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ABSTRACT

In recent years, Reinforcement Learning has been able to solve extremely

complex games in simulation, but with limited success in deployment to real-

world scenarios. The goal of this work is create an ecosystem in which Rein-

forcement Learning algorithms can be deployed onto real robots in complex

games. The ecosystem begins with the creation of a development pipeline

which can be used to progressively train Reinforcement Learning Algorithms

in increasingly realistic scenarios, culminating with the deployment of these

algorithm onto a real system. The pipeline is paired with the novel Rein-

forcement Learning algorithms that are better able to adapt to new scenarios

than traditional methods for autonomy and robotic planning We implement

two techniques to enable this adaptation First, we implement a hierarchi-

cal Reinforcement Learning architecture that uses differentiated sub-policies

governed by a hierarchical controller to enable fast adaptation. Second we

introduce a confidence-based training process for the hierarchical controller

which improves training stability and convergence times. These algorithmic

contributions were evaluated using our development pipeline.
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CHAPTER 1

INTRODUCTION

The developments in computational hardware have allowed for Artificial In-

telligence (AI) to scale to problems that were computationally intractable

only a decade ago; and in that time AI has become a backbone for mod-

ern technology. AI has many implications in robotics for creating fully au-

tonomous systems as the two primary tasks of these systems, processing

environment observations and making complex decisions to interact with the

environment, require highly intelligent processes. There has been significant

development in both systems with machine vision algorithms accurately iden-

tifying objects and contextual information from images and Reinforcement

Learning (RL) algorithms playing complex games such as DOTA II and Star-

Craft II better than humans [1, 2]. However, these algorithms struggle in real-

world environments, such as self-driving cars in which vision algorithms can

misinterpret the environment and decision-making algorithms fail to safely

react to noisy observations or unknown situations, resulting fatal crashes.

In this thesis we will be addressing improving the ability to deploy AI al-

gorithms, specifically those for autonomous decision-making, into real-world

environments. Current RL algorithms have shown great promise, but suffer

under even minor environment changes. Addressing this shortcoming will

help improve the ability of these algorithms to be deployed onto real-world

systems.

1.1 Decision-making in Robotics

Making sequential decisions in uncertain environments is incredibly difficult,

especially for robots with no natural intelligence. One of the more popular

methods to solve these tasks is to train in a simulated environment with a

technique called RL where a policy is created to control the decision-making.
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The policy is optimized to maximize the performance at a specific task based

on experimentation in the environment, which is similar to how humans

experiment to learn how to solve a task. Policies like AlphaStar and OpenAI

Five, have shown that RL can create policies that are able to beat World

Champions in complex video games StarCraft II and DOTA II, respectively

[1, 2].

The difficulty with RL is that the method is sample intensive and requires

significant exploration in the environment, which if performed on real robots

would take hundreds of years or cause thousands of crashes while naively ex-

ploring the environment. These restrictions are avoided by primarily training

in simulated environments which significantly improves data collection and

eliminates risk in high stakes environments. This knowledge can then be

applied to the real robot, and in the case of simple policies such as robotic

manipulation, this approach has shown great success [3, 4, 5, 6, 7]. This

success may lead one to wonder why we do not use these models in critical

pieces of infrastructure. The short answer is that the real-world has two key

differences than a simulated environment:

• Changing Dynamics: Often there exist changes in dynamics between a

simulated environment and a real-world environment.

• Observation Noise: There is often more noise in the observations due to

issues in sensor processing, which results in more strain on the planner.

One possible way to handle these differences would be to improve the

pipeline from simulation to real-world. The real-world system would be a

game which can be used to demonstrate a variety of complex decision-making

problems. The simulated environment should allow for high sampling effi-

ciency to train RL methods while maintaining similarities to the final system

so the policies can be deployed in a real world environment.

A more generic way to deal with these differences is to modify the RL mod-

els to be more robust to noise and to have adaptable features which can be

updated to overcome the changing dynamics. However, classic RL methods

even with modifications to improve robustness are based on the assumption

that their environment is static and will not change during operation. This

assumption leads policies to suffer from extreme performance loss when they

are applied to even a slightly different environment. Novel methods for im-

proving the adaptability of RL methods are required to deploy these policies
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to real-world environments as conditions are continually changing and the

policy must be able to cope with the changes successfully.

1.2 Contributions

The main contributions of this thesis are as follows:

Creating a modular pipeline that can be used for testing and
development of AI algorithms to real-world Robotic systems.

We created a progressive training and development infrastructure for ma-

chine vision and RL tasks. The infrastructure has three main components,

a 2D abstracted simulation, a 3D physics-based simulation and a real-world

environment, which can be used progressively to deploy planning and vision

algorithms onto real-world robotics.

Development of two RL techniques to improve the adaptive
performance of policies.

We propose two RL techniques which improve the training and adaptive

performance of RL. The first technique is to use differentiated sub-policies

governed by a hierarchical controller to support adaptation in dynamically

changing scenarios. The second technique is a confidence-based training pro-

cess for hierarchical controllers which improves training stability and con-

vergence times. We demonstrate that these method improve adaptive per-

formance compared to traditional RL schemes, when adapting to different

agents in the 2D abstracted Capture the Flag (CTF) game.

1.3 Capture the Flag

Adversarial games and tasks are a primary part of human growth, where

we learn to compete and improve with our peers. In this thesis we use the

game CTF to demonstrate my RL development pipeline and RL adaptation

techniques. We chose this game because it is an adversarial game in which
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policies need to adapt to changing maps, dynamics, and opponent strategies.

Some of the main features which make this an interesting environment:

• Adversarial: Learning to play against an intelligent enemy is difficult

as they can pursue an ever evolving strategy to counter your actions.

• Multi-agent: Learning to coordinate with other agents to achieve opti-

mal performance.

• Partially Observable: Learning optimal decisions when you have imper-

fect information in the environment is difficult, especially when com-

bined with adversarial and multi-agent characteristics.
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CHAPTER 2

BACKGROUND AND RELATED WORK

One of the main fields within AI is machine learning (ML), in which al-

gorithms are created to find complex patterns in data-sets, which are then

leveraged to make decisions and predictions. ML relies on large sets of la-

beled data to train the algorithms, but this is often infeasible in many tasks,

such as playing a video game or operating a robot, which are either difficult

to label the data or infeasible to collect sufficient data. One subset of ML

that addresses this problem is RL in which an agent collects its own data

through experimentation, and labels it based on a simple reward function

defined by the operator. A major limitation of most RL methods is that the

algorithm is fit to one specific task and has limited generalizability or appli-

cability to even similar tasks, leading to failure of the algorithm in changing

environments. Several methods have addressed this by improving the ability

of the algorithms to transition to new tasks either by remapping information

or creating a generalizable policy.

This chapter begins by formulating the generic RL problem and discussing

the basic solution process. The formulations are then built for Hierarchi-

cal RL which provide modelling benefits over traditional RL schemes. The

chapter finishes with a summary of traditional adaptation techniques.

2.1 Reinforcement Learning

As stated earlier the main paradigm in RL is to learn while experimenting

and collecting it’s own data, which is a very generic process, but requires

many assumptions to be placed on the problem. The general framework for

the problem is composed of two core pieces, the environment which is the

game or task which one wants to learn and the agent which is the intelligent

algorithm that interacts with the environment. The agent interacts with the
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Environment

RL Planner

Observation 
Robot Position

Reward 
+1 for Reaching Goal

Action 
Motor Controls

(a) (b)

Figure 2.1: (a) A block diagram describing the RL framework, in which the
agent uses experimental actions to interact with the environment and
receives observations and rewards, which it uses to train a control policy.
(b) An example RL problem in which the robot (circled) has a goal to
navigate to a specific location (cross). The RL planner must learn to
control the robot’s motors to navigate to the goal.

environment by taking actions which effect the state of the environment. The

environment is then observed by the agent, creating an observation, which

the agent uses as data. The goal of the agent is to maximize a reward signal

or a performance metric, which is defined by the user. This interaction is

shown in Figure 2.1a.

An example of this operation would be learning a policy to control the

motors that drives a robot to a goal, shown in Figure 2.1b. In this case we can

define the actions as the motor movements, the observation may be the GPS

location of the robot and a reward would be given when the agent reaches

the goal. What we would want is the agent to explore the environment, and

finally create a policy which would define what motor movements to make

at a GPS coordinate.

The rest of this section defines the formal process for solving this type of

problem. It begins with a structured definition of the environment and the

agent, called a Markov Decision Process. This is followed by defining a formal

solution to the MDP, and preliminary methods of solution based on dynamic

programming. The section then addresses different ways to accomplish the

solution with neiral networks and complex update algorithms.
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2.1.1 Markov Decision Process

The Markov Decision Process (MDP) is a model for environments, which

provides a structured definition which many theories in RL are based on. A

MDP is defied by a tuple of information (S,A,P,R) in which;

• S defines a set of all possible states, s ∈ S

• A defines a set of all possible actions, a ∈ A

• P defines the transition between different states, conditioned on an

action, P (s′|s, a)

• R defines a reward structure when transitioning between states, R =

S ′ × S × A

During the RL training it is often assumed that the MDP is unknown a-priori

and is learned through the agent’s experimentation within the environment,

with the goal to maximize the total reward. For temporally extended tasks

the reward becomes increasingly complicated as the agent must balance re-

ceiving immediate rewards and future rewards. In these scenarios the reward

is often discounted into the future with a parameter γ, typically 0.9 or 0.99,

creating a discounted return defined as,

G = r1 + γr2 + γ2r3 + ... =
∞∑
i=0

γiri+1 (2.1)

2.1.2 Agent Policies

To formally solve the environment the agent creates a policy, π(a|s) which

defines optimal actions to be taken at every state in the environment. Cur-

rently, there are two primary ways to create these policies, model-based and

model-free methods. In model-based methods the agent explicitly learns all

of the environment transitions, states and rewards, and uses the information

in an optimization process to create a π(a|s) which maximizes the rewards.

One drawback of model-based methods are that they are inflexible to en-

vironment changes as the learned information is often tailored around the

environment. In contrast, the more popular and flexible option in RL are

the model-free methods, in which the agent directly learns the policy, π(a|s),
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which maximizes the rewards, at the cost of sample inefficiency and longer

training times.

This work primarily deals with model-free methods, which are based on

the value function,

V (s) = E[G|s] = E[
∞∑
i=0

γiri+1|s], (2.2)

which represents the expected discounted reward, from Equation 2.1 when

starting in a given state. This quantity effectively measures the success on

the agent and can be used in two ways to solve the environment: value-

based and policy-based methods. In value-based methods the value function

can be learned explicitly and used to define the policy, i.e. the agent will

select actions which maximize the value function. In policy-based methods

the agent can implicitly learn the value function inside of a policy, where the

actions happen to maximize the value function. These methods are discussed

in more detail in Section 2.1.3

These value functions must be learned, based on environment, but the

infinite horizon presents a complex problem to solve. This limitation is dealt

with by breaking the infinite horizon into a series of one step approximation

which are called the Bellman equation,

V (s) = E[Rt+1 + γV (st+1)|s], (2.3)

which states the value of a state is equivalent to the next expected reward plus

the value of the next state. These equations appear as iterative quantities and

are used with dynamic programming algorithms which are used to update

the value function.

In some methods the value is parameterized as a state-action value func-

tion,

Q(s, a) = E[G|s, a] = E[
∞∑
i=0

γiri+1|s, a] (2.4)

Q(s, a) = E[Rt+1 + γQ(st+1, at+1)|s, a], (2.5)

which represents the value of taking a particular action at a given state, and

is useful to compare the value of different actions at a given state.
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2.1.3 Reinforcement Learning Algorithms

RL algorithms are the process of iteratively updating a policy π(a|s) to max-

imize the value, V . The value of the policy is often represented as,

V π(s) = E[G|s, π], (2.6)

which is the expected value that is obtained by following the policy in the

environment. The policy is updated until it reaches the maximum value,

denoted as

V ∗(s) = max(V π(s)). (2.7)

These iterative updates are made with Monte Carlo sampling performed by

the agent to explore the environment. Due to the requirements of Monte-

Carlo sampling, there often has to be some level of exploration tied to the

agent’s actions when exploring the environment. This leads to the balanc-

ing of exploration vs exploitation of the environment, which is addressed

differently with different methods.

As the value functions can be extremely complex they are often parame-

terized with neural networks, which are described in Section 2.1.4. The way

of notated these for the purpose of he algorithms is with θ, which represents

the all of parameters of the network.

RL algorithms can broadly be split into three main categories, value-based

and policy-based methods, mentioned earlier, and actor-critic methods which

combine aspects of the other methods.

Value-based Methods

In value based methods a value function, often the state-action value func-

tion, is learned and parameterized in a neural network. A policy is then

described based on the value function as,

π(a|s) = max
a

(E[G|s, a]) = max
a

(Q(s, a)), (2.8)

where an action is selected which maximizes the value function.

To explore the environment the Value-based methods often use a method
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called E-Greedy which balances the exploration and exploitation. This is

done by selecting random actions occasionally based on the following rule:

a(s) =

{
maxa(Q(s, a)) with probability 1− ε

a random action with probability ε
(2.9)

A common algorithm for these methods is the Q-learning algorithm [8]

described in Algorithm 1, which updates a neural network to approximate

Q(s, a).

Algorithm 1: Q-learning Algorithm

Initialize Q(s, a) parameterized by θ ;
repeat

for Until Episode Ends do
Select a from s in policy derived from Q (E-Greedy);
Take a, observe r and s′ ;
Q(s, a)←− Q(s, a) + α[r +max(γQ(s′, a)−Q(s, a)];
s←− s′

end

until;

Policy-based methods

In policy-based methods the policy is learned explicitly. This has benefits

over value based methods when being applied to continuous or large action

spaces, which drastically decrease performance of value-based methods. The

exploration comes from the fact that an initialized policy is naturally random,

and allows exploration. However some implementations use an E-greedy

approach to improve long-term exploration of the environment. The policy-

based method REINFORCE [9] is described in Algorithm 2 where parameters

of the network are updated iteratively resulting in a final policy.

Actor-Critic Methods

Actor-critic methods blend both value-based and policy-based methods into

one framework, which results in efficient and stable updates, similar to value-

based policies, and good parameterization of continuous spaces, similar to

10



Algorithm 2: REINFORCE Algorithm

Initialize π(a|s) parameterized by θ ;
repeat

Generate trajectory ;
Calculate discounted rewards: G←−

∑∞
i=0 γ

iri+1 ;
Update parameters of π: θ ←− θ + αγG[∇lnπ(A|S, θ)];

until;

policy-based methods [10]. These methods operate by learning a value rep-

resentation of the state V (s) and then using that to more efficiently train the

actor, which is a policy. The Vanilla Actor-Critic algorithm [11] is described

in Algorithm 3.

Algorithm 3: Vanilla Actor Critic Algorithm

Initialize π(a|s) parameterized by θ ;
Initialize V (s) parameterized by w ;
repeat

for Until Episode Ends do
Select a from s in policy π(a|s);
Take a, observe r and s′ ;
δ ← R + γV (S ′)− V (S) ;
w ←− w + αγδ[∇V (s, w)];
Update parameters of π: θ ←− θ + αδ[∇lnπ(A|S, θ)];
s←− s′

end

until;

2.1.4 Neural Networks

Modern RL algorithms leverage neural networks which are used as flexible

function approximators for the above value functions and policies. Given

the Universal Approximation Theory [12], a neural network with carefully

selected weights can recreate any continuous function. Neural networks are

composed of sets of artificial neurons which mimic synaptic responses of neu-

rons to various input signals. An example artificial neuron is shown in Figure

2.2, in which a vector of input signals is multiplied by an internal weights

and biases resulting in an output. This model lacks the ability to model
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Figure 2.2: An artificial neuron which mimics neuron firing of a traditional
cell. This is replicated by taking a linear combination of input signals and
applying a complex activation function to the output.

non-linear transformations that exist in biological neurons, such as activa-

tion potentials. Activation functions are used to model activation potentials,

by using non-linear functions, such as the sigmoid, hyperbolic tangent and

the Rectified Linear Unit. And with an arbitrarily large number of these

neurons with activation functions one is able to create any desired response

to an input.

Although the Universal Approximation Theory states that the neurons

can approximate the input with a single I/O layer of neurons, they are often

arranged together in sequential groups, called layers, to increase the compu-

tational performance of the neurons. The most common types of layers are

Fully-Connected and Convolution layers and are combined linearly to create

a deep neural network. These networks are updated with back-propagation

algorithms.

Fully-Connected Layers

The Fully-Connected layer is a group of neurons which each share the same

input and create a vector output. An example Fully Connected layer is shown

in Figure 2.3
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Figure 2.3: A fully connected layer, shown on the right is a set of neurons
that which are each connected to a set on inputs, in this case a previous set
of neurons. This representation provides a compact way of representing sets
of neurons, and is computationally simplified to a matrix notation.

Convolution Layers

A Convolution layer is used to process image-like data, in which the inputs

exist is a spatial construct. The layer works by applying a set of neurons to

a small chunk of the input data to get an output. This set of neurons is then

applied to overlapping sections of the input data to create multiple inputs.

This is shown in Figure 2.4

Back-Propagation

The Universal Approximation Theory does not address how the weights

should be selected to model a function but several methods exist to up-

date the parameters in the neurons. The most common method the back-

propagation algorithm which iteratively updates the weights to converge to

minimize an arbitrary loss function. For RL based tasks the loss is typically

a value or reward function that is defined in the previous section.

For successive weights the chain rule can be applied,

... (2.10)
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Figure 2.4: A Convolution Layer is a set of neurons arranged in a spatial
format called a filter. The filter is then applied successively to small
sections of an input signal, typically an image, resulting in an output which
captures spatial features of the input.

For an arbitrary dense layer this is done by calculating the gradient on the

parameter with respect to the final output. Then the parameter is updated

based on the loss based on an update parameters. If the function is non

transient and the learning parameters are tuned, this will result in a close

approximation of the value function.
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Algorithm 4: Back-Propagation

Initialize network fθ parameters θ
Have set of inputs and outputs [X,Y]
Cost Function C
Learning Rate β
repeat

Calculate loss, α = C(fθ(x), Y)
Calculate gradient w.r.t. loss. δC

δθ

Update parameters θ+ ←− θ− + βα δC
δθ

until done;

Encoder
(CNN+Attention)

Critic

Sub-policies

CriticActor Critic

Encoder
(CNN+Attention)

State

Actor Critic

HC

Action

Figure 2.5: An example HRL architecture in which the hierarchical
controller, shown on the left, selects between different sub-policies.

2.2 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning(HRL) is the process of decomposing the

policy into a set of hierarchical representations. For example one could de-

compose the policy into a set of sub-policies, which are used by a hierarchical

controller (HC), which is shown in Figure 2.5. This methodology has been

used successfully in temporally abstracted games such as Atari [13], walking

environments [14], robotic path planning [15], and for high-level coordination

in multi-agent scenarios [16, 17]. The framework is theoretically qualified by

creating a temporally extended MDP, which allows for rigorous definitions

of the associated value function.
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2.2.1 Temporally Extended MDP and the Option Framework

HRL is based on the framework proposed by [18], in which a policy is ab-

stracted using Markovian options. A Markovian option is a (Iω, πω, βω) tuple,

where Iω is an initiation condition, πω is a sub-policy, and βω is a termination

condition. Sets of these options are created where each option has a unique

sub-policy πω representing a distinct mapping of how to traverse the MDP;

these sub-policies can then be composed together based on initiations and

terminations to create an overall control policy.

2.2.2 Hierarchical Reinforcement Learning Methods

HRL creates an overall control policy by using an HC to control the initiations

and terminations of these sub-policies. Classically, this framework has been

used to help solve complex environments by using options to create temporal

abstractions that decompose the MDP space [19]. Note that we use the term

sub-policies instead of options because options are typically used to define a

subset of the MDP space, whereas we use sub-policies that can be defined

over the entire MDP space.

One limitation of HRL is that discounted reward assignment is difficult

when switching between sub-policies [16]. A common method for addressing

this is to operate the HC at a higher temporal scale where sub-policies are

switched at a fixed-step interval. Fixed-step intervals stabilize training by

creating longer sub-policy trajectories that are easier for the network to learn

from. However, fixed-step training often fails when the selected interval does

not temporally align with environment time scales. An alternative method

is the option-critic framework, which switches sub-policies based on learned

activation and termination functions [19]. These functions create extended

sub-policy trajectories that allow sub-policies to be trained end-to-end; how-

ever, these sub-policies are typically not globally defined, limiting their value

towards adaptation.
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2.3 Adaptable RL

Two main lines of work have addressed adaptation in RL: transfer learning

and one-shot learning.

2.3.1 Transfer Learning

In instances of a well-defined target environment, transfer learning methods

aim to correlate information between the source and target environments.

One common method is manifold alignment, in which features of the source

and target environment are correlated to serve as an intermediate between

the trained policy and the target environment [20, 21]. Another method,

progressive networks, adds layers to the trained policy so that features from

the source environment can be extracted and applied to the target [3]. While

successful, these methods are often computationally expensive, as they re-

quire significant exploration of the target environment.

2.3.2 Meta Learning

One-shot learning extends transfer learning to consider transfer to unknown

environments. These methods focus on enhancing the online training process

with sample reuse and augmentation or controlled periods of rapid training.

A common method is meta-learning, where a policy is trained to maximize

its ability to adapt with limited samples from the target environment, result-

ing in an ability to update a policy on-line [22, 23, 24, 25]. These methods

show promise, but often show drops in short-term performance following en-

vironment changes and struggle with target environments that are drastically

different from those seen during training.
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CHAPTER 3

RL DEVELOPMENT PIPELINE

Training RL algorithms requires 10,000 to 1,000,000 game-plays of data de-

pending on the task complexity and algorithm efficiency, which cannot be

accomplished in real world settings. For example, the real-world implemen-

tation of the CTF game discussed in this section requires 5 minutes to exe-

cute, and combined with setup would result only 1,000 games in 7 straight

days of running. This limitation can be overcome with the use of computers

which can simulate multiple environments simultaneously, often faster than

real experiment, leading to orders of magnitude being shaved from training

time. The RL algorithm learned in the simulated environment then can be

applied to a real world scenario, and would only require minor fine-tuning to

account for differences between the simulated and real environments.

Several simulators utilize this progressive structure, such as walking and

grasping robot environments, have shown great performance when transi-

tioning from simulated environments to real environments [26, 7]. However,

these pipelines represent niche manipulation and control scenarios, and no

such framework exists for applying RL to more complex tasks, such as co-

ordination of heterogeneous agents in partial observability operation, to real

world robots. Additionally many of these real-world systems and robots are

comprised of multiple RL components such as machine vision and RL plan-

ning algorithms, which are not entirely simulated in existing architectures

and require a separate framework to train and deploy them.

This chapter presents a progressive framework for AI development. The

most basic simulation is computationally simple and can be used to gener-

alize planning models, and complex decision making and coordination. The

second point in the pipeline is a physics based simulation, which can be used

to transition the initial control policies to more complex dynamics. This

provides an initial test-bed for AI integration with robotics platform. This

environment also allows for the testing of sensor based observation technolo-
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gies, such as image classification and localization. Finally a full robotics

environment was developed which allows the AI to deployed onto real world

robotics.

3.1 Capture the Flag Game

The game Capture the Flag (CTF) was selected to serve as the basis of

the pipeline. CTF is a game in which two teams compete with each-other

to capture the enemy’s flag while simultaneously defending their own flag.

There are several major rules and assumptions that define this game:

1. Teams are comprised multiple agents, which are split into two cate-

gories, ground agents and flying agents.

2. Agents are not created equal, some may be faster or stronger than

others. This primarily applies to flying agents which cannot interact

with other agents or flags, but can provide observations to there allies.

3. The game board is comprised of territories for each team and obstacles,

which can only be navigated by flying agents.

4. When agents come with proximity to one-another there is a stochastic

interaction in which agents can die. This is biased based on the agents’

strength factors, the number of nearby allies, and whether the agent is

on their home territory.

5. A flag can only be captured by a ground robot when the agent reaches

the flag, at which point the game immediately ends.

An example game-play, showing agent interactions and the win-condition, is

shown in Figure 3.1.

On first inspection this game appears simple with a well defined goal,

however CTF addresses three major research questions in RL:

• Multi Agent Control and Coordination - With multiple agents on dif-

ferent teams, how does one optimally control them to solve a task? If

agents each have their unique logic, how do they coordinate with one

another to solve the task?
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(a) (b) (c)

Figure 3.1: (a) Initial Starting position of CTF game. Agents of two teams
begin in an environment with a flag for each. They must capture the
enemies flag to win, but allowing their flag to be captured results in a loss.
(b) Agents have a mechanism to capture, or kill, one another. In this CTF
there is a stochastic probability based on proximity to other agents and
their strength metric. Here one can see the Blue agent being captured by
the two red agents who have an advantage because they are coordinated.
(c) The red team wins the game by capturing the enemies flag.

• Partial Observability Decision-making - In partially observable scenar-

ios, there is uncertainty in enemy locations, which play a large role in

the environment. How do you create a planning algorithm to explore

unknown environments and successfully combat complex enemies?

• Adaptable Planning - This environment can change extremely quickly

with the changing of the maps or more complex changes like introduc-

ing faster opponents. How does one adapt to the different agents to

successfully play the game?

3.2 CTF Development Pipeline

To address this training and deployment issue of RL, three distinct training

and development environments, a 2D abstracted environment, a 3D physics

based simulation environment and a real-world system, will vary the level of

realism allowing RL algorithms to be progressively trialed in more complex

and realistic scenarios. The pipeline begins with the 2D abstracted envi-

ronment, which allows for fast environmental results without the need to

fully simulate robots, which allows for the training and development of com-

plex strategic algorithms. This learned information can then be applied to

a 3D simulated environment, which will allow for fine-tuning the algorithm
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2D Abstracted 
Simulation 

Development and testing of 
robust planning algorithms 
which address the CTF:
● Multi-agent Coordination
● Partially Observable
● Adaptable

3D Physics-based 
Simulation

Testing and adjustment of 
planning algorithms in 3D 
environment

Development of vision 
algorithms, which use cameras 
and lidars

Testing simulated observations 
with planning algorithms

Real-World 

Final testing and deployment of 
planning algorithms 

Final testing of vision algorithms, 
which use cameras and lidars.

Testing real observations 
with planning algorithms

Figure 3.2: The CTF Development pipeline is comprised of three main
sections: the 2D Abstracted Simulation, the 3D Physics-based Simulation
and the Real-World Game. The 2D Abstracted Simulation is designed for
rapid testing of RL algorithms to address fundamental problems in
decision-making and control. These learned representations can then be
deployed into the 3D Physics-based simulation to adapt the algorithms to a
3D, time based representation. The algorithm can then be deployed onto a
real robotic system and evaluated in a final target environment. This
pipeline also allows for development and evaluation of vision based
algorithms for object detection and localization, which can be used in
conjunction with the final decision-making algorithms.

to match physics and temporal scales, as well as allowing for the preliminary

testing of vision and sensing algorithms that can be used to create the obser-

vations autonomously. The data from this environment can then be applied

to an similar real-world scenario that would require small calibration. This

pipeline is diagrammed in Figure 3.2.

CTF Representation

The major consideration in the progressive simulation architecture is to main-

tain a consistent representation between the environments for the RL algo-

rithms, which is difficult as it needs to be applicable to a 2D abstracted

environment while maintaining sufficient information to represent the 3D

simulation and the real-world system. The observation space chosen for this

task is a 2D grid representation of the environment, shown in Figure 3.3a,

because it represents the CTF map with little information loss. The final
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(a)

Agent Locations

Flag Locations

(b)

Figure 3.3: (a) The full CTF Game shown above, with a grid overlay,
showing an example of how the environment may be segmented. (b)
Observations split between two separate channels, one for agents locations
and one for flag locations. This maintains the positional encoding of each
object in the environment in a simple format that allows for

representation of the grid environment segments information into different

classes. For example information on obstacles, agent positions and flags are

segmented into different data channels, which gives contextual information

that an algorithm can use to solve the problem effectively. An example

of this channelization is shown in Figure 3.3b in which information on the

agents and flags is split into different channels. Finally, this structure also

has practical implications as on the real robots they can process their sensor

information to the 2D representation and share it with other robots over

limited bandwidth connections.

There are several limitations with this representation, that we acknowl-

edge:

• Actions are based upon this grid structure as the there are only slight

performance losses based on orthogonal actions when compared to a

continuous action space.

• There is no mechanism to represent the orientation of the agents which

can have effects upon the observations and movement of the robot in

the environment.
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Figure 3.4: An example CTF match in a 4 vs 4 setting. The right side of
the figure shows the simulated observations generated by each team,
emulating the limited sensor ranges of the robots.

However, based on practical testing these limitations do not have significant

consequences on the outcome of the environment.

3.3 2D Abstracted Simulation

The pipeline begins with a 2D abstracted simulation based on the 2D CTF

representation, which allows for extremely fast training in a computation-

ally simple environment. The environment is designed to be easily interfaced

with RL algorithms to evaluate the research questions posed above. A visu-

alization of the environment is shown in Figure 3.4

This section highlights the features of the 2D abstracted CTF simulation.
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2D Abstracted Simulation

Agent
 Planner

Observation 
2D Grid Observations

Reward 
+1 for Capturing Flag

Action 
Cardinal Direction 
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Movement 
Phase

Interaction 
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Initialization

Figure 3.5: The CTF environment operated on the principles of an MDP,
which is base assumption for many RL formulations. In this architecture
the MDP operates in a cyclic fashion with the agent, taking in an action,
updating the state and then returning an observation and reward signal to
the RL Planner.

It begins with a discussion of the simulations architecture, which is based

on the 2D channelized representation of CTF, where object locations and

movements are exclusively represented as discrete 2D locations. Then there

are several sections describing the simulation environment and it’s opportu-

nities for rapid prototyping of RL algorithms, which are applicable to the

real-world environment.

3.3.1 Simulator Architecture

The environment is built with the OpenAI Gym architecture because it pro-

vides a modular framework for representing an MDP, which is assumption

used in RL formulations. Following the MDP structure this environment

takes in an action, desired movements of the agents, updates the internal

state and outputs an observation and reward. This structure can be seen in

3.4. Overall, the environment can be broken into two main functional com-

ponents, initialization, where the game is initialized and operation, where

the environment is performing MDP steps.
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Initialization

Similar to how a real-life CTF game may begin the initialization phase begins

with placing agents, obstacles, and flags. This is performed either performed

automatically or based on a user defined configuration file. The environment

defaults to creating a randomized environment, with balanced obstacles and

starting positions where the map is spit evenly between the two teams.

The user defined inputs for map generation are very diverse, with options

to control spawning locations of every object. This control can also be used

to create user-defined scenarios to test specialized RL, such as playing against

adverse scenarios in which there are more enemy agents or a smaller home

territory. The configuration can also control the capabilities of the agents

allowing for definition of their speed, strength, and observations. Speed

controls how many steps on the grid they can take in a specified time, the

strength impacts the combat effectiveness, and the observations impact how

many adjacent squares the agent is able to see.

Operation

There are two main phases that occur in the environment when an MDP

step: the movement phase and the interaction phase.

The movement phase comprises of moving the representations of the agents

based on the action inputs, and assessing the outcome of collision events

with obstacles and other agents. The movement of the agents is typically

conditioned on agent capabilities, for example the UAV agents can fly over

other obstacles and other agents, while the ground based agents

The interaction does two main things. Firstly it emulates the combat

between the different agents. The combat is based on a survival equation,

PSurvival =

∑NFriendly

i=1 Si∑NFriendly

i=1 Si +
∑NEnemy

j=1 Nj

, (3.1)

where the chance of survival is dependent upon the strength factors of the

friendly and enemy agents within a certain range. This equation gives mo-

tivation to for agent coordination, both offensively and defensively as single

agents are put at disadvantages during combat. The second purpose of the

interaction phase is to generate the simulated observations of the different
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Figure 3.6: Wrappers are a construct of the OpenAI Gym Architecture
which allow for easy modification to the environment. (a) The
modifications can be used to insert functions to modify actions,
observations, and rewards, to simulate a wide variety of systems, such as
observation noise. (b) The wrappers can also be used in conjunction with
RL based training to serve as logging functions.

agents. This is done by using a simulated observation radius and providing

the agent with full observations within the range. While this mimics the

certain capabilities such as lidar, which have limited effective ranges, this

model does not fully model how some sensors, like a camera, would perform.

A camera, paired with a machine vision scheme have high accuracy when

identify close targets, with a decrease in accuracy with distance, which will

introduce sensor error into the observation. For the sake of preliminary train-

ing this was not included into the environment and would be adapted to in

later stages in the training pipeline where the machine vision systems come

into play.

3.3.2 CTF Modifications

The OpenAI Gym structure supports the use of wrappers, which surround

the IO of the environment and can be used to modify the actions, observations

and rewards. The most obvious use case of this is to modify the observations

or actions to include noise or to center the observations around the different

agents. However the wrappers also allow one to define a number of additional

functions, such as logging rewards or trajectories, which allow for tighter

integration with RL training. These examples are shown in Figure 3.6.
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3.3.3 Features and Use Cases

The main features of this environment is simple integration with RL codes,

where data is easily generated to train an RL algorithm. The pseudo-code

for running an experiment is shown in Algorithm 5, and follows an extremely

simplified loop to train the RL a generic RL algorithm

Algorithm 5: RL Integration Pseudo-code

Initialize Planning Algorithm
Initialize Environment
repeat

Observation ←− Reset the Environment
for Until Episode Ends do

Select action with Algorithm, based on observation
Observation ←− Input Action into Environment

end
Update Algorithm
Perform Logging Functions

until;

The simulation framework can also be leveraged in the later stages of the

training pipeline to simulate agent interactions and observations, if required.

The simulation of interactions allows for consistent performance between

the three environments. This environment can also be leveraged to emulate

agent observations on physical robots if there is no hardware or software

to identify and localize data. This allows for purely the algorithms to be

simulated in the 3D environments without the need to create machine vision

algorithms and worry about the integration with the system. These methods

were accomplished by writing these portions of the code as separate sub-

routines that allows them to be called from separate processes.

3.3.4 Adaptations

One of the main considerations for the environment was the ability to test

in situ adaptations to different environmental factors. There are four main

factors that can be changed to test the adaptability of the agents, which are

all reflective of real world scenarios.

1. Environment Obstacles - The simplest thing to change in the environ-

ment is the map structure, which is equivalent of testing the algorithm
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in a new geographical location. The RL would be evaluated on how

well it can generalize different terrain features to adapt it’s policy.

2. Enemy agent capabilities - One major military difficulty is adapting

to changing military technology. We simulate this with parameters

of strength and speed in the environment. The adaptation in this

scenario is evaluated on how fast the agent can generalize the new

agent capabilities and create a policy to solve the environment.

3. Team Compositions - Team compositions play an integral role in how a

team approaches the game, and adding or removing an agent drastically

changes that approach. The evaluation of this adaptation is based on

how well the policy can use the new composition of agents. Another

change that can occur is changing agent capabilities which also has a

profound impact on how the policy can solve the environment

4. The last adaptation scenario implemented in CTF is changing the ob-

servation structure. The major implementation is reducing the sens-

ing radius, due too environmental factors such as fog. Another impact

would sensor error in which observations are misplaced or missing. This

posses a challenge for adapting to deal with the new uncertainties in

the environment.

3.4 3D Physics-based Simulated Environment

The next progression in the simulation environment is the 3D physics based

simulation, which allows for testing of the algorithms in a near realistic en-

vironments. This begins to allow the RL algorithms to handle problems

such as movement time, where agents will take slightly different times to

move. Additionally, this environment introduces emulated sensors, such as

cameras, which allow for machine vision algorithms to process data to create

observations for the RL algorithms.

The simulation is comprised of five main parts, the communication in-

frastructure, the simulation environment, the simulated robots, the CTF

interface, and the RL interface. Robot Operating System 2 (ROS2) was se-

lected as the common communication interface because it provides a modular

28



UAV Control ClassCTF Emulator Node

Emulates CTF 
interactions and 
observations

Gazebo Node

Physics simulation and 
visualization software

ROS2

Handles communication 
between different nodes

UAV Control Class
Planning Node

Decides robot actions

UAV Control Class
UAV Control Class

Robot Controller 
Nodes

Controls robot motion

Figure 3.7: The 3D Physics-based simulation is comprised of five main
components. The backbone of the infrastructure is ROS2, which serves as a
message passing protocol between the other components in the system. The
other components operate together to simulate teams of robots playing the
CTF game in a simulated environment.

messaging system that can interface with C++ and python code, which are

the basis of machine learning code and most embedded code used in robots.

The physics engine, Gazebo, was selected foremost for it’s design to sim-

ulate robots with custom plugins to simulate robotic physics and because

it natively supports ROS2 based messaging, i.e. the physics messages are

sent and interpreted in ROS2. The robots control infrastructure was then

integrated with ROS2 and Gazebo to and were modified to be completely

simulated. The python interface described in Section 3.3 was modified to

provide to simulate interactions and observations Finally, a node is created

that interfaces with different ROS messages and serves as a central processor

for all AI based activities. The basic interaction between these components

is shown in Figure 3.7.

The components of the simulator are discussed in this section along with

several features of the infrastructure, such as HITL capabilities.

3.4.1 ROS2 Communication Infrastructure.

One difficulty in autonomous systems is the ability for different components

on robots to communicate with one another, as piping signals to different

processes requires careful resource management. This becomes increasingly
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complicated when inter-robot communications are required, as the robots

need to handle piping of internal and external messages. With this in mind,

we selected ROS2 to serve as a modular framework which cleanly handles

message passing between different components and systems.

ROS2 is an open-source messaging system, designed to provide robust com-

munication infrastructure between different systems. ROS2 uses the Data

Distribution Standard (DDS), a reliable, real-time messaging standard, to

handle low level communication protocol between different objects. ROS2

then layers on a robust API which allows for easy integration into existing

systems or development of new systems. This API is largely based on a node

structure, in which multiple processes, called nodes are linked together to

accomplish a goal. In this model the nodes connect together in a publisher-

subscriber model, in which publisher nodes broadcast they are sending data

on particular channels and subscriber nodes define which data channels to

listen too. ROS2 handles connecting the subscribers to the publishers and

creates reliable pipelines for data to be transmitted between nodes.

To illustrate the power of ROS2, consider the problem of where a robot

autonomously explores an area. This problem can be decomposed into three

main tasks: observe its surroundings, process observations and decide navi-

gation goals, and use motor commands to navigate to the goal. In ROS2 we

can represent these tasks as individual Nodes, and the data passed between

the Nodes as messages. The information begins when the Observation Node

reads all data from the cameras, lidars and other sensors, and combines the

data into an observation. This observation is sent to the Planning Node

which processes the data and decides where the robot should navigate to.

This goal is sent to the Navigation Node which drives the robot to the goal,

where the cycle begins again. Figure 3.8 shows the example node scheme.

This node based structure has two notable benefits for development of

systems. Firstly, different components can be added to the node graph, sub-

scribing to existing messages, which eases integration of new components.

For example, say we wanted to record all of the observations, we could add

a Node which reads the observation messages and saves them to a file. Sec-

ondly, the node structure allows for the substitution of nodes, because the

model creates a consistent messaging protocol which allows the Nodes be-

come easy to swap. In the previous example one could swap out the Planning

Node with a more robust Planning Node with more observation processing.
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Observation Node: 
Interprets camera data and 
creates a CTF Map.

Planning Node: Decides 
where to set waypoints 
depending on observations

Navigation Node: Carries 
out motor movements and 
navigate to waypoint.
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Figure 3.8: An example node structure which decomposes the task of
navigating a complex environment into three main operations, which
communicate with one another. The task begins with observing the
environment with sensors in the Observation Node, which sends processed
data to a Planning Node. The Planning Node then determines where the
robot should navigate to, and send the information to the Navigation Node
which executes the movement. The loop is closed when the robot moves
and the processed begins again.

Within ROS2 each of the other components of the simulation can be repa-

rameterized as nodes, allowing us to simplify the architecture diagram, and

draw direct message connections between the different systems. The archi-

tecture for 3D CTF Simulation is described in Figure 3.9. The purposes of

different nodes and messages are elaborated in the following sections.

3.4.2 Gazebo Simulation Software

Gazebo is a physics based simulation platform that was designed to simulate

robots, by allowing the use of custom plugins to simulate robotic functions

such as motor movement or sensor emulation. An example Gazebo simu-

lation is shown in Figure 3.10, in which robots drive around a simulated

31



ROS
Handles communication between different tasks.

UAV Control ClassCTF Emulator Node

Emulates CTF interactions 
and observations

Gazebo Node

Physics simulation and 
visualization software

UAV Control ClassPlanning Node

Decides robot actions

UAV Control ClassUAV Control ClassRobot Controller 
Nodes

Controls robot motion

Figure 3.9: The simulation architecture defined with respect to ROS2
message passing. The diagram shows the interconnected nodes and
describes their respective purpose in context of the simulation

Figure 3.10: A simplified CtF Game played in Gazebo. Simulated robots
use the same software stack as physical robots.

environment playing a game of CTF.

Like most physics based simulations a Gazebo simulation is parameter-

ized with a set of physical objects, such as the ground, robots or obstacles,

which are defined with contact surfaces. The first step of the Gazebo simula-
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tion is simulating collisions and interactions between the surfaces of different

components, which result in forces and moments on the different objects.

Concurrently, Gazebo runs plugins which simulate force and moment ap-

plying devices such as motors, which are summed with the collision forces

and moments. The simulator then uses finite time steps to calculate object

motion, based on the above forces and moments.

the objects in the simulation are created in XML format which defines three

attributes of the object of the robot. The first is the physical properties of

the object, such as contact surfaces, such as the exterior shell, and physical

properties, such as mass and friction, which govern the interaction with other

components. The second is to define joints of the object, such as wheel’s

rotational joint, which allow for constrained motion to be simulated in the

interactions. Finally, any plugins associated with the object or robot are

specified.

Plugins serve two major purposes: to simulate the motion of different com-

ponents and to emulate the operation of complex sensors. The motion based

plugins are described as control inputs, such as motors which move different

components such as wheels or propellers of the vehicle. These plugins often

take an external control signals which creates proportional motor responses,

similar to how a real system would operate. In the case of the UAV’s there

are plugins that simulate the aerodynamics of the propellers based on lift

and drag coefficients. The other plugins emulate the operation of sensors,

such as the GPS and IMU of the robots, which use physical properties of the

simulated environment, such as the object’s current location and velocity,

and calculates outputs comparable to traditional sensors. Other components

such as cameras and lidars can also be simulated in Gazebo which can be

used to run machine vision and localization algorithms.

These plugins control the sending and receiving of ROS2 messages to other

components in the 3D CTF Simulation. In this setup the motor plugins for

the UAV and the Terrasentia robots takes in ROS2 messages to move pro-

pellers and wheels, respectively. On the output side sensors plugins output

verbose sensor information to specific ROS2 topics.

The different components, plugins, and interfaces of the gazebo simulation

engine are shown in Figure 3.11.
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Figure 3.11: The Gazebo Node in the 3D physics-based simulation is
primarily dependent upon the operation of the physics simulator and the
plugins which simulate motion and the sensors of the robots. The node
outputs sensor data, specifically GPS, and motor encoders, which are sent
to the CTF emulator and the robot controllers. Motion plugins which
control motion of wheels and propellers in the simulation take an input
from the robot controllers.

3.4.3 Simulating Robot Control Software with Docker

To simulate the software of the robots, several changes needed to be made to

the control architectures to allow them to interface with the Gazebo simula-

tor. Changes to simulate the Terrasentia Robot and the UAV are described

in the following section.

Terrasentia Robot

The main controller of the robot is a custom controller which robustly mon-

itors the sensors from the Robot and can be used to autonomously control

the robot. The main component of this system is a robust MPC controller

which can be used for path planning and following, which takes a way-point
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Figure 3.12: A docker deployment of software, shown on the left requires
minimal infrastructure as all of the software is self-contained in separate
containers. In a traditional Virtual Machine deployment of systems each
software requires a separate guest OS which increases simulation overhead.

input and navigates to the desired location. This controller is traditionally

ran on a Raspberry Pi computer, which provides it access to sensors on the

robot through the use of Bluetooth, WiFi and GPIO pins. To allow this

to existing controller operate in the 3D simulation, two main changes were

made to the operation of the controller.

The first was to allow the controller to run be run on the same machine as

the simulator, through the use of Docker software. Docker is serves as a soft-

ware abstraction layer, allowing one to emulate different software stacks on

one host machine, with less performance loss than a traditional virtual ma-

chine. A comparison between native software, virtual machine, and a Docker

image is described in Figure 3.12. Docker was used to create a software stack

equivalent to that of the original controller, but formatted to be compatible

with the host machine. Another thing to note about Docker is that it allows

the emulation of 32bit software on 64bit machines, which allows for a more

accurate representation of the controller to be simulated.

With the controller accessible on the host machine, the second integration

point was to create the interface with the robot to ROS2, as the original

controller was hard-coded to accept specific sensor data from physical sensor

inputs. This required creating alternate channels with which data could be

passed to the controller which would take the simulated sensors from Gazebo.

This allowed the controller to use both emulated and real signals based off

a configuration file. This change of including a ROS2 interface also brought
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Figure 3.13: The main processes of the Terrasentia are the main processor
which in simulation mainly controls the use of the way-point following
controller. The Terrasentia interfaces with all of the other nodes in the
system to take in way-point commands from the planning node and output
motor commands to the gazebo plugins.

a modularization of the communication interface, which allowed for external

messages to be sent to the robot, such as observation messages from other

robots. The IO of the system is shown in Figure 3.13

UAV Robot

Similar to the Terrasentia Robot, the software controller for the UAVs is

simulated within a Docker Image, allowing the controller to be simulated on

the host Machine, in parallel with the other software components. ArduPilot

control software, an open-source flight control software, which can be used to

control a variety of vehicles, such as ground robots, boats and UAVs, was used

to control the UAV’s. Our specific implementation uses a specialized branch,

ArduCopter, designed for rotor-craft control and navigation. It primarily

uses PID controllers to fly and control the robot, but has a variety of different

options based on the high level control features such as way-point navigation

and setting flight parameters.

One aspect of the software that is different with the UAV is that the
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Figure 3.14: UAV functions are similar to that of the Terrasentia, in that
there is a main controller that decides the use of the path-following
controller. The main difference of this system is the use of a MAVLink to
ROS2 Bridge which converts the ROS2 messages from the other nodes to
MAVLink messages than can be interpreted by the Ardupilot controller.

communication infrastructure with the software is extremely well defined

with the MAVLink messaging protocol, which is a standard messaging system

to define information packets specifically for UAV’s. This messaging system is

discussed in more detail in Section 3.5.2 with the physical implementation of

the UAV’s. In simulation these messages are emulated using the open-source

flight-simulator for ArduCopter. To interface with the robot a bridge was

created which converts messages between MAVLink and ROS2. A similar

approach is deployed in the real robot.

The full simulated architecture for the UAV is shown in Figure 3.14.

3.4.4 CTF Emulator Node

An ROS2 interface was created for the python environment which allows

data from simulated or real robot to be inputted into the simulator. This
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Figure 3.15: In the 3d physics-based simulation the CTF interactions and
observations are simulated with functions derived from the 2D abstracted
simulation. The message interfaces with other nodes are shown.

input, typically a GPS signal, is then localized onto a pre-defined 2D grid,

updating the agents’ position within the simulated environment. This local-

ized representation is then used to simulate environment interactions, which

is performed every time an agent position update is made. The result of the

interactions are then sent to the different robots to disable their movements

if they die in the game. The localized 2D representation is also be used to

emulate the observations of different agents. The architecture is fully drawn

out in Figure 3.15.

3.4.5 Planning Node

The main purpose of the planning node is to process observations from the

robots and decide the optimal actions for each of the robots to take. This

node mounts algorithms trained in the 2D simulated environment to evaluate

their performance in the 3D simulation, and they can be updated to account

for any differences introduced with the 3D simulation. The algorithm selects

primitive actions for each of the robots to take in the 2D environment.

The node processes the actions into interpretable messages for each of the

robots and sends them via ROS2 to the simulated controllers. This node
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Figure 3.16: The CTF planning node serves one main purpose, to mount
the RL algorithms, based on neural networks, which take select an
way-point based on an observation. The node also contains some control
logic which monitors way-point following.

also contains protocols which verify that the messages were received by the

individual controllers. To further verify the way-point following performance

of the robots the node contains several safety mechanisms which monitor the

progress of the robots, and is used to detect faults in way-point following

which are often bit-errors in the messages. This architecture is shown Figure

3.16.

3.4.6 Hardware in the loop Capabilities

Another key component of the setup, with the Docker images is that there is

potential to run the Docker image on any computer. This allowed us to run

the robot controllers on remote machines and allow use to test the networking

infrastructure that was used in the real demo, as described in Section 3.17.

It also allows us to evaluate if there are any computational limitations that

exist in the desired hardware, such as the Raspberry Pi 3B+ which is used

as the main controller for the Terrasentia Robots. This HITL structure is

shown in Figure 3.17

This is analogous to moving the controller to the physical robot, where a
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Figure 3.17: The simulation architecture offers a hardware in the loop
option. This involves operating the individual robots on remote machines,
which will test the networking connections between the different robot
entities.s

communication infrastructure must be deployed to allow the remote robot

communicate with the host machine.

3.4.7 Machine Vision Integration

The 3D CTF Simulation also supports the testing of machine vision algo-

rithms for the use of classifying and localizing objects. In this framework the

simulated camera and lidar outputs from Gazebo can be passed into these

algorithms, and they can be directly compared to ground truth object lo-

cations. This allows for complex evaluation of the algorithms performance

in situ, which can’t be performed on classical image data-sets, which have

little heuristic information for evaluation. For example, one can test an al-

gorithm to detect and estimate the distance to an enemy robot, and can

correlate classification error to distance or orientation of the camera and use

the information to fine tune their method.

These observation algorithms can also be integrated with the rest of the

CTF pipeline by feeding these observations into the CTF environment instead

of the simulated observations from the 2D Emulator node. This change

results in an end to end localization and planning architecture for simulated
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Figure 3.18: To test Machine Vision algorithms, the observations from the
CTF Emulator is replaced by the localization algorithms.

robots, which is shown in Figure 3.18

3.5 Real-world CTF

Because this environment is similar to the 3D physics simulation in practical

implementation with controlling the robots and message sharing, it is able

to reuse the software components described above. However, several new

components are required for the introduction of physical hardware. The full

environment structure is shown in Figure 3.19.

This section discusses the hardware components of the environment, the

Terrasentia robots, UAVs, and the physical communication infrastructure.

3.5.1 Terrasentia Robots

The ground robots used in the CTF game are the Terrasentia Robot, a robotic

platform developed in partnership with UIUC’s DASLab and EarthSense

Robotics. Only a small changes were made to the existing robotic platform.
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Figure 3.19: The real-world simulation is similar to the hardware in the
loop simulation, but operates without the Gazebo node. The CTF
Emulator and Planner communicate over complex networking connections
which leads to the control of the individual robots.

The main control software is run on a Raspberry Pi, which provides real-time

interface with a variety of sensors, but secondary tasks, such as observation

processing can be performed on the auxiliary computer that is also in the

robot.

The Terrasentia robots are a modular platform that has a wide variety

of sensory capabilities, and in this implementation we utilize three main

packages. The first package on the robot is the gimbal stabilized cameras,

which can be used with AI algorithms to detect and localize different objects,

such as enemy robots. The second is a lidar sensor, which primarily can be

used to identify objects and map the environment, but can also be used in

conjunction with the cameras to help localize objects. The final package is

the positioning system which uses a differential GPS receiver which reduces

GPS uncertainty to a few centimeters, which allows for extremely accurate

paths to be followed.

To interface with the robot, a WiFi receiver with a high gain antenna was

installed on the robot. This was used to connect to local WiFi networks

and allow the robots to communicate with one another as well as the base

station. The base station is used to decide the movements of the robots, as
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Figure 3.20: The Terrasentia Robot contains the same software controller
used in the 3D simulated environment. The main progression in this
environment is the WiFi receiver that handles the communication with the
other nodes in the system.

well as simulate the CTF Observations and interactions.

The entire hardware and software infrastructure of the Terrasentia robot

is described in Figure 3.20.

3.5.2 UAVs

Two UAV systems were integrated with the Real-World CTF Game, the 3DR

Solo and a custom made Pixhawk-based UAV, which are shown in Figure

3.21. Both of these UAVs serve the same purpose of being a UAV system

that can identify objects and their respective locations, but they have several

key differences in their software and hardware capabilities, which differentiate

there roles.

3.5.3 3DR Solo

The 3DR Solo’s was integrated into the architecture with as shown in Figure

3.22. One of the most important things to see here is the specialized connec-

tion interface through the controller. This connection is a high bandwidth

5g WiFi connection that enables the Solo to stream High Quality video short

distances to the controller and by proxy, the base station. This architecture

can be leveraged in a centralized processing scheme, in which all of the obser-

vations are processed by one algorithm, which can improve information. The

benefit comes with several trade-offs; firstly there is no processing capabilities
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(a) (b)

Figure 3.21: (a)The 3DR Solo (b) Custom built UAV with a Pixhawk flight
controller

available on the Solo, and no way to interface external computing into the

system. This means that no edge processing can occur on the Solo, unless an

entirely separate system is attached to the system with a separate camera,

battery and processing module, which would limit the flight capabilities of

the system.

This limitation also extends into the software side of the robot, which uses

a heavily tailored version of ArduPilot, which optimizes performance of the

3DR with respect to it’s hardware components. But this comes with several

limits to the configuration of the UAV. The foremost is that the customization

created several differences in how several core systems, primarily the way-

point navigation, a changed to use different messaging conventions, which

need to be dealt with on the planner side of the system. The second is

that no customization can be performed in the software to either change

flight characteristics or allow additional information to be passed to the base

station.

This UAV can be used in close range missions to the base station to feed

video data to the Base station over a high bandwidth 5g WiFi. However it

cannot perform many other tasks as the software and hardware interfaces

with the UAV are quite limited.
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Figure 3.22: The 3DR Solo communicates with the other nodes in the
system through the controller which creates a 5GHz WiFi connection to the
UAV.

Custom UAV

The Custom UAV is integrated into the CTF system with a slightly different

configuration, which allows for a more modular approach to observing and

interacting with the system. This interface is shown in Figure 3.23.

Compared to the 3DR Solo, the custom UAV is unable to stream high

quality data with it’s current hardware setup, but has the ability to interface

with small external compute modules, which allow for the collection and pro-

cessing of data on-board. In the setup we mount a camera and Raspberry Pi

package to the UAV, which allows for. The Raspberry Pi with an external

VPU, the Intel Movidius, is able to process images and make appropriate de-

tect ions for the CTF game using either blob detection algorithms or complex
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Figure 3.23: The Custom UAV uses a Telemetry radio connection to
communicate between the UAV and the other architecture components.

neural networks.

Additionally the system uses the default version of Ardupilot, which is

open-source and allows for the definition of custom messages, and the ability

to send them over the low bandwidth telemetry radio connection. This tight

integration of systems allows for reduced weight on the UAV, and simplifies

the software connection to control the UAV from the planner’s perspective.

To demonstrate the system for future use we defined a MAVLink message

type to be used to share observation information with the base station. Due

to the limited bandwidth of the telemetry radio we minimized the observa-

tion to consist of the identification and localization of unique objects. The
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message is described with a tuple of information:

[Latitude, Longitude, Identification],

In which the location of the object is presented in a GPS coordinate system

and there is an agreed upon identification standard a-priori. If multiple

objects are detected in the image, then the multiple messages are sent. The

planner is designed to interpret this and populate them into a 2D CTF grid

representation.

3.5.4 Physical Control Architecture: Networking

The networking between the different robots is similar to the simulated ar-

chitecture in that it relies on ROS2 to send the data between the different

processes. The main difference is that the messages need to be routed to

different physical systems instead of being simulated software controllers on

the same computer. This physical infrastructure differs between the ground

robots and UAVs and required several different infrastructure upgrades to

support the game. This architectures interaction with different systems is

diagrammed in Figure 3.24.

Wifi Setup

The Terrasentia Robots were only controllable with TCP/IP data schemes,

i.e. WiFi and Ethernet, which severely limit the bandwidth and transmission

range for data without dedicated hardware infrastructure. To satisfy the

bandwidth requirements of ROS2, outdoor WiFi access points were installed

in the demonstration area, which would allow for high speed communication

between the robots and team base stations.

This architecture was tested with the WiFi receivers, for latency, band-

width, and packet loss across the field. The heat-map below shows that

there were one or two areas with interference from trees, but the connec-

tion was still good enough to send ROS2 messages reliably. There was an

issue with a low static packet loss over the entire field, where less than 1%

of packets would net reach the intended robots, which could result in slight

losses in data. This was addressed with the control infrastructure which uses
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Figure 3.24: The communication infrastructure consists of three major
pieces, the base station, the antenna and the robot receivers. The base
station runs all of the planning and CTF emulation, which is sent through
the WiFi antenna to individual robots.

a send and reply type execution where the robots would verify that messages

where received properly. Additionally the system was designed to monitor

locations of the robot to ensure that it was going to the destination.

The other issue experienced with the networking was that it operated

over a controlled Network, which limits the ability of the underlying DDS

of ROS2 from connecting to the robots. This was addressed by creating a

sub-net which was used to route information between the designated robots.

Specifically we used Weave Net which is used to network Docker Containers

across the internet.
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Controlling the UAVs

UAVs are controlled with a Telemetry Radio. A bridge transfers the ROS

based messages to encoded messages into MAVLink messages which are the

standard for UAV control and reporting.

Custom messages where created which could send state information, such

as current location and observations. Telemetry output from the Raspberry

Pi would be passed through the base station. This could be used to run

algorithms at the edge and autonomously control the aircraft.

An flight controller was used as an override to the system. The connection

is made using a separate channel so there is no interference of messages. The

controller is able to switch the mode of the UAV to a manual flight mode

which can then be used to maneuver or land the UAV. In the control software

the planning infrastructure would detect this switch and then cease operation

of the UAV.
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CHAPTER 4

HRL FOR ADAPTATION

HRL has is a useful structure which can be leveraged for adaptation. In

this format the policy is distributed between different sub-policies, which

allows the HC to switch how it uses the sub-policies to create adaptation.

Consider an example scenario from the CTF game in which you trained to

play against an agent, and at game time the enemy agents were suddenly

faster. Following a standard RL policy and adaptation scheme you would

have to re-learn every decision to make in the environment to address the

difference in the enemy agent. A better way to add address the new enemy

is to learn a variety of different strategies beforehand, and when playing the

new enemy identify which combinations of basic strategy performs the best

against the new agent.

This use of HRL presents one major difficulty during training: the HC has

difficulty assigning value to reward-rich sub-policies with short trajectories,

i.e. rapidly switching between sub-policies makes it difficult to discern if a

specific sub-policy was useful. Towards this, this section discusses a confi-

dence based training method, which improves training speed and consistency

when compared to traditional methods.

This chapter begins by discussing formulation behind using HRL for adap-

tation and formulating a confidence-based training method for HRL which

improves training time and stability. Finally results run on in the 2D Ab-

stracted CTF environment demonstrate the performance of the proposed

methods.

4.1 HRL for Adaptation

HRL originally was developed to allow for temporally extended decomposi-

tion of the MDP, leading to success in temporally extended and sequential
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tasks. We aim to extend this framework to help with adaptation by creating

higher-level strategic abstractions (i.e., sub-policies) that can be exploited by

an HC during adaptation. We focus our policy updates on the HC to achieve

more drastic changes in explored trajectories than updating a lower-level

policy that only controls primitive actions.

During adaptation HRL can leverage the multiple sub-policies, πω, by

switching the termination and initiation sets, which drastically effects the

overall policy, π. On the surface this immediately changes primitive actions,

but it also results in drastic changes in explored trajectories, improving train-

ing sampling. This is desirable to quickly explore and learn a new HC to

create an optimal policy for the environment change. We propose, and our

experiments indeed show, that using HRL in adaptation scenarios improves

the policies’ ability to change compared to traditional DRL.

Our HRL architecture is shown in Figure 4.1. We model the sub-policies

and the HC with separate neural networks because they operate on different

temporal scales, requiring unique spatial and temporal feature encodings

of the state. Temporal features are captured by stacking four consecutive

frames, which eliminates the need for recurrent elements in our networks.

Spatial features are captured using a convolution neural network with a non-

local attention block, which can correlate distant features to enhance the

understanding of abstracted information, such as tactical position and team

coordination [27]. We use a shared feature encoder to allow the sub-policies to

share features for improved encoding density. Our networks terminate with

two fully-connected layers to create the actor and critic used for training with

PPO.

We train a policy for the source environment in two phases, by separately

training the sub-policies and the HC. The first phase trains each sub-policy

independently. We train these sub-policies using heuristically defined sub-

rewards for this effort, as discussed in Section 4.3.2. We leave the exploration

of alternative methods for defining and training sub-policies, such as unsu-

pervised discovery, as future work. The second phase then fixes these trained

sub-policies and uses them as a basis for training the HC. During adaptation,

the trained sub-policies and HC are directly applied to the target environ-

ment and only the HC is updated online. We use confidence-based training

for the HC to select sub-policy usage, which is used the source and target

environments. All network updates are made using the PPO algorithm.
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Figure 4.1: HRL architecture where an HC selects which sub-policy each
agent should use at a given state.

4.1.1 Sub-policies

We place two assumptions on the sub-policies used within our architecture.

First, we assume that the sub-policies overlap and are distinct in the MDP,

which allows the HC to switch between distinct sub-policies to enable adap-

tation as described earlier. We satisfy this assumption by independently

training sub-policies with different engineered rewards. Training sub-policies

in parallel (as done in many existing HRL implementations) could lead to

sub-policies that only span a localized region of the MDP. Second, we as-

sume that optimal adapted policy can be achieved with the initially defined

sub-policies since we do not update sub-policies during adaptation. This

assumption is difficult to satisfy in many scenarios and we do not propose

formal guarantees for meeting it; we hope to address this point further in

future work.

There are several different methods to create sub-policies that satisfy the

different assumptions. The simplest is to train unique strategies or behaviors

in environments with tailored reward functions, creating sub-policies with

diverse information encoded by optimizing for different reward structures.

This also has the benefit of creating interpretable sub-policies as the sub-
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policy is directed based on a human controlled reward function. Another

method is to decompose the environment based on geometrical or task based

factors and create policies based on the decomposition, allowing for implicit

sub-policies based on the environment to be learned, improving the diversity

of information. However they are not often not human interpretable, leading

to issues with practical implementation as some level of knowledge on the

goal of the system is desired.

For this work we use the first option of training the sub-policies with

tailored reward functions. We discuss specific sub-policies used in Section

4.3.2.

4.2 Confidence based HRL

A challenge with classic HRL is reward assignment for the HC. If the HC

makes decisions every step during training, advantages from selected sub-

policies cannot be distinguished from each other well enough to provide stable

updates to the HC. On the other hand, if the HC makes decisions every

n steps, it may provide better reward assignment, but with the potential

for poor convergence due to mis-matched temporal scales and poor sample

inefficiency.

We propose a confidence-based training method for improved training of

the HC, summarized in Algorithm 6. Our algorithm uses an intrinsic confi-

dence measure and associated switching rules to control when the HC is al-

lowed to switch sub-policies during training. This approach allows for longer

trajectories to be sampled early in training when confidence is low in the HC

policy, resulting in more stable updates. However, the network will switch

more frequently later in training when confidence is high in the HC, resulting

in more exploitation of the environment. We calculate the confidence mea-

sure as the information entropy of the HC’s policy output. We then define

a constant confidence threshold to limit when the HC is allowed to switch

sub-policies. We focus on a constant threshold for this effort, but note that

dynamic thresholds can be easily implemented. An notional example of our

method is shown in Figure 4.2.

Our method is simplistic, but supports HRL adaptation because confidence

drastically decreases when the network experiences new scenarios (thus pro-
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Algorithm 6: HC Confidence Based Training

for Episode do
Initialize Switching Threshold;
while Episode Running do

Evaluate internal confidence metric if Confidence ¿ Threshold
then

Switch sub-policy;
Set new threshold;

else
Modify threshold;

end
Compute Segmented Reward for HC;

end
Update Controller based on Segmented Trajectory;

end

moting exploration), but then gradually increases given more samples (thus

promoting exploitation). A possible extension of the method is to incorporate

metrics that directly capture uncertainty in the environment into the confi-

dence measure, for example by implementing anomaly detection techniques

or comparing expected and actual rewards.

Confidence-based training provides two advantages to common alternatives

for addressing HC reward assignment in HRL: reduced network complexity

and more exploration during adaptation. For example, compared to ter-

mination functions in option-critic architectures, our method does not use

additional networks, which reduces the number of parameters to update dur-

ing training. The adaptation performance of option-critic architectures is

also limited because their termination functions are heavily tied to the HC,

making it difficult to effectively update them during adaptation.

4.3 Experimental Setup

The main objective of our experiments was to compare the adaptation per-

formance of our HRL architecture to alternative solutions. We compared

three methods for creating optimal control policies in our environment: our

HRL architecture trained with confidence-based training for the HC (confi-

dence HC), our HRL architecture trained with fixed-step updates for the HC
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Figure 4.2: An example implementation of confidence-based training. The
HC begins by assigning the “scout” sub-policy to an agent, which then
implements that sub-policy for several steps. The HC is not allowed to
assign a new sub-policy to the agent until the confidence threshold has been
reached, at which point it assigns the “defense” sub-policy, etc.

(fixed HC), and a baseline non-hierarchical PPO algorithm (PPO) [28]. We

introduced changes to the environment by varying the strength and speed of

red team agents after initial training, while keeping the capabilities of blue

team agents fixed. We then compared the ability of each method to adapt

to these new target environments. The following sections describe details of

our experiments.

4.3.1 Training

We used the PPO algorithm to train all networks used in our experiments,

using the same hyperparameters throughout for consistency. The fixed step

parameter for the fixed HC method was selected through experimentation

within the source environment. As discussed in Section 4.1, we trained

our HRL architectures in two phases, one for the sub-policies and one for

the HC. The sub-policies were trained until they converged to steady-state

performance in their respective partial game settings; more details about

sub-policy training are provided in Section 4.3.2. Once the sub-policies con-

verged, the HC was trained in the source environment until it converged to
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steady-state performance. The baseline PPO was also trained in the source

environment until it converged to steady-state performance. All methods

generally reached stead-steady performance around episode 150,000. After

fully training the HC and baseline PPO, enemy capabilities were changed

to create a target environment for the HC and baseline PPO to adapt to.

We considered eight target environments, where enemy agents were given

some combination of faster or slower speed and weaker or stronger strength.

We ran four replicates for each source and target environment and calculated

mean performance metrics from those replicates. Most replicates showed win

rates within a couple percent of the mean.

We trained policies to control the blue team. During training, the red team

policy was randomly selected from a set of heuristically defined policies to

support generalization of blue team policies. We considered random, patrol

(randomly navigate within own territory), and A∗ (search for enemy’s flag

using A∗) policies for the red team. Policies were trained in game maps

randomly selected from a set of 2000 symmetrical maps (i.e., maps providing

no advantage to either team). Table 4.1 summarizes the game settings and

rewards used for training policies in the source and target environments.

4.3.2 HRL Sub-policies

We created sub-policies for our HRL methods by heuristically defining three

intrinsic sub-rewards and independently training corresponding sub-policies

to optimize each of those sub-rewards. We defined these sub-rewards such

that some combination of them could be used to represent the overall task

of winning the game. We focused on attack, scout, and defend sub-rewards

for this effort. We trained each sub-policy in a partial game setting with

randomized maps (including asymmetric ones), using only patrol and A∗ red

team policies to play against. Table 4.1 summarizes the partial game settings

and sub-rewards used for training sub-policies.

4.3.3 Hyperparameter Tuning

To achieve optimal performance with the networks, we began with several

experiments centered on tuning PPO and confidence HC hyperparameters.
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# Blue # Red Red Policy Rewards
Source 4 4 All Capture flag (+1)

and Flag captured (-1)
Target Eliminate enemy (+0.25)
Attack 2 4 Patrol Eliminate enemies (+1)
Scout 1 2 Patrol Capture flag (+1)

Defend 1 4 A∗ Defend flag (+1)

Table 4.1: Different game settings and rewards used for policy creation.
The “Source and Target” row defines game settings and rewards used for
training overall policies used to evaluate adaptation. The “Attack”,
“Scout”, and “Defend” rows define partial game settings and sub-rewards
used for training sub-policies.

In PPO there are 2 hyperparameters that have a significant effect on train-

ing, batch size and learning rate. A full factorial of these parameters was

performed with the values shown in Figure 4.3, and parameters were selected

which had the fastest training time and highest win rate. For selecting hyper-

parameters for the HC, another smaller factorial, bounded by red in Figure

4.3, was used which focused on the best regions of the baseline testing. The

cmax and cδ were included in the detailed factorial for the hierarchical con-

troller.

Figure 4.3: Training time and effectiveness of hyperparameters tested for
PPO implementation (white signifies better performance). The parameters
used for further tuning the hierarchical controller are highlighted in red.
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Figure 4.4: Metrics used to evaluate adaptation performance of a policy. δ
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4.3.4 Evaluating Adaptation

A common metric for evaluating adaptation performance is the steady-state

performance after n samples from the target environment. This metric cap-

tures an important aspect of adaptation, but does not fully consider the

transient dynamics of the adaptation process [29]. Instead, we propose a set

of three metrics to more thoroughly evaluation the adaptation capabilities of

a given control policy. We define δ as the immediate performance drop after

a change to the target environment, which captures the initial robustness of

the policy. We define σ as the steady-state performance after adapting to

the target environment, which captures the long-term ability of the policy

to adapt. Finally, we define τ as recovery time, calculated as the number

of training episodes required to bring the win rate to within 2% of the σ,

which captures the ability for the policy to quickly adapt. These metrics are

visualized in Figure 4.4.

4.4 Results

Table 4.2 shows mean values for our adaptation metrics in our eight tar-

get environments. Overall, we see that our confidence HC method generally

shows better immediate performance drop results than the fixed HC and
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Figure 4.5: Heat map comparison of immediate performance drop between
methods for the eight target environments. The x-axis defines the strength
of enemy agents, while the y-axis defines their speed. Colors show how
much better one method was than the other for the target environment,
with respect to δ.

baseline PPO methods. Regarding recovery time, the confidence HC and

baseline PPO methods show the best results for a similar number of tar-

get environments. However, despite this similarity, we also see that when

the confidence HC shows a shorter recovery time than the baseline PPO,

it tends to be significantly shorter. Alternatively, when the baseline PPO

shows the shortest recovery time, the confidence HC result is only slightly

worse. Finally, we see that the steady-state performance of the baseline PPO

is generally higher than both HRL methods, though these differences are rel-

atively small compared to differences seen in the other adaptation metrics.

This result is likely due to the fact that we did not update our sub-policies

during adaptation and indicates that our sub-policies were not optimally de-

fined for these target environments. Enabling sub-policy adaptation may

address these differences by enabling the HC to reach a globally optimal pol-

icy for these target environments; however, enabling sub-policy adaptation

may also lead to sub-policy convergence and limit adaptation performance to

future environment changes (i.e., it may lead to over-fitting for to the target

environment).

Figure 4.5 provides a more direct comparison of the immediate performance

drop results for our confidence HC method relative to the baseline PPO and

fixed HC methods. Here, we clearly see that the confidence HC method

provides a smaller or similar immediate performance drop compared to the
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Figure 4.6: The transient win-rate of the confidence and fixed HCs
replicates in the weak-slow and slow environments. Confidence HC shows
more stable convergence than fixed HC.

baseline PPO in most target environments. Relative to the fixed HC method,

the confidence HC only shows worse performance in immediate performance

drop in scenarios where the environment got easier (i.e., the enemy got slower,

weaker, or some combination of the two).

We also compare the convergence performance of our confidence HC method

to the fixed HC method, as shown in Figure 4.6. As previously stated, the

fixed HC method requires that the fixed step update parameter is temporally

aligned with changes in the game, which is difficult to ensure. These results

show that using our confidence-based training method notably reduces the

likelihood of failed convergence when training HRL architectures, relative to

fixed step training.

Finally, we explore the transient behaviors of our confidence HC method

and the baseline PPO to understand how these networks before and during
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Figure 4.7: A comparison of the transient performance of the confidence
HC and baseline PPO methods with an adaptation occurring at the black
vertical line. The confidence HC behavior (top) shows sub-policy usage.
The baseline PPO behavior (bottom) is estimated by calculating the
sub-rewards that would have been received from the environment, and
determining the fraction corresponding to each sub-policy.

adaptation. Figure 4.7 shows how often each sub-policy was selected by a

confidence HC policy before and during adaptation, and compares this with

the distribution of sub-rewards received from actions taken by the baseline

PPO. While this is not an direct comparison, we see that the confidence HC

method creates significant shifts in the selected sub-policy distribution during

adaptation, whereas the baseline PPO maintains near constant behaviors.

These differences in transient behaviors may explain how our confidence HC

method was often able to outperform the baseline PPO in adaptation, as

they suggest the confidence HC policies were more flexible in their ability to

change sub-policy usage to better suit target environments.
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CHAPTER 5

CONCLUSIONS

In this thesis we have introduced two key contributions which address the ap-

plicability of learned decision-making models towards real-world robotics im-

plementations. The first is the construction of AI development pipeline which

allows for progressive testing and integration of the RL decision-making and

machine vision algorithms into real robotics. This pipeline accomplishes this

goal by starting with a computationally simple environment which can be

used for rapid development of new algorithms. These algorithms can then

be transitioned to increasingly realistic scenarios to fine-tune and adapt to

minor differences. The second is the introduction of the RL techniques which

improve the adaptability of RL to novel situations, which can be leveraged

in a deployment to real-world scenarios. This was done, by implementing

two native structures that support adaptation, in the form of hierarchical

adaptation and a confidence-based training metric. These leverage the de-

veloped testing architecture to display improvements in the adaptability of

RL algorithms. Combined these two contributions take a step towards the

deployment of RL based decision-making systems to real-world robotics.

There are two primary ways this work towards adaptation can be improved

upon, improving the composition of sub-policies and replicating biological

mechanisms that humans use for adaptation The easiest way is to address the

composition of policies that would lead to the best adaptation. This can be

addressed by decomposing the environment into implicit representations and

features and then defining sub-policies around those features. This would

allow policies to be learned without explicitly defining the rewards, which

may limit the diversity and impact of the sub-policies. The second way

that can be improved upon is a more biologically inspired HC, which learns

quicker and creates high level associations with sub-policies. Mechanisms

like this are what allow humans to generalize information between tasks and

can serve as the basis of future adaptive learning schemes.
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APPENDIX A: CODE AVAILABILITY

Select code for the Thesis is publicly available.

Code for the 2D Abstracted Simulation is avaliable at https://github.

com/raide-project/ctf_public

Code for the adaptation research is available at https://github.com/

vanstrn/RL
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