms of training
speed reducing to an average 27% of training time with PER in three experimental stages. The
training speed of HLER is increased by integrating the Gaussian noise on parameters of a neural
network (NN) to incentivise exploration for finding a better policy rapidly [174].

4.2 Artificial Pheromone Framework

To implement pheromone-based swarm system in the simulated environments, PhERS (Pheromone
for Every Robot Swarm) framework is proposed, in an expandable way for the future use in diverse
environments and applications.

Figure 4.1 illustrates the general overview of the proposed framework. Within the framework,
virtual pheromones are managed inside each of the virtual grids, which act as fields of pheromones
having different characteristics. The framework is able to incorporate a varying number of virtual
grids and hence a variety of virtual pheromones can be defined, which helps to simulate com-
plex interplay of pheromones and induced behaviours. For example, if repellent and attractive
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Figure 4.1. An overview of PhERS framework. Multiple pheromone grids (1,2,...,N) are computed in the main PhERS
controller and integrated with the environment, which retrieves and updates pheromone intensity values requested as a

ROS message.

pheromones are utilised simultaneously, then the complex trail traffic management systems of ants
can be replicated.

Figure 4.2 illustrates the proposed architecture of the PhERS framework. It consists of three parts:
i) main PhERS controller, ii) data storage and iii) communication network. The main PhERS
controller orchestrates all the pheromone grids (Phero-Grid) in the system. When the main PhERS
controller is initialised, it creates the specified number of Phero-Grids, containing the individual
characteristics requested. After initialisation, the controller updates the Phero-Grids at each time-
step, based on the predefined spatio-temporal development model of each pheromone. The data
storage is used to store the data contained within the Phero-Grids, which represents the intensity
of each of the pheromones, in the main PhERS controller at the specific time-step. The stored
Phero-Grid data can be retrieved when requested. The communication network is used to man-
age communication between the main PhERS controller and the agents. When the agents read
pheromone values, the positional information of the agents is sent to the main PhERS controller
via the communication network using Robotic Operating System (ROS) messages, which is a
developed for robotic application orchestrates communication between multiple robotic devices
effectively. The main PhERS controller then retrieves the requested pheromone data from the agent
through the communication network. Likewise, the communication network sends the received
pheromone intensity at a given position from the robot to the main PhERS controller so that the
released pheromone data is applied to the Phero-Grids.

This framework is implemented to create virtual pheromones on a robotic simulated environment
(Gazebo). With the current technological limitations, it is impossible for real road infrastructure,
not having required physical devices and technologies and social understandings. For future
deployments on autonomous vehicles, cloud computing can be a promising method to implement
PhERS framework. The example of remote computing server implementing pheromone system is
shown in several works using virtualisation to implement pheromone for swarm robotic systems
[43], [45]. The virtual pheromone grids that are applied to the environment could be generated and
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Figure 4.2. Architecture of PhERS framework. The framework consists of (i) data storage, (ii) main controller and (iii)
communication network. Phero-Grid represents an entity that stores parameter settings and pheromone data.

updated in the remote cloud system using real-time communication with the vehicles. Using future
generation communications, such as 5G, and high-performance cloud servers, the application of
virtual pheromones to a large number of fast moving autonomous vehicles, with minimal delays
is feasible [175], [176]. Moreover, the virtual pheromones can be generated and managed by
the traffic infrastructure. The development of sensing technology and vehicle-to-infrastructure
communication systems enabled to propose smart roads [177]. With the smart road technologies,
the virtual pheromones can be implemented and managed by local smart traffic infrastructures in a
decentralised manner rather than using a centralised server such as a cloud computing system.

There are several advantages for using PhERS for collision avoidance compared with other more
traditional collision avoidance methods. For the traditional collision avoidance using centralised
control, our pheromone-based communication method is more flexible to any increase in environ-
mental complexity. The PhERS framework provides decentralised control and so can manage more
effectively when the number of agents is large and/or varying, i.e. high scalability. Moreover, for the
traditional collision avoidance using decentralised control, and using different sensory devices, e.g.
LiDAR and camera, the PhERS-based collision avoidance system has the benefit that it can represent
future collision hazards that cannot be detected using the sensory devices used when applying the
traditional methods. For example, by marking the trail of a vehicle using a slow volatile pheromone,
the vehicle can ensure there is a safe distance from other following vehicles.
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Although the PhERS framework is able to replace the traditional collision avoidance methods using
individual sensory devices such as cameras and LiDARs, it is more beneficial to be used as a higher
level system while the traditional collision avoidance is used for lower level. The higher level system
can be defined as traffic level system while the traditional individual level system can be classified
as vehicle level system. When they are used together, but as different level of layers of collision
avoidance, vehicle level can cover more immediate collision avoidance behaviours that require
minimal delay at a vehicle level and the PhERS-based system can be used to cover more complex
situations at a traffic level. By synthesising the two levels, the vehicles can prevent collisions when
the traditional sensory devices are damaged or malfunctioning.

The virtual pheromones in the PhERS framework use a predefined spatio-temporal update model
inherited from the original research study [46]. Identical to the artificial pheromone system in
Chapter 3, the PhERS framework utilises the same spatio-temporal update model.

4.3 Deep Reinforcement Learning Algorithm

The DRL-driven automatic controller design capitalises DDPG as a backbone algorithm. Standing
on DDPG, additional proposed techniques improved the performance efficacy for the use as a
method for automatic controller design. Technical detail of DDPG algorithm is described in Section
2.4.1. The proposed strategies to improve the basic DDPG algorithm are described below.

The DDPG algorithm employs an experience replay buffer to store and retrieve transition samples,
making the design of the buffer critical to sampling efficiency. This efficiency is a fundamental
consideration in algorithm design. In the context of this research study, a novel sampling strategy,
referred to as HighLight Experience Replay (HLER), is introduced to optimise sampling efficiency
from the experience buffer.

HLER prioritises transition samples with a higher absolute value of rewards, considering them the
”highlights” of an episode. This strategy draws inspiration from the human brain’s ability to more
effectively recall highlight events than neutral ones [178]. For instance, studies have demonstrated
that images evoking negative emotions are retrieved more effectively than those evoking neutral
emotions [179], and that the retrieval of positive contextual information leads to increased brain
activity in comparison to neutral information [180].

The anticipated benefit of utilising HLER is an enhanced training of the neural network on samples
associated with high absolute rewards. While Prioritized Experience Replay (PER) emphasises
the selection of samples with high Temporal Difference error (TD-error) for rapid neural network
optimisation, HLER centers on samples with high absolute rewards to expedite learning of signif-
icant events. In the specific scenario of this study, concerning collision avoidance for autonomous
vehicles, the hypothesis is that HLER may prove more efficient than the PER strategy. The rationale
behind this preference is that a collision, being a pivotal event, can be regarded as a highlight, thus
aligning more closely with the principles underpinning HLER.
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The proposed HLER strategy assigns a priority to each transition sample in a replay buffer, collected
from K actors. The priority of the ith sample, pi is assigned as follows:

pi =

⎧⎨⎩kHL · pbase, |rt| ≥ rHL

pbase, otherwise
, (4.1)

where pbase is the default priority, kHL is a coefficient that is applied to samples that are considered
highlights, and rHL is a reward value to determine whether the sample is considered a highlight or
not.

When pi is specified to be equal to kHL · pbase, the priority of the previous l number of samples,
pi−l+1:i, are also assigned values of kHL · pbase. This defines the previous l samples as the moments
contributing to the highlight sample. The sampling probability of the ith sample in HLER sampling
strategy follows (2.1) as PER.

Algorithm 2: DDPG algorithm with HLER sampling strategy and noisy network.
1 Randomly initialise critic neural network with normal linear layers, Q(s, a|θQ) and actor neural network with noisy

linear layers π(s|θπ) with parameters θQ and θπ

2 Initialise target network Q′ and π′ with parameters θQ
′ ← θQ, θπ

′ ← θπ

3 Initialise replay buffer R
4 for episode = 1, ..., M do
5 Initialise the states st = s1
6 for t = 1, ..., T do
7 Run K actors and collect transition samples Dt = (st, at, rt, st+1) into a replay buffer
8 if|rt| ≥ rHL then
9 Assign priority kHL · pbase for Dt−l:t

10 else
11 Assign priority pbase for Dt

12 end
13 if t = 0 mod ttrain then
14 Sample N transitions (si, ai, ri, si+1) from a replay buffer with the sampling probability P (i)

15 Set yi = ri + γQ′(si, π
′(si+1|θπ

′
)|θQ′

)

16 Set weighted updates for networks: ωi = ( 1
B ·

1
P (i) )

β

17 Update critic network by minimising the loss: LQ = 1
N ω

∑︁
i(yi −Q(si, ai|θQ))2

18 Update actor network using the sampled policy gradient: ∇θπJ ≈ 1
N ω

∑︁
i∇aQ(s, a|θQ)|s=si,a=π(si)

19 ·∇θππ(si|θπ)|s=si

20 end
21 if t = 0 mod ttarget then
22 Update the target networks: θQ

′ ← θQ,θπ
′ ← θπ

23 end
24 end
25 end

In contrast to PER, the HLER sampling strategy is posited to be more adept at selecting vital tran-
sition data encapsulating behaviors the neural network must assimilate, such as collision avoidance.
In scenarios where critical and neutral behaviors are distinctly separable, HLER has the potential
to hasten training and result in an elevated cumulative reward throughout an episode, signifying an
efficient progression from an initial to a terminal state. Due to its underlying difference of HLER
to PER, it is expected to learn a specific behaviour required to equip faster despite the possibility
of sub-optimal performance in non-highlighted behaviours. Since HLER sampling strategy is
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heuristically designed inspired by biological phenomena and the performance can vary depending
on the target behaviour selection, parameter and reward shaping, it is difficult to formally analyse its
performance, but requires empirical comparative examination.

Alongside the imperative of high sampling efficiency, a strategy to enhance robustness against
unpredictability is equally crucial. The DDPG algorithm, producing deterministic output, may be
vulnerable to external perturbations and the non-stationary nature of tasks and environments unless
countermeasures are in place. To address this susceptibility and augment exploration capability, the
“noisy network” approach was adopted, wherein noise is added to the neural network parameters
[174]. The essence of noisy networks lies in the integration of stochastic features by introducing
Gaussian noise into the weight and bias values of each linear layer within the neural network. Thus,
a linear layer in a neural network with p inputs and q outputs can be formulated as follows:

y = wx+ b, (4.2)

where x ∈ Rp is the layer output, w ∈ Rp×q represents the weight matrix and the bias is denoted by
b ∈ Rq. However, the linear layer of a noisy neural network can be characterised as follows:

y := (µw + σw ⊙ ϵw)x+ µb + σb ⊙ ϵb, (4.3)

where µw ∈ Rq×p, µb ∈ Rq, σw ∈ Rq×p, σb ∈ Rq are the learnable parameters, ϵw

and ϵb are the adaptive Gaussian noise values that are added to the weight and bias of the layer
and ⊙ is an element-wise multiplication operator. A noisy linear layer was applied to the actor
network, to help improve the exploration ability of the agent. Unlike ϵ-greedy [87], another popular
exploration method, the noisy network approach generates state-dependent noise, which helps
reduce undesirable exploration in the states that do not require exploration (e.g. states where the next
state causes a large penalty). Moreover, the noisy network approach can be used for different DRL
problems as the parameter noise are adapted over training, while the fixed Gaussian parameter space
noise approach [181] requires manual fine-tuning of the noise parameters. For these reasons, noisy
network approach was chosen to improve robustness against noises and further provide exploration
ability when collecting transition samples.

The DDPG algorithm with the HLER sampling strategy technique and noisy network is represented
in Algorithm 2. When the algorithm is executed, it initialises the actor and critic neural networks,
the target network and the replay buffer. The algorithm iterates for M training episodes and in
each episode, a total of T steps of transition samples are collected from the K number of actors.
Sample priorities are assigned using the HLER sampling strategy. In every ttrain time step, the N
number of transition samples are selected based on Pi and TD-target and yi is assigned. In line
16, ω determines the degree of the parameters of the neural network are updated, where β is a
constant value and B is the total batch size. In every ttarget in every episode, the target actor and
critic networks are updated.
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Figure 4.3. The photo of Turtlebot3 Waffle Pi mobile robot, (a), and an illustration of the two virtual antennae are
attached on Turtlebot3 Waffle Pi in the Gazebo simulated environment, (b). la is the length of antennae, α is the tilt

angle, and Φl,Φr are the pheromone intensities measured by the left and right antennae respectively.

Figure 4.4. Three experimental stages. (a), (b) and (c) illustrate Stage 1, 2 and 3 respectively. The cyan coloured shaded
circles around the robots and obstacles illustrate the area where pheromones are injected and the red arrows show the

arbitrary trajectory of the robots on a mission.

4.4 Experiments

The experiments conducted in this research study aim to accomplish the Objective 2. A com-
parative analysis is carried out to examine the performance efficacy of the proposed DRL-driven
automatic controller design. The following sections describe i) the specific experimental scenario,
ii) the traditional multi-agent collision avoidance method, iii) the conventional manual controller
design, iv) the specification of the DRL-driven automatic controller design, and v) the metrics
used to evaluate the performance of the controllers. Through the experiments, the suitability of the
PhERS framework is also validated.

4.4.1 Experimental Scenario

Three stages of experimental scenarios were designed to emulate real-world navigation and collision
avoidance situations for autonomous vehicles, with each stage increasing in complexity. These ex-
periments were conducted within the Gazebo simulation environment, leveraging its realistic physics
engine. The simulated differential-driven mobile robots, referred to as Turtlebot3, were deployed to
model the autonomous vehicles. The Turtlebot3 is a general-purpose wheeled robot, widely utilised
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for educational, research, and product prototyping purposes, as depicted in Fig. 4.3 (a). Fig. 4.4
illustrates the experimental stages and each stage is explained as follows.

Stage 1– Single Robot in a Static Scenario

In the first experimental scenario, a situation involving one robot and four static cylindrical obstacles
was simulated, reflecting a real-world condition where an autonomous vehicle must navigate
around stationary obstructions in traffic. During initialisation, the robot was positioned at the origin
(0,0) in the 2D Cartesian coordinate system of the arena, with obstacles placed at the coordinates
[(2, 0), (−2, 0), (0, 2), (0,−2)] meters, respectively. The navigation system’s goal was to guide the
robot to a random position 4 meters away from the origin. This stage is illustrated in Fig. 4.4 (a).

Stage 2– Multi-robot in a Dynamic Scenario

In the second scenario, two robots were deployed. Tasked with navigating to each other’s initial
positions, they had to avoid colliding with one another. This stage simulates a situation where two
autonomous vehicles are driving towards each other, necessitating collision avoidance. During the
initialisation phase, the robots were placed 5 meters apart. Fig. 4.4 (b) depicts this stage.

Stage 3– Multi-robot in a Complex Dynamic Scenario

In the third scenario, four robots and one static obstacle were deployed. This stage simulates a situ-
ation where four autonomous vehicles approach a roundabout without fixed traffic rules. Similar to
Stage 2, the robots’ objective is to navigate to the positions of the robot they initially face, avoiding
collisions with both other robots and the static obstacle. During the initialisation phase, the robots
were positioned at coordinates [(2.5, 0), (−2.5, 0), (0, 2.5), (0,−2.5)] meters, respectively, in the 2D
Cartesian arena, with the static obstacle centered at (0,0). Fig. 4.4 (c) illustrates this stage.

For collision avoidance, two distinct types of artificial pheromones were developed: i) a non-volatile
pheromone, utilised for static obstacle avoidance, and ii) a highly volatile pheromone, designed for
dynamic obstacle avoidance. This dual-pheromone concept draws inspiration from natural alarm
pheromones that elicit aggressive or avoidant responses in organisms, such as ants [182], [183].

In the experimental setup, non-volatile pheromones surround static obstacles during the initialisation
phase. Unlike the short-lived volatile pheromones employed for dynamic obstacles, non-volatile
pheromones are presumed to communicate with static obstacles, and a longer-lasting variant is
employed. This non-volatile type is released in a circular shape with a radius of 0.5 m, exhibiting no
evaporation or diffusion (i.e., eΦ = 0 s and κ = 0). Conversely, the volatile pheromone is dispersed
with a 0.3 m radius, accompanied by a rapid evaporation half-life of eΦ = 0.5 s.

The selection of the radius and evaporation rate was empirically determined to ensure the effective
utilisation of each pheromone type in collision avoidance. Particularly, the choice of eΦ for the
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volatile pheromone was inspired by previous work where highly volatile repellent pheromones were
employed to avert wall collisions during navigation [46].

Each experimental stage was conducted 100 times across three distinct control design setups: 1) a
traditional controller design for multi-agent collision avoidance; 2) a manual controller design with
pheromone communication, and 3) a DRL-driven automatic controller design also accompanied
by pheromone communication. While the traditional and manual controller designs relied on
predefined settings, the DRL-driven automatic controller underwent a separate training phase
for each stage of experiments. Upon completion of training, the fully trained controller was then
employed in the subsequent evaluation of performance. A comparative analysis was performed
during this training process, assessing the proposed strategy against two established baselines. This
comparison revealed the relative effectiveness and distinct capabilities of the proposed strategy.

4.4.2 Traditional Multi-agent Collision Avoidance

Non-Holonomic Optimal Reciprocal Collision Avoidance (NH-ORCA) is a centralised method
for multi-robot collision avoidance and navigation [169], [170]. Unlike its predecessor, ORCA
[168], NH-ORCA integrates the non-holonomic characteristics of mobile robots to calculate the
optimal velocity required for collision-free motion. By considering the position and velocity of each
agent, the algorithm defines the necessary velocities for the subsequent sample time, thus ensuring
a collision-free trajectory. As the Turtlebot3, a non-holonomic wheeled mobile robot, was selected
as the robotic platform for this study, NH-ORCA provides a particularly effective means of collision
avoidance for the given experimental setup. Its ability to guarantee collision-free navigation when
the positions and velocities of the agents within a swarm are known makes NH-ORCA a fitting
choice for the baseline algorithm in the comparative analysis with the proposed pheromone-based
collision avoidance strategy. Further insights into the NH-ORCA algorithm can be found in the
original paper [170].

4.4.3 Manual Controller Design

The manual controller design was proposed as the baseline to compare the performance of DRL-
driven automatic control design and was designed to perform navigational tasks whilst avoiding
collisions. A flowchart for the manual controller design is provided in Fig. 4.5. During operation,
the robot assesses pheromone intensity via the tips of its virtual antennae, as depicted in Figure 4.3.
These virtual antennae, affixed to the robot for the purpose of sensing virtual pheromones, extend
0.45 meters (i.e., la = 0.45m) on both left and right sides and are each tilted by θa and −θa
respectively from the robot’s heading vector. In the context of real vehicles, equivalent virtual
antennae could be realised either within each vehicle’s cyber-physical space or through a centralised
cloud system that manages all virtual pheromone information. Should physical materials be utilised
to implement the pheromone, corresponding physical antennae might be affixed to the vehicles’ front
sides.
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Figure 4.5. A flowchart of the manual controller design.

The pheromone intensities detected by the left and right antennae are denoted as Φl and Φr, re-
spectively. If the sum of these intensities, Φl + Φr, exceeds a predetermined threshold, Φthr, the
robot’s motors are regulated to avoid a collision. Conversely, if the combined intensity falls below
this threshold, the robot’s motors are set to navigate toward the target, irrespective of the pheromone
intensity sensed.

Inspiration for the design of this pheromone-based collision avoidance approach was drawn from
the earlier studied deployed manual controller design [46], where pheromone-based foraging and
aggregation techniques were applied to a swarm of mobile robots using dual artificial pheromone
inputs. The collision avoidance model employed in this work was adapted from the controllers used
in those studies and is defined as follows:

β = βconst −
Φl + Φr

2

wl = β + α(Φl − Φr), wr = β + α(Φr − Φl) ,
(4.4)

where β is a bias velocity, βconst is a constant bias velocity, Φl,Φr represent the pheromone intensity
readings from the left and right antennae respectively, α is a sensitivity gain applied to the difference
in pheromone intensities measured by the two antennae, and wl, wr denote the left and right wheel
velocities of the mobile robot, respectively. Optimal values of βconst and α, yielding the best perfor-
mance, were identified through preliminary experiments using a diverse range of parameters prior to
the main experiments.

During these preliminary trials, parameters were assigned within the bounds of 0.6 ≤ βconst, α ≤
1.4 in increments of 0.1. The controller was then assessed over 20 repetitions for each stage of
experimentation, and the parameter set demonstrating the strongest performance was selected for
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the main evaluation. Results from these preliminary tests are available in Appendix A. Parameter
combinations for each stage yielding the highest performance metrics were deemed the optimal
sets for those stages. The range for these parameters was empirically chosen to encompass values
enabling successful collision avoidance behaviours with navigation behaviours. Parameters outside
this range caused the vehicle to exhibit unrealistic backward movement or fail in avoiding collisions.

The robot’s navigation behaviour is delineated in Equation (4.5). When the pheromone intensity
detected by both antennae fell below the threshold value Φthr, the robot executed its navigation tasks.

φ = atan2

(︄
ytarg − y
xtarg − x

)︄
, ψ = φ− θ,

v = vconst,

ω = min (1,max (−1, ωcoef atan2
(︃

sin(ψ)
cos(ψ)

)︃
)) ,

(4.5)

where (xtarg, ytarg) denote the 2D Cartesian coordinates of the target, θ represents the angular dis-
placement between the robot’s local coordinate frame and the global frame, vconst is a predetermined
linear velocity, and ωcoef is a coefficient for angular velocity. By employing this equation, the robot
ascertains (v, ω), the linear and angular velocities, respectively. For the experiments, vconst =

0.5m/s, and ωcoef = 10, values that were empirically determined to minimise fluctuations. Table 5.1
compiles the parameters and corresponding values utilised in the experimentation.

4.4.4 DRL-driven automatic controller design

The details of the DRL-driven automatic controller design are elaborated, encompassing four vital
design specifications: i) observation space, ii) action space, iii) reward design, and iv) actor and
critic neural network structure. Utilising these design specifications, the DRL-driven automatic
controller design was implemented for comparative analysis of the proposed strategy in the training
phase and evaluative phase: 1) PER sampling strategy, 2) HLER sampling strategy, and 3) HLER
sampling strategy complemented with a noisy network (HLER+noisy).

Observation Space

During the experiments, observations were made of the pheromone intensity and gradient at the
tips of the virtual antennae, resulting in a total of four measurements. These included the current
pheromone intensities, Φl,Φr, and the differences in pheromone intensities between the current
and previous time steps, ∆Φl,∆Φr. This approach was inspired by insects’ response to pheromone
gradients in nature through chemotactic behaviour [184]. The absolute values of pheromone inten-
sity were normalised within the range [0− 1] to enhance the effectiveness of training in DRL. For
navigation, four additional observation inputs were employed: the polar coordinates of the distance
to the navigation goal (d, θ), and the linear and angular velocities of the robot at the previous time
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step. Providing the previous linear and angular velocities as inputs enabled the robot to learn the
relationship between the velocities across two consecutive time steps. Consequently, the DRL
controller takes eight observational inputs, each within a continuous range, i.e., ot ∈ (8× 1).

Action Space

The DRL-driven automatic controller design must produce two outputs to maneuver the non-
holonomic mobile robot: translational velocity, v, and rotational velocity, w, denoted as a = [v, w].
These velocities are constrained within specific ranges, with v ∈ (0, 1)m/s and w ∈

(︁
−π

2
, π
2

)︁
rad/s,

to adhere to the robot’s motion limitations.

Reward Design

One critical element in the design of the DRL-driven automatic controller design is the construction
of the reward functions, as selecting appropriate values can significantly influence the controller’s
ability to manifest desirable behaviours. In the experiments conducted, the reward functions were
meticulously crafted to facilitate the learning of three specific tasks: i) pheromone-based collision
avoidance, ii) navigation, and iii) trajectory smoothing. These functions, encompassed within five
distinct types of rewards, are integral to the effective learning of collision avoidance and navigation
behaviour by the DRL-driven controller. The precise formulation of these reward functions is
detailed in Equation (5.2).

r = rc + rg + rp + rv + rw

rg =

⎧⎨⎩Rg, if arrived goal

0, otherwise
, rc =

⎧⎨⎩Rc, if collision

0, otherwise

rd =

⎧⎨⎩ad, d > 0

−ad, otherwise
, rv =

⎧⎨⎩Rv, if v < vmin

0, otherwise
,

rw =

⎧⎨⎩Rw, if |w| > wmax

0, otherwise
.

(4.6)

The total reward, r, was computed as an aggregation of various rewards and penalties, each reflect-
ing a specific aspect of the robotic behaviour. This includes the achievement of the goal, rg, collision
incidents, rc, progress towards the goal, denoted by rd (calculated as the product of the step length,
d, and a tunable factor, a, empirically set to 4.0), and penalties associated with linear velocity, rv,
and angular velocity, rw. The detailed values for these parameters, tailored to the experiments,
are delineated in Table 5.1. It should be noted that these values can be adjusted to suit different
experimental setups and task requirements.
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Table 4.1. Parameters and values for DRL training configurations

Parameters Values Parameters Values
vconst 0.5 a 4.0
ωcoef 10 vmin 0.2 m/s
βconst 0.6 - 1.4 ωmax 0.8 rad/s
α 0.6 - 1.4 Rv -1
Rg 100 Rω -1
Rc -100 pbase 0.5
kHL 2.0 rHL 20
tout 60 (s) N 512
T 256 γ 0.90

Neural Network Architecture

The architecture of the neural network used for the experiments is shown in Fig. 4.6. The actor
network comprised input and output layers, representing observations and actions, respectively. It
included three fully connected layers, each containing 512 neurons, with rectified linear activation
function (ReLU) nonlinearities positioned between the input and output layers. The linear and
angular velocities were constrained using sigmoid and tanh activation functions, resulting in limits
of 0 ≤ vt ≤ 1 and −1 ≤ ωt ≤ 1, respectively.

Similarly, the critic network was structured with input and output layers corresponding to obser-
vations and state-action values. It contained three fully connected layers with the same number of
parameters as the actor network. However, a distinct feature of the critic network was the concatena-
tion of actions after the first layer, which were then introduced into the second layer.

Additional Training Details

For other parameters of DDPG algorithm, batch size, N , of 512, episode length, T, of 256, discount
factor, γ, of 0.90 are used.

4.4.5 Metrics

The performance of the controllers in the experiments was evaluated using three distinct metrics:

• Success Rate (ρs): Defined as the percentage of successful runs, where no collisions occurred, and
the completion time remained below the threshold, tout.

• Completion Time (tcomp): Represents the duration required for all robots to reach their targets
without collision and within the time constraint of tout.

• Trajectory Efficiency (ηt): Calculated as the average ratio between the Euclidean distance connecting
the start and end points of the robots, and the actual distance traveled by the robots during each
successful run.

84



Figure 4.6. Neural network architecture for the DRL-driven controller. (a) and (b) represent the network architectures for
the actor and critic networks respectively.

4.5 Results & Discussion

The experimental results were categorized into subsections to detail the performance of the tradi-
tional centralised NH-ORCA controller, manual controller, and DRL-driven automatic controller
design. Included within the reported results is a comparative analysis of three different sampling
strategies, along with an examination of the robustness against noise in the DRL-driven automatic
controller design. Figure 4.7 illustrates the experimental results across all stages. Subsequently, a
comparison was made between the traditional centralised NH-ORCA controller and both manual
and DRL-driven automatic controller designs employing virtual pheromone. A further discussion of
these results follows.
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Figure 4.7. The bar plots show the experimental results with the traditional controller with NH-ORCA, the manual
controller design (HT), and DRL-driven automatic controller design with three different training strategies, PER, HLER
and HLER with noisy network in three experimental stages. (a), (b), and (c) illustrate the success rate, completion time

and trajectory efficiency in Stage 1, 2 and 3 respectively. The error bars represent standard deviation of each metric.

4.5.1 Traditional Centralised Controller

Figure 4.7 presents the experimental results for the NH-ORCA controller across three stages,
including the corresponding three metrics. The numerical values for these metrics can be found in
Table 4.2. As indicated by the results, the NH-ORCA controller achieved a success rate of 100%
in all three stages, underscoring the high stability of the centralised controller when provided
with position and velocity information. However, this stable success rate contrasts sharply with
the notable increase in completion time and decline in trajectory efficiency observed in Stage 3.
This discrepancy highlights that while the traditional centralised controller ensures stability, it
may lack effectiveness in complex environments for finding an optimal strategy. In essence, the
centralised controller demonstrated limited adaptivity as complexity increased from the swarm
robotic perspective.

4.5.2 Manual Controller Design

The preliminary experiments facilitated the selection of the best parameter sets for each stage,
with further insights on the parameter choices detailed in Appendix A. Figure 4.7 displays the
experimental results for the three stages, and the numerical values are provided in Table 4.2. The
results highlight a significant limitation of the manual controller design in complex environments.
While achieving success rates of 99% and 100% in Stages 1 and 2 respectively, the success rate
decreased to 84% in Stage 3. This pronounced drop underscores that the performance of the manual
controller design diminishes with increasing task and environmental complexity.

4.5.3 DRL-driven automatic controller design

Here, the experimental results for the DRL-driven automatic controller design utilising three distinct
DRL algorithms (PER, HLER, HLER+noisy) are delineated. Initially, the training performance
across the three stages is compared among the algorithms, highlighting the advantages of the
proposed DRL method over baseline approaches. Subsequently, a detailed comparison of the
experimental results for each stage is provided for the three algorithms.
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Table 4.2. Experimental results of the controllers in the three stages.

Stage Controller ρs tcomp ηt

Stage 1

NH-ORCA 100% 8.25 ± 0.95 0.9666 ± 0.0738
Manual 99% 11.16 ± 0.75 0.8036 ± 0.1527

PER 95% 8.04 ± 0.36 0.8765 ± 0.0196
HLER 97% 8.06 ± 0.30 0.8762 ± 0.0186

HLER+noisy 100% 7.68 ± 0.17 0.9068 ± 0.0220

Stage 2

NH-ORCA 100% 8.39 ± 2.20 0.9367 ± 0.0381
Manual 100% 16.74 ± 1.68 0.7486 ± 0.1485

PER 100% 8.34 ± 0.15 0.9762 ± 0.0030
HLER 100% 7.96 ± 0.11 0.9234 ± 0.0097

HLER+noisy 100% 7.54 ± 0.06 0.9837 ± 0.0021

Stage 3

NH-ORCA 100% 26.81 ± 4.54 0.7187 ± 0.0477
Manual 84% 14.95 ± 1.16 0.8394 ± 0.0387

PER 93% 7.81 ± 0.08 0.9672 ± 0.0065
HLER 100% 8.01 ± 0.07 0.9440 ± 0.0048

HLER+noisy 100% 7.63 ± 0.06 0.9850 ± 0.0032

Figure 4.8. Average reward per episode during training with PER, HLER and HLER with noisy network. (a), (b) and (c)
illustrate the change in average reward over training in Stage 1, 2 and 3 respectively. The bold line and shading represent

the mean and standard deviation of the reward over 3 different runs with different random seeds respectively.

Figure 4.8 illustrates the average reward per episode during the training phase for each stage, while
Table 4.2 and Figure 4.7 present the results obtained using the DRL algorithm with the proposed
enhancement, as well as the other two baseline methods.

Training Efficiency

It was consistently observed that the HLER sampling strategy accelerated training speed in com-
parison to the PER sampling strategy. Additionally, the incorporation of a noisy network further
enhanced the training speed. Quantitatively, the HLER with a noisy network required only 25%,
27%, and 30% of the training time needed by the PER sampling strategy to reach convergence in
Stage 1, Stage 2, and Stage 3, respectively, with an average reduction of 27% across all stages. These
results were consistent with expectations, as HLER was specifically designed for faster training
through prioritized sampling of highlighted transitions, and the implementation of a noisy network
facilitated better exploration. Together, these features led to more efficient searches for optimal
policies across all experimental stages. Regarding sampling complexities, the proposed HLER with
a noisy network method required 10.4M, 11.8M, and 17.0M training steps to reach convergence for
Stage 1, Stage 2 and Stage 3 respectively.
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Performance Evaluation

In Stage 1, the DRL-driven automatic controller designs with both PER and HLER sampling
strategies showed similar performances across the three metrics. However, integrating a noisy
network with HLER led to enhanced performance in all aspects.

In Stage 2, a parallel trend was observed where PER and HLER exhibited no significant differences.
Although trajectory efficiency was higher with PER, HLER yielded a faster completion time. This
outcome was attributed to the fact that the DRL-driven automatic controller design trained with
HLER produced slightly longer trajectories to further ensure collision avoidance. Controllers that
incorporated noisy networks surpassed the others in all metrics.

Stage 3 presented a more complex picture. The controller utilising the PER sampling strategy
outperformed its HLER counterpart in terms of completion time and trajectory efficiency, albeit
at a lower success rate. This is explained by the fact that PER minimised completion time at the
expense of success rate. Conversely, the use of HLER ensured a 100% success rate, as this strategy
prioritizes collision avoidance. Once again, controllers employing the noisy network approach
demonstrated superior performance, consistent with results from the previous stages. This further
supports the notion that the noisy network enhances the agent’s exploration, optimisming both safety
and performance.

4.5.4 Comparison between the traditional centralised controller and decentralised

pheromone-based controllers

Here, we present a comparison among the traditional centralised NH-ORCA controller, manual, and
DRL-driven automatic controller designs with a pheromone-based collision avoidance strategy. The
objective is to highlight the differences between centralised and decentralised (pheromone-based)
approaches.

For the manual controller design with pheromone-based communication compared to the NH-
ORCA controller:

• In Stage 3, it demonstrated a lower success rate.

• In Stages 1 and 2, the NH-ORCA controller exhibited higher performance in terms of completion
time and trajectory efficiency.

• In Stage 3, the manual controller design surpassed the NH-ORCA controller in completion time and
trajectory efficiency.

These findings imply that the decentralised, manual controller design approach leads to more
effective behaviours in complex environments, despite a lower success rate.
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For the DRL-driven automatic controller design with pheromone-based communication compared to
the NH-ORCA controller:

• It achieved equally high success rates across all three experimental stages.

• It greatly outperformed the NH-ORCA controller in completion time and trajectory efficiency,
especially in Stage 3.

This indicates that the DRL-driven approach offers a similar degree of stability to the centralised
controller but adds greater flexibility and effectiveness in complex environments.

In conclusion, while the centralised controller ensures stability across diverse scenarios, its per-
formance diminishes with increasing complexity. Conversely, the decentralised, pheromone-based
approach offers higher flexibility, with its effectiveness dependent on the specific controller used. A
more detailed comparison between manual and DRL-driven automatic controller designs utilising
pheromone-based communication is presented in the subsequent section.

4.5.5 Comparison between the manual and DRL-driven automatic controller design

Here, the list of more in-depth comparison between the manual and DRL-driven automatic con-
troller designs utilised with the pheromone-based approach. Specifically, the controller trained with
the proposed DRL algorithm (HLER+noisy) was used, as it exhibited superior performance among
the DRL algorithms employed in the experiments.

• Success Rate: The manual controller design achieved 99% and 100% in Stage 1 and 2 but only 84%
in Stage 3. This decline in Stage 3 illustrates the limitations of the manual design as environmental
complexity increases. Conversely, the DRL-driven automatic design maintained a consistent success
rate of 100% across all stages, demonstrating resilience to varying complexities.

• Completion Time: The DRL-driven automatic design considerably outpaced the manual design
in all stages. In autonomous vehicle applications, this is vital as it reduces travel time, significantly
enhancing user satisfaction.

• Trajectory Efficiency: Again, the DRL-driven automatic design outshone the manual design in all
stages. This attribute is especially critical in real-world scenarios, where lower trajectory efficiency
may lead to congestion, inefficient movement, and a higher risk of collisions.

• Robustness: The DRL-driven automatic design also demonstrated superior robustness, with lower
standard deviations for both completion time and trajectory efficiency. This suggests that the manual
design’s performance may vary significantly with minor changes in initial conditions, making it less
desirable in real-world environments.
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Figure 4.9. Trajectories of the robots in the three experimental stages. Subfigures (a), (b), and (c) depict the trajectories
using the manual controller design in Stages 1, 2, and 3, respectively. Subfigures (d), (e), and (f) illustrate the trajectories
using the DRL-driven automatic controller design (employing DDPG, HLER, and a noisy network) in the corresponding
stages. Triangles indicate the final position and orientation of the robots. The intensity of the yellow shading on the map

represents the concentration of pheromones, with a higher intensity indicating a greater concentration.

• Practical Benefits: The automation of the optimisation process in the DRL-driven design contrasts
with the laborious tuning required for the manual design. This advantage is particularly valuable in
swarm systems, where manual tuning may be highly challenging due to real-world complexity [3].

In conclusion, the DRL-driven automatic controller design for pheromone-based collision avoidance
excelled over the manual design in aspects including stability, flexibility, robustness, and ease of
tuning. Coupled with the comparison to the centralised controller, the DRL-driven design assures
high flexibility from the pheromone-based approach and robust stability and performance through
DRL optimisation.

4.5.6 Discussion

Trajectory Analysis

To elucidate the effectiveness of the pheromone-based collision avoidance strategy, the trajectories
of the robots employing two distinct controllers (manual controller design and DRL-driven auto-
matic controller design with DDPG + HLER + noisy network) were meticulously analysed across
all three experimental stages. Figure 4.9 depicts these trajectories, highlighting key differences in
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navigational behaviour.

The manual controller design manifested a heightened sensitivity in its repulsive response to
obstacles. Upon nearing an obstacle, the controller would abruptly alter the robot’s course, resulting
in rapid evasion. This pattern was consistently observed across all stages, demonstrating a tendency
towards overreaction.

Conversely, the DRL-driven automatic controller design exhibited a more tempered and smooth
response. The absence of sudden directional changes enabled the robots to navigate effectively while
actively evading collisions. This well-balanced approach underscores the capacity of the DRL-
driven design to harmonise conflicting requirements, optimising overall performance in alignment
with the predefined objectives. In practical applications, such fluid movement is advantageous, likely
reducing collisions and enhancing user satisfaction.

Furthermore, the investigations revealed striking similarities between the trajectories produced
by the DRL-driven automatic controller in Stage 3 (Figure 4.9 (f)) and those documented in other
studies employing laser proximity sensors for collision avoidance and navigation [108]. This
resemblance suggests that the implementation of virtual pheromones can achieve behaviours akin to
those yielded by more conventional methods, thereby validating the innovative approach undertaken
in this research.

Pheromone Characteristics

Though the experimental results revealed the superior performance of the DRL-driven automatic
controller design over the traditional manual controller design, the optimality of this design remains
undetermined. As demonstrated in the study using artificial pheromones for urban waste manage-
ment [41], the selection of appropriate parameters for artificial pheromones significantly influences
the performance of a swarm robotic system. However, this study did not include exhaustive testing
to identify optimal parameters for the virtual pheromone, such as evaporation half-life, diffusion
rate, shape, or the gradient of the injected pheromone. This limitation represents an area for future
exploration, particularly concerning the selection of optimal parameters in more complex environ-
ments.

Assumptions and Constraints in DRL-driven Automatic Controller Design

One unrealistic assumption in training DRL-driven automatic controller design for swarm robotic
systems is the existence of a central computing unit. This unit is assumed to conduct training
shared by all robots without any communication constraints with them, as simulated robots were
deployed sharing the computing unit with the environment. This assumption is problematic and
must be mitigated, as it contradicts the decentralisation principles of the swarm robotic systems.
Consequently, it leads to an overestimation of the systems’ robustness, scalability, and flexibility,
and an underestimation of the potential instability and limitations of global communication between
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the robots and the central computing unit. These factors are particularly significant in environments
where swarm robotic systems are likely to be deployed. Nevertheless, this research study affirms the
potential of DRL-driven automatic controller design, and for the purposes of training and evaluation,
this realistic constraint is not included, omitting further considerations of implementation detail.

4.6 Summary

This chapter investigates the development of a DRL-driven automatic controller design for swarm
robotic systems, with a particular focus on autonomous vehicles engaged in collision avoidance at
a traffic level. By extending the concept of pheromone communication—a promising approach to
swarm robotic communication—into a more complex and realistic context, it enhances individual
collision avoidance for efficient vehicle coordination.

The application of swarm robotic systems to real-world scenarios calls for a controller design
that can handle complexity, non-stationarity, and unpredictability, as detailed in Chapter 2. The
proposed DRL-driven automatic controller, employing the proposed HLER sampling strategy and
exploration strategy with noisy network, was tested in a collision avoidance context, revealing
heightened adaptivity to task and environmental complexity. Comparative analyses underscored
its performance advantage over traditional centralised methods and manual controllers utilising
pheromone communication, especially with escalating complexity that shows better adaptivity,
showcasing the achievement of Aim 2 & Objective 2.

One critical aspect of this study is the assumption of the presence of a central server for controller
training and stable connections between the server and individual robots. This assumption, as earlier
delineated, contradicts the decentralisation principles inherent to swarm robotic systems. It leads to
an overestimation of robustness, scalability, and flexibility, and underestimates potential instability
and limitations, particularly in environments where swarm robotic systems are likely to be deployed.

In conclusion, this chapter emphasises the need for strategies to mitigate reliance on a central server,
a vital step towards making DRL-driven controller designs practical and effective for real-world
swarm robotic applications. The chapter affirms the potential of DRL-driven automatic controller
design, but also underscores the necessity for a realistic and thorough examination of constraints,
ensuring alignment with the inherent principles of decentralisation in swarm robotic systems. To
address the issue of centralisation, Federated Learning (FL) is adopted for training DRL algorithms
used for automatic controller design for swarm robotic systems. This chapter successfully showcases
DRL-driven automatic controller design and highlights the need for decentralisation to thrive as a
viable automatic controller design method for swarm robotic systems, which is addressed in the next
chapter.
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Chapter 5

Towards Decentralised Deep Reinforcement

Learning-Driven Automatic Controller

Design

Chapter 4 delineated the promise of DRL-driven automatic controller design within the swarm
robotics framework, establishing its merit through a comparative analysis against manual controller
design and traditional multi-agent robotic control approaches. This analysis vividly showcased
the superior performance of the DRL-driven system in governing basic robotic behaviours and its
greater adaptivity in navigating escalating complexities within tasks and environments. However, it
is imperative to acknowledge that these benefits are predominantly derived from the MARL frame-
work. Therefore, to fully actualise and validate the potent capabilities of DRL-driven automatic
controller design, especially in the context of real-world swarm robotic expeditions, mitigating the
existing constraints imposed by the MARL framework on swarm robotic applications becomes a
vital endeavour.

In this Chapter, FL has been incorporated into DRL-driven automatic controller design for swarm
robotics as a remedy for centralisation issue. Echoing the investigations of Chapter 4, navigation
and collision avoidance behaviour have been adopted as foundational low-level elements in fostering
collective actions across various swarm robotic missions. This chapter conducts an in-depth analysis
of FL’s influence on the efficiency of DRL-driven automatic controller design and its potential to
reduce reliance on central computing units. This demonstration underscores the advantages of the
FL framework not only diminishing the degree of centralisation, but also the capability to reduce the
reality-gap, by offering a higher level of generalisation compared to both MARL and single-agent
RL methodologies. This chapter concludes with the promise of FL-based DRL training strategy for
DRL-driven automatic controller design to pave the way to be a general methodology for automatic
controller design.
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5.1 Background

Utilising the FL framework to implement the DRL algorithm for multi-agent systems has found
increasing adoption in many multi-agent applications. This strategy mitigate the limitation of the
MARL framework, which inherently lacks the ability to facilitate decentralisation. The use of the
FL framework not only facilitates decentralisation but also harnesses collective intelligence, thereby
enhancing the overall efficiency of the system [123]. This advantage of FL framework training DRL
algorithm for multi-agent systems in several domains matches with the need for the robot learning
methods for automatic controller design, by offering a robust solution to the centralisation dilemma,
the curse of dimensionality, and credit assignment issues that challenge the MARL framework.

In this research study, FL-based DRL training strategy is proposed and investigated on the basic
swarm robotics scenario, actualising the speculation that FL can provide a promising alternative to
MARL-based DRL-driven automatic controller design. Choosing the basic navigation and collision
avoidance as the behaviours to be examined, training curve, number of communication and per-
formance efficacy of the trained controllers were examined to. Through real-robot experiment, the
transferrability of the trained controller to investigate effect of the reality-gap is shown. The novelty
of this research study is two-fold. From the perspective of the swarm robotics community, this
research study is the first study that addresses the centralisation issue in robot learning methods in
automatic controller design. From the perspective of general robotics, this research study introduces
the application of FL into multi-robot systems accompanying experiments deploying real-robotic
platforms.

The major contributions and findings of this research study are listed as follows:

• FL-based DRL training strategy, FLDDPG, is proposed applying FL framework to the existing
DDPG algorithm with enhanced model parameter update measures. It is first application of FL into
swarm robotic scenario.

• During the training phase, FLDDPG exhibited a substantial reduction in communication with the
central computing unit coupled with a low incidence of failure cases, thereby demonstrating partial
decentralisation coupled with heightened stability.

• In the evaluative phase, FLDDPG manifested superior performance efficacy in comparison to
baseline measures during simulation experiments. This superiority was further accentuated in real-
robot experiments, illustrating the formidable potential of FLDDPG in narrowing the reality-gap.

In summation, this research shows the capability of FL-based DRL training strategy as a partially
decentralised approach whilst not reducing performance efficacy. Furthermore, it demonstrated the
ability to reduce reality-gap thanks to its inherent generalisation effects.
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Figure 5.1. Deep Reinforcement Learning training strategies for swarm robotic systems. (a) Individual DDPG (IDDPG),
(b) Shared Network DDPG (SNDDPG), (c) Shared Experience DDPG (SEDDPG) and (d) the proposed Federated

Learning DDPG (FLDDPG).

5.2 Methodology

This section introduces the proposed federated learning (FL)-based DRL training strategy for swarm
robotic systems. Capitalising the DDPG algorithm as a common backbone, which is described in
Section 2.4.1., three traditional DRL training strategies that can be utilised as automatic controller
design are introduced. Two traditional strategies, SNDDPG and SEDDPG, adopt MARL framework
as consistent communication between agents and the central server is necessary, i.e. fully centralised
communication. Finally, the proposed FL-based DRL training strategy for automatic controller
design is illustrated. Figure 5.1 illustrates how the three traditional training strategies and our
proposed strategy are utilised for swarm robotic systems in this study. It is worth noting that every
strategy utilises a standard type of MDP, not a Partially Observable Markov Decision Process
(POMDP), which assumes that states are partially observable. In other words, it is assumed that
agents have full access to state information without uncertainty.

5.2.1 Traditional DRL Training Strategies

Here three traditional DRL training strategies using DDPG algorithms as backbone are introduced:
i) Independent DDPG, ii) Shared Network DDPG and iii) Shared Experience DDPG.

Independent DDPG

Independent DDPG (IDDPG) training strategy is the most naïve application of DDPG to train a
robot swarm. Fig. 5.1 (a) illustrates IDDPG training strategy. IDDPG deploys individual neural
networks and local memory for each robot in a swarm. In other words, there is no communication
between the robots and the server for training. The advantage of IDDPG is that it does not use a
central server to share data samples or neural network parameters. However, this training strategy
does not allow to utilise the collective nature of swarm robotic systems for learning.
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Shared Experience DDPG

Shared Experience DDPG (SEDDPG) training strategy is one of the state-of-the-art training
strategy for multi-agent systems [185]. Fig. 5.1 (c) illustrates SEDDPG training strategy. In this
training strategy, the agents have individual neural networks and a shared memory. In the original
paper, it is stated that the advantage of SEDDPG is that by sharing it can encourage exploration,
thereby faster convergence and better performance. Despite the improvement in the training speed
and performance, the robots still share the collected data with the central server, which requires
centralisation of the system.

Shared Network DDPG

Shared Network DDPG (SNDDPG) is a training strategy that uses a shared neural network and a
shared memory. This is a typical implementation of DDPG in a centralised multi-agent scenario.
Fig. 5.1 (b) illustrates SNDDPG training strategy. In each time step, the robots transfer the transition
sample data to the shared memory located in the central server. In every training period, the network
update is performed by the central server and the model is distributed to the individual agents. The
advantage of this method is that the central server can be trained using the data samples collected
by different agents in different environments. Compared to IDDPG, it encourages the networks to
learn from more diverse data, leading to a more generalised controller. However, it requires frequent
communication between each robot and the central server. The more frequent the communication
between robots and the central server is required, the more vulnerable the training is as the commu-
nication is unstable.

5.2.2 FL-based DRL Training Strategy

Using the concept of FL and DDPG algorithm, a FL-based DRL training strategy, FLDDPG, is
proposed. For more details about FL, please see Section 2.5. The process of FLDDPG is illustrated
in Fig. 5.1 (d), showing only the neural network weights are shared in the central training server,
without sharing the locally collected data. This feature can largely reduce the number of communi-
cations between the robots and the server as collected data sharing takes a large part in DRL settings
as in SNDDPG and SEDDPG.

Algorithm 3 (d) describes the algorithm of FLDDPG. At the beginning of the algorithm, actor and
critic networks and local memories are initialised with the number of robots. The data collection
and neural network parameter update are performed individually for each robot. After initialisation,
the transition samples are collected from the robots for T time steps and stored in the replay buffer
in every episode. Every ttrain times in every episode, the actor and critic networks are updated by
the following process. First, l number of transition samples are randomly selected from the local
memories. Second, the target, yi, is calculated for each transition sample. Third, using the target, the
temporal-difference loss, LQ, is calculated and the critic networks are updated in a way minimising
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Algorithm 3: DDPG with FL (FLDDPG)
1 Randomly initialise N critic neural networks, Q1,...,N (s, a|θQ1,...,N ) and N actor neural networks π1,...,N (s|θπ1,...,N )

with weights θQ1,...,N and θπ1,...,N

2 Initialise N target networks Q′
1,...,N and π′

1,...,N with weights θQ
′

1,...,N ← θQ1,...,N , θπ
′

1,...,N ← θπ1,...,N
3 Initialise replay buffers R1,...,N

4 for episode = 1, ..., M do
5 Initialise the states st = s1
6 for t = 1, ..., T do
7 Run N actors and collect transition samples Dt = (st, at, rt, st+1) into R1,...,N

8 if t = 0 mod ttrain then
9 Sample l transitions (si, ai, ri, si+1) from local replay buffer memories, R1,...,N

10 Set yi = ri + γQ′(si, π
′(si+1|θπ

′
)|θQ′

)

11 Update critic networks by minimizing the loss: LQ = 1
N

∑︁
i(yi −Q(si, ai|θQ))2

12 Update actor networks using the sampled policy gradient:
13 ∇θπJ ≈ 1

N

∑︁
i∇aQ(s, a|θQ)|s=si,a=π(si)

14 ·∇θππ(si|θπ)|s=si

15 end
16 if t = 0 mod ttarget then
17 Update the target networks:
18 θQ

′ ← θQ, θπ
′ ← θπ

19 end
20 end
21 if episode = 0 mod Twa then
22 Perform Soft Weight Update for actor and critic networks for all robots
23 θwa = 1

N

∑︁N
k=1 θk

24 for i = 1, ... , N do
25 θi = τθi + (1− τ)θwa

26 end
27 end
28 end

the loss. Then, the actor networks are updated using the sampled policy gradient. Additionally,
for every ttarget time step, the newest actor and critic networks are assigned to the target networks.
In Algorithm 3, lines 19 to 24, the process of neural network weight averaging and update in the
central server are described. In every weight averaging and update period, Twa, the local neural
network weights are updated with the averaged weights. For a more efficient weight update, a new
method called Soft Weight Update is proposed. In the seminal work of FL [123], the hard weight
averaging called FedAvg was performed to average the local neural network parameters. The hard
weight averaging is described in (5.1).

θwa =
1

N

N∑︂
k=1

θk

θ1,...,N = θwa,

(5.1)

where θwa denotes the averaged weights of neural network, N is the number of robots, and θ1,...N
are neural network weights for N robots. With the hard weight update method, the averaged weights
are directly assigned to the local neural network weights. The problem with the hard weight update
method is that whenever the local weights are updated with the averaged weights, adverse changes
in the neural network can occur, decreasing the efficiency of individual controllers in their corre-
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Figure 5.2. Experimental arenas for (a) training and (b) for real-robot experiments. In (a), four robots learn navigation to
the target and collision avoidance independently under different environmental configurations. In (b), a robot performs

navigation to the target and collision avoidance in a different environment than the training environment.

sponding environments and tasks after the update. To prevent such adverse changes in the neural
network update after the weight update, a soft weight update method is proposed. The concept of
soft weight update is that the local neural network weights are fractionally updated with the averaged
weights. In the line 23 of Algorithm 3, the neural network weights are updated with the sum of τθ
and (1 − τ)θwa, where τ represents an update constant within the range [0, 1]. When τ is close to
zero, the local neural network weights are completely replaced with the averaged ones. In contrast,
when τ is close to 1, it becomes analogous to IDDPG.

5.3 Experiments

Experiments were designed to evaluate the performance of four different training strategies, IDDPG,
SEDDPG, SNDDPG and FLDDPG, under the limited communication bandwidth scenario. To
evaluate the training strategies with the swarm robotic scenario, a collective learning scenario of
navigation and collision avoidance for swarm robotic systems was adopted. Fig. 5.2 illustrates the
collective learning simulation environment and its real-robot evaluation environment. In Fig. 5.2
(a), the robots learn navigation and collision avoidance using the four training strategies. Although
the robots do not communicate each other for collective behaviours, the robots help other robots
to obtain a better controller utilising diversity of collected samples and trained models for larger
number of agents than a single robot. Therefore, the collective learning scenario can be regarded as
a swarm robotic scenario.

After training models, evaluation of the trained models were performed in the same environment
in Fig. 5.2 (a). To evaluate the robustness and generalisation ability of the trained models with the
four strategies, the real-robot platform was deployed in the environment illustrated in Fig. 5.2 (a).
The trained robot used in the simulated environment is the Turtlebot3 Burger robot, which is a
differential drive mobile robot with laser sensors to detect obstacles. The real-robot platform used
for the real robot experiment is described in the later section. In the real-robot experiment, only a
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single robot was used to assess clearly the performance of a collectively learned model from the
swarm robotic systems rather than deploying multiple robots, which can add a higher degree of
complexity affecting the evaluation of the trained model.

To add the constraint of limited communication bandwidth, the total data volume to be exchanged
was calculated, a product of communication bandwidth and total communication time. The total
data volume was calculated from the total data transferred during the training with FLDDPG. For
each transfer of neural network parameters, it takes 0.55 MB one-way and 1.1 MB for the complete
cycle of weight update. Since the weight update period, Twa = 1, 120 weight update occurs for one
training instance. Therefore, the total transferred data volume for training with FLDDPG is 132 MB.

With this total data volume, the update period for SEDDPG and SNDDPG were chosen to distribute
update events over the training evenly. Both SEDDPG and SNDDPG include the data transfer of
experience replay buffer, which size is 2.4 MB for one-way and 4.8 MB for the full cycle of transfer.
For SEDDPG, the update period of 5 was chosen over the total 120 episodes as the total transferred
data volume is 115.2 MB, while when the update period is four it is 144 MB, which is greater than
the upper limit. For SNDDPG, a total 2.95 MB is transferred per update. Therefore, the update
period of 3 was chosen over the total 120 episodes, resulting total transferred data volume of 118
MB. Unlike the three algorithms, the limitation of the total transferred data volume does not affect
training process of IDDPG. The training of models using four strategies applied to these update
period settings.

5.3.1 DRL Implementation

Here the DRL implementation details for four training strategies are described. The four important
design specifications are introduced as: i) observation space, ii) action space, iii) reward design and
iv) actor and critic neural network structure.

Observation Space

During the training, the robot collected observation to learn navigation and collision avoidance. For
navigation, the distance between the target and the current position of the robot in polar coordinates
(d, θd) were collected. For collision avoidance, 24 sensor readings from the laser rangefinder were
collected. After collecting the 24 laser sensor readings, the readings are normalised in the range
between [0, 1], and the normalised readings are inversed so that when the obstacle is close to the
robot, the normalised sensor reading is close to 1 for a more effective neural network training. While
the range of the laser sensor is up to 3.5 m, only the value below 0.8 m was used to learn more
effective collision avoidance algorithm.
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Action Space

There are two action values in our setting: i) translational velocity, v, and ii) rotational velocity, ω,
i.e. a = [v, ω]. The range of velocities were limited to v ∈ (0, 0.25) m/s and w ∈ (−π

2
, π
2
) rad/s in

translation and rotation respectively to reflect the motion constraints and safety for the robot.

Reward Design

There were three types of reward functions that were applied in the experiments. The reward func-
tions were designed to enable the learning of i) navigation, ii) collision avoidance. Equation (5.2)
describes the reward functions used in the experiments.

r = rg + rp + rc + ra

rg =

⎧⎨⎩Rg, if arrived goal

0, otherwise

rp =

⎧⎨⎩ad, d > 0

−ad, otherwise

rc =

⎧⎨⎩Rc, if collision

0, otherwise

ra =

⎧⎨⎩−emax(slaser)∗λ, any(slaser) > 0

0, otherwise

(5.2)

The total reward, r, was the sum of a series of rewards, rg, rp, rc and ra. In rg, the goal arrival
reward, Rg, is given when the robot arrived goal. In rp, ad or −ad is given depending on whether
the robot is approaching to or moving away from the goal (specified to be equal to a step length,
d, multiplied by a tunable factor, a, which was set empirically to 4.0), In rc, the collision penalty,
Rc is given when the robot collides to the obstacle. In ra, the approaching penalty is given when
any of the laser sensor value, slaser, is higher than zero, i.e., the laser finder detects obstacles. λ is a
parameter to set the intensity of approaching penalty. The parameter values used in the experiments
are provided in Table 5.1.

Neural Network Architecture

In DDPG, each robot requires two sets of neural networks: i) actor network and ii) critic network.
The actor network consisted of 3 fully connected layers with 512, 512 parameters followed by
a rectified linear activation function (ReLU) nonlinearities between the input and output layers.
Outputs were connected to sigmoid and tanh activation functions to limit the range to (0 ≤ v ≤ 1
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Table 5.1. Parameters and values for DRL training strategies

Parameters Values
Total number of episodes, M 120
Training steps per episode, T 1024
Total number of robots, N 4
Discount factor, γ 0.99
Soft weight update factor, τ 0.5
Goal reward, Rg 100.0
Collision penalty, Rc -100.0
Progress reward factor, a 4.0
Approaching penalty parameter, λ log 2

and −1 ≤ ω ≤ 1). The range of v and w is further processed to limit the velocity applying the
motion constraints of the robot as described with action space. The critic network, consisted of input
and output layers, which were observations and state-action values, and 2 fully connected layers with
the same number of parameters as the actor network. Unlike the actor network, after the first layer,
actions were concatenated and fed into the second layer.

5.3.2 Metrics

Training Performance Metrics

To evaluate the training performance of each training strategy, we measured three training perfor-
mance metrics are below.

• Average reward, ravg, is the averaged value of the re- ward obtained for one episode over four agents
in the experiment.

• Catastrophic interference, Nci, is the number of the events when the average reward changes by more
than 50% of the the range between the maximum and minimum values of average reward over the
training.

• Failed agent, Nfa, represents the average number of failed agents during one training instance. The
training agents are regarded as failed agents when the difference between the average reward at the
beginning and the end during training is within 1, and the difference between the maximum and
minimum value is under 1.5.

Evaluation Performance Metrics

To assess the performance of trained models with IDDPG, SNDDPG, SEDDPG and FLDDPG in
the evaluation stage, we defined two performance metrics: i) mission success rate and ii) mission
completion time.
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Figure 5.3. A snapshot of the experimental arena. The turtlebot2 mobile robot performs navigation and collision
avoidance in the rectangular arena. The overhead camera is used for real-time localisation of the robot in the

two-dimensional arena coordinate frame, which is determined by the four corner markers.

• Success rate, ρs, is the rate of the successful episode from all the episodes without collision within
one episode.

• Completion time, tcomp, represents the average time taken for all the robots to reach the targets
without collision and within the time limit.

Success rate shows the robustness of the controller and completion time represents the optimisation
performance of each training strategy. In the simulated evaluation experiment, the success rate and
completion time were calculated by averaging performance of the four agents in the environment
over 20 runs with four trained models for each agent during the training stage.

5.3.3 Real-Robot Experiment

Experiments including real-robots were performed in 4× 3m arena with one robot. The arena had
several obstacles similar to the ones in the simulation, such as boxes. The camera is mounted outside
the arena, and the main PC is connected to the camera for real-time localisation. The snapshot of the
experimental arena is shown in Fig. 5.3.
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Figure 5.4. Single Turtlebot2 from top to bottom with a camera, RPlidar, Intel NUC and base platform.

Hardware Specification

Turtlebot2 mobile robot was used as a robotic platform, depicted in Fig. 5.4. The Turtlebot2 is a
tower-shape differential drive mobile robot with a diameter of 38 cm and height of 60 cm. The
robots use a differential drive with a coaster wheel and can turn on the spot with a maximum
rotational speed of 3 rad/s and translational speed of 0.65 m/s. Robots were equipped with an
RPlidar A2 which is planar LiDAR mounted parallel to the ground with a 10 m maximum range
(covering the entire arena) with 720 beams covering 360°at a rate of 10 Hz. The minimum range is
0.2 m, within the robot’s footprint. Robots are also equipped with Intel RealSense camera. However,
the camera is not used in the experiments. For computation, the robot is mounted with Intel NUC i5
of 8th generation equipped with Ubuntu 20.04 and ROS Noetic.

System Specification

Master PC with AMD Threadripper 3960X, Nvidia RTX 3090 and 64GB RAM was used as a
centralised hub to which all the robots are connected via Wi-Fi. The master PC was used for inter-
robot communication and training neural network models. Additionally, this PC provides a position
for all the robots running relevant ROS nodes for the tracking system.

Tracking System

To provide each robot with its position and orientation in the arena, the Logitech C980 camera
was used with 1080p @30 Hz resolution to detect and localise fiducial markers placed on top of
the robot. The WhyCode fiducial markers [186], [187] were used for the external localisation of
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Figure 5.5. Average reward per episode of two different weight averaging methods: (red line) hard update and (blue line)
soft update.

the robots. The WhyCode is a low-cost vision-based localisation system capable of real-time pose
estimation of extensive number of black-and-white circular fiducial markers. Unlike its predecessor,
WhyCon [188], WhyCode is capable of unique identification and full 6 degree-of-freedom (DOF)
pose estimation with high precision using only an off-the-shelf web camera. All this was computed
and then transferred to each robot from the master PC via Wi-Fi. The 6 DOF estimated information
was used as state information for the trained neural network to infer desirable actions for the task.

5.4 Results & Discussion

5.4.1 Results of FLDDPG Design Experiments

In this section, the results from experiments to evaluate the two weight averaging methods: i) hard
update and ii) soft update were reported and discussed. This experiment uses the same experimental
scenario of collision avoidance and navigation. However, it is conducted with a smaller number of
time steps per episode and a different reward design than the main experiment in a fast manner to
evaluate the performance of hard update and soft update only. Fig. 5.5 shows the results from the
experiments testing the training performance of FLDDPG with hard update and soft update.

In Fig. 5.5, it is illustrated that the average reward started to increase earlier and converged faster
with the soft update method than the hard update method. It is found that the performance of each
robot temporarily decreased after the weight update with the averaged model using the hard update
method. Since the averaged model generalises individual local models, its performance in each local
environment varies. The result shows that the soft update method prevented the adverse conversion
from the local model to the averaged model, resulting in faster training by 18% reducing training
time compared to the hard weight update.
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Figure 5.6. The training results of four different algorithms: IDDPG, SNDDPG, SEDDPG and FLDDPG. (a) Average
reward per episode over training. (b) Average number of catastrophic interference and failed agents per training.

5.4.2 Training Performance of the Four Strategies

In this section, the outcomes of experiments evaluating four different training strategies for teaching
robots navigation and collision avoidance are presented. The experiments were conducted in an
environment depicted in Figure 5.2, with each strategy operating under limitations on total data
transfer. The results are divided into two main figures: Figure 5.6 (a) focuses on average rewards for
each strategy, whereas Figure 5.6 (b) discusses the average occurrences of catastrophic interferences
and failed agents.

Average Rewards

Figure 5.6 (a) reveals that FLDDPG yields the highest average rewards by the end of training,
followed by SNDDPG, SEDDPG, and lastly, IDDPG. This ranking suggests that FLDDPG offers the
best overall performance. An interesting observation is the larger amplitude of reward fluctuations
for SNDDPG compared to other strategies, an issue that will be quantitatively elaborated later.

Catastrophic Interferences and Failed Agents

Figure 5.6 (b) shows the occurrences of catastrophic interferences and failed agents per training
instance. IDDPG and FLDDPG exhibit the lowest rates of catastrophic interference, averaging 0.33
per training instance. In contrast, SNDDPG experiences the highest rate at 5.33, which helps to
explain its aforementioned reward fluctuations. SEDDPG has a moderate rate of 2.

• For IDDPG, the low rate of catastrophic interferences can be attributed to its independent training
approach, where agents do not influence each other. However, this also results in a poorer average
reward and a higher rate of agent failures.
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• SEDDPG suffers from an elevated rate of catastrophic interferences due to the long intervals
between updates of the experience replay buffer, disrupting individual learning.

• The high level of catastrophic interference for SNDDPG is due to poor data collection between
updates, leading to a vicious cycle of non-improvement.

• FLDDPG and SNDDPG benefit from shared experiences and network updates, thus avoiding agent
failures and maintaining a more robust average reward.

In summary, these findings provide valuable insights into the merits and limitations of each training
strategy, laying the groundwork for future research in this area.

5.4.3 Simulation Evaluation Results

In this section, the trained models using four different strategies (IDDPG, SEDDPG, SNDDPG, and
FLDDPG) are evaluated within the same simulated environment in which they were trained. Each
model was run 20 times, with outcomes averaged over these runs and four agents.

Success Rates and Completion Time

Figure 5.7 presents the evaluation results, showcasing success rates in Figure 5.7 (a) and average
completion times in Figure 5.7 (b). SEDDPG shows the poorest performance with a 5% success
rate, likely owing to the high number of catastrophic interferences and failed agents experienced
during training, as evidenced in Figure 5.6. IDDPG and SNDDPG recorded success rates of 11%
and 10%, respectively. In contrast, FLDDPG far outperforms the others with a success rate of 26%.

• SEDDPG: The low success rate can be attributed to the high occurrences of catastrophic interfer-
ence and failed agents during the training phase.

• IDDPG and SNDDPG: While IDDPG had more failed agents and SNDDPG had more catastrophic
interferences, both ended up with similar, low success rates.

• FLDDPG: The high success rate is most likely due to the significantly low number of catastrophic
interferences (0.33) and the complete absence of failed agents during training.

Comparative Performance

FLDDPG not only had the highest success rate but also the shortest average completion time,
approximately 60% that of its nearest competitor, SEDDPG. These results manifest the robustness
and generalisation capabilities of FLDDPG, marking a 2.36-fold improvement over the second-best
method (IDDPG) in terms of success rate.
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Figure 5.7. The evaluation experiment results with the four different DRL training strategies. (a) and (b) show success
rate and average completion time of 4 agents over 20 runs of the four algorithms respectively.

Figure 5.8. The real robot experiment results with the four different DRL training strategies. (a) and (b) show success
rate and average completion time over 5 runs of the four algorithms respectively using the most successful model.

In conclusion, the evaluation clearly demonstrates the superiority of FLDDPG in both success
rate and average completion time, reinforcing its robustness and adaptability compared to other
strategies.

5.4.4 Real-Robot Experiment Results

For the real-robot experiments, the most successfully trained model was selected from each strategy,
adhering to identical communication period constraints. Figures 5.8 (a) and (b) depict the respective
success rates and average completion times for these strategies.

• Success Rate: FLDDPG showcased the highest success rate among all the strategies.

• Average Completion Time: In addition to its leading success rate, FLDDPG also recorded the
shortest average completion time.
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The results from real-robot experiments corroborate the findings from the simulated evaluation
experiments, affirming the robustness and generalisation capabilities of FLDDPG. Specifically, the
FLDDPG model performed exceptionally well when transferred to a real-robot platform, both in
terms of success rate and completion time.

5.4.5 Discussion

The findings, collected from three distinct points–i) training performance, ii) simulation-based
evaluation, and iii) real-robot evaluation–underline several pivotal contributions.

Contributions of FLDDPG

• Prevention of Individual Training Failures: The FLDDPG strategy notably reduced the failure
rate of individual training in collective learning scenarios. This is achieved by periodically aggregat-
ing individual neural networks, showing marked improvement over independent learning scenarios,
such as IDDPG.

• Robustness and Generalisation: FLDDPG demonstrates superior robustness and generalisation
abilities, even under communication bandwidth limitations. These qualities are evident both in
simulation evaluations and real-robot settings.

Progressing Towards Decentralisation with FLDDPG

FLDDPG presents a marked reduction in centralisation compared to traditional MARL-based
strategies. By eliminating the need to exchange training data, FLDDPG significantly lowers the
volume of data needed for model training within the same timeframe. This reduction enhances
the stability of communications between agents and the central server, especially in scenarios with
limited bandwidth where traditional centralised strategies might struggle.

While FLDDPG substantially reduces the drawbacks associated with centralised MARL-based
training strategies, it does not eliminate centralisation completely due to the reliance on a central
server.

However, FLDDPG introduces the potential for achieving full decentralisation by enabling param-
eter sharing and collective learning through peer-to-peer communication, bypassing the need for a
central server. Although full decentralisation has not yet been realised, FLDDPG is a pivotal step
towards this goal, signalling progress in the field. Therefore, it can be stated that FLDDPG is located
one step behind a fully decentralised method.
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Implications for Real-world Scenarios

The experimental results point to the potential applicability of FLDDPG in autonomous swarm
robotic systems operating in bandwidth-restricted, uncertain environments. Instances of such envi-
ronments include underground mines and tunnels, commonly encountered in inspection or search-
and-rescue missions. Limited communication bandwidth is indeed one of the most formidable
challenges reported in the Defense Advanced Research Projects Agency (DARPA) subterranean
challenge [189], [190], as well as in underwater robotic swarms [191].

Hence, the adoption of FLDDPG in analogous settings could significantly enhance the robustness
and efficacy of deployed multi- and swarm-robotic systems over the conventional approach of
MARL framework.

5.5 Summary

In this chapter, the introduction of FLDDPG, a novel Federated Learning-based DRL training
strategy, addresses the centralisation issues associated with MARL frameworks. Experimental
findings demonstrate that FLDDPG not only outperforms existing baseline methods but also does so
while substantially reducing communication overhead. These outcomes suggest that FLDDPG offers
a compelling advantage for autonomous swarm robotic systems operating in communication-limited
environments such as underwater or underground spaces.

From the perspective of automatic controller design in swarm robotic systems, FLDDPG represents
a pioneering approach, effectively alleviating the issue of centralisation in MARL framework,
achieving Aim 3 & Objective 3 of the thesis. Future work is envisioned to further adapt and expand
FL-based DRL training strategies, targeting heterogeneous swarm robotic systems in natural and
dynamic environments [190], [192]–[194]. In addition, the development of a fully decentralised
DRL training strategy, facilitated by peer-to-peer communication, stands as a crucial next step and
a significant challenge for DRL-driven automatic controller design.
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Chapter 6

Conclusion

The thesis contributes to enhance and streamline the swarm robotics domain, focusing on the
development and advancement of DRL-driven automatic controller designs, a critical component
in advancing the functionality of swarm robotic systems for real-world scenarios. This conclusion
synthesises the key findings and insights acquired through the consecutive chapters, highlighting
the manner in which the predefined aims and objectives were successfully met. After ensuring
the fulfilment of aims and objectives, key open challenges that are not addressed in this thesis are
introduced, delimiting the realm of this thesis and calling other researchers to join and explore to
advance swarm robotic systems. Finally, the meaning of this thesis is highlighted in a broader real-
life context as a concluding message.

Aim 1 sought to investigate the influence of real-world conditions on the collective behaviour of
swarm robotic systems, a preliminary scrutiny to foster systems that are more adaptive in response
to real-world dynamics. To achieve Objective 1, the research study incorporated these real-world
conditions into a pheromone-based swarm robotic system, scrutinising the effects on aggregation
behaviour of a swarm of mobile robots. Chapter 3 demonstrated that the emulated realistic effects
have a substantial influence on the aggregation behaviours of pheromone-based swarm robotic
systems. The complexity and unpredictability of real-world effects elucidated the limitations of
manual controller designs, accentuating the imperative need for automatic controller designs
capable of adeptly adapting to real-world conditions, thereby aligning perfectly with the target set
by Objective 1.

In addressing Aim 2, the focus shifted to the development of a DRL-driven automatic controller
design that illustrated adaptivity and superiority over traditional methods. Objective 2 aimed
at crafting DRL-driven automatic controller design on a swarm robotic scenario that harnesses
pheromone-based communication and evaluating its efficiency. Chapter 4 conducted a comparative
analysis, demonstrating the proposed DRL-driven automatic controller that outclasses traditional
centralised and manual controller designs by adeptly addressing complexity and eliminating the
necessity for human experts in the design process, thus successfully achieving the Objective 2.

Aim 3 steered the research towards devising a strategy to alleviate the centralisation issues found
in traditional MARL approaches. Objective 3 mapped out a strategy to utilise a FL-based DRL
training strategy, which was further evaluated through real-robot experiments. The findings in
Chapter 5 were seminal, illustrating a significant reduction in the degree of centralisation, notably
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surpassing the performance efficacy of baseline methods, and effectively mitigating the reality-gap
issue prevalent in automatic controller designs. These findings stressed the potential of the FL-based
DRL strategy to make a breakthrough in automatic controller design for swarm robotic domain,
thereby fulfilling Objective 3 and showcasing a promising pathway towards the resolution of grand
challenges in automatic controller design in swarm robotics.

There are several key open challenges remain to be addressed to further sculpt the pathway in this
domain, encouraging other researchers to join and explore. Here below, six open challenges with
suggestion for future research direction are introduced.

• Expansion to Address Collective Behaviours: The current DRL-driven automatic controller
design predominantly caters to low-level behaviours. There is an imperative need to conceptu-
alise and implement a broader spectrum of swarm robotic behaviours through this approach, to
underscore its potential in nurturing emergent behaviours. Enhanced demonstrations, illustrating a
diverse type of collective behaviours, could substantially support the significance of DRL-driven
automatic controller design in mitigating design challenges under realistic scenarios. For example,
if DRL-driven automatic controller design is applied into designing aggregation behaviour for
swarm robotic systems, more adaptive aggregation behaviours can be obtained in a way that being
more robust to the effect of realistic conditions than manual controller design utilised in Chapter 3.
Moreover, more complex types of collective behaviour can be designed using DRL-driven automatic
controller design. For instance, long-distance foraging, main strategy for maintaining a colony of
ants [28] can be designed to be utilised as a strategy of collective transportation of swarm systems.
As mentioned in Chapter 4, the need for strategy to coordinate large number of autonomous vehicles
in traffic is rapidly rising. Therefore, investigating designing long-distance foraging using DRL-
driven automatic controller design could be a meaningful step forward. Likewise, diverse types of
collective behaviours, e.g. collective transport [157], flocking [60] can be designed and investigated
its feasibility with DRL-driven automatic controller design for a wide range of real-world applica-
tions.

• Comprehensive Comparative Analysis of Automatic Controller Design: A critical necessity
exists for a thorough analysis that contrasts DRL-driven automatic controller designs with other
automatic controller design approaches including robot evolutionary swarm robotics and automatic
modular design. Initiating a direct comparison between these methodologies could foster a deeper
understanding of each technique’s characteristics, potentially unveiling opportunities to develop a
hybrid approach that amalgamates the strengths of both while mitigating their respective drawbacks.
Clear understanding on methodologies of automatic controller design helps researchers to adopt an
appropriate method for developing target application more easily. Furthermore, the potential devel-
opment of hybrid design that can serve as a general design methodology for automatic controller
design. Lacking of general design methodology is highlighted as a major limitation of automatic
controller design method [7]. With a general design methodology, automatic controller design,
swarm robotics in a broader context can be more rapidly advanced as the effort of researchers
can converge into one direction. Conducting a comprehensive comparative analysis of automatic
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controller design is a necessary step forward towards the overall development for swarm robotic
systems under realistic environments.

• Showcasing Online Design Processes: The potential of DRL-driven automatic controller design
in alleviating the existing issues with current online methods must be effectively showcased. This
encompasses addressing notable challenges such as prolonged exploration times and the potential
for physical damage to robots during the online design process. While this is theoretically plausible,
there is a lack of empirical evidence to substantiate this claim. Researchers have been investigating
the potential of evolutionary robotics method with its sub-field called Embodied Evolution [55],
demonstrating successful stream of research studies implementing collective behaviours while a
robot swarm operates in its mission. Likewise, DRL-driven automatic controller design methods
can be investigated in the scenarios where the robots design their controller on-line. In contrast to
the methods for embodied evolution, DRL-driven automatic controller design can leverage several
techniques that facilitate on-line design processes to avoid violation of constraints of the mission,
e.g. maximum duration of mission completion or safety constraints. By capitalising auxiliary tech-
niques, such as transfer learning [96], on-line design process can significantly reduce exploration
space, reducing further design time and possibilities taking dangerous actions while guaranteeing
minimum level of performance.

• Full Decentralisation of FL-based DRL Training Strategies: Despite the advancements, the
current FL-based DRL training strategies have not entirely eliminated the issue of centralisation.
The proposal and experimentation with entirely decentralised methodologies in the swarm robotic
context are of paramount importance, where the plausibility is already showcased in other domains
including medical diagnosis [127]. The advent of such approaches could encourage a wider ap-
plication of DRL-driven automatic controller design, facilitating online and decentralised design
processes, which are quintessential for real-world applications. However, compared to the existing
decentralised application in other domains, designing DRL-driven automatic controller requires
more sophisticated requirements. For example, in DRL, states and actions of an agent sequentially
impact. It means that unsuccessful parameter sharing that brings a negative impact could deteriorate
controller performance in a global scale like chain reaction. Therefore, systematic investigation
with basic design of full decentralisation starting from the current FL-based DRL training strategy,
proposed in Chapter 5, is recommended. With the basic design of fully decentralised DRL training
strategies, further development can be done easily with the advancement by addressing other key
open challenges, which are listed in this section.

• Advanced Methods for Parameter Sharing: In Chapter 5, the basic type of parameter sharing
method, weight averaging [123] with soft average method, has been adopted and utilised, yet
providing performance advantage compared to the traditional MARL methods. Since the research
study introduced in Chapter 5 is the nascent application of FL into a swarm robotic context, the most
basic form of parameter sharing method is used. This means there is a large room for advancement
of the FL-based DRL training strategies by devising diverse parameter sharing methods. For
example, the advanced parameter sharing methods, such as FedProx [195] and SCAFFOLD [196]
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used in other domains can be used to improve FL-based DRL training strategies. Not only applying
existing advanced algorithms for FL in other domains, but also developing specific parameter
sharing methods for swarm robotic scenarios could be another interesting research direction. For
example, game theory [197], [198] could be used as an effective method to determine how parameter
sharing is conducted among multiple individuals in a group to obtain a maximum global benefit
while keeping individual benefit at a desired level. Moreover, leveraging graph neural networks
(GNNs) to determine parameter sharing rules could be a promising research field as GNNs can be
utilised to model a complex graph structure between agents, useful for designing parameter sharing
rules under complex scenarios.

• Deployment for Heterogeneous Swarm Robotic Systems: One of the advantages of FL-based
DRL training strategy is that it is more generalisable than the traditional MARL based DRL training
strategies. In Chapter 5, having a high generalisation capability is a great advantage to overcome
reality-gap issue, which is one of the two biggest challenges in automatic controller design. This
generalisation capability can be also highlighted when heterogeneous robots are deployed in one
group. Heterogeneous robots require different state, action, kinematics and dynamics profile, which
discourage conventional MARL-based DRL training strategies. Still, desigining a generalisable
controller design among heterogeneous robotic systems [199] is dramatically intricate challenges,
even more understudied with DRL. Nevertheless, it is worth to investigate the potential of FL-
based DRL training strategies to obtain generalisable controllers for heterogeneous swarm robotic
systems. Together with advanced parameter sharing methods, developing methodologies to deal
with heterogeneity of robots is crucial research direction as heterogeneous swarm robotic systems
will be used for real-world applications by a high chance [189].

In retrospect, this thesis not only achieved its predefined aims and objectives but also significantly
contributed to the pavement of new research directions for advancement of automatic controller
design, which deemed as a vital topic for future swarm robotic systems. The three main chapters
methodically justified the need for a decentralised approach in DRL-driven automatic controller
design and showcased its prototype approach using FL. This heralds a promising future, moving
towards the development of more proficient and adaptive swarm robotic systems capable of tackling
complex real-world challenges, a critical step forward in the ever-evolving landscape of swarm
robotics. The findings highlight the potential avenues for further research, albeit remaining open
challenges, fostering a deeper understanding and facilitating the creation of more proficient and
versatile swarm robotic systems equipped with automatic controller design in the forthcoming
future. By addressing the open challenges, crucial developments will be made towards designing
swarm robotic systems and infrastructures, practically solving unprecedented diverse physical
challenges in the society, such as extraterrestrial exploration and rescue missions in the extreme
environments. Since it is still an early stage for the field of swarm robotics, more for its sub-field
automatic controller design, exciting journey is waiting for researchers to contribute developing
a new type of robotic systems leveraging collective principles shown in thriving social animals in
nature, addressing the most intricate challenges what the current solutions are not capable of.
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Appendix A

Chapter 3

A.1 Preliminary experiments for parameter choice of maunal controller

design

As mentioned in Chapter 3, preliminary experiments were conducted to find suitable parameter
values for each experimental stage. Each parameter set of βconst and α in the range of (0.6 ≤
βconst ≤ 1.4, 0.6 ≤ α ≤ 1.4) with the step size of 0.1 was tested 20 times for each experimental
stage. The results with three performance metrics in each stage are illustrated in Fig. A.1, A.2 and
A.3.

In Stage 1, the experimental results demonstrate a successful collision avoidance with a low βconst

value (βconst ≤ 0.9). Conversely, higher values of βconst and lower values of α lead to a drop in
the success rate due to an increased likelihood of collision. This is attributed to the higher βconst,
which accelerates the forward movement of the robot. Interestingly, a higher βconst is associated
with a reduced completion time, while the effect of α depends on whether βconst is above or below
1.0. Trajectory efficiency generally increases with lower βconst and α, but a trade-off between the
two parameters may deviate from this trend. The chosen optimal parameter set, taking into account
success rate, completion time, and trajectory efficiency, is βconst = 0.9, α = 0.7.

In Stage 2, the success rate is influenced primarily by βconst, with nearly no success for βconst > 0.9.
Completion time generally decreases with lower α, although outliers exist that defy this trend.
Trajectory efficiency shows a similar trend to completion time, and the optimal parameter set for
Stage 2 is βconst = 0.7, α = 0.8.

Stage 3 illustrates a more complex picture, with no clear general rule linking success rate to pa-
rameter values, reflecting the higher complexity of this stage. Three parameter sets yielded the
highest success rates, with a slight trend towards lower completion time with higher α for βconst ∈
(0.6, 0.7). Only a general trend that higher α led to higher trajectory efficiency was found. The
chosen parameter set for Stage 3, βconst = 0.7, α = 1.3, resulted in the fastest completion time,
which was the second priority criterion.
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Figure A.1. Evaluation results of the manual controller design with different parameter sets in Stage 1. (a), (b), (c)
illustrates success rate, average completion time and trajectory efficiency respectively.

Figure A.2. Evaluation results of the manual controller design with different parameter sets in Stage 2. (a), (b), (c)
illustrates success rate, average completion time and trajectory efficiency respectively.

Figure A.3. Evaluation results of the manual controller design with different parameter sets in Stage 3. (a), (b), (c)
illustrates success rate, average completion time and trajectory efficiency respectively.
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