

Centralized learning and planning : for cognitive robots
operating in human domains
Citation for published version (APA):
Janssen, R. J. M. (2014). Centralized learning and planning : for cognitive robots operating in human domains.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR772102

DOI:
10.6100/IR772102

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR772102
https://doi.org/10.6100/IR772102
https://research.tue.nl/en/publications/37a409c0-7984-438d-a0a6-1eb2778977de

Centralized Learning And Planning
For Cognitive Robots Operating In Human Domains

The research leading to this dissertation has received financial support from the RoboEarth project
funded by the European Union Seventh Framework Program FP7/2007-2013 under grant
agreement number 248942.

The research leading to this dissertation is supported by the research program of the Dutch
Institute for Systems and Control (DISC). The author has successfully completed the educational
DISC Graduate Program.

A catalogue record of this dissertation is available from the Eindhoven University of Technology
Library under ISBN: 978-90-386-3601-6

Centralized Learning And Planning For Cognitive Robots Operating In Human Domains
Eindhoven: Technische Universiteit Eindhoven, 2014 – Proefschrift.

This thesis was prepared with the pdfLATEX documentation system.
Cover Design: Gijs Hermans
Reproduction: Ipskamp Drukkers B.V., Enschede, The Netherlands

Copyright © 2014 by R.J.M. Janssen. All rights reserved.

Centralized Learning And Planning
For Cognitive Robots Operating In Human Domains

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 15 april 2014 om 16.00 uur

door

Rob Josephus Maria Janssen

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. L.P.H. de Goey

promotor: prof.dr.ir. M. Steinbuch

copromotor: dr.ir. M.J.G. van de Molengraft

leden: prof.dr.ir. L.M.G. Feijs
prof.dr. R. D'Andrea
prof.dr.ir. S. Stramigioli
prof.dr. H. Bruyninckx

v

Summary

Centralized Learning And Planning For Cognitive Robots Operating In Human
Domains

As a technological answer to societal and economic problems that arise because of
our aging society, advanced robotic systems are currently being developed that support
health-care operatives in their daily occupations. Key ingredients that allow these robots
to be successfully deployed for these activities are the ability to recognize their environ-
ment, to learn from experience and to decide upon a right course of actions.

Until now, the design approaches that allowed these robots to exploit these methods,
focused primarily on the development of standalone robot applications. Autonomous
robots, operating and learning individually, running their own computational algorithms,
and reasoning about the world within their own small set of beliefs and assumptions.

With the rise of high-bandwidth and big-data processing mechanisms, it is now however
possible for robots to share this information in runtime, similar to how humans share
their knowledge over the Internet. This allows robots to communicate their knowledge
to other robots instantaneously, and allows efficient storage and redistribution of learned
concepts and task information on a global level.

Having this knowledge available in unified storage locations, forwards the idea of cen-
tralized learning and planning; one central system, that receives robot knowledge on a
global level, stores learned concepts, and controls thousands of robots in a ubiquitous and
highly optimized manner. An additional advantage of this type of centralized system, is
that heavy computations required for the processing of data can be run here, requiring
robots to only run small hardware control modules and lightweight client interfaces.

This thesis investigates the required components that are involved for such a system, with
an emphasis on the required cognitive, learning, planning and execution components. For
its main communication framework, a system is adopted that allows the deployment of
computing environments and robot interfaces in a secure and straightforward manner.
Additionally, web based service technologies are investigated as foundational methods
for planning and execution, as their representational languages can be considered highly
suitable for task related knowledge engineering in the robotics domain.

vi Summary

One of the system’s integral components that will be discussed in this thesis describes a
method for segmentation and tracking, that enables the cognition of maneuvering objects
with movement trajectories, such as those typically encountered in human domains. Ad-
ditionally, methods for learning will be investigated, as they enable the system to improve
upon its existing knowledge and decision making capabilities. Both of these topics will
be verified and tested in isolated experiments performed on the Eindhoven University
automated football table. This small scale test environment provides detailed insights
to the adopted methods, and allows identification of both strengths and weaknesses in
well-controlled experiments.

Subsequently, methods for logic-based task planning and task execution will be dis-
cussed, as these methods are required for the systems deliberative and operational ca-
pabilities. Here, experiments will be conducted with a human-sized robot, performing
tasks in a real household environment.

Further investigations will extend in this domain, where planning, execution and com-
putational algorithms are now deployed on a cloud based computing platform. As this
experiment will involve an additional robot with only minor computing capabilities, this
chapter will show the importance of computational offloading for robots, and how tasks
with multiple robots can be performed efficiently through centralized planning.

vii

Samenvatting

Gecentraliseerd Leren En Plannen Voor Cognitieve Robots Opererende In Mense-
lijke Omgevingen

Om het hedendaags probleem van onze verouderende samenleving door middel van tech-
nologie te kunnen verkleinen, worden momenteel geavanceerde robots ontwikkeld die
de zorgsector kunnen bijstaan in hun dagelijkse taken. De belangrijkste ingrediënten die
deze robots in staat stellen hun taken succesvol uit te voeren, bestaan uit het vermogen
van deze robots om hun omgeving waar te kunnen nemen, om van hun ervaringen te
kunnen leren, en om in staat te zijn een logische manier van handelen te kunnen bepalen.

Tot op heden, richtte men zich voor het toepassen van deze methoden voornamelijk op
autonome applicaties. Volledig zelfstandige systemen, die individueel opereren en leren,
hun eigen berekeningen uitvoeren, gebaseerd op hun eigen kleine voorstelling van de
wereld om zich heen.

Met de komst van snelle en geavanceerde informatie verwerkingscentra, is het nu echter
mogelijk voor robots om hun kennis direct met elkaar te delen, identiek aan hoe mensen
hedendaags informatie met elkaar delen via het Internet. Dit stelt robots in staat om hun
kennis instantaan met elkaar te delen, en maakt het mogelijk om over de gehele wereld
geleerde concepten en taak informatie, op een efficiënte manier te kunnen opslaan en
hergebruiken.

Het ter beschikking hebben van deze kennis op één centrale locatie, suggereert moge-
lijkheden voor gecentraliseerd leren en plannen; één centraal systeem, dat wereldwijd
robot kennis ontvangt, deze kennis opslaat, en hiermee duizenden robots op de meest
optimale manier aanstuurt. Een bijkomend voordeel van zulks een systeem, is dat zware
berekeningen ook hier kunnen worden uitgevoerd, waardoor robots zelf slechts minimale
rekencapaciteit hoeven te hebben en hierdoor klein en compact kunnen blijven.

In dit proefschrift wordt onderzocht welke componenten benodigd zijn voor zulks een
systeem, waarbij de nadruk wordt gelegd op de benodigde volg, leer, planning en uitvoe-
rende componenten. Voor het communicatie systeem wordt een reeds bestaand systeem
gebruikt, dat het mogelijk maakt om berekeningen en het maken van verbindingen op een
veilige en eenvoudige manier te kunnen uitvoeren. Bij het ontwerp van de planning en

viii Summary

uitvoerende componenten, worden bovendien web gebaseerde technologieën gebruikt als
bouwstenen , daar ze als uitermate geschikt kunnen worden beschouwd voor het opstellen
en representeren van taak gerelateerde kennis in het gebied van de robotica.

Een van de integrale componenten in het systeem dat in dit proefschrift zal worden be-
handeld, is een volg methode, die het mogelijk maakt om bewegende objecten te volgen
die zich voortbewegen op een manier zoals men vaak tegenkomt in menselijke omgevin-
gen. Aansluitend, worden leer methoden onderzocht, daar deze het mogelijk maken voor
het systeem om van zichzelf te leren, en hierdoor betere beslissingen te kunnen maken
in de toekomst. Deze twee methoden zullen beide worden onderzocht en toegepast
op de autonome voetbaltafel van de Technische Universiteit Eindhoven, daar deze op-
stelling zich uitstekend leent voor het uitvoeren van experimenten op een gecontroleerde
en overzichtelijke manier.

Hierop volgend, worden methoden voor logisch gebaseerd plannen en uitvoeren bedis-
cussieerd, daar deze methoden zijn benodigd om het systeem te kunnen laten redeneren
en taken uit te kunnen laten voeren. In dit hoofdstuk, zullen experimenten worden
uitgevoerd met een mensachtige robot, die taken uitvoert in een volledig mensachtige
omgeving.

Verder onderzoek zal zich uitbreiden in deze omgeving, waar nu de planning en uitvoe-
rende componenten zullen worden geplaats op een cloud gebaseerd rekenplatform. Daar
in dit experiment een robot zal worden betrokken die slechts minimale rekencapaciteiten
heeft, zal dit hoofdstuk aantonen hoe belangrijk het is voor robots on hun berekeningen
elders uit te kunnen laten voeren, en hoe taken met meerdere robots efficiënt kunnen
worden uitgevoerd door middel van een gecentraliseerde aansturing.

ix

Contents

Summary v

Samenvatting vii

1 Introduction 1
1.1 Motivation . 1

1.1.1 A desire for new assistive technologies 1
1.1.2 The challenges . 2
1.1.3 Robot design advancements 2
1.1.4 Robot control program design 3
1.1.5 Allowing robots to learn . 4
1.1.6 Importance of design knowledge reuse 5
1.1.7 The idea of centralized learning and planning 6

1.2 Objective . 6
1.3 Related work and contributions . 8

1.3.1 Object segmentation and tracking 8
1.3.2 Robot learning . 9
1.3.3 Knowledge engineering . 10
1.3.4 Planning and execution . 11
1.3.5 The Semantic Web . 13

1.4 Outline . 14

2 Object Localization And Tracking 17
2.1 Introduction . 17
2.2 Related Work On Similar Applications 21
2.3 Method Selection . 23

2.3.1 Object Representation . 23
2.3.2 Feature Selection . 25
2.3.3 Object Detection . 26
2.3.4 Object Tracking . 27

2.4 Implementations . 30
2.4.1 Localization . 31
2.4.2 Tracking . 33

2.5 Simulations . 35

x Contents

2.6 Experiments . 36
2.6.1 Localization Performance . 37
2.6.2 Tracking performance . 37

2.7 Discussion And Conclusions . 38
2.7.1 IMM versus standard Kalman filter 38
2.7.2 Ball Localization Performance 39
2.7.3 Ball Tracking Performance . 39

3 Policy Learning Using Greedy-GQ(λ) 41
3.1 Introduction . 41

3.1.1 Designing a smarter control strategy 42
3.1.2 Problem statement . 43
3.1.3 Contribution . 43
3.1.4 Outline . 44

3.2 System overview . 44
3.3 Application of methods . 45

3.3.1 Design of action primitives . 45
Temporal action abstraction 46
Attractor dynamics for motion generation 47
Ball avoidance and non-zero target velocities 49

3.3.2 The learning algorithm: Greedy-GQ(λ) 51
Reinforcement learning basic theory 52
Q-learning . 52
Function approximation . 53
Q-learning with function approximation 55
Greedy-GQ(λ) . 55
Efficient computations through sparse updates 56

3.4 Experiments . 58
3.4.1 Simulator . 58
3.4.2 Test cases . 59

Reward structure and episode termination 59
Case 1: 2D input state without noise 60
Case 2: 2D input state with noise 63
Case 3: 2D input state with unknown, moving opponents 64
Case 4: 2D input state with unknown, moving/static opponents . 65
Case 5: 4D input state with known opponents 66
Case 6: 5D input state with longitudinal ball states and attacker

angle . 67
Case 7: On the real setup . 68

3.4.3 Discussion . 70
3.5 Conclusion & Future work . 71

4 Integrating Planning And Execution 73
4.1 Introduction . 74
4.2 Contributions . 76
4.3 Related Work . 76

Contents xi

4.4 System Design Motivation . 77
4.5 Action Recipe Database . 78
4.6 Planner . 79

4.6.1 SHOP2 Planning Problem Example 80
4.7 Executive . 82

4.7.1 CPL . 82
4.7.2 Designators . 83
4.7.3 Fluents . 84
4.7.4 Process modules . 84

4.8 Auxiliary Components . 84
4.8.1 Reasoner . 84
4.8.2 Human Machine Interface . 85

4.9 Basic Experiment . 85
4.10 Discussion and Future Work . 87

5 Centralized Task Control 89
5.1 Introduction . 90

5.1.1 Contributions . 91
5.1.2 Outline . 91

5.2 System Design . 92
5.2.1 Requirements . 92
5.2.2 Basic component diagram . 92

5.3 Implementations . 93
5.3.1 Communication framework 93
5.3.2 Knowledge base . 94
5.3.3 Task controller . 94

Planning . 94
Execution . 96

5.3.4 Knowledge representations . 97
Robot knowledge . 98
Environment knowledge . 99
Task knowledge . 99
Grounding knowledge . 101

5.3.5 ROS component model . 102
5.3.6 Component deployment . 103

5.4 Experimental use-case . 104
5.4.1 Experiment description . 104
5.4.2 Simulator . 107
5.4.3 Real world . 107

5.5 Conclusions & Future Work . 110

6 Conclusions and recommendations 113
6.1 Conclusions . 113
6.2 Recommendations . 115

Bibliography 119

xii Contents

A Analytical Time Delay Estimation 135

Dankwoord 137

Curriculum Vitae 139

1

Chapter 1

Introduction

“The main objective of RoboEarth is to develop a system design capable of carrying out useful
tasks autonomously, in circumstances that were not planned for explicitly at design time.”

“RoboEarth - Connecting Robots Worldwide”, 2009

1.1 Motivation

1.1.1 A desire for new assistive technologies

A recent report of the United Nations about the world’s aging population [1], indicates
that in the upcoming years the ratio between elderly and young people will significantly
increase. This increased ratio will have profound implications on the world’s societal
and economic situation, as a comparatively smaller group of work-capable people has to
take care of a relatively larger group of health-care requiring elderly. New technologies
are therefore required, that support this sector in tasks that are considered involuntary but
required, such as laundry disposal, medicine delivery or vacuum cleaning, see Figure 1.1.

(a) (b) (c)

Figure 1.1: Several examples of modern day health-care assistants. The Tug laundry
disposal robot (a), the Hospi delivery bot (b) and the Roomba vacuum cleaning robot (c).

2 Chapter 1: Introduction

1.1.2 The challenges

Introducing robots into this human oriented domain, requires technological advance-
ments in multiple areas of robotics research however. As opposed to a robot’s typical
factory floor habitat, human domains are far more complex. They contain unpredictable
natural events, such as pouring rain and blinding sun, but also the unpredictability of
human activity itself, which may or may not follow from rational objective. Human
domains also contain unstructured, multiform objects that require complex perception
models to be perceived, and advanced modeling techniques to be tracked over time. Fur-
thermore, human domains are ergonomically fully adapted to an average sized human;
desiring robots to perform humans tasks, such as driving cars, walking stairs or even ma-
nipulating small articulated objects are big challenges for currently available platforms.
Furthermore, the spoken and written language that humans use for describing concepts
and to communicate on the performance of activities, often contains ambiguities and a
lack of clear semantics [118]. These aspects make it difficult for robots to understand
human concepts and their correct interpretations.

1.1.3 Robot design advancements

Allowing factory floor robots to handle these challenges therefore requires a new breed of
robot; full human-sized mobile manipulators, with advanced cognitive and manipulation
capabilities. The design of these autonomous systems is however a daunting task. First,
an extensive amount of engineering needs to be spent on the development and integration
of robust and suitable hardware components. Second, these robots needs to be equipped
with advanced cognitive capabilities in order to understand the human domain, and to
be able to decide upon a rational course of actions. Since the deployment of the first
robot that was capable of rational reasoning (SRI’s ‘Shakey’, 1966), a broad spectrum
of cognitive robots has been developed. As a descendant of Shakey came SRI’s ‘Flakey’
in 1984, which participated in the first AAAI robotics competition. From that point on,
multiple systems were being developed in parallel, such as the University of Michigan’s
‘Carmel’, Georgia Tech’s ‘Buzz’ and IBM’s ‘TJ2’, see Figure 1.2.

(a) (b) (c) (d) (e)

Figure 1.2: First breed of cognitive, self-deciding robots. SRI Shakey (a) and successor
Flakey (b), University of Michigan Carmel (c), Georgia Tech Buzz (d) and IBM TJ2 (e).

1.1: Motivation 3

Recent developments brought systems with advanced humanoid locomotion capabilities,
such as the Kawada HRP4, NASA’s Valkyrie and Boston Dynamics’ Atlas. Examples of
robot platforms designed specifically for research in cognitive and manipulation tasks are
the Eindhoven University of Technology Amigo and the Willow Garage PR2, see Figure
1.3.

(a) (b) (c) (d) (e)

Figure 1.3: Several examples of advanced human-sized robots. Kawada HRP4 (a),
NASA Valkyrie (b), Boston Dynamics Atlas (c), Eindhoven University Amigo (d) and
Willow Garage PR2 (e).

1.1.4 Robot control program design

As described in Russell and Norvig’s Introduction to Artificial Intelligence [153], the
architecture of these robots can be characterized by two aspects in general: they sense the
environment through their sensors, and act upon it through their actuators. The function
that maps sensory input onto actuator output is called a robot’s control program, see
Figure 1.4.

Robot

E
n
v
iro

n
m
e
n
t

sensors

actuators

control
program

Figure 1.4: General robot interaction architecture.

How to design such a control program is a central topic of today’s robotics research,
and spans a broad spectrum of A.I. and software development. Related research fields
include techniques for motion planning [100], locomotion [158], vision [70], tracking
[193], planning [138] and knowledge engineering [132].

4 Chapter 1: Introduction

With modern day tools for robot control program design synthesis, these programs can
be devised by manual programming up to a certain extent. This approach has similarities
with planning based approaches, such as A∗ [66] or Dynamic Programming techniques
[20], by which engineers base the design of their control program on an accurate model
of robot dynamics and the predicted effects of their interactions with the environment.

As robots and their desired interactions with the environment become more complex, ac-
curate control programs are however more difficult to design manually. In robotic games,
such as computer GO, recent design approaches involve forward-search using upper-
confidence bounds on tree search [10] and Monte-Carlo Tree Search [35]. Such methods
involve either a model of the environment, or an accurate black-box simulator that can be
used for real-time projection, which are highly restrictive requirements to their practical
application. Modeling robot control programs by manual programming can also be very
time consuming and often suboptimal, because anticipation, tuning and the incorporation
of all possible scenarios is tedious and often not feasible. Also, due to the static nature of
such control programs, changes in the environment which are unaccounted for at design
time, can cause degradation in the performance of the program.

1.1.5 Allowing robots to learn

Accordingly, as Alan Turing concludes in his 1950 paper [179] about the deployment
of intelligent machines into human oriented domains, “is that the best a man can do
with manual programming is injecting his own ideas into a machine through advances
in engineering, but that these ideas will always fall short in comparison to the actual
challenges faced.” For this reason, robots should be allowed to learn themselves how to
deal with these challenges.

In Turing’s paper, a comparison is made to how a child grows up, by starting off with
initially knowing nothing and learning gradually through trial and error. For robots, this
is referred to as robot learning, and a robot architecture that supports this method is
formalized in Figure 1.5.

Robot

E
n
v
iro

n
m

e
n
t

sensors

actuators

Critic

Learning
element

performance
standard

feedback

Performance
element

Problem
generator

learning goals
knowledge

changes

experiments

Figure 1.5: General architecture of a learning robot.

1.1: Motivation 5

Instead of focusing on the full detailed design of a robots control program, an engineer
now only has to investigate the generally much less complex design of a performance
standard (often in the form of a basic cost function) that defines a robot’s desired, or ra-
tional, behavior. Since the beginning of robotics research, robot learning has been widely
applied for the development of robot control programs required for complex tasks with
difficult to model interactions. Examples can be found in a wide range of applications,
such as in robot locomotion [96], grasping [97] and active object categorization [148].

1.1.6 Importance of design knowledge reuse

As the injection of design knowledge into a robot’s control program, either learned
through experience or manually programmed, can be regarded as a highly labor inten-
sive process [30, 77], several project groups have acknowledged the importance of robot
design knowledge reuse and the design of knowledge representations that are explicitly
reusable1. At the same time, accompanying methods are sought to store and access this
knowledge through web based interfaces, making it on-line accessible for robot platforms
all over the world.

A first example of knowledge standardization can be found in the GeRT [92] project, in
which common representations are developed to generalize over manipulation tasks, such
as serving a drink or screwing the lid of a jar. In the Rosetta project [143], robot task de-
scriptions are designed that enable robots to operate in a combined fashion with humans.
Subsequently, the Brics [2] project tries to provide generic modeling tools for robot de-
velopment, which decrease the amount of required robot design time. The RoboHow
[176] project enables robots to autonomously perform every day manipulating tasks by
reusing task instructions found on either the web, or by observing humans. Proteus [51]
and RoboDB [140] on the other hand, serve as portals for meta-data robot ontologies
and robot modeling tools. Finally, in the RoboEarth [184] project, globally accessible
information bases are created that allow robots to share multiple forms of knowledge
that are relevant for the execution of daily tasks, such as object models, world models,
environment maps and task descriptions.

Projects such as RoboEarth focus not only on the development of common represen-
tations and reusable data, but also on the storage and communication mechanisms that
allow robots to share this information with each other in runtime, allowing them to exe-
cute tasks that were not explicitly planned for at design time. Examples are, for instance,
the collaborative multi-robot tracking of objects and people by clustering world models,
the in runtime updated performance evaluations of robot execution plans, or the sharing
of object perception models and navigation maps. Databases such as those established
in RoboEarth, therefore have the latest and most up-to-date information available on a
variety of tasks that robots are typically required to perform in human domains.

1As attested by recent international robotics conference workshops on reusable robot software design, see
http://www.robot.uji.es/EURON/en/software.htm

6 Chapter 1: Introduction

1.1.7 The idea of centralized learning and planning

Having task and environment related information available in centralized, on-line acces-
sible storage facilities, such as RoboEarth, forwards the idea of centralized learning and
planning; one central system, that plans tasks for thousands of connected robots, and
at the same time learns from incoming data. Task allocation of robots can be based on
robot capability and availability, and can be highly optimized based on time or other cost
criteria. Furthermore, as this central system can be deployed within a large-scale, par-
allelized computing environment (such as a cloud platform [7]), robots can offload their
computations to this environment, therefore requiring only lightweight client interfaces
and minimal hardware interface layers to be run on board.

1.2 Objective

The objective of this thesis is therefore the investigation of methods that can be used for
learning and planning, in a centralized multi-robot architecture. Additionally, supporting
methods for segmentation, tracking and knowledge abstraction are investigated, as these
methods enable robots to perceive their environment and to translate these percepts into
machine interpretable concepts. An example of such a system is depicted in Figure 1.6.

Actuators Sensors Actuators Sensors Actuators Sensors

Server

Server interface

Driver layerDriver layerDriver layer

Environment
modeling

Client interface

task
execution data

environment
percepts

task
requests

Query interface

Task
controller

Learning
controller

Client interfaceClient interface

Knowledge
bases

Computing
environment

User
interface

abstract
knowledge

service
requests

service
request

service request service request

world
data

control
data

service
requests

Figure 1.6: Centralized robot control architecture as discussed in this thesis.

1.2: Objective 7

This system should be capable of scheduling tasks for a variety of robot platforms, in an
efficient and optimized manner. It should allow the interpretation of sensor data coming
from robots, and be able to transform this data into machine interpretable concepts and
global environment representations. Furthermore, as it is desirable that the system im-
proves upon its own knowledge through the experience of operating robots, methods for
learning will be investigated.

In this thesis, a number of required components will be investigated. A first key compo-
nent that will be discussed, is an object tracker, that models a clear and unified overview
of the environment. The goal of the object tracker is to take raw object measurements
as input, and to cluster these measurements into unique object instances. Furthermore,
this object tracker will be able to track objects over time, hereby dealing with object oc-
clusions and non-linear object trajectories, such as those typically encountered in human
domains. The methods that are investigated for object tracking are deployed and eval-
uated on a small-scale, but well controlled test platform, see Figure 1.7. This platform
enables easily accessible, quantified test results and isolated performance evaluations.

Figure 1.7: Test platform used for the evaluation of tracking and learning algorithms.

On this same test platform, methods for learning are investigated, as they allow the sys-
tem to learn from experience and to improve upon its control and decision making perfor-
mance. The learning controller takes task execution data as an input, such as a sequence
of actions that a robot has subsequently performed, and provides improved decision mak-
ing metrics. These methods are also applied and investigated on the football table, as this
platform allows us to evaluate the proposed algorithms in a well-controlled environment
with fast development cycles.

A central component of the architecture discussed in this thesis, is the task controller,
that simultaneously plans and executes tasks by interacting with server deployed algo-
rithms and real-world operating robots. To evaluate the choice for the used planning and

8 Chapter 1: Introduction

execution algorithms, large scale, multi-robot tests have been conducted in unstructured
household environments, with human-sized, mobile manipulation platforms, see Figure
5.9.

Figure 1.8: Two human sized mobile manipulation platforms used for testing of planning
and execution algorithms deployed in human domains.

A final, crucial component is the communication framework, that allows the deployment
of required components on a central server and establishes interfaces to the robots. For
this, the existing cloud based computing environment Rapyuta has been adopted, that
supports the deployment of computational algorithms in a cloud based computing envi-
ronment and HTTP-based robot interfacing. An extensive read on the advantages and
functionality of this framework can be found in [72].

1.3 Related work and contributions

Based on the above discussed components, this thesis will address several research ar-
eas from which applicable methods are selected, investigated, compared and if required,
adapted. The concerning research areas relate to methods for object segmentation and
tracking, robot learning, knowledge representation, planning and execution.

1.3.1 Object segmentation and tracking

The object tracking and segmentation methods that are discussed in this thesis are based
on a well-known survey paper [193] on object tracking and segmentation design meth-
ods. This thesis presents an application of that approach on the Eindhoven University
automated soccer table, where this approach is described in such a general way that it
can be reused by engineers for applications in similarly unstructured and dynamical en-
vironments. The presented approach results in the selection of a suitable segmentation

1.3: Related work and contributions 9

algorithm, and for tracking a method was selected, that has never been applied in this
type of environment before.

For tracking of non-maneuvering targets (i.e., targets with constant velocity), a conven-
tional Kalman [189] filter is frequently used. For the ball that was tracked in the football
table however, tracking is complicated by the ball’s abrupt changes in motion, such as
those typically encountered for objects moving in human domains. The targeted object
can therefore be regarded as a highly agile maneuvering target: the acceleration is, for the
most part, a sequence of short pulses with unknown magnitude which occur at unknown
time instants, with in between nearly zero acceleration. A vast amount of literature can
be found on the subject of maneuvering target tracking (MTT2), as attested to by the
comprehensive survey [104–113] and the references therein. In the history of MTT, sin-
gle model-based adaptive Kalman filtering techniques were developed first, followed by
decision-based methods, which have in turn been superseded by multiple-model meth-
ods due to their superior performance and computational improvements [105, 108]. By
modeling the target motion (continuous component) with different models (discrete com-
ponent), the problem becomes that of hybrid state estimation.

One of the most cost-effective hybrid state estimation schemes is the sub-optimal in-
teracting multiple model (IMM) estimator [25], which has been shown to significantly
outperform a Kalman filter for target tracking in many radar applications [89, 123]. These
radar systems have relatively long sensor revisit intervals together with relatively slow
maneuvers. In the work of Kiru [89], research was done through simulations to see when
an interacting multiple model filter is likely to have an improved estimation accuracy in
comparison to a single model Kalman filter when using a constant velocity and a white
noise acceleration model. The maneuvering index, or tracking index, is hereby used to
quantify the preferred choice for these algorithms. The maneuvering index is a function
of the motion uncertainty, measurement uncertainty and the sensor revisit interval, and
gives an indication of when to use an IMM estimator over a Kalman filter.

Although questions have been raised regarding the validity of these results in the work of
Silbert [159], the performance improvement indication still holds for the non-maneuvering
time intervals (i.e., the periods after the object has changed direction), which are the main
points of interest in the presented application. This thesis will show that the tracking
improvements of an IMM filter over a Kalman filter in this case will show significant
tracking improvements. Its low computational requirements and self-adjusting variable-
bandwidth [123] make it an attractive Kalman filter alternative for this or similar appli-
cations.

1.3.2 Robot learning

Within the field of robot learning, Reinforcement Learning [167] especially has been
closely connected to robotics research, as its abstract model of receiving rewards through
environment perturbations usually directly maps onto the concept of mobile sensor/actu-

2Not to be confused with Multiple Target Tracking

10 Chapter 1: Introduction

ator platforms interacting with a priori unknown environments. Reinforcement learning
requires only the experience of interacting with the environment to generate a control
program, or so-called policy, by basically using a trial and error approach. It has been
shown that policies generated by Reinforcement Learning often trump their hand-coded
rivals [163]. Furthermore, recent advances in the field of Reinforcement learning have
made it applicable to systems with large state-action spaces, by generalizing over states
and clustering actions into condensed forms [17].

At its core, Reinforcement Learning describes how an agent autonomously generates a
policy by interacting with the environment and ’remembering’ what was right and what
was wrong, as classified by the engineer. As this classification can be performed on a
very high and abstract level, the engineer therefore does not require to have any insight
on the robots internal dynamics, nor on the expected response of the environment to any
of the robots induced actions. As robotic systems and their interactions with the envi-
ronment are these days becoming more complex, Reinforcement Learning has become
a mature and much used tool for the development of robot control programs. For this
reason, Reinforcement Learning has been applied to a variety of robotics applications,
such as quad-copter control [115], autonomous car driving [122] or ball dribbling [33].
In the proposed control architecture described in Figure 1.6, Reinforcement Learning
can be applied as a way to improve upon task controller parameters, as performed ac-
tion sequences and observed outcomes can be used as exploration data and action quality
metrics respectively.

From the available existing Reinforcement Learning algorithms, this thesis targets the
(stochastic) gradient based Temporal Difference method Greedy-GQ(λ) [116] because
of its theoretical convergence properties, and because it scales linearly in computational
complexity with the number of parameters. In this thesis, it will be compared to existing
methods, such as grid-based Q(λ) [186], which is guaranteed to converge and has low
computational costs, and to approximate Q(λ) [128]. The latter only has convergence
guarantees under very restrictive conditions, but often converges quicker and is compu-
tationally cheaper than gradient-based algorithms (such as Greedy-GQ(λ)). According
to the developers of the algorithm, Greedy-GQ(λ) has not yet been studied when applied
to a large scale real-world problem, such as the one demonstrated in this thesis.

1.3.3 Knowledge engineering

To keep storage of the knowledge that is communicated throughout the centralized archi-
tecture scalable and maintainable, it is important that this knowledge is stored in efficient
representations. These representations may vary from the binary data that is used for
object models and navigation maps, to the abstract logic based formalisms used for plan-
ning. For the latter form of knowledge it is important to use the right level of abstraction,
as this knowledge is to be used in search and planning algorithms and scalability issues
arise especially for large stochastic domains, such as human environments [85]. The field
of software design that concerns about this matter is the field of knowledge engineering.

1.3: Related work and contributions 11

In the field of robotics, where knowledge levels vary from low level motor control to
high level reasoning, knowledge engineering often relates to the hierarchical abstraction
of information. An analogy here can be found in recent studies about human psychol-
ogy [131], that describe the meta-modeling of low level motion primitives into high level
representations. Humans are therefore, maybe unaware, experts in hierarchically struc-
turing their cognitive and manipulating abilities, hereby basing the level of hierarchical
focus on the specifics of the task at hand and the environment they have to be performed
in. As this hierarchical structuring allows humans to perform a wide-variety of tasks
under different conditions, it has been successfully mimicked in robotics [59, 81]. It
gives engineers a possibility to abstract away from time and geometrical constraints, and
allows them to model, or learn, robot behaviors modularly [165], enabling the reuse of
these components as part of larger problems, in possibly different tasks with different
constraints.

To apply this hierarchical knowledge structuring for robots operating in human domains,
it is therefore required that abstract representations of this knowledge are developed [3,
174]. As such, a certain level of abstraction needs to be chosen, see Figure 1.9.

Actuator1

Software modules

Actuator2
Sensor1

Hardware I/O

Sensor2

Robot

Sensor1
Sensor2

Actuator1
Actuator2

path planning
pose estimation

object detection

Abstract representations

Actuator1
Actuator2

Sensor1
Sensor2

path planning
pose estimation

object detection

software abstraction

logical representations

Logical reasoner

actuator
signals

sensor
signals

Figure 1.9: Software abstraction enabling high level reasoning.

1.3.4 Planning and execution

This abstracted task knowledge, obtained either through learning or manual program-
ming, can be used as planner building blocks for the automated composition of robot
tasks in efficient, logic based planning algorithms. In this light, classical planning ap-
proaches, such as STRIPS [56] like planning algorithms, have been considered for plan
composition. As STRIPS planning is proven to be NP-complete and very ineffective for

12 Chapter 1: Introduction

large-scale domains, such as those typically found in human environments [31], work in
this field started investigating more sophisticated planning methods, such as graph-based
planners [26], hybrid graph-based FastForward (FF) planners [69] or Hierarchical Task
Network (HTN) [55] planners. HTN planning especially, suits itself well for the use of
planning in large-scale domains, by using previously composed or manually designed
plans as heuristics in future planning requests. Furthermore, HTN planning allows the
annotation of cost metrics to individual subtasks, enabling optimal plan selection if mul-
tiple plans exists.

This thesis therefore adopts HTN planning as a primary planning algorithm for robot
tasks. Based on successes obtained in the International Planning Competition, the state
of the art HTN planner SHOP2 [137] is adopted, which in this thesis derives its domain
knowledge from a high level task description knowledge base. These task descriptions
are called ‘action recipes’ in RoboEarth terminology [175], and in this work their rep-
resentation is adapted, such that they allow to be interpreted by the SHOP2 planning
algorithm. Although the presented work focuses primarily on the architectural design
choices that are made to enable the integration of planning with subsequent plan execu-
tion, further work by co-authors in this direction can be found in [44, 119] and in Chapter
5 of this thesis.

Two other well-supported and stable architectures that are currently available for the
integration of planning and execution, are the LAAS Architecture [21] based on the BIP
[18] component design framework and CLARAty [139] developed by NASA and the Jet
Propulsion Laboratory. In the work of McGann [127] the TREX control framework is
adopted to control a Willow Garage PR2 service robot, allowing the robot to handle doors
and plugs, while navigating using a topological map. The TREX control framework is
run on top of a middle-ware called ROS [146], that provides in a vast amount of robot
control and communication procedures.

Although the developers of these systems briefly mention a desire for the reuse of action
primitives, there is no further discussion towards the reuse of hierarchical, composite
robot plans. Also, each of these architectures has developed robot control structures that
are highly dedicated to the platform at hand, impeding component reuse and task alloca-
tion through a high-level logic-based planner, such as proposed in this thesis. Also, they
lack in a clear notation of how to match robot capabilities of individual platforms against
required capabilities for the tasks at hand. Enabling robots with different capabilities to
share composite task descriptions requires at first a common representation, that allows
the matching of these shared descriptions with the platform’s specific capabilities. As
part of the above mentioned RoboEarth and RoboHow projects, a first implementation
is described in [174], where the Semantic Robot Description Language (SRDL) [99] is
used to match robot capabilities against the task related components. Chapter 5 of this
thesis will exploit that concept, by using first-order reasoning to deploy required subtasks
onto available robots with matching capabilities.

Section 1.3.3 discussed the upwards abstraction of software components into logical
based representations, useful for the creation of abstract plans. After plan creation, de-
scriptions need to be given on how the actions in the plan are subsequently executed on

1.3: Related work and contributions 13

real robots operating in real environments, a process called action grounding. As this the-
sis targets the execution of tasks on both Matlab/Simulink and ROS enabled platforms,
action grounding has been applied to both middle-wares An example of a grounding
ontology for ROS is given in Chapter 5 of this thesis.

1.3.5 The Semantic Web

As the design knowledge useful for the planning and execution of robot tasks in human
domains can be regarded a mixture of both human- and machine generated knowledge,
a preference for the representational language used in the architecture lies towards cur-
rently established machine interpretable representations, such as those used on the Se-
mantic Web [22]. Its basic representational language OWL [141] as proposed by the
World Wide Web Consortium3 and the accompanying HTTP-based interfacing and au-
tomated reasoning tools provide in a unified framework that is capable of not just read-
ing other sources of information, but also manipulating, updating, and combining them.
These techniques allow the combined pooling of machine interpretable knowledge based
on information already collected and stored by humans over the last decades, and on new
information added in runtime by connected robots. A language model variant of OWL
that is most suitable for use in cognitive robotic applications is OWL Description Logics
(OWL-DL), as it provides in maximum expressivity but remains decidable. This allows
the language to be used in most modern day reasoning modules, such as Pellet, Racer,
Fact++ or in theorem proving query languages, such as Prolog and SQL. A good read on
the advantages of using OWL-DL in robotics can be found in [67].

To allow web based task representations to be used as planner building blocks, extensions
of OWL have been made, such as the Business Process Execution Language for Web
Services BPEL4WS [6], and OWL-S [121] (formerly the DARPA Markup Language for
Services, DAML-S), which extend Semantic Web representations for the explicit model-
ing of web services, processes and data-flows on the Semantic Web.

Based on recent efforts of the Semantic Web community to model Everything As A Ser-
vice (XAAS) [14], a recent trend in robotics has adopted this vision for the similar model-
ing of robot platforms. Based on this concept, robot platforms will be modeled as on-line
accessible, modularly structured collections of web services, and invoked identically to
Semantic Web services as currently available. They hereby expose abstract models of
their functionality, such as sensors and actuators, to service composition (or planning)
algorithms, such as described in the work of ubiquitous robot networks [88], and in the
integration of home automation systems and ubiquitous robots as OWL-S web services
[64]. These modular robot representations can be used as plan building blocks in hierar-
chically structured plans, and used for plan composition by of the shelf available planning
algorithms. The planning algorithms as discussed in Section 5.3.3 have therefore been
applied to Semantic Web task representations for the automatic composition of web ser-
vices in graph-based planning [195], hybrid graph-based FastForward (FF) planning [91]
or Hierarchical Task Network (HTN) planning [55].

3http://www.w3c.org

14 Chapter 1: Introduction

As the semantics of HTN planning are based on the propositional logic Planning Domain
Definition Language (PDDL) [126], it natively lacks expressivity compared to the first-
order logic semantics entailed by the primarily used representation for Semantic Web
services (OWL-DL) [102]. Examples are for instance the cardinality restrictions (e.g.,
for-all, none) that are possible in OWL-DL. Also, the complex control procedures as
modeled by OWL-S, such as while-do and if-then-else, require complex mapping pro-
cedures to be represented in PDDL semantics [161] (for instance, an OWL-S while-do
construct has to be mapped onto an HTN method that calls itself recursively). As it is de-
sirable that the planning language used in the proposed control architecture has maximum
expressivity, the use of a higher-order planning language, and accompanying language
implementation, is preferred.

A first-order planning language that maps directly onto OWL-S Description Logics se-
mantics, is the Situation Calculus [124, 125]. This language has been implemented in
Prolog as a high-level agent programming language by Hector Levesque and Raymond
Reiter, called Golog [103], and exquisitely described in Reiter’s book ’Knowledge in
Action’ [150]. Golog allows engineers to axiomatize a Situation Calculus based action
domain as primitive actions and procedures in Prolog, and the Golog interpreter will
subsequently ’roll’ over the procedures, hereby subsequently performing one or more
primitive actions. Planning in Golog is hereby induced by the theorem solving property
of Prolog, which tries to find a set of valid bindings that unify with the invoked control
procedures and their parameters.

Golog however lacks in certain features that are desirable for planning in human domains.
These are the possibilities for modeling sensing actions, exogenous actions, concurrency
and multi-agent planning. For this reason, several extensions of Golog have been made,
that enable the language to be used in high-level robot planning and execution with an
increasing level of functionality. A first extension was made by Hector Levesque called
ConGolog [45], which allowed the explicit modeling of concurrent and exogenous ac-
tions. A successor of that was IndiGolog [62], which allowed programs to be executed
incrementally, based on the input obtained through sensing actions. A subsequent ex-
tension for multi-agent planning was developed by Ryan Kelly, called MIndiGolog [87].
The work described in this thesis builds upon this last extension, and uses its interpreter
to plan for procedures that are represented in the OWL-S semantic markup language,
hereby using general procedures expressed in OWL-S to be executed by multiple agents
in a time-optimal fashion. As the current MIndiGolog interpreter has no interpretation
mechanism for certain control procedures as defined in OWL-S, such as any-order, split
and repeat-while, the interpreter is extended as described in Chapter 5 of this thesis.

1.4 Outline

This thesis will start of with a detailed description of one of the primary robotic platforms
used for research and demonstration in this work, and as a public demonstration platform
for Eindhoven University in general; the Eindhoven University automated football table.
In this first part, hardware design choices for this platform will be discussed, together

1.4: Outline 15

with an extensive description of a model-based method used to detect and track a primary
object of interest.

The chapter hereafter will continue with the football table as a robotic research platform,
and here a state of the art method for robot learning will be discussed and evaluated.

The validation domain in Chapter 4 will shift from the football table to the service robot
domain, where now methods for hierarchical plan composition and execution will be
implemented on the Eindhoven University Amigo robot and evaluated in a real household
environment.

Subsequently, Chapter 5 will discuss an extension into this domain, where now existing
representations from the Semantic Web are used for plan representation, and a more ex-
pressive language will be used for plan execution. This chapter will also describe a more
clear separation between representation, plan composition, execution and grounding, by
defining an ontological based component model for the low level grounding layer. The
conducted tests in this chapter, will entail a two-robot experiment, where these robots
will be fully controlled by a cloud deployed planning and execution platform.

This thesis ends with a concluding section, in which both the achievements and limits of
the work as well as the opportunities for future research will be discussed.

16 Chapter 1: Introduction

17

Chapter 2

Object Localization And
Tracking

This chapter presents the development of an object localization and tracking algorithm,
that is to be applied in environments with high dynamics and fast update rates. The de-
scribed approach is based on an earlier survey paper on object segmentation and track-
ing, where a general selection procedure for applicable techniques was proposed. This
chapter describes why these techniques are not well suited for our specific application.
As a solution, an IMM estimation technique is adopted that has not been applied in this
type of context before. To evaluate the IMM estimator in a well-controlled experiment,
it is applied to the Eindhoven University automated football table and compared to a
commonly used and carefully tuned Kalman filter.

This chapter is based on “Ball Localization And Tracking In A Highly Dynamic Ta-
ble Soccer Environment”, R. Janssen, M. Verrijt, J. de Best and R. van de Molengraft,
Mechatronics Special Issue on Visual Servoing, 2012

2.1 Introduction

The last decade a lot of research has been performed on the deployment of cooperative
multi-agent systems in unpredictable and unstructured real-world environments. Exam-
ples can be found in robots that collaborate with humans in maintaining large warehouses
[63], human-robot assembly lines [172], underwater robots that operate as single sensor
networks [183] and swarms of unmanned ground vehicles that perform reconnaissance
missions in large disaster areas [82].

18 Chapter 2: Object Localization And Tracking

A key element in these multi-agent systems is the applied control strategy, and evalua-
tion of such a strategy in an everyday unstructured environment is an extremely daunting
task. Large scale experiments need to be conducted that require time, logistic and finan-
cial effort, multiple sensors have to be repetitively calibrated and most importantly, the
environment is likely to respond in an uncontrollably hazardous manner, hereby endan-
gering the costly agents. Therefore, simplifications are sought to manage complexity by
focusing on handling the dynamics, where the environment is chosen to be controllable
and well structured.

This kind of abstract simplification can for instance be found in the RoboCup Mid-size
League [49], where two teams of robots compete against each other in a game of field
soccer. This concept transforms the hazardous large scale outdoor test environment into
a controllable indoor game-setting, allowing researchers to easily tune their strategies,
redesign their components on the spot and assuring that each of their costly agents will
survive the conducted tests. Although the RoboCup setting is significantly less com-
plex and less hazardous than the outside world, there are still factors involved that limit
repeatability and efficiency of testing:

• each team consists of at least five autonomous robots. These complex mechatronic
devices typically need a lot of maintenance, and an extensive infrastructure for
hard- and software management,

• varying inter-robot communication delays make it difficult to execute commands
in sync, which may result in non-causal and undesired behaviors,

• calibration discrepancies between agents in their perception modules may result in
different beliefs about the state of the environment.

To address the above issues while maintaining the highly dynamic character of the soccer
environment, a professional soccer table has been acquired that on one side has been
equipped with electro-mechanically controllable rods, see Figure 2.1.

Figure 2.1: The Eindhoven University automated soccer table.

2.1: Introduction 19

This system allows the execution of a multi-agent strategy within the highly dynamic
characteristics of the table, represented by the fast moving ball and the human- and
machine-controlled puppets. An extended overview on the design concepts of the ta-
ble can be found in [78]1.

With this set-up, the above mentioned problems encountered in the RoboCup Mid-size
league context are addressed as follows:

• only one system needs to be maintained,

• no wireless communications are necessary and all signals go through one com-
puter, so inter-agent communication delay will be negligible,

• only one system needs to be calibrated,

• there is only one perception module, and thus only one belief about the state of the
environment.

The concerning object in our setup is the ball, and the environment furthermore consists
out of two main components,

• The fully controllable, mechanically actuated puppets,

• Their uncontrollable and (at this stage) unobservable adversaries (which are con-
trolled by the humans),

The states of the actuated puppets consist of their position and orientation. These states
can be easily derived from the incremental encoders used in the motion control loops.
These control loops are run on a dedicated PC, and steer the puppets by actively rotating
and translating the actuated rods, see Figure 2.2.

Motors

Rotation Translation

Figure 2.2: Position control of the actuated puppets.

1An explanatory video about the table can be found at http://youtu.be/0qE_a0wFRa0

http://youtu.be/0qE_a0wFRa0

20 Chapter 2: Object Localization And Tracking

The states of the ball consist of the ball’s position and velocity, which are required to
determine the ball’s heading. These states however, can not be directly measured. They
have to be reconstructed from noisy position measurements, which will be obtained by a
camera above the field, see Figure 2.3.

Camera

Human controlled rod

Automated Rod

Figure 2.3: Schematic representation of the football table.

Localizing the ball in the captured images is not trivial though, see Figure 2.4, as there
are other objects present that,

• Fully or partially occlude the ball,

• Resemble the ball in either shape, color, or both,

• Visually merge with the ball, making it difficult to separate one from another.

In this chapter, therefore a survey paper on object localization and tracking [193] will be
consulted, from which a set of well-known computer vision localization techniques will
be derived to form a robust detection classifier. From these detections the full state of the
ball will be reconstructed by using a state estimator. For the choice of the state estimator
a commonly used method is compared to a method that we have carefully selected for
this special application. We would like to state that this selected method, to our best
knowledge, has not been applied in this type of highly dynamic context before.

The outline of this chapter is as follows. In the following section related work on similar
applications will be presented. Hereafter, some general research within the field of object
detection and state estimation techniques will be discussed, from which the choices for
our preferred methods will follow. Two state estimation techniques will be compared in

2.2: Related Work On Similar Applications 21

a simulation experiment, which will allow us to adequately compare their performance.
The preferred method resulting from these tests will also be implemented and evaluated
on the real table soccer set-up. We will conclude with a discussion and a conclusion
on the solution to our problems. Extended information that is regarded as trivial to the
general understanding of this chapter can be found in Appendix A.

Figure 2.4: Typical image captured by the overhead camera.

2.2 Related Work On Similar Applications

For entertainment and computer vision research purposes, several other project groups
have already faced the challenge of developing a robotic table soccer adversary, see Fig-
ure 2.5.

(a) (b) (c)

Figure 2.5: Georgia Tech (a), DTU (b) and KiRo (c) projects.

While the methods to actuate the puppets seem to be more or less alike, the methods to
detect the ball mostly differ. At the University of Adelaide [36], a robotic soccer table
has been developed in which a laser grid is mounted underneath the feet of the puppets.
In this way, the ball is the only object that can breach the grid. When it bounces over

22 Chapter 2: Object Localization And Tracking

the field however, and thus over the grid, it is momentarily undetectable. This problem
also exists in the DTU [136] and StarKick [188] projects, where the field is replaced by a
semi-transparent plate. By mounting a camera underneath the plate a shadowed projec-
tion of the ball can be detected, but this detection fails when the ball bounces upwards.
In both the KiRo [187] and Georgia Tech [41] projects a straightforward color segmen-
tation method is used to segment the ball from the environment. Currently this seems
to be the most promising approach, although the acquisition time for both capturing and
processing of color images can be assumed to be larger than for mono images, hence de-
grading the ball tracking performance and increasing the computational load. Due to the
limited documentation on these projects, no information can be found on their applied
state estimation techniques.

In earlier work on our set-up [79], a method was presented that describes how a dynami-
cally calculated mask can be used to detect the ball in the captured images. By combining
a static mask for the field markings with a dynamic mask for the moving puppets, all the
objects that resemble the ball can be filtered out, leaving only the ball itself visible in the
images. In Figure 2.6 a picture is presented showing the outcome of this mask, next to
the original image captured by the overhead camera. For state estimation, in this set-up
a straightforward, but carefully tuned Kalman filter was used

(a) (b)

Figure 2.6: Captured image (a) and applied masking methods (b).

Although this combined method of localization and tracking has proven to work well,
careful investigation has shown us that on both aspects improvements can be made. Re-
garding the dynamic mask that is used for localization, we have to conclude that it is
highly sensitive to calibration errors. The main reason is that when the masks are not
exactly aligned during the initialization phase, at runtime the localization algorithm will
mistakenly assume (part of) the puppets as ball positives. The fact that, due to wear
and tear of the actuated control rods, calibration and initialization have to be performed
repetitively make it a tedious enterprise.

Regarding the Kalman filter that was used for state estimation, we found that although
the bouncing ball does not entail a linear system (one of the major assumptions for this
type of state estimator), it performed reasonably well. At that point however, the Kalman
gains were tuned based on a minimization of the position error. When also requiring

2.3: Method Selection 23

convergence on the velocity (to obtain an accurate heading estimate) , convergence times
increased drastically, resulting in slower response times and an increase in the number of
missed intercepts.

Therefore in this chapter both detection for localization, and state estimation for track-
ing will be re-investigated, to see if improvements can be made by exploiting different
techniques. Although the presented methods for localization are commonly used in the
field of high speed computer vision, a different area of application is consulted for state
estimation. The concepts of this technique and why, to our opinion, it can be used for our
application will be explained in the following section.

2.3 Method Selection

In this section, we construct an object tracking technique that is based on a well-known
survey paper on object tracking [193]. The bottom-up approach presented in this paper
allows for a better understanding of the encountered challenges and a guided method to
tackle them. According to this approach the topics that need to be addressed are (from
bottom to top):

− Object Representation (Bottom)

� Feature Selection

� Object Detection

� Object Tracking (Top)

The remainder of this section will discuss each of these topics. The reader is referred to
[193] and references therein for examples, and in-depth evaluations and surveys of the
following techniques presented.

2.3.1 Object Representation

Depending on the application, an object can be represented by its shape and/or its ap-
pearance, see Table 2.3.1.

Representation Common usage

Point(s) Small objects
Primitive geometric shapes Simple rigid objects
Object silhouette and contour Complex nonrigid shapes
Articulated shape models Articulated objects
Skeletal models Object recognition

Table 2.1: Object shape representations.

24 Chapter 2: Object Localization And Tracking

Note that these situations do not represent a restriction. Skeletal models for instance,
can also be used for rigid or articulated objects. An object’s appearance can also be
represented using its features, for example, color and/or texture. The appearance repre-
sentations mainly differ in the way these features are used and are often combined with a
shape representation. Table 2.2 shows a number of common appearance representations
together with some of their characteristics.

Representation Characteristics

Probability densities · Computed from a specified interior region, e.g., a shape.
- Parametric: Gaussian and Gaussian mixtures.
- Non-parametric: Parzen windows and histograms.

Templates · Object appearance is generated from a single view.
· Contains both spatial and appearance information.

Active appearance models · Object shape and appearance are learned from training.
· Uses landmarks with an appearance information vector.

Multi-view appearance models · Encodes multiple views of an object.
· Appearances in all views needed ahead of time.

Table 2.2: Appearance representations

In a game of table football, the primary object of interest is the ball. A suitable shape
representation is of course a circle (primitive geometric shape), which essentially decom-
poses into a point and a radius. A more complex shape representation hardly gives any
additional information. As for the appearance representations, the active and multi-view
models are believed to be unnecessarily complex. The probability density and template
representations seem to be reasonable. However, they are commonly used in combination
with some sort of matching algorithm, which increases the computational complexity.

The most popular method for circle detection in images is the Circle Hough Transform
(CHT) [52], that extends the basic idea of the Hough transform for line detection to that
of circles. The original CHT is known to be robust to noise and occlusions, with the main
drawback being its computational complexity [171]. A number of techniques have been
developed trying to overcome the computational complexity issues, while maintaining
the robustness of the original CHT method. Due to the large number of variations, it is
almost impossible to refer to all the works available on this subject. The reader is referred
to the comprehensive overviews and comparisons found in [75, 86, 90, 101, 194] for more
information.

The speed of the discussed circle detection algorithms are, among others, dependent on
the number of edge pixels found and the size of the parametric space. As for the football
table, there is only one ball that is relatively small, which results in only a few edge
pixels. Furthermore, the size of the ball doesn’t change so the parametric space can be
well defined beforehand. This makes it easier to implement the above algorithms and also
limits the computational effort required to run them. Because of this, it may be possible
for the original CHT to run real-time in this situation. If not, one of the alternatives
presented may prove to be applicable.

2.3: Method Selection 25

2.3.2 Feature Selection

The most commonly used visual features are described here. Most tracking applications
employ a combination of features for better performance.

Color is one of the most widely used features, mainly due to its easy implementation and
the variety of color spaces available, for example:

· RGB Red, Green, Blue
· HSI Hue, Saturation, Intensity
· YUV Luminance (Y), Chroma (U,V)

A color space with a separate intensity channel like HSI or YUV is typically more robust
with respect to variations in intensity. A color can hereby be described by the remaining
two values, spanning all intensities. There is no definitive answer on which color space
to use; it is entirely an image/application dependent question [181], i.e., dependent on
several factors, including the used hardware and the object(s) to be detected.

Edges are less sensitive to illumination changes than color, due to objects generating a
strong change in intensity at their boundaries even if illumination varies. Note that the
sensitivity to a change in illumination depends on how the edges are obtained; a gradient
method is far less sensitive than obtaining an edge via colored blobs for example. Edges
are commonly used as features in applications that track the boundary of objects, e.g.,
when a contour representation is used.

Optical flow is used as a feature when something is interesting based on its motion, or
when an object’s motion is exactly what makes it interesting. It is characterized by a
field of displacement vectors representing the distance a point has moved between two
frames. These algorithms generally rely on the assumption that an object doesn’t change
its appearance as it moves. There are two approaches to optical flow, i.e., dense and
sparse methods. In dense optical flow the field is calculated for each pixel in some region.
High computational costs are involved in these algorithms to solve for the ambiguous
pixels. In sparse optical flow a subset of points, that are somehow specified beforehand,
are tracked. This involves selecting points with “good features to track”. Corners, for
example, have an expressive local texture which can be used. The sparse method thus
employs a combination of features.

Using Texture as a feature requires descriptors to be generated. This can be done man-
ually, or automatically, for which a variety of algorithms exist. As with edges, these
features are not as sensitive to illumination changes as color.

Although automatic feature selection algorithms exist, the features are chosen manually
in most situations. A manual selection is also believed to be sufficient in the case of
the football table, because of the well specified knowledge of the scene. The interested
reader is referred to [193] for an introduction to automatic feature selection. Each of the
features presented in this section seem to be appropriate for use in the football table setup.
However, dense optical flow has high computational costs, and a uniform white ball does

26 Chapter 2: Object Localization And Tracking

not really have any “good features to track”, for sparse optical flow. An attempt was made
for a similar situation (orange ball) in [144], where it was reported that such a method
gave very poor results. Concluding on the above summary, a combination of color, edges,
and/or texture seems to be the most promising approach for a fast localization of the ball.

2.3.3 Object Detection

Object detection in every frame or when the object first appears in a scene is required in
every tracking method [193]. Most object detection methods use information acquired
from single frames only. Methods that use temporal information acquired from a se-
quence of frames to reduce false detections, are also available. A common approach to
this is some form of frame differencing. The main categories of object detection for the
purpose of object tracking are explained below. Popular representative methods within
these categories are shown in Table 2.3.

Category Representative Methods

Point Detectors ·Moravec’s Detector
· Harris Detector
· Scale Invariant Feature Transform
· Affine Invariant Point Detector

Segmentation ·Mean-Shift Clustering
· Graph-Cuts
· Active Contours

Background Subtraction ·Mixture of Gaussians
· Eigenbackground
·Wallflower
· Dynamic Texture Background

Supervised Learning · Support Vector Machine
· Neural Networks
· Adaptive Boosting

Table 2.3: Detection methods

Point detectors are used to find so called interest points. These points have a local texture
that is characterized in some predefined way, e.g. via intensity variation. A desirable
quality of such a point is its invariance to changes in illumination and camera viewpoint
[193].

Segmentation algorithms aim at dividing an image into regions, or partitions, that are
perceptually similar. To this end, two main issues have to be addressed: A criterion for a
good partition and a method for achieving efficient partitioning [193].

2.3: Method Selection 27

Background subtraction is the process of finding significant regional differences be-
tween each incoming frame and a background model. These regions signify a moving
object and are marked for further processing.

Supervised learning mechanisms can be used to perform object detection by learning
different object views automatically from a set of examples. The learning examples are
composed of manually selected pairs of object features and an associated object class. A
hyper-surface is computed that separates the different object classes in a high dimensional
space. Such methods usually require a large collection of manually labeled samples from
each object class.

A uniformly colored rolling ball does not exhibit points that have an expressive local
texture. If the background is uniformly distinct, an exception would be the edge-points.
Even then, they are much easier detected with an edge detection algorithm. Segmentation
of the image into perceptually similar regions seems as an easy and efficient approach for
the football table. Due to the well specified knowledge about the scene, the two main in-
gredients for good segmentation are present. This can be done with a good combination
of features, in particular color. A more detailed discussion on color image segmentation
is given in [171]. Background subtraction is a nice approach for situations with static
cameras, such as this. These methods seem to be applied mostly in situations with a
relatively low frame-rate, a common example being traffic cameras. Due to the mov-
ing puppets, a dynamic background model that requires to be updated is necessary, as
was proposed in [79]. Furthermore, a high frame rate is desired, because of the highly
dynamic nature of the game. The increased complexity and computational cost of such
methods is believed to be impractical and unnecessary for this particular application. Su-
pervised learning is also believed to be a rather unnecessary complex approach to the
problem at hand.

2.3.4 Object Tracking

The goal of an object tracker is to reconstruct the object’s trajectory over time by locating
its position, and possibly obtaining its region information, in each frame. The object
detection method as discussed previously, as well as the correspondence between object
instances across frames (data association) need to be performed to achieve this. This can
be done separately or jointly. In the first case possible objects are obtained by a suitable
detection algorithm. The tracker’s job is to then associate the possible objects to their
respective tracks. In the second case, the object region and data association is jointly
estimated by iteratively updating object location and region information obtained from
previous frames [193]. In addition to the data association problem, state estimation can
be performed. This can also be done separately or jointly. When the state estimation
is done separately, some sort of deterministic data association has taken place. When
tracking a single object in noise or in the case of multiple objects, a joint solution of data
association and state estimation is often required. For tracking in the context of vision
applications, three main categories can be distinguished: point tracking, kernel tracking
and silhouette tracking [193].

28 Chapter 2: Object Localization And Tracking

These categories can be split up into subcategories, revealing the variety of methods
available. Common tracking methods used in vision, also from [193], are described
together with relevant applications in Table 2.4.

Table 2.4: Tracking methods

Sub Categories Representative Methods

Point Tracking

Deterministic ·Modified Greedy Exchange
· Greedy Optimal Assignment

Probabilistic · Kalman Filter
(Statistical) · (Joint) Probabilistic Data Association Filter

· Probabilistic Multiple Hypothesis Tracking

Kernel Tracking

Template & Density Based ·Mean-shift
· Kanade-Lucas-Tomasi
· Layering

Multi-view Based · EigenTracking
· Support Vector Machine

Silhouette Tracking

Contour Evolution · State Space Models
· Variational
· Heuristic

Shape Matching · Hausdorff
· Hough Transform
· Histogram

Tracking the center of the ball gives enough information for a successful intercept. Its
spacial characteristics don’t give any other relevant information, as the ball’s radius
doesn’t physically change. Point tracking is then obviously appropriate for this particular
application.

Maneuvering Targets
For non-maneuvering targets a conventional Kalman filter is frequently used for tracking.
In a game of table football however, the tracking is complicated by the ball’s abrupt
changes in motion. The ball can therefore be regarded as a highly agile maneuvering
target: the acceleration is, for the most part, a sequence of short pulses with unknown
magnitude which occur at unknown time instants (maneuver, M), with in between nearly
zero acceleration (non-maneuver, NM). A vast amount of literature can be found on

2.3: Method Selection 29

the subject of maneuvering target tracking (MTT2), as attested to by the comprehensive
survey [104–113] and the references therein. In the history of MTT, single model-based
adaptive Kalman filtering techniques were developed first, followed by decision-based
methods, which have in turn been superseded by multiple-model methods due to their
superior performance and computational improvements [105, 108]. By modeling the
target motion (continuous component) with different models (discrete component, e.g.,
M/NM), the problem becomes that of hybrid state estimation. A major challenge arises
from the target motion-mode uncertainty, i.e., the uncertainty in determining which mode
is in effect at a particular time instant. If the target motion, or base state (xk), behaves
linear with respect to the system mode (sk), it can be represented by a Markov jump-
linear system (MJLS) [108]:

xk+1 = Fk(sk+1)xk +wk(sk+1) (2.1)
yk = Hk(sk)xk + vk(sk) (2.2)

Under the Gaussian noise assumption, the optimal estimator for this system is a Gaussian
mixture with an exponentially increasing number of terms [16], making it impractical
to implement. One of the most cost-effective hybrid state estimation schemes is the
sub-optimal interacting multiple model (IMM) estimator [25], which has been shown to
significantly outperform a Kalman filter for target tracking in many radar applications
[89, 123]. These radar systems have relatively long sensor revisit intervals together with
relatively slow maneuvers. To the authors’ knowledge, the use of such an estimator in
high speed computer vision for tracking highly agile maneuvering targets has not yet been
investigated. Its low computational requirements and self-adjusting variable-bandwidth
[123] make it an attractive alternative for such applications.

In [89], research (through simulations) was done to see when an interacting multiple
model filter is likely to significantly improve estimation in comparison to a single model
Kalman filter when using a constant velocity (CV) and a white noise acceleration (WNA)
model. The maneuvering index, or tracking index, is used to quantify this choice. This
coefficient is a function of the motion uncertainty (σw), measurement uncertainty (σv)
and the sensor revisit interval (T). It gives an indication of when to use an IMM estimator
over a Kalman filter. For a piecewise constant WNA model the maneuvering index is
given by

λ =
σwT 2

σv
(2.3)

In [89] it was shown that

“...when the underlying true target motion model has WNA, above a maneu-
vering index of 0.5 an IMM estimator is preferred over a Kalman filter to
track the target motion.” [89]

Although questions have been raised regarding the validity of some of the found results
[159], the performance improvement indication still holds for the non-maneuvering time

2Not to be confused with Multiple Target Tracking

30 Chapter 2: Object Localization And Tracking

intervals (i.e., the periods after the ball has bounced), which are the main points of in-
terest in this application. Denoting the maximum acceleration in a single time-step as ā
and assuming that (next to the Gaussian assumption) there is a 99% certainty (3σ) the
acceleration is in the range [−ā , ā], the process noise standard deviation is given by

σw =
ā
3

(2.4)

Similarly, assuming a 99% certainty that all measurements originate from some point on
the ball, the measurement noise standard deviation is given by

σv =
rb

3
(2.5)

Substituting equations (2.4-2.5) in (2.3.4), and using λ = 1/2 the lower limit of the max-
imum acceleration can found for which the IMM filter will likely improve performance.

ā IMM =
rb · f 2

vision
2

(2.6)

Using rb = 17.5 [mm] and fvision = 200 [Hz] a value of ā IMM = 350 [m/s2] is found. This
corresponds to a velocity change (of the ball) between two consecutive time-steps of 1.75
[m/s]. Noting, for example, that at a speed of 2.5 [m/s] the ball can (nearly) instanta-
neously change to a speed of -2.5 [m/s], an IMM estimator could improve performance.
At lower sampling frequencies this improvement will become even more profound.

2.4 Implementations

In the previous section, a plethora of methods have been discussed for both localizing
and tracking. This section takes the outcome of that discussion as a starting point for an
implementation on the real table soccer set-up. From the previous section follows that
the proposed tracker can be described as in Table 2.5

Table 2.5: Proposed tracker

Issue Choice

Representation · Circle (Primitive geometric shape)

Features · Color
· Edges

Detection · Segmentation

Tracking · Point tracking

2.4: Implementations 31

2.4.1 Localization

In Section 2.3.3, a discussion on methods and issues involved in target localization was
presented. A few words were also devoted to their application to the football table.
Here, a relatively simple, but efficient, localization method is described. It is a mix
of components taken from the existing method and the “real-time color ball tracking”
method, discussed in [171], together with some additional components. Instead of us-
ing monochrome images as was proposed before in [79], now YUV color images are
obtained from the camera. This gives additional information which is used to find the
ball in a more robust fashion. Note that the Y-channel of an YUV image is in effect a
monochrome image, making chroma (U,V) the additional information.

For obvious reasons, the static mask and region of interest are retained from the existing
algorithm. The rest of the algorithm works as follows. A simple 3D color classifier for
the ball is manually obtained (off-line) using several exemplar images. This classifier
is used at runtime to check which (non-masked) pixels belong to the ball’s color class,
resulting in a binary image. In Figure 2.7 a snapshot is given of our color calibration tool,
indicating the different color classes.

Figure 2.7: Snapshot of our calibration tool indicating the different color classes.

After color segmentation, an erosion operation is performed to remove noise pixels, and
from the resulting image the outer contours (boundary pixels) are found.3 Each of the
found contours are subsequently checked to see if they meet the following requirements:

• Its bounding box size (width/height) must be in a specified range.

• Its length (number of pixels) must be in a specified range.
3This is done with the Open-CV algorithm cv::findContours, based on [170].

32 Chapter 2: Object Localization And Tracking

The resulting set of contours is then checked once more, where the bounding box must be
smaller than a predefined square, i.e., the smallest square that can encapsulate the entire
ball anywhere in the image. If this requirement is met, the CHT algorithm is applied to
find the ball center. Recall from the previous section that the CHT algorithm is robust
with respect to noise on the circle radius and occlusions. The sequential steps for two
different input images are depicted in Figure 2.8.

(a) (b) (c) (d) (e) (f)

Figure 2.8: Steps performed for ball localization. Input image (a), static masking (b),
classification (c), erosion (d), contours (e) and CHT center-point (f).

Due to lighting, and the camera’s sensor, non-ball and ball pixels can have a similar color.
In particular, the edges of the (white) ball and (yellow) puppets are hard to distinguish
in some situations. These ambiguous regions are preferably left out when obtaining the
classifier. A more conservative calibration results in less noise, but also less of the ball
being detected (see Figure 2.9). Even then, situations still occur where non-ball pixels
are marked as ball pixels. The noise this creates is dealt with by the elementary opera-
tions, the contour checking and the CHT algorithm. Note that the puppet and thus the
ambiguous pixels can be removed by using the dynamic mask from the existing method
described in [79]. Although this isn’t a necessity, it does allow for a less conservative
color classifier to be used.

Figure 2.9: A more “conservative” classifier used on Figure 2.8(b).

2.4: Implementations 33

The colors that show up in the image are influenced by the ambient light and the reflec-
tive properties of surfaces. In general, a different color classifier is needed whenever
the ambient light significantly changes. The camera gain setting and the lights (with
dimmers) just above the camera can also be used to try to adapt to new situations. The
classifier essentially determines how well (and if) the localization algorithm works. Us-
ing color makes the ball localization a lot more resistant to wrong detections. Only (close
to) white objects will now be detected instead of all high intensity objects. Furthermore,
the objects are limited by size and perimeter.

This method allows for a more robust localization of the ball, in comparison to the exist-
ing method. The chance of incongruous objects creating wrong detections is somewhat
minimized. Note that if a close to white object with the right dimensions and properties
enters the scene a wrong detection can still take place. Due to the unlikeliness of such
a situation, and the need for the tracker to be reset often this is acceptable. The need to
do any data association is thus effectively removed. Also, the adaptivity of the proposed
IMM estimator can allow for it to “correct” itself when a wrong measurement enters the
filter. This localization method has proven to work very well under different lighting
circumstances (when configured correctly) at symposiums and open days.

2.4.2 Tracking

In Section 2.3.4 methods and issues involved with target tracking were discussed. It also
included some reasoning as to what is likely to improve tracking in the football table
application. For this application, the IMM algorithm discussed in this section should al-
low for a significant improvement in comparison to a single model Kalman filter, while
maintaining a low computational cost. A performance comparison of the two’s use is
proposed in [89, 159] and validated for the football table by simulations in Section 2.5.
The values for the design parameters (covariances and transitions probabilities) are ob-
tained in these sections through experimentation, although they can also be obtained by
using Genetic Algorithm (GA) optimization techniques [24]. In this section, the model-
set determination and some implementation issues are discussed. Another possibility is
the use of a nonlinear model in combination with a particle filter, or UKF. Such a method
requires accurate modeling of collisions. Here, the choice was made to use an IMM es-
timator based on: the ball’s behavior belonging to a MJLS, the improvement indications
and low computational cost.

Model-set
Two models are used to handle both situations of non-maneuver (j = 1 = NM) and ma-
neuver (j = 2 = M). The non-maneuver model is naturally a constant velocity model.
Due to the stochastic nature of the acceleration, a piece-wise constant white-noise accel-
eration model is used for maneuvering instances. The j-th mode obeys

xk+1 = Fxk +Γ w̃(j)
k (2.7)

yk = Hxk + vk (2.8)

34 Chapter 2: Object Localization And Tracking

where

F =

[
Fx 0
0 Fy

]
Fx/y =

[
1 T
0 1

]
(2.9)

Γ =

[
Γx 0
0 Γy

]
Γx/y =

[
T 2/2

T

]
(2.10)

H =

[
Hx 0
0 Hy

]
Hx/y =

[
1 0

]
(2.11)

where w̃(j)
k =

[
w̃(j)

k,x w̃(j)
k,y

]T
, vk =

[
vk,x vk,y

]T are zero-mean white noise pro-
cesses with covariance matrices

Q̃ = cov(w̃(j)
k) =

[
σ2

w̃(j)
x

0

0 σ2
w̃(j)

y

]
R = cov(vk) =

[
σ2

vx 0
0 σ2

vy

]
(2.12)

Q = Γ Q̃Γ
T

in which σ(·) denotes the standard deviation of (·). When a single model is used (for the
Kalman filter) the (j) superscript can be removed, i.e. a single WNA model is used for
both maneuver and non-maneuver instances.

Issues
Two important issues when tracking the ball on the football table are shortly discussed
here: Complete occlusion and track initiation/termination.

Occlusions in vision applications are commonly dealt with by using a dynamic model
to keep predicting the object’s location until the object reappears [193]. This is simply
propagating the last known a posteriori estimate through the “time update” equations
until the ball reappears. The ball may bounce during such an occlusion, so the wise
choice for propagation of the covariance is the white-noise acceleration model. If the
ball comes to a standstill while it is occluded and remains there for some time, the ball
will effectively be lost when using such a solution.

Track initiation and termination is needed because the ball can exit and re-enter the scene
at different locations. This can be due to a goal being scored, or the ball being lost due
to occlusions. Due to the ball being the only target tracked, the initiation/termination can
be done by simply resetting the filter. Deciding when this reset has to be performed must
also be implemented. A simple solution is applied using a time-out starting when the
ball is lost. Once the time-out has elapsed without finding the ball, the filter isn’t used
anymore. At the time the ball is found again, the filter is reset with its initial position at
the ball location, zero velocity and a pre-set covariance.

2.5: Simulations 35

2.5 Simulations

Before testing on the real set-up, a quantitative evaluation is performed to determine
if the IMM estimator will indeed improve performance compared to the Kalman filter
currently applied to our application. The emulated ball trajectory used for this simulation
contains speed changes that are obtainable in a real game of table football, see Figure
2.10. Because we assume motion in the x− and y− directions to be independent of each
other, it suffices to focus on one direction only (x in this experiment).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

x
[m

]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−10

−5

0

5

10

ẋ
[m

/s
]

t [s]

Figure 2.10: Simulated ball trajectory

The simulated measurement noise is set at the experimentally found value of σv = 2
[pix], which corresponds to 3.5 [mm]. The sampling frequency used is 200 [Hz].

The Kalman filter currently used, with a single white noise acceleration model, is com-
pared to an IMM estimator with two models: A constant velocity (CV) model for non-
maneuver, and a white noise acceleration (WNA) model for maneuver. We note that
the proposed WNA model, see Section 2.4.2, is the simplest maneuvering model and that
other more involved models are also possible [106]. Both filters are designed by selecting
parameters that minimize the root mean square errors (RMSE) of the velocity eẋ, hereby
assuring an accurate heading estimation required for intercepting the bouncing ball.

In Figs. 2.11-2.12 and Table 2.6 the time- respectively RMS- errors for both position and
velocity are shown, which indicate that the IMM has improved performance for the non-
maneuvering motion. In comparison to the Kalman filter, the IMM estimator produces
smoother velocity estimates for non-maneuvering, while maintaining the ability to react
to the maneuvers quickly. This is due to the IMM’s self-adjusting variable-bandwidth,
see Section 2.3.4.

36 Chapter 2: Object Localization And Tracking

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5
x̂
[m

]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−10

−5

0

5

10

ˆ̇ x
[m

/s
]

t [s]

(a) Estimates

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−2

−1

0

1

2

e x
[c
m
]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−10

−5

0

5

10

e ẋ
[m

/s
]

t [s]

(b) Errors

Figure 2.11: Kalman filter simulation results

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

x̂
[m

]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−10

−5

0

5

10

ˆ̇ x
[m

/s
]

t [s]

(a) Estimates

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−2

−1

0

1

2

e x
[c
m
]

t [s]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−10

−5

0

5

10

e ẋ
[m

/s
]

(b) Errors

Figure 2.12: IMM estimator simulation results

Table 2.6: Estimation errors

Estimator Overall RMSE NM† RMSE Peak error
x [mm] ẋ [m/s] x [mm] ẋ [m/s] x [mm] ẋ [m/s]

Kalman 3.4 1.6 3.2 0.63 12 8.2
IMM 2.9 1.5 2.5 0.21 12 8.4

† Non-maneuvering

2.6 Experiments

In the previous section a quantitative comparison was made between the IMM estimator
and a carefully tuned Kalman filter. From that comparison follows that the IMM estima-
tor was a preferable choice for our application. To evaluate both the implemented detec-
tion component and the IMM estimator on the real set-up, a dataset has been gathered

2.6: Experiments 37

from which two points will be discussed, the localization performance and the tracking
performance.

2.6.1 Localization Performance

In Figure 2.13 the static mask of the field is depicted (in black), together with an overlay
of two types of markers:

• gray crosses, indicating raw position measurements when the ball was localized,

• black crosses, indicating a measurement where the ball was lost.

Figure 2.13: Detection results. Black crosses indicate a measurement where the ball was
lost.

What can be observed is that the ball is frequently lost at the edges of the static mask.
These are the positions where a large part of the ball is cut-off in the static masking
operation [79]. However, the ball is also occasionally lost in between the masking con-
tours. These events occur because of poor ball calibration, with respect to both the color
segmentation classifier and the Circular Hough Transform parameter settings.

2.6.2 Tracking performance

The performance of the IMM filter was evaluated quantitatively in Section 2.5. Because
on the real set-up it is difficult to obtain any form of ground truth on the actual ball
position and velocity, another overlay is depicted. In this overlay, see Figure 2.14, the
raw position measurements are now indicated in black crosses. The gray line indicates
the position estimate from the IMM estimator.

From this picture, it can be observed that the IMM position estimates accurately cor-
respond to the raw position measurements. Also, when the ball is lost the IMM filter

38 Chapter 2: Object Localization And Tracking

Figure 2.14: IMM performance. Black crosses indicate the raw measurements, the gray
line indicates the IMM estimate.

adequately propagates the position estimate, maintaining a proper estimate on the ball’s
actual position.

2.7 Discussion And Conclusions

2.7.1 IMM versus standard Kalman filter

In Section 2.5, quantitative simulations were performed to investigate the performance
of the IMM filter compared to a standard Kalman filter. From these simulations was
concluded, that the IMM filter outperforms the Kalman filter based on the RMS values
of

• the position error, which is required to intercept the ball accurately,

• the velocity error, which is required for an accurate heading reference.

What is important to note in this aspect, is that in these simulations the sample time was
set at 0.005 [s] (200 [Hz]). In Section 2.3.4 was explained that the sample time is used to
determine the ‘target maneuvering index’. The larger this value, the more suited an IMM
state estimator becomes for the application compared to a Kalman filter [89, 159]. If we
consider that the sample time appears quadratic in the numerator of the maneuvering in-
dex, we can conclude that for lower frame rates (and thus larger sample times), the IMM
estimator will outperform the Kalman filter even more than what we have shown now. As
the expected goal of future robotic developments is to become smaller and therefore have
less computing power, a lower frame-rate (and thus the required computational load) is
possibly one of the future requirements of vision and estimation techniques. For this rea-
son, will the IMM method become more attractive to be used in this specific application.

2.7: Discussion And Conclusions 39

2.7.2 Ball Localization Performance

Although the ball was localized in the majority of the obtained measurements, improved
calibration will lead to better detection results. Obtaining the best results from the lo-
calization component will be achieved by investigating the combination of color classi-
fication (leading to more positive ball pixels), edge filtering (obtaining more pixels that
are on the outer edge) and circle detection. Especially tuning of the last component re-
quires caution, since the chosen values for the radius and the accumulator threshold [101]
depend heavily on the color and edge segmentation steps.

2.7.3 Ball Tracking Performance

A final conclusion is based on the results obtained from the experiments performed on
the real set-up. Although the simulations in Section 2.5 have shown that the peak error
for both the IMM and the Kalman filter techniques was no more than 12 mm, on the
real set-up the actuated puppets on some occasions seem to miss the ball (i.e., a kick
is executed too late). It can be assumed, that the main cause for this lies with the time
delay between capturing an image and actuating the puppets. To determine the size of
the maximum error caused by time delay, an analytical worst case value of 17.5 [ms]
is determined in Appendix A, which is approximately equal to an empirically measured
value of 10.6 [ms], see Figure 2.15.

0 5 10 15 20
0

5

10

15

τ
[m

s]

t [s]

Figure 2.15: Measured time delay.

The maximum error that can be caused by this time delay occurs at maximum speed
(5 [m/s]), and is therefore equal to 53 [mm]. This value explains why sometimes the
puppets kick too late4. Solving for the time delay can be performed by predicting the
current state estimate over the delayed time based on a constant velocity model. Further
work has to reveal if this proposed solution will solve the problem.

4Remember that this error only occurs at maximum speed

40 Chapter 2: Object Localization And Tracking

41

Chapter 3

Policy Learning Using
Greedy-GQ(λ)

This chapter presents the design of a policy for a custom made, highly dynamic foot-
ball table setup. As the design of an optimal policy for such a complex system is diffi-
cult to achieve manually, a recently developed Reinforcement Learning technique called
Greedy-GQ(λ) is adopted to serve as a design tool. To deal with the typical curse of
dimensionality, function approximation and temporal action abstraction are applied to
condense the large state and action spaces of this system, enabling the learning algorithm
to be run under time and memory constraints on a modest everyday desktop PC. The
integration of this work is experimentally validated, where the performance of Greedy-
GQ(λ) is compared against well-known existing methods for learning. Additionally, a
detailed simulation model has been designed to safely and efficiently perform experi-
ments, and to learn an initial policy that can be applied on the real table. At the time of
writing, this work can be considered as a first evaluation on the application of Greedy-
GQ(λ) on this type of complex and adversarial system.

This chapter is based on “Policy Design For A Complex And Adversarial System Using
Greedy-GQ(λ)”, R. Janssen, E. Stoltenborg, G. Mohanarajah, R. van de Molengraft and
M. Steinbuch, Machine Learning, 2014 (in preparation)

3.1 Introduction

The increasing research interests for coordinated satellite flight, multi-player computer
games, process technology and collaborative service robots push the development of new
techniques to operate high dimensional coordinated systems in dynamic environments.

42 Chapter 3: Policy Learning Using Greedy-GQ(λ)

Relevant research topics include large scale machine learning techniques, tracking and
data association, control methods for multi-agent systems and human-in-the-loop robotic
systems. To perform related experiments in a small and well-controlled environment, an
automated soccer table has been developed, see Figure 3.1.

(a)

Camera

Human controlled rod

Automated Rod

(b)

Figure 3.1: Eindhoven University automated football table.

The specific purpose of this table is to serve as a small-scale testbed to validate method-
ologies of the above mentioned research topics.The table consists of an official foosball
table, which has been equipped with an overhead camera to track the ball, and on one
side with automated rods, allowing it to play against humans as a robotic adversary.
The software for this system has been developed in MATLAB/Simulink [178], with the
additional support for open-source libraries, such as Prosilica [5], OpenCV [40], and Ar-
madillo [154]. A more detailed description of the design of the table can be found in
[78], and the methods used to detect and track the ball are described in [80].

3.1.1 Designing a smarter control strategy

The current control strategy of the table entails a straightforward return of the ball when
it approaches one of the mechanized puppets. A challenge therefore lies in the devel-
opment of a smarter control strategy, for which manual modeling is often still the most
widely applied approach. This approach has similarities with planning based approaches,
such as A∗ [66] or Dynamic Programming techniques [20], which base their decisions on
an accurate model of system dynamics, the effects of the applied actions and the ex-
pected responses of the environment. As systems become more complex, non-linear and
stochastic, accurate models are however more difficult to obtain by manual design. In
stochastic games, such as computer GO, recent planning approaches involve forward-
search using upper-confidence bounds on tree search [10] and Monte-Carlo Tree Search
[35]. Such methods involve either a model of the environment, or an accurate black-box
simulator that can be used for real-time projection, which are highly restrictive require-
ments to their practical application. Modeling a control strategy by manual design can
also be very time consuming and often suboptimal, because anticipation, tuning and the
incorporation of all possible scenarios is tedious and often not feasible. Also, due to

3.1: Introduction 43

the static nature of these control strategies, changes in the environment which are un-
accounted for at design time can cause degradation in the performance of the strategy.
Furthermore, in adversarial environments with (human) opponents these strategies can
become predictable and easy to counter.

For these reasons, it is desirable for a system to autonomously generate and adapt a
strategy, based on the experienced response the system gains by interacting with the en-
vironment. A modern day method that is suitable for this task is Reinforcement Learning
[166]. Reinforcement learning requires only the experience of interacting with the envi-
ronment to generate a strategy, by basically using a trial and error approach. It observes
transitions and rewards and derives a strategy, or so-called policy, from a learned input-
output representation of the systems states and actions. This representation is typically
called a value function, and represents the importance of a certain state or state-action
pair with respect to a chosen policy and reward structure. It has been shown that policies
generated by Reinforcement Learning often trump their hand-coded rivals [163]. Further-
more, recent advances in the field of Reinforcement learning have made it applicable to
systems with large state-action spaces, by generalizing over states and clustering actions
into condensed forms [17].

From the available existing on-line Reinforcement Learning algorithms, this work tar-
gets the (stochastic) gradient based Temporal Difference method Greedy-GQ(λ) because
of its theoretical convergence properties, and because it scales linearly in computational
complexity with the number of parameters. In this work, it will be compared to exist-
ing methods, such as grid-based Q(λ), which is guaranteed to converge and has low
computational costs, and to approximate Q(λ). The latter only has convergence guaran-
tees under very restrictive conditions, but often converges quicker and is computationally
cheaper than gradient-based algorithms (such as Greedy-GQ(λ)). According to the de-
velopers of the algorithm, Greedy-GQ(λ) has not yet been studied when applied to a
large scale real-world problem.

3.1.2 Problem statement

The concrete problem statement of this work is defined by the development of a more
sophisticated control strategy for the automated football table, for which considering the
system’s complexity and adversarial character, an off-policy, gradient based Temporal
Difference learning technique will be adopted as the preferred design tool. Within this
field, Greedy-GQ(λ) will be selected as the proposed learning algorithm, as it claims
superior convergence guarantees over comparable methods and moderate computational
demands.

3.1.3 Contribution

Although experiments of Greedy-GQ(λ) have been conducted on a robotic multi-sensor
platform called Horde [169], none of these experiments involved a large-scale and ad-

44 Chapter 3: Policy Learning Using Greedy-GQ(λ)

versarial application as the system described here. Furthermore, this work describes
efficient, reusable implementations of function approximation and temporal action ab-
straction, hereby demonstrating how the application of such an algorithm can be applied
to a complex system while still being able to execute under time and memory constraints
on a modest everyday desktop PC.

3.1.4 Outline

The following section presents a general overview of the learning system, and roughly
describes each of the involved components. The section thereafter discusses these com-
ponents, and how the involved methods are selected and applied. After that, several
experimental test cases will be described, in which the performance of Greedy-GQ(λ)
is compared against well-known existing methods. This section will also describe the
transferability issues that arise when a policy learned for a simulation model is applied
to its real counterpart. Finally a conclusion of the described work is presented, together
with a discussion on future work, proposed to improve upon the current implementations.

3.2 System overview

Learning is applied to the system based on the general learning architecture sketched in
Figure 3.2.

constraint
generator

trajectory
generator

IMM
Filter

Automated Football Table

ball
state

opp
pos

score
detection

learning algorithm

ball
pos

action primitives

trajectory

volt

enc

action

motion
constraints

att
pos

state merging
input state

rod
controllers

approximation
features

Figure 3.2: Learning architecture.

During learning, the learning algorithm (Section 3.3.2) receives rewards related to the
goals scored. Based on these rewards and a selected behavior policy, the learning al-
gorithm selects an action which is converted into an executable trajectory by the action
primitives (Section 3.3.1).

3.3: Application of methods 45

Through the overhead camera the (raw) ball position is detected, from which a full ball
state is reconstructed by an Interacting Multiple Model (IMM) filter. This filter will not
be further addressed here, but a detailed description of its implementation on the football
table can be found in [80].

Together with the position of the (human) opponent rod and the (mechanized) attacker
rod, the ball state forms the input state to the learning algorithm. This work describes
the use of an approximation to represent the input state efficiently, hereby transforming
the representation of the input state into a smaller set of approximation features. This
approximation will be discussed in Section 3.3.2. In the upcoming section, the design of
the action primitives will be described firstly.

3.3 Application of methods

3.3.1 Design of action primitives

In various mechatronic applications, optimal or near optimal solutions to sub-tasks, so-
called action primitives, can be derived from separate simplified learning procedures or
fine tuning by hand. As indicated previously in Figure 3.2, this work describes the use
of action primitives for translating (symbolic) discrete actions, available to the decision
maker, into executable trajectories. The upcoming section presents the implementation
details for a set of naturally occurring action primitives applicable to the presented type
of system.

For the automated football table 5 distinct action primitives have been devised, see Figure
3.3.

(a) (b) (c) (d)

Figure 3.3: Available actions on the automated football table. Shoot (a), Tap left/right
(b), Take (c) and Wait (d).

• Shoot performs a hard shot,

• Tap left/right taps the ball with the side of the puppet, to either left or right,

• Take intercepts and stops the ball with the front or back side of the puppet’s feet,

46 Chapter 3: Policy Learning Using Greedy-GQ(λ)

• Wait explicit do-nothing (avoid if necessary)

These action primitives enable the transformation of a discrete action into an executable
trajectory. Action primitives that represent a temporarily extended course of a discrete
low level action are referred to as temporally abstract actions in the reinforcement learn-
ing literature [168].

Temporal action abstraction

In a continuous state space, a temporal action abstraction can be seen as the conversion
of a discrete (often symbolic) action primitive into an executable reference signal, where
an in-between step can be found in the generation of a set of motion constraints. This
process is schematically depicted in Figure 3.4.

Figure 3.4: Temporal action abstraction: (1) The decision maker decides on an action
primitive at at time t and state st . (2) State of the ball is extrapolated (dotted circle)
to determine the intersection point. Based on the extrapolated intersection point and
the selected action, constraints g1 and g2 are generated using heuristics. (3) Temporal
trajectories are generated based on the current position and constraints.

These constraints can become noisy when they are based on features in the state s ∈ S
which are inaccurately measured, i.e., an inaccurate measurement of the ball or an op-
ponent puppet. Moreover, if extrapolations are used for e.g., calculating the constraints
of an interception task (such as a trying to predict where a mechanized puppet has to
intercept the ball), the noise on these constraints will be amplified. A commonly used
method for smooth motion generation based on noisy constraints is the use of a chain of
quintic polynomials, often referred to as a spline [149], which involves the calculation of
six parameters at each update of the constraint. Because of the unstable nature of a poly-
nomial, updates also need to be performed after completion of an episode. Also, solving
a set of six equations at every constraint update is a computationally expensive process
and there is no way to pose intermediate constraints on e.g., maximum acceleration and
velocity.

3.3: Application of methods 47

Another method to find parameters is by solving a convex optimization problem, which
does allow such constraints. However, avoiding obstacles requires carefully selected
via-points, and finding such points effectively is difficult. This is most readily achieved
by adding positional constraints to the optimization problem [11, 157]. Solving such a
problem however is computationally expensive, rendering the method not feasible for
high-rate real-time systems, especially if frequent re-planning is required. More compu-
tationally efficient discrete methods like [98], use a decision tree to generate trajectories,
allowing to embed all types of constraints on maximum jerk, acceleration and veloc-
ity. However, adding autonomous collision avoidance to the latter would still require
significant computational effort as it would again involve solving e.g., an optimization
problem.

Attractor dynamics for motion generation

Another method for constraint based motion generation that recently became more pop-
ular is the use of attractor dynamics. This method uses a known stable dynamic system
to generate point to point trajectories, where the target point is chosen as the equilibrium
center of the attractor, hereby guaranteeing stability and convergence. This work uses an
approach based on Dynamical Movement Primitives (DMPs) [74], which use a canoni-
cal attractor augmented with an extra forcing term to model non-linear system dynamics.
This allows the modeling of arbitrary complex trajectories, while still guaranteeing sta-
bility and convergence. The describing model is computationally efficient and allows
straightforward obstacle avoidance through the extra forcing term.

A DMP for the described system can be described by a mass-spring-damper system given
by

τ ẋ1 = x2 (3.1)
τ ẋ2 = α(β (g− x1)− x2))+ f (3.2)

Here g is the goal position, α and β are time constants and τ is a temporal scaling
factor. The states x1 and x2 represent the reference position and velocity that the agent,
a mechanically controlled puppet in this case, has to follow. The damping and spring
terms, α and β respectively, are often chosen so that the system is critically damped
(α = 4β) which yields fast, monolithic convergence towards the goal. The larger α and
β , the faster the convergence. Finally, f is the forcing term that is used to arbitrarily
shape the trajectory. Although typically the forcing term f is a function of time, note that
in this work f is regarded as a function of system state and used for obstacle avoidance.

Point-to-point motion generated using the original DMP formulation, suffers from large
accelerations at the beginning of a motion due to the large error term (g− x1) used in
(3.2). Although a solution to this is presented in [135], it comes with a significant increase
in computational cost. Since this diminishes the computational advantage over a spline
based approach, a more pragmatic solution is proposed that bounds the error term (g−
x1). Governing this term can effectively pose a soft-constraint on maximum acceleration

48 Chapter 3: Policy Learning Using Greedy-GQ(λ)

and velocity, and is implemented by replacing g in (3.2) with gb according to

gb = max(min(g,gmax),gmin) (3.3)

where

gmax = max(x1 + x2/β +
amax

αβτ2)

gmin = min(x1 + x2/β − amax

αβτ2)

This is essentially the same as saturating ẋ2 and does not danger convergence. However,
if the maximum acceleration amax is exceeded often convergence is no longer monolithic,
and overshoot occurs.

As most constraints are based on extrapolation, they will typically be more noisy at the
start of a motion due to extrapolation of an initial location to a target location. To in-
corporate this knowledge into the trajectory generation, the initial stiffness is modulated
using a Gompertz sigmoid whose dynamics are given by

ẏ = αs log(1/y)y (3.4)

where y denotes the value of the sigmoid, and αs denotes the stiffness or growth factor.
The initial value y0 is chosen close to zero and the stiffness is chosen such that y(T)≈ 1
and the end of the movement. Applying the Gompertz function and the saturation to the
system described in Equations (3.1-3.2), results in the following new system equations
given by

τ ẋ1 = x2 (3.5)
τ ẋ2 = yα(β (gb− x1)− x2))+ y f (3.6)

The effect of the Gompertz function on the system is visualized in Figure 3.5.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

q

Adjusted attractor
Basic attractor

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

4

q̇

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

q̈

time [s]

Figure 3.5: Basic and adjusted attractor dynamics.

3.3: Application of methods 49

Ball avoidance and non-zero target velocities

In addition to generating reference trajectories towards stationary targets, the devised
action primitives are required to generate reference trajectories whose constraints include
avoidance of the ball and non-zero final velocity targets.

For ball avoidance the forcing term f described in Equation (3.6) is constructed. For
this an intuitive 2D-Gaussian potential field is used, which is a function of the agent’s
position x1 and the ball position x0, and is given by

f (x1,xo) =
fdir

|| fdir||
Kaζ . (3.7)

Here Ka is a scalar gain, and ζ is the Gaussian potential given by

ζ = e−uδ 2
o,x e−2vδo,yδo,x e−wδ 2

o,y

u =
cos2 θ

2σ2
x

+
sin2

θ

2σ2
y
,

v =− sin2θ

4σ2
x

+
sin2θ

4σ2
y

,

w =
cos2 θ

2σ2
y

+
sin2

θ

2σ2
x
,

δo = xo− x1

where θ is the rotational angle of the 2D-Gaussian potential field with respect to the x-
axis. Finally, fdir/ ‖ fdir ‖ is a unit vector perpendicular to the vector δg directed towards
the goal. See Figure 3.6 for a schematic representation of the above.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

fdir

gδ

oδ

θ

Figure 3.6: Ball avoidance with indication of directional vectors.

50 Chapter 3: Policy Learning Using Greedy-GQ(λ)

Desiring a certain velocity trough a target position, i.e., a constraint on the target velocity,
can be achieved by defining a moving target [93], which basically makes the target goal
g time/phase dependent. This results in an altered equation for ẋ2

τ ẋ2 = yα(β (gm(t)− x1)− x2 + ġτ))+ y f (x1,xo) (3.8)

where gm(t) is simply chosen to be time dependent with constraints g(T) and ġ(T),
yielding gm(t) = g(T)− (T − t)ġ, ġ→ ġ(T), where T denotes the target time. This
basically yields a long ‘run up’ before approaching the target g, which for large velocities
can yield a large difference δgm(t) = gm(t)−g(T). To avoid this, saturation is applied to
δgm(t), so that the difference can not become larger than a certain value. This results for
gm(t) in

gm(t) = g(T)+max(min(δgm(t),δgmax),δgmin)) (3.9)

This ’run up’ towards the goal g and the saturation of gm(t) are visualized in Figure 3.7,
where δgmin =−1.

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

y

Time [s]

g
m

g
m

 (saturated)

g(T)

Figure 3.7: Goal at y = 1 with velocity ẏ = 1 at T = 2 and saturated gm(T).

In Figure 3.8, the trajectory for both a spline and altered attractor dynamic are shown for
a desired velocity ġ =

[
0.5 0

]T , trough the goal position g =
[

0.25 0.25
]T .

A more complex situation arises when the puppet is initially facing the ball, and it is re-
quired to hit the ball from behind. Here the puppet initially starts off with ball avoidance
switched on, and subsequently turned off at a fixed time before the final target time. This
fixed time interval is determined empirically. See Figure 3.9 for a schematic description
of this situation.

For each of the described action primitives in Section 3.3.1, these constraint-based at-
tractor dynamics are accessible in order to generate valid trajectories.

3.3: Application of methods 51

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

y

x

Attractor
gm

Spline

Figure 3.8: Attractor with moving target and spline-based trajectory for velocity con-
straint

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

t = t

t = t - t

t = t

0

f

f fixed

Figure 3.9: Avoid and Hit: At t = t0 the puppet and the ball are moving towards each
other. From t = t0 to t = t f − tfixed the collision avoidance is active, where t f is the final
impact time and tfixed is a fixed time determined heuristically. After t = t f − tfixed the
collision is switched off and the puppet moves towards the ball to hit it from behind.

3.3.2 The learning algorithm: Greedy-GQ(λ)

This section presents Greedy-GQ(λ), the core learning algorithm. First a brief intro-
duction of the involved Reinforcement Learning techniques is presented, after which
the selection of Greedy-GQ(λ) is motivated for the described application. Optimization
techniques and specific implementation details are presented at the end.

52 Chapter 3: Policy Learning Using Greedy-GQ(λ)

Reinforcement learning basic theory

In Reinforcement Learning, a learning agent selects an action at ∈ A(st) in state st ∈ S,
transits to a new state st+1 ∈ S and receives reward rt+1. The goal of the agent, is to
maximize the sum of obtained rewards over time, represented by the value function

V π(s) = Eπ

{
∞

∑
k=t

γ
krk+1|st = s

}
(3.10)

where γ ∈ (0,1) is the discount factor and π is the given policy that describes the proba-
bility of selecting action a at state s.

The value function of Equation 3.10 can be used to predict the value of a given policy π .
For control problems, such as presented here, an action-value representation can be used

Q∗(s,a) = E
{

rt+1 + γmax
a′

Q∗(st+1,a′)|st = s,at = a
}

=: T Q∗

where T is known as the Bellman operator.

The optimal policy π∗ that maximizes the total sum of rewards can be found by solving
the Bellman Optimality Equation given by

Q∗(s,a) = E
{

rt+1 + γmax
a′

Q∗(st+1,a′) | st = s,at = a
}

For low dimensional problems with known transition and reward models the above op-
timality equation can be solved by straightforward Dynamic Programming techniques
[20]. In the case of the automated soccer table these models are however not available
and difficult to obtain. Secondly, the state-action dimension of the presented system is of
a much larger scale. To indicate the number of possible Q(s,a)-values of this system; if
the ball state (consisting of x,y-position and velocity) is discretized in 1 cm and 1 cm/s in-
tervals respectively, and the number of actions is 5, the total amount of state-action pairs
is 109. Storing these values in double format would take 3.8 GB of memory, already too
much for a modest everyday PC to be stored in memory. Section 3.3.2 describes model
free variations of learning the value function described in Equation (3.3.2) through ex-
perience. Dimensionality reduction techniques, required to deal with the large system
dimensions, are presented in Section 3.3.2.

Q-learning

Two main techniques exist for model free value function learning: Monte Carlo methods
and Temporal Difference learning. A Monte Carlo method completes a full episode,

3.3: Application of methods 53

and then updates the value function for all states (or actions). As opposed, Temporal
Difference learning updates the value function at every time step.

For the presented system, an extension to Watkins’ Q-learning [186] is selected, a Tem-
poral Difference learning method for action value functions, as this method finds the
optimal action values under off-policy training. Off-policy training enables a system to
learn about a target policy (e.g., an optimal policy), while following a different behavior
policy (e.g., exploratory).

The iterative update rule for Q-learning is given by

Qk+1(st ,at) = Qk(st ,at)+α∆t (3.11)

where ∆t is the Temporal Difference error given by

∆t := rt+1 + γ max
a

Qk(st+1,a)−Qk(st ,at) (3.12)

To improve sample efficiency, eligibility traces [166] can be used. Eligibility traces allow
the assignment of credit to a memory of recorded action values, hereby bridging the gap
between the occurrence of events and the collection of data. Eligibility traces are applied
through

Qk+1(st ,at) = Qk(st ,at)+α∆tet (3.13)

where

et =

{
1+ γλet−1 if at+1 = a∗

γλet−1 if at+1 6= a∗ (3.14)

with e0 = 0 and λ ∈ (0,1). In the presented system ε-greedy is chosen as the behavior
policy, which has an ε chance of selecting a random (exploring) action and a 1−ε chance
of selecting a greedy (i.e., optimal) action according to Q : a= π(s) =max

a
Qk. The above

tabular form of Q-learning is guaranteed to converge to an optimal policy if the states are
visited infinite times [166].

Function approximation

Making Reinforcement Learning more efficient for larger problems can be achieved by
applying function approximation, which attempts to represent the value function in a
general form. This reduces memory requirements, but it also allows the generalization
over states that have not been visited. This work focuses on the use of parametrized
linear function approximation with Gaussian radial basis functions [166], because of
convergence guarantees and moderate computational cost [23]. Furthermore, because of
the known distributions of the basis functions, only basis functions local to the current
system state have to be updated, eliminating the requirement for a computationally costly

54 Chapter 3: Policy Learning Using Greedy-GQ(λ)

global update (see Section 3.3.2). Using parametrized linear function approximation, the
Q-function is approximated by

Q(st ,at)≈ Qθ (st ,at) := θ
>

φ(st ,at) (3.15)

where θ is the parameter vector and φ(st ,at) := (φ1(st ,at), · · · ,φm(st ,at)) denotes the
feature vector, containing the state-action dependent values of the basis-functions φi(st ,at)∈
R, i = 1, . . . ,n. For a 1-dimensional state x these values are calculated using

φi(x) = e
||ci−x||2

2σr
i

2
(3.16)

where the choices of the centers ci and widths σ r
i of the basis functions are derived

through an empirical evaluation, involving the RMS error of the state observation as a
measure. In this evaluation it is assumed that the RMS error depends either directly
or indirectly (through wrongfully executed actions) on the measurement noise in the
observed state. Therefore, have the centers and widths of the basis functions been made
dependent of this noise through a variable ratio. For the case of having only one action
primitive (Shoot), and only one state (the position of the ball in lateral direction), the
outcome of this evaluation is depicted in Figure 3.10, where the RMSE of the value
estimation is depicted against the distance and width of the basis functions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
M
S
E

o
f
Q
(x
)
[-
]

Node distance as factor of σb

Width = 0.25 σ

b

Width = 0.5 σ
b

Width = 1 σ
b

Width = 1.5 σ
b

Width = 2 σ
b

Width = 2.5 σ
b

Width = 3 σ
b

Figure 3.10: RMSE as a function of the RBF width and the RBF node distance expressed
in the measurement noise of the observed ball state σb. The optimal point can be found
at a width equal to σb and a node distance of 2σb.

It can be seen that placing nodes further apart than 3σb yields a relatively large error, due
to high generalization. On the other hand, choosing a node distance smaller than σb also
yields a large error. This is due to a process called over-fitting.

3.3: Application of methods 55

Q-learning with function approximation

With the above function approximation, updating the parameter vector θt becomes core
of the learning problem. Applying linear function approximation to Q-learning [128]
results in a vector update rule similar to the grid-based Q-learning in Equation (3.11),
and is given by

θt+1 = θt +αδtφ(st ,at) (3.17)

where the Temporal Difference error δt is given by

δt = rt+1 + γ max
a′

θ
>
t φ(st+1,a′)−θ

>
t φ(st ,a) (3.18)

The above Q-learning algorithm with linear function approximation played a vital role
in modern Reinforcement Learning. Unfortunately, convergence for approximate Q-
learning using the above updates has only been proven for very restrictive conditions.
Most notably, Baird’s counterexample [192] shows that Q-learning with value function
approximation may diverge, making the approximation parameters go to infinity.

Greedy-GQ(λ)

Residual Gradient algorithms [13], propose a gradient descent based parameter update
rule with respect to the mean squared Bellman error given by:

‖ Qθ −T Qθ ‖2 (3.19)

Unfortunately however, these methods induce a bias due to the double sampling problem
[13].

In recent work, the Greedy-GQ update rule was presented in [116, 117]. This method
also describes a gradient descent based parameter update rule, but now with respect to
the mean square projected Bellman error (or MSPBE). Here, T Qθ is first projected back
to the parameter space, before the mean square Bellman error is calculated. A gradient
correction term w is introduced, that serves as a gradient correction term and compensates
for future Temporal Difference errors.

This addition result in the following two update rules

θt+1 = θt +α

[
δtφt − γ(φ>t wt)φ(st+1,a∗t+1)

]
wt+1 = wt +β

[
δtφt − γ(φ>t wt)φt

]
where φt := φ(st ,at) and

a∗t+1 = argmax
at+1

(θtφ(st+1,at+1)). (3.20)

Pseudo-code of the Greedy-GQ(λ) implementation including the eligibility traces is
given in Table 3.1 (from [117]).

56 Chapter 3: Policy Learning Using Greedy-GQ(λ)

Initialize w0 to 0, and θ to arbitrarily
Choose small values for α , β and
set values for γ ∈ [0,1]
Repeat for each episode:

initialize e = 0
choose actions at , in state st according to πb(st)
observe sample, (st , rt+1, st+1) and calculate
the feature vectors φt(st ,at) and φt(st+1,a∗t+1)
for each sample do

δt ← rt+1 + γmax
a

(
θ>t φ(st+1,a)

)
−θ>t φ(st ,at)

if at = a∗t , then ρt =
1

πb(a∗t |st)
; otherwise ρt ← 0

et = φt +ρtλet−1
θt+1← θt +α

[
δtet − γ(1−λ)(eT

t wt)φ(st+1,a∗t+1)
]

wt+1← wt +β
[
δtet − (φ T

t wt)φt
]

end for

Table 3.1: Greedy-GQ(λ) pseudo-code.

Parameter β denotes the step-size, which is similar to the learning rate α , and indicates
the amount of correction that is being applied to the weight vector w with respect to the
Temporal Difference error δt . The term ρt denotes the ratio between the probability of
selecting action a by the target policy πt(a|s) and the probability of selecting the same
action by the behavior policy πb(a|s). Since πt(a∗|s) = 1 for Greedy-GQ(λ) , this implies
ρat=a∗ =

1
πb(a∗t |st)

, and ρat 6=a∗ = 0.

Greedy-GQ(λ) can be considered as an effective learning method, with linear complex-
ity in the number of approximation parameters, learning convergence guarantees, and
straightforward integration with function approximation and eligibility traces. Because
it is a Temporal Difference learning method, it allows continuous policy updates, keep-
ing per-step calculation times constant and maintainable. Furthermore, because it allows
off-policy learning, it enables the possibility to calculate the optimal policy, while still
exploring for new opportunities. These reasons make it well suitable for the presented
type of application; a large-scale, real-world system with an adversarial character.

Efficient computations through sparse updates

This section presents a technique to further reduce system dimensionality, with the pur-
pose of requiring less computational and storage demands. The basic idea of this tech-
nique is that in the presented setup only a certain amount of local basis functions is re-
quired to represent a particular state [142]. This enables the updating of only the weight-
s/parameters corresponding to these local basis functions and leave the others untouched,
hereby gaining a huge computational advantage.

3.3: Application of methods 57

An example of these sparse updates is depicted in Figure 3.11, where both the neigh-
boring (i.e., local) basis functions as well as the non-contributing basis functions are
indicated.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Q
(s
,
a
)
[-
]

x

θ
T
φ(s,a)

Neighboring BFs
Non-contributing BFs
Calculated x-coordinate

Figure 3.11: Local and neighboring basis functions. x indicates the distance between the
basis function center and the position of the evaluated state.

Using a k-nearest-neighbor approach, an n-dimensional problem can be solved using
only kn nodes, without significant loss of accuracy. The approximate values for the rel-
evant vectors are stored in φ S

t , wS
t , θ S

t ∈ R1×kn
, together with an index-vector KS

t used
to transform back to the full problem, where KS(i) gives the index j in the real vectors
φt(j), wt(j), θt(j) of the sparse vector element i, θ S

t (i) : KS
t (i)→ θt(j). By calculat-

ing only local basis functions, the computational cost goes down significantly. In Table
3.2, the computation time of sparse calculation using 4 action primitives is compared to
performing updates on the full problem 1.

Dimensions→ 2 3 4
Number of nodes→ 900 27e3 36e4
Full GQ-update 64ms 2.6s 41.9s
Sparse GQ-update(k=10) 2ms 21ms 0.446s
Sparse GQ-update(k=7) 0ms* 4ms 0.1s

Table 3.2: Calculation times of Greedy-GQ(λ) updates with 4 action primitives.

At k = 3, the first node neglected is at a distance of 3σ r, which corresponds to a feature
value of the neglected node i of φi(x)≤ 0.011. This results in an error of approximately
two percent per state in the feature vector, which in respect to the gain in computational
cost can be regarded as negligible.

1Calculations marked with * took less tan 1 µs. All calculations are the average of 100 calculations

58 Chapter 3: Policy Learning Using Greedy-GQ(λ)

3.4 Experiments

To test and compare convergence and performance, several distinct test cases have been
defined. In these tests, Greedy-GQ(λ) is compared against grid-based Q(λ), approx-
imate Q(λ) and a hand-coded policy. In addition to real experiments, also simulated
experiments have been performed with a physics engine based simulator that closely
resembles the real system. These simulations allowed to have several controlled experi-
ments for analyzing various properties of the learning algorithms. Since the real set up
is already covered in Section 3.2, this section starts with an overview of the simulation
setup.

3.4.1 Simulator

Because typically a lot of episodes are required for learning algorithms to converge, a
simulation model has been developed specifically for this purpose. Learning takes place
in a simulator based on Gazebo [95] (Figure 3.12), which uses physics based on the Open
Dynamics Engine (ODE) [162].

Figure 3.12: Gazebo simulation model.

For the purpose of this work, a plug-in was built that enables fast synchronized interpro-
cess communication between Matlab/Simulink and Gazebo using shared memory. This
plug-in allows us to run simulations with the real motion controllers. Furthermore, the
ball detection algorithm is replaced by the ball-coordinates from the simulator, to which
noise has been added to simulate the noise characteristics of the real detection algorithm.
Based upon this, the Interacting Multiple Model (IMM) tracking algorithm [80] that es-
timates the state of the ball is also running in simulation, hereby enabling the simulator
to mimic the real setup as much as possible. In analogy with Figure 3.2 from Section
3.2, a human-like opponent has been added in simulation to imitate the behavior of an
average skilled player. To model this behavior, a straightforward mass-spring-damper is
used, with an equilibrium point at the lateral position of the ball (so the opponent moves
sideways with the ball, hereby trying to block the shot of the mechanized attacker). Fur-

3.4: Experiments 59

thermore, when a goal is scored this is detected in the simulator and fed into the learning
algorithm as an input to the reward structure.

3.4.2 Test cases

For the evaluation of Greedy-GQ(λ), 7 test cases are proposed, from which 6 are per-
formed in the simulator. The 6th test case will describe a scenario that is also transferable
to the real table. Transferability and performance on the real table are therefore discussed
in the 7th test case. The concrete 7 test cases are:

1. a 2-dimensional (2D) setting in which only the lateral position and velocity of the
ball (y and ẏ, see Figure 3.13) are available in the input state. This test case is
performed without noise on the ball measurement, resulting in a perfectly esti-
mated ball state by the IMM filter and hence, a perfect input state to the learning
algorithm,

2. same as test case 1, but now with noise on the input state. This results in poorer
ball state estimates provided by the IMM filter,

3. same as test case 2, but with the presence of (simulated) opponents (the goalie and
the last line of defenders, see Figure 3.13 for puppet topology). In this test case,
the state of the opposition is not available in the input state. Also, the opponents
will exhibit a static behavior with respect to the ball, i.e., they will laterally follow
the ball according to the opponent model discussed in Section 3.4.1,

4. same as test case 3, but now the opponents suddenly change their behavior during
the game. They will switch from laterally following the ball to remaining on a
static position, through which the algorithms adaptive characteristics will be eval-
uated,

5. same as test case 3, except that now the state of the opposition (lateral position of
the rods holding the goalie and the last line of defenders) is available in the input
state. This results in a 4-dimensional (4D) input state [y, ẏ,yg,yde f],

6. a 5-dimensional (5D) setting in which the opposition is present and moving as
in test case 3, but again not available in the input state. Instead, the longitudinal
position and speed of the ball (x and ẋ) and the angle of the attacking puppet θp
are added. This results in the input state [x, ẋ,y, ẏ,θp],

7. an experiment on the real table, in which the policy learned in test case 6 is applied
to the real system.

Reward structure and episode termination

Defining rewards for a Reinforcement Learning problem is typically an intuitive and
empirical approach. For the automated football table the rewards are defined as follows:

60 Chapter 3: Policy Learning Using Greedy-GQ(λ)

y

x

z

y
0

y
0

Area of in!uence

Opposition

Goal

Figure 3.13: Coordinate system, puppet topology and ball position spawning line y0 for
the 2D setting.

• loosing the ball (such that it rolls out of the puppets reach, or area of influence, see
Figure 3.13) without scoring a goal: -2.0

• running into a time-out (e.g. when the ball stopped moving at an unreachable
position and a time-limit is reached): -2.0

• scoring a goal: +4.0

• applying an action: -0.1

Episodes terminate when one of the first 3 cases occurs.

Case 1: 2D input state without noise

In the first test case, Greedy-GQ(λ) is compared to grid-based Q(λ), approximate Q(λ)
and a hand-coded policy in a 2D setting (ball y and ẏ), as depicted in Figure 3.13. The
spawning states of the ball y0 and ẏ0 are drawn from a random distribution. The agent’s
goal is to score as quickly as possible, using the actions Shoot, Tap left/right and Wait 2.

In this test case, grid-based Q(λ) uses a moderately coarse tabular representation of
Ny×Nẏ×Na = 61× 21× 4, where Ny and Nẏ denote the number of tilings in y and ẏ
respectively and Na denotes the number of available actions. Function approximation
used in Greedy-GQ(λ) and approximate Q(λ) uses a total of 20× 10 (non-normalized)
Gaussian RBFs, yielding a weight vector θt and wt of length 20×10×Na, where Na is 4
in this case.

The added measurement noise on the ball detection σb is set to zero, resulting in perfect
state estimates by the IMM filter. However, because the real motion controllers are used

2Take is here not relevant, as the ball state in this experiment is supposed not to vary in the x-direction.

3.4: Experiments 61

to control the rods, tracking of the prescribed trajectories is imperfect and posed con-
straints might not be satisfied (yielding a stochastic action outcome). The experimental
results are shown in Figure 3.14.

2000 4000 6000 8000 10000
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

S
uc

ce
s

R
at

io

Number of episodes

greedy−GQ(0)
greedy−GQ(0.1)
Q(0) w/ VFA
Q(0.1) w/ VFA
Grid Q(0)
Grid Q(0.1)
greedy−GQ(0) (π

fixed
)

Figure 3.14: Learning performance moving average (α = 0.2, ε = 0.25) for test case 1.

From Figure 3.14 it shows that Greedy-GQ(λ) and approximate Q(λ) converge far quicker
than grid-based Q(λ), which is primarily due to added generalization from the use of
function approximation. Also, approximate Q(λ) converges faster than Greedy-GQ(λ),
despite using the same learning rate α . This is due to the gradient correction term w,
which adjusts the updates with respect to the gradient, limiting the rate of change in the
parameters. The trajectory of subsequent updates changes direction more slowly because
of this, which causes slower convergence [50].

The large swing in performance, which shows in this case for approximate Q(λ), is likely
due to variance in action outcome. This means that if a (supposedly optimal) action con-
secutively fails, the ε-greedy policy will start to give preference to another (possibly sub-
optimal) action, resulting in a change of policy. This causes these ‘long term’ changes
in performance, which are not necessarily unique to approximate Q-learning. Using a
lower, or variable α will limit this phenomenon. Figure 3.15 shows the policies learned
by the Greedy-GQ(0) against the two dimensional lateral state (y, ẏ) of the ball.

Along the line y= ẏ the ball is in a state moving towards the center. In this region Greedy-
GQ(0) decides to shoot for the goal. Note that due to the temporal action abstraction
shoot at a given state does not mean that the ball is intercepted at that state. In regions
around y = ẏ shoot intercepts the ball around the center y = 0. Another, interesting
observation is the region around the line ẏ = 0. Here, when the ball is on the left (y > 0)
the Greedy-GQ(0) taps right and when the ball is on the right taps left. But, when the
ball is closer to the wall it taps towards the wall to get the ball to the center.

In order to compare the performance of the learned policies to the hand-coded one, the
full-greedy (ε = 0) performance of the learned policies is used after 104 episodes3. The
results are plotted in Figure 3.16, and the average greedy performance can be found in

3For this specific test case it takes approximately 1 hour of simulation time to complete 104 episodes.

62 Chapter 3: Policy Learning Using Greedy-GQ(λ)

Figure 3.15: Learned Greedy-GQ(0) policy.

Table 3.3.

1.1 1.15 1.2 1.25 1.3

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
s

R
at

io

Number of episodes

greedy−GQ(0)
greedy−GQ(0.1)
Q(0) w/ VFA
Q(0.1) w/ VFA
Grid Q(0)
Grid Q(0.1)
greedy−GQ(0) (π

fixed
)

Hand−Coded

Figure 3.16: Greedy performance of learned policies and the hand-coded policy.

From Figure 3.16 can be derived that grid-based Q(0) is still improving, which indicates
that this method, as opposed to the methods using function approximation, has not yet
reached convergence after 104 episodes. This observation can be attributed to the more
generalized representation of the value function, enabling faster convergence.

As indicated in Figure 3.14, the behavior policy πb for Greedy-GQ(λ) is not chosen to
be fixed, but instead an ε-greedy policy is used. When coupled with a low value of α ,
this should not danger convergence [116]. The result when using a fixed (stochastic)
behavior policy, π f ixed is also shown in 3.14. Although this policy obviously does not
perform well during learning, the learned policy shows comparable (greedy) results to
that without the fixed behavior policy (see Figure 3.16).

The use of eligibility traces with grid-based Q(0.1) offers significantly faster conver-
gence over the grid-based Q(0) update as sample efficiency is improved. However, it

3.4: Experiments 63

does impose additional computational demands as more samples have to be updated. For
Greedy-GQ(λ) the use of eligibility traces shows no significant difference in overall per-
formance and convergence, and for approximate Q(λ) it yields a minor improvement.
This minor (or insignificant) increase in performance can be explained by the fact that
convergence is already fast due to the use of function approximation, yielding shorter
episodes and smaller TD-errors. Moreover, because exploratory actions are cut-off in
the trace (by ρ → 0, see Section 3.3.2), the added effect of eligibility traces is further
reduced. The hand-coded policy performs comparatively well (see Table 3.3), which for
this problem is fairly simple to design. After 104 episodes, the grid-based Q(λ) policies
perform significantly worse than the hand-coded policy, whereas the greedy performance
of Greedy-GQ(λ) based policies are comparable. The policies derived using approximate
Q(λ) outperform the hand-coded policy.

Case 2: 2D input state with noise

Next, the previous test-case is performed again, but now with noise in the ball mea-
surement, affecting both the decision making process and performance of the primitive
actions. In Figure 3.17 the learning performance is depicted.

2000 4000 6000 8000 10000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

S
uc

ce
s

R
at

io

Number of episodes

greedy−GQ(0)
greedy−GQ(0.1)
Q(0) w/ VFA
Q(0.1) w/ VFA
Grid Q(0)
Grid Q(0.1)

Figure 3.17: Learning performance (α = 0.2, ε = 0.25) with noisy state estimations.

The greedy performance can be found in Table 3.3 and is depicted in Figure 3.18.

Again the policies generated by algorithms using function approximation perform better
than their grid-based counterparts. Again, approximate Q(λ) converges the fastest. The
added noise naturally causes more variance in the learning performance of all variants,
which can be lowered by using an even smaller learning rate α . Notably Greedy-GQ(0.1)
now shows a large swing in performance, which was also discussed in the previous test-
case.

The use of eligibility traces yields a significantly better performance for Greedy-GQ(λ),
indicating that enhanced sample-efficiency plays a more significant role in a noisy envi-
ronment where generally more samples are needed. However, approximate Q(λ) again

64 Chapter 3: Policy Learning Using Greedy-GQ(λ)

1.1 1.15 1.2 1.25 1.3

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

S
uc

ce
s

R
at

io

Number of episodes

greedy−GQ(0)
greedy−GQ(0.1)
Q(0) w/ VFA
Q(0.1) w/ VFA
Grid Q(0)
Grid Q(0.1)
Hand−Coded

Figure 3.18: Greedy performance of learned and hand-coded policies with noisy states.

still only shows a minor improvement with the addition of eligibility traces.

Figure 3.18 shows that the hand-coded policy is performing significantly worse when
noise is added. This is due to the fact that no adjustments are made to cope with the
changed/worsened performance of the selectable actions. Such adjustments would re-
quire extensive manual tuning of this policy. Learned policies do constantly make ad-
justments, hence their degradation of performance due to the introduction of noise is
smaller. As a consequence, the grid-based Q(λ) policies now perform on par with their
hand-coded counterpart. Greedy-GQ(λ) and approximate Q(λ) both perform signifi-
cantly better compared to the hand-coded policy.

No Noise Noise Noise
& Opposition

Greedy-GQ(0) 77% 53% 54%
Greedy-GQ(0.1) 78% 64% 63%
Q(0) (w/ VFA) 88% 68% -

Q(0.1) (w/ VFA) 91% 72% -
Q(0) (grid) 64% 50% 34%

Q(0.1) (grid) 68% 46% 37%
Hand-coded 79% 49% 37%

Table 3.3: Greedy performance in 2D test-case. (Q(λ) has not been evaluated in the last
column, see Section 3.4.2.)

Case 3: 2D input state with unknown, moving opponents

Next performance is evaluated with (simulated) unknown opposition present, which is
depicted in Figure 3.19. The greedy performance can be found in Table 3.3. This case
was not performed for approximate Q(λ), as the trend of best convergence results shown
in earlier test-cases is expected to persist in this test-case.

3.4: Experiments 65

2000 4000 6000 8000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
uc

ce
s

R
at

io

Number of episodes

greedy−GQ(0)
greedy−GQ(0.1)
Grid Q(0)
Grid Q(0.1)

Figure 3.19: Moving average learning performance (α = 0.2, ε = 0.25) with noisy state
estimations and opposition present.

As mentioned, the overall learning performance again shows the same trend as in earlier
test cases, however the gap in performance between Greedy-GQ(λ) and grid-based Q(λ)
grows compared to the last example. Greedy-GQ(λ) generates the best performing policy
and grid-based Q(λ) performs comparable to the hand-coded policy (see Table 3.3).
Because the opponent shows consistent behavior it allows the agent to use its experience
to improve upon its performance.

Case 4: 2D input state with unknown, moving/static opponents

In the aforementioned test-cases the environment was modeled to be static. In this test
case, the environment will change during game play. The goal of this test case, is to
investigate the algorithms adaptive capabilities. More formally said; the ability to adapt
its target policy based on new experience.

In this test case, the learning agent has access to the (full) ball state, but the position of
the opponent remains unknown. Half-way trough the game (around episode 2500), the
opponents changes their behavior of laterally following the ball, into remaining at a static
position. The result of this test-case can be found in 3.20.

What can be seen in the above figure, is that around episode 2500 something changes
drastically in the system (in this case, a change in opponent behavior). Within 1000
episodes, the system has recovered its performance by updating its target policy to a new
optimum.

What clearly has to be noted in this test case, is that although adaptivity is shown through
policy iteration, it does not show the algorithm’s capability for on-line (i.e., intra-episode)
policy improvement. Unfortunately, the current simulator has not yet been developed to
support this evaluation. For the presented system however, adaptivity through policy

66 Chapter 3: Policy Learning Using Greedy-GQ(λ)

1000 2000 3000 4000 5000 6000 7000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
uc

ce
s

R
at

io

Number of episodes

greedy−GQ(0)

Figure 3.20: Greedy performance of learning agent with change in opposition behavior.
(A performance of 1 was achieved because of a static ball placement, hereby greatly
simplifying the learning problem.)

iteration is sufficient to cope with possible changes in system dynamics or opponent
behavior, as the episodes involved in a game of table football are typically short.

Case 5: 4D input state with known opponents

Following is a test case where opposition is present, laterally following the ball, and
their position is known to the learning algorithm. This setting results in the input state
[y, ẏ,yg,yde f], where yg and yde f are the lateral position of the goalie and the defender
rod respectively. From this test case, the effect of increasing the dimensionality of the
problem can be derived. The episodes are terminated in the same way as in Case 1-3.
The performance during learning is shown in Figure 3.21, where the performance for the
2D case is compared to that of the 4D case.

Convergence is notably slower for the 4D case, which is to be expected as experience
gets ‘distributed’ over a larger number of nodes. Also, variance in the solution is lower
for the 4D counterpart. This can be attributed to the earlier statement that experience
gets distributed. It is however also due to the fact that the opponent now no longer can
be viewed as a factor of ’noise’, i.e., the decision maker now can correlate the opponents
position to the observed rewards. The 4D case is not applied to grid-based Q(λ) because
of excessive memory requirements.

The hand-coded policy was altered to use the position of the opposition as well. The
adapted policy scores 46% of the time in the presence of noise and opposition, clearly
benefiting from the added input.

The 4D based Greedy-GQ(0.1) policy achieves a greedy performance of 50% after 104

trials, whereas the 2D based Greedy-GQ(0.1) policy scores 62% without knowledge of
the opposition. To achieve a similar performance, the 4D learning agent would require

3.4: Experiments 67

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
uc

ce
ss

 R
at

io

Number of episodes

greedy−GQ(0.1) (2D)
greedy−GQ(0.1) (4D)

Figure 3.21: Moving average learning performance (α = 0.2, ε = 0.25) with a 2D versus
a 4D input state.

a lot more trials. Because of the used opponent model, the ball state effectively contains
information about the opponent. So if the 4D policy would eventually perform better is
difficult to predict. In a scenario where the opponents change their behavior however,
adding these states will show a bigger benefit.

Case 6: 5D input state with longitudinal ball states and attacker angle

The final test-case uses all primitive actions (take is now available), where x0, y0, ẋ0 and
ẏ0 are drawn from a random distribution (see Figure 3.22).

y

x

z

Area of in!uence

Opposition

Goal

y
0

x
0

x
0 y

0

Figure 3.22: Coordinate system and ball spawning positions for the 5D case.

Here only results for Greedy-GQ(0.1) are shown, as differences in performance are now
sufficiently clear. The input used here is 5-dimensional:

[
x y ẋ ẏ θp

]
, where

θp is the controlled puppets angular position. The input state is approximated using
Nrb f = 31×21×11×11×7 RBFs, yielding a vector θ and w of length Nrb f ×5. Updates
are done using k = 3 nearest-neighbors per dimension, so sparse vectors of length 35 are

68 Chapter 3: Policy Learning Using Greedy-GQ(λ)

updated. Convergence of Greedy-GQ(0.1) is shown in Figure 3.23.

2000 4000 6000 8000 10000 12000 14000 16000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
uc

ce
ss

 R
at

io

Number of episodes

greedy−GQ(0)

Figure 3.23: Learning performance for 4-dimensional problem

The final greedy performance in this test-case is 67% , which is comparably high consid-
ering the increased size of the state space. This is mostly due the fact that after success-
fully performing the action Take, the problem becomes very similar to the 2D case.

For this problem the initial performance is lower. This is due to the fact that the selection
of the first action of the trial is far more important, e.g., avoiding the ball at the start of a
trial will just result in termination, which does not occur in the 2D case. This indicates
that less frequent exploration, or Soft-Max action selection [166] instead of the epsilon-
Greedy approach, might be more suitable for this problem. The latter was already applied
to Greedy-GQ, called Soft-Max-GQ, in [48].

The hand-coded policy is altered again to suit the problem, where the performance of the
hand-coded policy is only 26%. The policy clearly needs tuning, making a comparison
in this situation unfair.

Case 7: On the real setup

In the final test case, the previous learned policy is applied on the real set-up, in order to
test transferability. Actual learning, albeit computationally feasible, is not applied here
because setting up repetitive trials is a highly time consuming operation.

Instead, the learned policy from test case 6 is executed inside the systems real-time con-
trol loop, where an optimal action is calculated on-demand, using the sparse calculations
mentioned earlier4. Using sparse calculations makes it possible to finish these operations

4It would be more effective to perform these calculations in advance.

3.4: Experiments 69

when running at 2000 Hz in real-time 5, while simultaneously running the computation-
ally demanding ball detection and state estimation algorithms. This indicates that learn-
ing is also feasible in this setting, as adding the update rules require only moderately
more computational effort.

In Figure 3.24, key-frames are shown of an attacking move being played during a suc-
cessful execution of the learned policy:

• (a) The ball is approaching from the rear,

• (b) The policy selects the action Take,

• (c) The action Take results in a successful stop of the ball

• (d) The policy selects the action Tap-left, where initially the ball is avoided until
the puppet is at the right side of the ball and is capable of tapping it to the left,

• (e) The policy selects the action Shoot,

• (f) A goal is scored.

(a) (b) (c)

(d) (e) (f)

Figure 3.24: Experiments on the real setup.

Although the learned policy performs well, success rates comparable to those achieved
in the simulator (67%) are not achieved. For example, when handling the ball frequent
occlusions hinder accurate and consistent detection (and because of that, good action
execution). Although the IMM filter tries to handle these occlusions, the estimated ball
state is never as accurate as in the simulator. Also other issues like an imperfectly round
ball, and a not perfectly leveled playing field also add to more failures.

5Performed on a 3 GHz dual-core machine, with 3.8 GB of memory available.

70 Chapter 3: Policy Learning Using Greedy-GQ(λ)

Besides these additional factors of noise, transferability largely hinges on an accurate
simulator. Any inaccuracies in the simulation model can cause outcomes of actions to
significantly differ from reality. This could affect the decision making, because e.g.,
a larger rolling friction of the ball will cause it to roll less far during execution of the
action Shoot. Considering the action takes a finite amount of time, the displacement of
the ball during the action (before collision occurs) is now significantly different, causing
it to miss the goal. To cope with this, more thorough tuning of the simulator is required.
These pitfalls mostly affect the action Shoot, as e.g., Tap-left or Tap-right normally don’t
result in a terminal state (i.e., not losing possession). Instead, the policy re-selects the
action in order to get in front of the goal.

3.4.3 Discussion

Although not discussed here and in most other literature, designing the learning environ-
ment for a complex system can be a non-trivial task. Attributing rewards to the correct
action may prove difficult, as they are often delayed because of non-instantaneous state
transitions. Hence, careful design of episode termination and the assignment of rewards
is highly important. RL however does have to power to overcome certain problems like
these delayed rewards, because the reward still affects previous actions and hence indi-
rectly increases the value of the actual ‘responsible’ action .

Designing a reward function however is often far more easy than designing a policy
itself, as only the goal has to be represented. This does not take away from the fact
that great care must be taken when designing the rewards, as imbalanced rewards might
make the agent behave undesirably. Once the learning environment is in place however,
development of a policy is quick and tuning is no longer necessary. Even when a discrete
set of actions is presented, the learning agent can still devise solutions that were not
anticipated for. For instance, in simulation the agent often used the wall to bounce the
ball off, followed directly by a shot resulting in a goal.

This work showed that, in a more simple environment, hand-coded policies will perform
very well. For these cases setting up an RL experiment will generally cost more time than
creating an effective hand-coded policy. But even here, learned policies can eventually
lead to comparable or better performance. When other factors are introduced that are
unaccounted for in the hand-coded policy, such as noise and unknown opponents, the
learned policies started to outperform their hand-coded rivals. This is simply due to the
fact that, trough experience, the learned policies over time will achieve optimal behavior.

Greedy-GQ(λ) showed performance close to approximate Q(λ), with the added benefit
that in combination of a fixed, or slowly changing, behavior policy convergence can be
guaranteed. Greedy-GQ(λ) however, requires twice as much memory and doubles the
computational demand. Moreover, situations in which convergence issues arise are rare
in reality. Hence, for most cases, like the ones presented here, using approximate Q(λ)
should suffice.

The use of function-approximation proved highly useful in large states-spaces. Mostly

3.5: Conclusion & Future work 71

because of the additional generalization achieved, but it also makes the use of a high-
dimensional state-space more feasible. However, memory demands will still remain large
for high-dimensional problems, and performing updates to the full-problem is highly
computationally demanding. Using spare updates relieves this computational demand,
although it nevertheless grows exponentially with respect to the dimensionality of the
state-space. Also, convergence will often be slower for a higher dimensional problem.
Therefore, the input to a learning system has to be carefully selected.

Applying temporal action abstraction greatly reduces the complexity of the problem,
making the application of RL on the presented system feasible. However, it should be
noted that creating a robust and flexible set of actions is a time consuming task. Although
not discussed here, deciding on the granularity of the actions is also an important design
consideration. A coarse granularity would achieve a higher level of abstraction and hence
faster convergence, whereas a fine granularity would allow more flexibility and a possibly
better performance.

Applying eligibility traces for both methods only provides a marginal improvement in
speed of convergence. In the presented experiments however, they did not justify the
increased computational effort.

3.5 Conclusion & Future work

This chapter presents the application and evaluation of the first off-policy, linearly com-
plex, gradient based TD learning algorithm, Greedy-GQ(λ), on a real-world mechanical
set up.

While temporal action abstraction greatly simplifies the learning problem, it potentially
bounds the optimality of the resulting policy as the actions themselves might be non-
optimal. A way to increase this optimality, is by parameterizing the actions and using
Policy Search [166] for optimization. This approach could cope with factors like delay
and non-feasible constraints, similar to the work described in [94]. Furthermore, Policy
Search can learn a direct mapping between the action parameters and the desired outcome
of the action. This approach was described in [165] as Intra-Option Model Learning for
SMDPs, using the options formalism.

Moreover, where actions now are represented by their movements, they can also be
learned as a black-box model (i.e., their transition model), which learns how posed con-
straints in the action directly effects the environment. Actions could then represent a con-
tinuous range of outcomes from which the decision maker could choose (i.e., a bounded,
continuous action space). This would be similar to, for instance, a human tennis player,
that observes the approaching ball and decides where he wants to place it on the court
(the action outcome). This is done without explicitly thinking about how he should angle
his racket (the posed constraints). With the learned transition models, planning based
approaches like Monte Carlo Tree Search could be used as a decision maker. Using Re-
inforcement Learning to design a decision maker with a continuous action space could

72 Chapter 3: Policy Learning Using Greedy-GQ(λ)

also be considered, although this is highly challenging as finding the optimal action and
representing the action-value function will become significantly more computationally
demanding.

The transferability of the learned policies and the modeled action primitives to the real
table, as discussed in the previous section, appeared highly dependent on the accuracy of
the simulator. Although the adaptive nature of the algorithm allows it to deal with certain
anomalies, issues like delays, occlusions and small biases prevented the transferability of
success rates.

The application on the real set-up is currently limited to policy execution. An actual im-
plementation of continued learning on the real system should be straightforward, apart
from some practical problems, such as goal and opponent detection. More importantly, is
the fact that generating large data sets on the real set-up is time consuming. If implemen-
tations are fully completed however, it could use simulated experience as an initial policy
on which it improves during games. It could store several adapted versions, depending
on the skill level of its human opponent.

Very distinct action-primitives have been used so-far, which only cover a small part of all
possible situations. Tackling the full problem could perhaps benefit from defining sub-
goals, instead of having just the single goal of scoring. For this point of view, hierarchical
Reinforcement Learning can provide a framework for analysis, of which an overview can
be found in [17].

73

Chapter 4

Integrating Planning And
Execution

The aim of the RoboEarth project is to develop a globally accessible database, that en-
ables service robots to share reusable information relevant to the execution of their daily
tasks. Examples of this information are the hierarchical task descriptions, or action
recipes, that represent typical household tasks as symbolic action sequences. By an-
notating these static action representations with hierarchical planner predicates, they
can be interpreted by a Hierarchical Task Network planner, such as SHOP2, to com-
pose optimized robot plans flexibly, based on the actual state of the environment and
the available capabilities of the robot. To subsequently execute these plans in a house-
hold environment, the CRAM executive toolbox is adopted, allowing a tight integration
between plan execution and the run-time inference of dynamically updated environment
knowledge. The work described here presents the integration of these two planning and
execution components into one cohesive framework, tailored for the safe execution of
abstract tasks in challenging household environments. The resulting framework is imple-
mented on the AMIGO service robot and a basic experiment is conducted to demonstrate
the frameworks integral functionality.

This chapter is based on “Integrating Planning And Execution For ROS Enabled Ser-
vice Robots Using Hierarchical Action Representations”, R. Janssen, E. van Meijl, D.
Di Marco and R. van de Molengraft, International Conference on Advanced Robotics
(ICAR),2013

74 Chapter 4: Integrating Planning And Execution

4.1 Introduction

Nowadays robots are mainly used in industry to perform repetitive tasks in predictable
environments. Structured manufacturing lines and conditioned workspaces are necessary
requirements for robots to safely and accurately perform their instructed tasks. Since
robotic systems are getting more socially accepted in our daily lives, they are gradually
introduced into more human oriented domains as well, such as the medical and house-
keeping sectors, see Fig. 4.1.

Figure 4.1: The AMIGO robot performing tasks in a medical environment.

Bringing robots into human domains is however a challenging task, since these domains
are often represented by unpredictable and dynamically changing environments. Further-
more, performing tasks in human-centered environments typically requires robots to have
advanced interpretation and reasoning mechanisms, and a well-defined way to predict,
or project, how their actions change the environment. The reason why humans typically
outperform robots on these aspects, is because humans are still far better in exploiting
the mechanisms of memorization and communication: how to perform tasks and their
respective outcomes are typically well-known to a human, and if not, they are learned
from others or ‘googled’ on-line.

The RoboEarth project [184] aims to provide robots with such storage and communi-
cation mechanisms, enabling the global sharing of information between robots required
to efficiently and safely execute their instructed tasks. Examples of information shared
through RoboEarth are for instance the maps used for localization and navigation, the
object models used for perception and navigation, object ontologies used for reasoning
and classification, and task descriptions, or so called action recipes, that symbolically
describe task related action sequences and constraints. Action recipes currently stored in
the RoboEarth database are for instance the task sequences for serving a drink, or setting
a table.

4.1: Introduction 75

RoboEarth also provides in a common representation for these action recipes through the
RoboEarth action language [175]. This language is a formal and grounded representation
of the action recipes stored and shared through RoboEarth. One of the main features of
this language is the intrinsic embodiment of a semantically annotated taxonomic structure
that is used to classify action recipes, allowing class inheritance of recipe properties and
straightforward recipe selection based on semantic labels. An example of this can be
found in the selection of the action recipe ServingADrinkWithTwoArms as a subclass of
ServingADrink, that describes a more specified action recipe on how to serve a drink
when a platform has two arms.

Although the current representation of action recipes enables robots to execute a large
variety of pre-programmed tasks, due to their static nature they lack in flexibility when
tasks have to be performed in environments with changing constraints, such as when an
in-between door is suddenly closed and needs to be opened first before the robot can
pass. Another drawback of the current recipe representation is that they do not project
the state of the environment nor the state of the robot into the future, hence not assuring
that an executed action will not interfere with further task completion. A third drawback
of the current recipes is that the ordering constraint used to represent the order in which
actions are performed, is based on a straightforward numbering technique, impeding the
modular (i.e., hierarchical) enclosure of smaller recipes into larger tasks. Finally, since
currently the action recipes are not explicitly annotated with action costs, it is not possible
to optimize between recipes that accomplish similar tasks.

A solution to the above mentioned drawbacks would be to annotate the current action
recipes with planner predicates, such as pre-conditions, effects and costs, and use a hi-
erarchical search algorithm, or hierarchical task network planner, to compose optimized
plans based on the actual state of the environment and the state of the robot, hereby as-
suring (based on what was known at plan construction time) that executed actions do not
interfere with further plan accomplishment. Composing plans through planning there-
fore requires a complete overview of the environment at planning time, and adequate
re-planning mechanisms in case an insurmountable plan anomaly is detected during plan
execution time.

To experimentally validate the above proposed advancements, an integrated system has
to be developed that enables the interpretation and use of these planning and re-planning
methods, but is at the same time capable of handling small environmental challenges
during plan execution. And this is the focus of this chapter; a first design towards the
integration of a symbolic, hierarchical planner with a reactive execution engine, that
allows the successful accomplishment of abstract tasks by mobile manipulation platforms
operating in human domains. The planner has to be capable of interpreting adapted
versions of the action recipes as they are defined by the RoboEarth action language,
and the execution engine has to be capable of handling dynamic environment properties
and small assumption errors; a walking person may have to be tracked, or an object is
possibly located at a slightly different position than what was assumed at planning time.
In addition, re-planning will be incorporated as a recovery mechanism for when plan
anomalies cannot be resolved by the execution engine.

76 Chapter 4: Integrating Planning And Execution

The first part of this chapter will give a short summary of the contributions of this work,
followed by an overview of related work relevant to these contributions. The succeeding
section gives a global overview of the complete system, after which the involved com-
ponents will be discussed in detail separately. Subsequently, a real-life experiment is
presented that, although in a very basic form, describes the systems integral functional-
ity. Finally a discussion is raised, that describes future work related to the improvement
of the system and the additions required for the actual reuse of these tasks on a global
level through the RoboEarth action recipe database.

4.2 Contributions

The specific contributions of this work are the selection, customization and integration
of a hierarchical task network planner with a highly reactive and semantically expres-
sive executive. Secondly, the system will be equipped with auxiliary components that
enable the inference of the environment state required for planning and re-planning, and
components that enable real-world human-machine-interaction. Although the intention
of this work is to eventually upgrade to the OWL Semantic Web [22] representation of
the RoboEarth action language as earlier described in [175], this work initially focuses
solely on the architecture required to interpret an already established form of hierarchical
action representations and to investigate them for planning and execution in household
environments.

4.3 Related Work

In the field of integrated planning and execution architectures for robots operating in dy-
namic domains there are two well-established systems available; the LAAS Architecture
[21] based on the BIP [18] component design framework and CLARAty [139] developed
by NASA and the Jet Propulsion Laboratory.

The two-layered LAAS Architecture connects its lower level functional layer, imple-
mented in GenoM, to the high-level BIP component layer [18]. GenoM enables the
encapsulation of the robots operational functions in independent modules that manage
their execution by asynchronous service requests. The BIP methodology describes con-
nections with different priorities between components that, depending on the connection,
trigger functions within the GenoM modules. All the BIP components run in parallel and
can be triggered when needed, allowing the robot to respond immediately to a sudden
change in its environment, without having to first initialize certain required behaviors.

The second architecture, CLARAty, is also based on a two layered structure. It uses a
functional layer for lower level control, which is controlled by a decisional layer that
integrates planning, execution and communication. Two different structures for the deci-
sional layer are currently proposed: one describes the combination of a CASPER planner

4.4: System Design Motivation 77

with a TDL executive [160], and the other is composed of a EUROPA planner combined
with a PLEXIL executive [182].

Where the LAAS architecture uses its reactive behavior to respond to changes in the
environment, CLARAty consults software modules to create assumptions that are verified
against the perceived state of the world. Both systems therefore establish a certain level
of robustness against changes in the environment. They are not however, designed to
share task descriptions amongst platforms with different capabilities and have no explicit
methods of interpreting nor storing common task descriptions.

In the work of McGann [127] the TREX control framework is adopted to control a Wil-
low Garage PR2 service robot, allowing the robot to handle doors and plugs, while navi-
gating using a topological map. Although the developers briefly mention a desire for the
reuse of action primitives, there is no further discussion towards the reuse of hierarchical,
composite robot plans.

Enabling robots with different capabilities to share composite task descriptions requires
at first a common representation for these descriptions. As part of the EU funded RoboEarth
and RoboHow projects a first implementation is described in [174], where the Seman-
tic Robot Description Language (SRDL) [99] is used to match robot capabilities against
the task related components. Although this capability matching enables the filtration of
plans that cannot be executed by platforms missing the required capabilities, it does not
project the state of the world into the future, therefore not ensuring that a certain robot
feature remains available throughout the execution phase of the plan (e.g., a robot-arm
might become occupied with holding an object). Its representation also does not allow
the calculation of the most optimal plan, in case a task can be executed in multiple ways.
Although the language therefore establishes a common and well-defined representation,
it is imperative that methods are added for projection and optimization.

4.4 System Design Motivation

As described in the Introduction, the system should be capable of composing executable
plans from hierarchically structured task specifications, and able to execute these plans in
a challenging household environment. Based on the literature, a general layout for such a
system is represented in Fig. 4.2. The hierarchical action specifications, or in RoboEarth
terminology, action recipes, are downloaded from the Action Recipe Database. Based
on these action recipes, the planner tries to compose a sequence of primitive actions
[O1...On] that achieve the instructed task T from world state S0, where T is received
from a Human-Machine-Interface and S0 is received from a Reasoner. This reasoner, is
capable of inferring the state of the environment and formalizing it in a planner inter-
pretable (symbolic) form. The composed sequence of actions is subsequently exported
to the Executive and executed, where the Executive handles small assumption errors.
The Executive also invokes re-planning, if these errors cannot be overcome on execution
level. The next sections discuss the choice and integration details of each of the involved
components on a more in-depth level.

78 Chapter 4: Integrating Planning And Execution

Figure 4.2: The flow through the system with the main components indicated: Action
Recipe Database, Planner, Executive, Reasoner and Human Machine Interface.

4.5 Action Recipe Database

The Action Recipe Database contains the action recipes, that symbolically describe the
action sequences required to accomplish instructed tasks. The stored action recipes ei-
ther describe primitive actions, i.e., actions that can be considered as grounded robots
skills, and complex actions, consisting of either other complex and/or primitive actions.
Maintaining these action recipes in one central place, such as the globally accessible
RoboEarth action recipe database, allows to compare, rank and filter them, and enables
reuse across multiple systems in different scenarios. The definition for the action recipes
follows from the RoboEarth action language [175], where they are represented by the
OWL semantic markup language [141] and modularly arranged in a taxonomic struc-
ture, see Fig. 4.3.

Action

Perceive

VisualPerception TouchPerception

ActionOnObject

ServingSomethingOpeningSomething

OpeningADoor OpeningABottle

is-ais-a

is-a is-a is-a is-a

is-a is-a

Figure 4.3: Example of the RoboEarth action taxonomy as described in [175].

4.6: Planner 79

Although this structure enables the selection of an action recipe based on its taxonomic
classification, it does not formally describe under which conditions an action recipe is
valid to be used, nor does it represent its decomposition into other complex/primitive
actions. Without going into any planning details yet, the work of Nau [137] describes a
hierarchical structure in the representation of the planning domain D, hereby enabling the
representation of an action recipe as a well known plan decomposition tree. An example
defined by the ‘ServingSomething’ action recipe is visualized by the plan decomposition
tree in Fig. 4.4.

ServingSomething
Object Person

PickUp
Object

HandOver
Object Person

NavigateTo
Person

NavigateTo
Object

Perceive
Object

OpenGripper MoveGripper
Object

CloseGripper Perceive
Person

MoveGripper
Person

OpenGripper

Figure 4.4: A hierarchical plan decomposition tree of the ’ServingSomething’ action
recipe. Yellow blocks indicate complex actions, and red blocks indicate primitive actions.
The left-to-right arrows indicate the order in which the actions are executed.

The RoboEarth action recipes as described in [175] are originally represented in the
OWL-DL [141] syntax. To allow a fast first proof of concept of the system, the action
recipes discussed in this chapter are represented in the PDDL [126] syntax commonly
used for planning. Future work will include the downloading of action recipes from
RoboEarth, and the mapping of OWL-DL action recipes onto a planner interpretable
syntax. Methods for this mapping are described in the work of Klush [91] and Sirin
[161].

4.6 Planner

The goal of the planner is to find a plan P which achieves task T from state S0 through
the planning domain D. A planning algorithm suitable for our system has to meet the
following requirements:

1. The planning algorithm must be able to work with a planning domain D that is
hierarchically structured, because it must be compatible with the RoboEarth lan-
guage desire of using hierarchical action structures [175].

2. The planner must be fast in solving complex plans, enabling scalability towards the
use of a global database and allowing the system to respond quickly if re-planning
is requested (which possibly occurs on a high frequency).

80 Chapter 4: Integrating Planning And Execution

3. The planning algorithm should allow for an explicit cost optimization, over plans
that achieve similar tasks.

4. The planner must be able to evaluate external functions calls during planning, in
order to base its assumptions on the most up to date environment state information.

To meet the above requirements, the Hierarchical Task Network planner SHOP2 [137]
is adopted. First of all this planner is able to solve the planning problem (S0,T,D) as
described above with D being hierarchically structured. Secondly, it is fast in solving
complex plans, which is endorsed by the winning of the award for distinguished perfor-
mance in the 2002 International Planning Competition [114]. Furthermore, SHOP2 has
the ability to optimize plans based on a dimensionless cost criterion, and it allows for
external function calls in its axioms during planning, see Fig. 4.5.

(:− (c l a s s− a v a i l a b l e− i n− r e a s o n e r ? o b j e c t)
(e v a l (s u b C l a s s NIL ’? o b j e c t))
(e v a l (s u b C l a s s ’? o b j e c t NIL)))

Figure 4.5: SHOP2 axiom: the external function class-available-in-reasoner, callable
during plan composition.

Finally, SHOP2 is capable of creating partially ordered plans, enabling a more efficient
plan composition structure (see the example in the next section).

4.6.1 SHOP2 Planning Problem Example

To illustrate how the planner solves the planning problem (S0,T,D) for creating partially
ordered plans, a simple example presents the transporting of two objects, in this case a
soda and crackers, from different locations to the same location.

Let the planning problem be described by:
T = (t r a n s p o r t 2 c r a c k e r s c o u c h t a b l e soda c o u c h t a b l e)

S0 = (a v a i l−arm r i g h t)
(loc−r o b o t e n t r a n c e d o o r)
(l o c c r a c k e r s d i n n e r t a b l e)
(l o c soda k i t c h e n t a b l e)

D = (! loc−r o b o t ? l o c a t i o n)
(! o b j e c t−in−hand ? s i d e ? o b j e c t)
(! o b j e c t−on− l o c a t i o n ? s i d e ? o b j e c t ? l o c a t i o n)
(p l a c e ? o b j e c t ? l o c a t i o n)
(g r a s p ? l o c a t i o n ? o b j e c t)
(n a v i g a t e ? from ? t o)
(p i ck up ? o b j e c t)
(d r o p o f f ? o b j e c t ? l o c a t i o n)
(t r a n s p o r t ? o b j e c t ? t o)
(t r a n s p o r t 2 ? o b j e c t 1 ? t o 1 ? o b j e c t 2 ? t o 2)

4.6: Planner 81

where ‘transport2’ consists of two times the ‘transport’ method. The domain D repre-
sents the operators (the top three of the list, starting with an exclamation mark) and the
methods (the remainder of the list). Fig. 4.6 presents the hierarchical decomposition tree
of the method ‘transport2’ for the case where only one arm is available.

transport2
soda couch_table

crackers couch_table

transport
soda couch_table

transport
crackers couch_table

pickup
soda kitchen_table

dropoff
soda couch_table

pickup
crackers kitchen_table

dropoff
crackers couch_table

!object-
in-hand

soda

!loc-robot
kitchen_table

!loc-robot
couch_table

!object-on-
location

soda

!loc-robot
dinner_table

!object-
in-hand
crackers

!loc-Robot
couch_table

!object-on-
location
crackers

Figure 4.6: The non-interleaved decomposition tree of the method ‘transport2’ when
only one arm is available.

Now suppose the robot has two arms available, the right and the left arm. For this exam-
ple the availability of the left arm will be added as (avail-arm left) to S0. The resulting
plan is given Fig 4.7.

transport2
soda couch_table

crackers couch_table

!object-
in-hand

soda

!loc-robot
kitchen_table

!object-on-
location

soda

!loc-robot
dinner_table

!object-
in-hand
crackers

!loc-Robot
couch_table

!object-on-
location
crackers

Figure 4.7: This figure presents the operators of the interleaved decomposition tree of the
method ‘transport2’ for the case where two arms are available.

The robot will now pickup both objects before returning to the drop off location, demon-
strating the benefit of partially ordered task planning. The planner optimizes the number
of operators by reducing the accumulated cost, where in this example a unit cost was as-
signed to each primitive action. In addition, the planner can easily be extended by relating
costs to measurable properties of actions, e.g., duration, availability, force, distance, by
evaluating external functions calls during planning.

82 Chapter 4: Integrating Planning And Execution

4.7 Executive

The output of the SHOP2 planner is a symbolic sequence of primitive actions. To execute
these actions the CRAM [19] toolbox based on Common Lisp is adopted. The reasons
for using this toolbox are:

1. It provides tools for the execution of symbolic plans: the domain specific plan
language CPL (CRAM Plan Language) and symbolic identities (designators) for
actions, objects and locations.

2. It is based on a reactive planning approach [34, 58], which explicitly tries to cope
with unpredictable and dynamically changing environments. To do this it uses
fluents, which are system-wide variables that are continuously updated and mon-
itored. Fluents are used in the architecture to trigger for instance re-planning and
to start/stop threads when needed.

3. It is based on Common Lisp, by which it can use the standard debugging tools and
REPL (Read-Eval-Print-Loop) that Common Lisp provides. Because the SHOP2
planner is also implemented in Common Lisp, the domain, state and task defini-
tions can easily be validated through the REPL, resulting in an easy integration of
planner and executive.

A complete overview of the system is depicted in Fig. 4.8. The symbolic sequence of
action primitives constructed by the SHOP2 planner are mapped onto the domain spe-
cific language CPL and executed by the CRAM executive. The CRAM process modules
convert the symbolic action primitives into parameterized commands that are executable
by the robot. The planner Supervisor manages the start of the planning process upon
receiving a command, collects the information that is required for the planning process,
invokes the planning algorithm and instantiates re-planning when this is requested by the
executive.

The different components and data structures will be described in more detail in the
following paragraphs.

4.7.1 CPL

The CPL language uses semantic control structures to reason about actions through a
first-order representation. One of these control structures is the achieve function, for
which the outcome holds if the process succeeds. Other available control structures are
in-parallel-do to run different processes in parallel (returns true if all processes succeed),
and try-in-parallel, which returns true if only one action succeeds.

Fig. 4.9 shows the converted high-level plan for the example task ‘transport2’, used in
subsection 4.6.1.

4.7: Executive 83

 CRAM Executive

SHOP2

HMI

Action Recipe
Database

CRAM Process Modules

ROS ActionLib interface

Designators

 CPL plan

Goal State

Hierarchical Action
Structures

 System

 Environment
Information

Planner

Reasoner

navigation perception

Trigger fluent for
(re-)planning

Supervisor

Thread
Start/Stop

Thread
Start/Stop

 Environment
Information

Environment

Query Based

CRAM Threads

Knowledge
Base

Push Based

Bilateral

External Modules

Robot Platform

manipulation

Worldmodel
evidence

Sensor data

World Model

Figure 4.8: A more detailed overview of the integrated architecture. Designators are
symbolic representations of objects, locations and actions.

(t o p− l e v e l−p l a n t r a n s p o r t 2 ()
(w i t h−d e s i g n a t o r s (

(c r a c k e r s . . .)
(soda . . .)
(c o u c h t a b l e . . .)
(d i n n e r t a b l e . . .)
(k i t c h e n t a b l e . . .)))

(a c h i e v e ‘ (! l o c− r o b o t k i t c h e n t a b l e))
(a c h i e v e ‘ (! ob jec t− in−hand r i g h t soda))
(a c h i e v e ‘ (! l o c− r o b o t d i n n e r t a b l e))
(a c h i e v e ‘ (! ob jec t− in−hand l e f t c r a c k e r s))
(a c h i e v e ‘ (! l o c− r o b o t c o u c h t a b l e))
(a c h i e v e ‘ (! o b j e c t−o n− l o c a t i o n r i g h t c r a c k e r s c o u c h t a b l e))
(a c h i e v e ‘ (! o b j e c t−o n− l o c a t i o n l e f t soda c o u c h t a b l e)))

Figure 4.9: The SHOP2 ‘transport2’ plan converted to a CPL top-level plan. The desig-
nators are constructed with the with-designators command whereas the achieve function
executes the individual actions.

4.7.2 Designators

Designators are symbolic identities that are bound to real-world concepts. Three different
designators are available in CRAM: object designators to store information about an
object, e.g., type and properties; location designators to store the location of an object,
which can directly be coupled to the object itself by using for example (bottle-loc
(location(bottle1))); and action designators which contain information about
a task, with the arguments mostly represented by other object and location designators.

84 Chapter 4: Integrating Planning And Execution

4.7.3 Fluents

CPL uses so-called fluents to react on changes in the environment. A fluent is a system-
wide variable that contains information about sensor data or program events. CPL uses
pre-defined functions (e.g., (whenever fluent body), (wait-for fluent))
to trigger the agent’s reaction on a change of a fluent. In our system, fluents are used for
re-planning and to stop/start CRAM threads.

4.7.4 Process modules

Process modules are low level components that convert symbolic designators to param-
eterized commands that can be sent to the robots control layer. Properties of action
designators (e.g., to grasp, to open, etc.) and the object/location designators, e.g., loca-
tion coordinates, weight etc. are directed to control messages sent to the robots control
layer. In our system the robot control layer is implemented by the ROS Actionlib inter-
face [146]. Our demonstrator robot AMIGO currently has 5 different process modules;
Manipulation, Navigation, Point-Head, Speech and Perception. The process modules
are structured in such a way that similar robots can use similar modules. For example,
the manipulation and navigation process modules of AMIGO and the PR2 are almost
identical, only the names of the communication channels to the robot control layer are
different. For this reason, the process modules can be regarded as the robot’s driver layer,
identical to a driver layer of for instance a Smart Phone or Desktop PC.

4.8 Auxiliary Components

This section describes two auxiliary components, the Reasoner and the Human Machine
Interface, that are required to respectively infer the state of the environment and to deduce
a desired task from an abstract user instruction.

4.8.1 Reasoner

The Reasoner provides the system with symbolic information about the state of the envi-
ronment; it provides the planner with an environment state overview at planning time and
it provides the executive with updated information on objects and locations during plan
execution. The Reasoner provides a generic json prolog [191] interface to two different
sources of information, the Knowledge Base and the World Model.

The Knowledge Base is a SWI-PL [191] static collection of facts and rules, that are struc-
tured in a class ontology describing all common-sense knowledge about the environment.
Fig 4.10 gives a small example of this ontology in which one classification and two class
properties are depicted.

4.9: Basic Experiment 85

s u b C l a s s (coke , d r i n k s) .
h a s P r o p e r t y (c a b i n e t , o b j e c t h o l d e r) .
c l a s s A t L o c a t i o n (d r i n k s , k i t c h e n) .

Figure 4.10: Three small Knowledge Base excerpts: an object of class ‘coke’ belongs to
the superclass ‘drinks’, ‘cabinets’ can be used as ‘object holders’, and anything belong-
ing to the class ‘drinks’, can typically be found in the ‘kitchen’.

The World Model [54] contains a sophisticated tracking and data association algorithm
that quantifies streams of sequential measurements, called evidence, into unique objects.
At its core, the World Model is a multiple-hypotheses filter, able to combine different
forms of evidence into a common, dynamically updated world representation. Evidence
for the world model can contain spatial information about an object, as well as color,
weight, structure, velocity and so on. These attribute-value pairs are associated in the hy-
potheses tree, and enable object classification based on class attribute information stored
in the Knowledge Base.

4.8.2 Human Machine Interface

The Human Machine Interface consists of a standalone version of the Stanford Natural
Language parser, which is adapted to map spoken commands onto parameterized PDDL
goal tasks. More details about the parser can be found in [84]. Details of the mapping
are left out, as they are currently considered to be too pragmatic.

4.9 Basic Experiment

The General Purpose Service Robot challenge of the RoboCup@Home League [180] is
chosen as an experimental use-case to demonstrate the basic functionality of our system.
The challenge focuses on the following aspects: (1) there is no predefined order of actions
to carry out; and (2) environmental reasoning is required to deduce unknown facts. In
our example the unknown information consists of the specific locations of objects and
locations, such as the ‘living room’, ‘side table’ etc.

Fig. 4.12 shows the household environment in which the robot has to execute its task.
In this example, the task consists of “Bringing a coke to Erik”. In the experiment
the coke will be located on the ‘side table’, but the class position prior stored in the
Knowledge Base indicates the coke class to typically reside at the ‘cabinet’ (classAtLo-
cation(coke,cabinet)). During planning the Reasoner is queried for information (avail-
ability and location) of the ‘coke’ and ‘Erik’. Their expected locations are returned by
the Reasoner and the robot composes and executes the following plan:

When the robot arrives at the cabinet, it tries to perceive the coke for grasping, which is
an integral part of the object-in-hand operator. If the object is perceived, it will appear

86 Chapter 4: Integrating Planning And Execution

(t o p− l e v e l−p l a n t r a n s p o r t 2 ()
(w i t h−d e s i g n a t o r s (

(coke . . .)
(couch . . .)
(c a b i n e t . . .))

(a c h i e v e ‘ (! l o c− r o b o t c a b i n e t))
(a c h i e v e ‘ (! ob jec t− in−hand l e f t coke))
(a c h i e v e ‘ (! l o c− r o b o t E r i k))
(a c h i e v e ‘ (! o b j e c t−o n− l o c a t i o n l e f t coke E r i k))

Figure 4.11: The top-level CPL plan composed for the task of ”Bringing a coke to Erik”.

in the World Model and the robot can start grasping. If it will not be perceived at the
expected location, the action will result in a failure which cannot be handled by the
executive1. At this stage re-planning is activated by triggering the ‘*planning-needed*’
fluent. A new plan will be composed by SHOP2, based on an updated state of the world.
The main difference in this state will be the updated ‘coke’ prior, for which the expected
location has shifted from the ‘cabinet’ to the ‘side-table’, based on the false percept at
the ‘cabinet’ (see [68] for more details on falsification).

bed

chair

plantbin

side_
table

bar

couch

couch_table

dinner_table

cabinet

stove

micro
wave

living_room kitchen bed_room

AMIGO

AMIGO

AMIGO

AMIGO

(loc-robot cabinet)
(object-in-hand left coke)
re-planning
((loc-robot side_table)
 )

What can I do for you?
(transport coke Erik)

Succeeded:
(object-on-location left coke Erik)

(loc-robot side_table)
(object-in-hand left coke)

Erik

Figure 4.12: Execution of the ’Serving A Drink’ task, where the actions in green are
achieved and the actions in red have failed.

1A full movie of the experiment can be found at http://youtu.be/iFF62gwBaqk

4.10: Discussion and Future Work 87

4.10 Discussion and Future Work

This chapter demonstrates an integrated planning and execution framework for domestic
service robots, that proposes to extract planning domain knowledge from a common pool
of task descriptions. It exploits different techniques to increase robustness, such as re-
planning and the real-time referencing of symbolic object and location entities. The first
thing that needs to be noted is the limited display of features in the presented experiment;
the described use-case does not show the handling of dynamic environment properties,
and it also lacks to demonstrate a required change in action sequence after re-planning
was invoked by the executive. Furthermore, the cost evaluations made by SHOP2 in this
example are based on a unit cost for each action. Future work will integrate function calls
that provide in better cost estimates, either by learning [156] or physics simulations [134].
Currently, also the knowledge processing framework KnowRob [173] is being integrated,
to enable more extensive reasoning capabilities. On a short term we want to replace
the pool of PDDL operators and methods by the globally accessible RoboEarth Action
Recipe database, enabling the reuse of actions with other systems through the common
OWL-DL action representation. On a longer term, we want to provide this database with
feedback on the outcome of actions, allowing filtering and ranking of successful actions.

88 Chapter 4: Integrating Planning And Execution

89

Chapter 5

Centralized Task Control

This chapter investigates a centralized task controller architecture for robots, allowing
time-optimal robot allocation and knowledge reuse at the highest level. To represent
robot tasks efficiently and usable for task planning the ontology language for web ser-
vices OWL-S is adopted as task representation. This language is mapped onto a first-
order logic language for action planning in dynamic domains, the Situation Calculus,
and implemented as an extension of MIndiGolog, an existing Situation Calculus imple-
mentation for multi-robot tasks coded in Prolog. Task planning is achieved through Pro-
log’s first-order theorem proving property, where unbound robot and object parameters
are unified with robot and object instances described in environment ontologies. Time
optimality is hereby induced, by annotating primitive tasks with durations and selecting
the set of Prolog bindings that result in the least time consuming plan. As this work tar-
gets the planning of tasks for ROS enabled platforms, a new component model for ROS
nodes is proposed together with a grounding ontology designed specifically for the ex-
ecution of primitive tasks in real-world ROS based architectures. As the architecture is
deployed on the RoboEarth Cloud platform, heavy computations can be done here and
robots require to run only a small driver layer and a lightweight client interface. A first
small-scale experiment is conducted to prove the functionality of system interfaces, task
allocation and grounding methods, and to reveal the shortcomings of this work that need
to be tackled in future work.

This chapter is based on “Centralized Task Control With Computational Offloading For
ROS Enabled Service Robots Using the RoboEarth Cloud Platform”, R. Janssen, R. van
de Molengraft, H. Bruyninckx and M. Steinbuch, Transactions on Automation Science
and Engineering Special Issue on Cloud Robotics and Automation, 2014 (submitted)

90 Chapter 5: Centralized Task Control

5.1 Introduction

In modern day robotics research, cognitive robots are widely investigated as assistive
technologies in everyday activities for tasks that are either too boring, strenuous or dan-
gerous to be performed by humans, see Figure 5.1.

(a) (b) (c)

Figure 5.1: Examples of modern day robot assistants. Precise Path Robotics RG3 lawn-
mower robot (a), Panasonic Hospi delivery bot (b) and Csiro LHD mining robot (c).

Currently, most of these robots are being controlled locally, i.e., each robot receives a pri-
vate task request, runs its own control program, collects raw sensory data of the nearby
environment, processes this sensor data through on-board algorithms, reasons with this
processed information on what to do next, and subsequently acts through its actuators.
With the dawn of high-bandwidth communication technologies, it is now however possi-
ble for robots to communicate sensor information in runtime. It has furthermore become
possible, to store and process this vast amount of information through big-data storage
facilities and distributed computing platforms. These technologies pave the way for cen-
tralized task control; one intelligent, knowledge driven system that receives task requests
and sensory information on a global level, and controls thousands of connected robots
through an optimized multi-robot task planning algorithm. As opposed to robots operat-
ing individually, such a system has the following advantages:

• it allows robots to cooperatively perform tasks in an omniscient and optimized
manner;

• it allows the knowledge that is used for the planning of robot activities, such as
world information, to be collected on a global scale and therefore being most com-
plete and up-to-date. Furthermore, it allows this knowledge to be reused in other
task requests,

• it allows fast cross-validation of data, data anomaly detection and data outlier re-
moval;

• it allows a more efficient use of computational effort, as computations can be de-
ployed in a highly optimized computing environment;

• it allows instructed tasks to be performed more robustly, as faulty robots can be
replaced directly by similarly capable ones.

5.1: Introduction 91

The design concept of centralized task control for robots aligns with the concept of ubiq-
uitous robot networks [88]. A multi-layer control and sensing architecture that enables in-
teroperability between systems with different hardware and software capabilities. These
capabilities can vary from purely virtual, information retrieval services, to real world ma-
nipulation activities. The representational language used to enable this interoperability
has been established in the work of Juarez [83], where Semantic Web [22] represen-
tations are adopted for the unified embodiment of robot topologies. The work of Ha
[64] incorporates these web-based representations into the ubiquitous robot network, and
adds the Hierarchical Task Network SHOP2 [9] for the automated composition of multi-
agent tasks. Their experiment describes task planning for cooperative activities between
a mobile robot, a temperature sensor and actuated window blinds. For plan composition,
each of these agents was modeled as an abstract web service based on the OWL-S [121]
representation of tasks, used to describe document or procedure oriented invocations of
services on the Semantic Web.

Although the work of Ha establishes a centralized task planning architecture as described
above, they conclude that scalability issues will arise, as in a real world application of
their system ad hoc networks with invocable services are expected to be added dynam-
ically. They also conclude that safety and privacy issues may arise as their architecture
is fully transparent. Deployment and integration of computationally intense algorithms
and task related knowledge bases has in their work not been discussed and most impor-
tantly, as their work is closed-source, it cannot be used and advanced upon by the widely
established, open-source robotics community.

5.1.1 Contributions

The main contribution of this work is therefore the establishment of a centralized task
controller framework for robots, that is scalable and secure, allows deployment of com-
putationally intense algorithms and task related knowledge bases in efficient computing
and storage environments, and integrates with existing software design efforts of the
open-source robotics community.

5.1.2 Outline

The following section will describe the design of the system, in which the adoption of ex-
isting components will be motivated, and in which alterations or added components will
be explained. This section will be followed by an experimental use-case, that describes
a first demonstration of the system. Conclusions will follow in the end, together with a
section on future work required to make the system as general, robust and user friendly
as intended.

92 Chapter 5: Centralized Task Control

5.2 System Design

5.2.1 Requirements

The primary goals of the system are 1) to serve as a centralized task controller for a wide
variety of robot platforms and computational algorithms, where 2) coordination is dic-
tated by the central controller only. As it is desirable that the involved robot platforms
remain lightweight by reducing on-board computing requirements, 3) computational al-
gorithms are supposed to be deployed in a distributed and highly optimized computing
environment, instead of running locally on the robots. Furthermore, as the execution of
tasks in human domains requires vast amounts of task related knowledge, such as binary
models for perception and logic based representations for reasoning, 4) the system is re-
quired to have fast and direct access to a knowledge base that is capable of storing and
retrieving this information securely and efficiently.

5.2.2 Basic component diagram

A basic component diagram that meets the above requirements is sketched in Figure 5.2

Robot 3
Capability 1

Capability 2

Task
controller

Knowledge
base

Robot 1
Capability 1

Capability 2

Capability 3

Robot 2
Capability 1

User 1

User 2

Computing
environment

Algorithm 1

Algorithm 2

Algorithm 3
User 3

task

service
request

service
request

service
request

service
request

service
request

knowledge
request

task

task

Figure 5.2: Basic component diagram of system requirements.

5.3: Implementations 93

5.3 Implementations

5.3.1 Communication framework

A key aspect of the component diagram sketched in Figure 5.2, is the communication
framework that enables the interfacing between components, and establishes message
type protocols. For robotic applications there are several proprietary frameworks avail-
able, such as Microsoft Robotics Studio [76] and We-bots [129]. However, as it is re-
quired that the supported framework is established as an open-source platform, the well-
established robotics middle-ware Robot Operating System (ROS) [146] is targeted.

Amongst several open-source available middle-wares, such as Player [60], Urbi [12]
and Orocos [29], ROS can be regarded as currently the most widely used and supported
middle-ware. Reasons for its popularity are the vast amount of supported packages and
libraries (currently over 3,000), interface support for four commonly used programming
languages (C++, Python, Octave and LISP), its peer-to-peer communication approach
and its thin messaging layer. This messaging layer currently supports over 400 different
message types, such as point-cloud, image, diagnostic and joint-state information.

Attempts have been made to use ROS as a global communication and data storage mech-
anism in the DAvinCi project [8], where the Apache Hadoop Map/Reduce [47] Frame-
work was used as a data storage and computing environment for the Fast-Slam algorithm
[133]. However, the architecture established in the DAvinCi project used only a sin-
gle computing environment, without any security measures. Furthermore, the DAvinCi
project is not publicly available.

A ROS based global communication framework that is publicly available is the RoboEarth
Cloud Engine, or Rapyuta [72]. Rapyuta is a well-documented and easily installable
communication framework, and is developed as part of the effort for global communica-
tion and knowledge reuse in the RoboEarth project [184]. As a Platform As A Service
(PAAS) framework [39], Rapyuta offers the possibility to:

• deploy one or more secured computing environments, allowing robots to offload
their computational algorithms (such as those typically used for grasp planning,
mapping and navigation);

• launch multiple processes in parallel (as opposed to Google’s App Engine [155]);

• push information from server to robot, through the use of Web-Sockets [185] and
serialized Java-Script Object Notation (JSON) string messages;

• communicate messages between multiple ROS masters over the same connection
(as opposed to ROS-bridge [43]).

94 Chapter 5: Centralized Task Control

5.3.2 Knowledge base

An added advantage of using Rapyuta is the direct integration with the RoboEarth knowl-
edge repository. This repository contains abstract descriptions of task related informa-
tion, such as robots, objects, environments and tasks [177]. Furthermore it contains bi-
nary data, such as object models and navigation maps. The RoboEarth knowledge repos-
itory stores its abstract descriptions in a Sesame database [28], which can be queried
through the SeRQL query language [27]. Binary data is stored in the Apache Hadoop
File-system [190], allowing efficient and distributed data storage. Both types of knowl-
edge are linked through a relational database, and can be accessed through either a web
interface (by humans), or through a REST-full API [152] (by software agents) called
re comm1.

The abstract knowledge stored in the RoboEarth knowledge repository is encoded in
the web ontology language OWL [141], or more specifically, in its language variant
OWL Description Logics (OWL-DL). OWL-DL provides in maximum expressivity, but
remains decidable. This allows the language to be used in most modern day reasoning
tools, such as Pellet, Racer, Fact++ or in theorem proving languages, such as Prolog and
SQL. A good read on the advantages of using OWL-DL in robotics can be found in the
work of Hartanto [67]. For the centralized task planning architecture as proposed in this
work, several types of abstract knowledge are required. They will be discussed in Section
5.3.4.

5.3.3 Task controller

The central component in the proposed task planning architecture is the task controller.
As typically described in robot control literature [4], the goal of the task controller is
twofold:

• it needs to identify if incoming user requests can be performed, by attempting to
compose a logical course of actions based on the available resources (planning);

• it needs to perform the composed course of actions by interacting with the required
resources (execution).

The implementation of these two layers is presented here.

Planning

There are several goal-based methods available for planning, such as STRIPS [57] and
planning graphs [26]. However, as these planning methods are proven to be NP-complete

1http://wiki.ros.org/re comm

5.3: Implementations 95

and very ineffective for large-scale domains, such as those typically found in human envi-
ronments [31], this work adopts the hierarchical task network planning (HTN) approach
as described in the work of Erol [55]. This approach allows a more efficient search in
large domains, by providing in plan heuristics as full or partially pre-designed plans.

In RoboEarth, pre-designed plans are called ‘action recipes’ [120], and identical to HTN
methods and operators, RoboEarth action recipes describe primitive tasks that are di-
rectly executable, and composite tasks that are composed of other composite or primitive
tasks. In the proposed architecture, a distinction is made between primitive tasks that
can be performed on a robot, and primitive tasks that can be performed by one of the
computational algorithms.

Planning commences by parsing the action recipes into a planning language, that can be
interpreted by a planning algorithm. As the action recipes are expressed in OWL-DL, see
Section 5.3.4, a planning language and accompanying algorithm need to be selected that
are capable of allowing full OWL-DL expressivity. As HTN planning is typically based
on PDDL [61] propositional logic, they lack expressivity compared to the description
logics semantics of OWL-DL. A language that is capable of expressing description logics
semantics is the Situation Calculus [124], a high-level, first-order planning language. An
accompanying planner implementation, that allows the practical use of this language in
planning can be found in Golog [103].

As the desire is to plan for tasks in human domains, Golog lacks however in certain
required features, such as the ability to plan with concurrent actions, exogenous events
or sensed input. For this reason, extensions of Golog have been made, such as Con-
Golog [45], which allows planning with concurrent actions and exogenous events, and
IndiGolog [62], which executes plans iteratively based on sensed input. A recent suc-
cessor of IndiGolog that allows planning for multi-agent systems, is called MIndiGolog
[87]. As this work will focus on the planning of human oriented tasks for multiple robots,
MIndiGolog will be used as the foundational planning implementation2.

As MIndiGolog is a Prolog implementation, planning occurs by the theorem proving
property of Prolog (depth-first search). A basic example of a MIndiGolog composite
procedure for placing an object at a certain location is given in Listing 1.

proc(placeObjAtLoc(Agt,Obj,Loc),
has(Agt,Obj) // at(Agt,Loc)
: placeObject(Agt,Obj,Dest)
: releaseObject(Agt,Obj)).

Listing 1: MIndiGolog example of placing an object at a location. The ‘has’ and ‘at’
predicates are used as preconditions, and the actions ‘PlaceObject’ and ‘ReleaseObject’
are primitive actions. The symbols ‘//’ and ‘:’ indicate control procedures for respectively
‘sequential’ and ‘in-parallel’, see [87] for details.

2An example of a MIndiGolog domain axiomatization for multiple agents baking a cake, can be found at
http://www.rfk.id.au/ramblings/research/thesis/

96 Chapter 5: Centralized Task Control

A valid plan solution for this procedure can be obtained through the following domain
axiomatization:

agent(amigo_1).
object(sprite_1).
location(table_1).
has(amigo_1, sprite_1).
at(amigo_1, table_1).

Listing 2: Domain axiomatization that leads to a plan solution.

Execution of the plan is subsequently performed by the Prolog query
do(placeObjAtLoc(amigo_1,sprite_1, table_1),S0,S) where ‘S0’ is
the initial state as given in Listing 2 and ‘S’ is the final state. Predicate ‘do’ is used
in Golog to start the planning process, see [87] for its implementation details.

If in the example domain axiomatization of Listing 2 two agents would have been defined
instead of one, e.g., agent(amigo_1) ánd agent(amigo_2), two valid plan solu-
tions will be found. A time optimal choice is then made, by accumulating the durations
of all involved primitive actions, and choosing the plan solution with the least amount of
total time.

Execution

After a viable plan solution is determined by the planning layer, each of the involved
primitive actions will be iteratively executed. Execution is performed by a custom made
executive module, that has its own knowledge base on action execution (a process called
grounding), executes the primitive action based on this knowledge, and reports the suc-
cess of the action back to the Prolog planning module. Depending on the success of
the action, the Prolog planner returns the following primitive action to be performed.
The executive module is written in Python, as it allows fast development cycles, type
introspection and has native bindings for all ROS message types.

Figure 5.3 depicts the integration between planning and execution as an activity diagram,
in which the order of steps is as follows:

1. a (typed) task is received at the executive;

2. the executive queries for this task at the planner;

3. the planner queries the knowledge base for available planning knowledge on this
task (see Section 5.3.4);

4. the planner tries to find a (time optimal) plan solution;

5. the planner returns the first primitive action of this plan; together with any accom-
panying bindings;

5.3: Implementations 97

Python executive

"serve drinks"

Prolog planner

query for
procedure

"serveDrinks"

query
planning

knowledge

planning
knowledge

3) query planning knowledge
4) find (optimal) plan solution
5) return first action
9) determine next action

1) receive task request
2) query for corresponding procedure
6) parse execution knowledge
7) execute first action
8) assert action result

Action 1:
computePath
(RoboEarth1,
pico1,coke1)

success
true / false

Action 2:
actuateBase

(pico1)

query
grounding
knowledge

grounding
knowledge

send
data

action 1

send
data

action 2

response
data

action 1

response
data

action 1

grounding
knowledge

environment
knowledge

task
knowledge

robot
knowledge

Figure 5.3: The integration between planning and execution.

6. the executive queries for grounding knowledge on this action (see Section 5.3.4);

7. the executive performs the first action, by interacting with the relevant module
(either robot or algorithm);

8. the executive asserts the success of the action to the planner;

9. the planner determines the next action ...

5.3.4 Knowledge representations

As the developed architecture intends to plan tasks for diverse algorithms and robot plat-
forms, targeted for operations in human domains, the knowledge that is required for
planning and execution consists out of:

98 Chapter 5: Centralized Task Control

• robot knowledge, that abstractly describes the capabilities of a robot, such as the
ability of using laser, arms or base,

• environment knowledge, that describes knowledge generally applicable to the hu-
man environment,

• task knowledge, that describes abstract representations of primitive and composite
tasks,

• grounding knowledge, that describes how primitive actions are executed by a
robot or algorithm.

Robot knowledge

The robot knowledge describes for each connected robot what robot class it belongs to,
and what the available capabilities of that class are. These capabilities are either sensors
or actuators, such as a Kinect, laser, arms or base. As an example, Figure 5.4 depicts
a topological layout of the TU/e Amigo robot, where each module can be seen as one
’robot capability’.

MoveableHeadKinect

LeftArm

RightArm

Laser

ActuatedBase

Odometry

Figure 5.4: Topological layout of Eindhoven University robot class ‘Amigo’.

The corresponding robot description for an instance of the ‘Amigo’ robot class is given
in Listing 3.

The robot descriptions are used to match robot capabilities against task required com-
ponents. This capability matching is performed in the planning language, by adding
‘hasSensor’ or ‘hasActuator’ predicates as pre-conditions in the according primitive ac-
tion. An example, related to the primitive action ‘placeObject’ from Listing 1, is given
in Listing 4.

5.3: Implementations 99

<robot:Amigo rdf:ID="Amigo_1"/>
<owl:Class rdf:about="robot.owl#Amigo">
<robot:hasSensor
rdf:resource="robot.owl#Kinect"/>

<robot:hasSensor
rdf:resource="robot.owl#Laser"/>

<robot:hasSensor
rdf:resource="robot.owl#Odometry"/>

<robot:hasActuator
rdf:resource="robot.owl#ActuatedBase"/>

<robot:hasActuator
rdf:resource="robot.owl#LeftArm"/>

<robot:hasActuator
rdf:resource="robot.owl#RightArm"/>

<robot:hasActuator
rdf:resource="robot.owl#MoveableHead"/>

</owl:Class>

Listing 3: Robot description for ‘Amigo1’, instance of robot class ‘Amigo’.

prim_action(placeObject(Agt,Obj,Dest)) :-
agent(Agt),
hasActuator(Agt,rightArm);
hasActuator(Agt,leftArm).

Listing 4: Robot capability matching.

Environment knowledge

General information about the world, such as environment and object properties, is con-
tained in the environment knowledge base. Examples are for instance the designated
storage, dispose and serve locations for drinks. In Listing 5, an example is given for
instance ‘Sprite 1’ of class ‘Sprite’ (subclass of ‘Drink’).

Task knowledge

For tasks, the abstract representation is built upon an existing OWL extension for pro-
cesses on the Semantic Web, namely OWL-S [121] (formerly named DAML-S). Identical
to the RoboEarth action recipes, OWL-S processes can be either one of two things3; a
primitive4 process, which is directly executable, or a composite process, which describes
the execution order for other composite or primitive processes. The execution order in
composite tasks is dictated by the use of control procedures, such as while-do, split-join,

3A third type simple process exists, but as this is an abstraction of a composite process it will not be
considered here.

4Formally called an ‘atomic’ process in the OWL-S technical description.

100 Chapter 5: Centralized Task Control

<environment:Sprite rdf:ID="Sprite_1"/>
<owl:Class rdf:ID="Sprite">
<rdfs:subClassOf
rdf:resource="environment.owl#Drink"/>

</owl:Class>
<owl:Class rdf:ID="environment.owl#Drink">
<environment:hasStorageLocation
rdf:resource="environment.owl#Refrigerator"/>

<environment:hasDisposeLocation
rdf:resource="environment.owl#TrashBin"/>

<environment:hasServeLocation
rdf:resource="environment.owl#People"/>

</owl:Class>

Listing 5: Abstract knowledge description of a ‘Sprite’.

if-then-else, sequential and parallel5. For the evaluation of logical conditions, OWL-
S adopts the Semantic Web Rule Language (SWRL) [71], which combines OWL with
RuleML, a Semantic Web standard for the evaluation of conditional expressions. As
such, SWRL is used within OWL-S for the evaluation of control procedure conditions
(such as for if-then-else), and for process preconditions (such as for robot capability
matching).

With the Protegé OWL-S modeling tool
[53], control procedures can be easily de-
veloped by the visual overview and directly
imposed logical constraints, see Figure 5.5.
Primitive processes are indicated with sin-
gle surrounding rectangles, and composite
processes with double rectangles. On OWL-
S modeling level, a distinction is made be-
tween primitive processes that have to be ex-
ecuted on a ‘robot’ platform (if that robot
has the proper capability), or if it should be
executed by a computational algorithm run-
ning on the RoboEarth Cloud Engine (indi-
cated by the ‘compute’ namespace). Process
inputs and outputs, such as 3D point-clouds
or joint state information, are not visualized
on this level of modeling. These are solely
represented in the grounding knowledge of
each process, see the following section.

compute:ObjectDetection

robot:Kinect

task:Navigate

Finish/Out

Start/In

Figure 5.5: Simple OWL-S control pro-
cedure for detecting an object, devel-
oped in the Protegé OWL-S editor

5Extensions to the MIndiGolog domain language have been made in this work, as it natively does not
support many OWL-S control constructs, such as any-order, split and repeat-while.

5.3: Implementations 101

Grounding knowledge

OWL-S enables to model process flows of primitive and composite processes on an ab-
stract level, in a description logics representation. This allows logic based reasoning
algorithms, such as planners and schedulers, to use these representations as planner build-
ing blocks. These abstract representations however, do not describe how processes are
actually executed, called grounding. For this, primitive processes require information
on implementation, interfacing, parametrization and communication. In the proposed
architecture, this information is represented by the grounding knowledge, which is com-
posed of an ontology describing process types, messages, parameters and communication
channels. The OWL-S ontology by itself provides in a grounding representation suitable
for invoking web services through the Web Service Definition Language (WSDL) [37].
WSDL provides in a concrete realization of abstract operations and messages, which can
be either document or procedure oriented, and interfaced through either SOAP, HTTP,
GET/POST or MIMI. As this work targets the execution of tasks on ROS enabled plat-
forms however, a ROS action/message grounding ontology is specifically developed for
this purpose, see Figure 5.6.

rosgrounding:Sensor

rosgrounding:Message

hasRequestMessage

rosgrounding:Noderosgrounding:Service

hasService hasNode

hasNodeName

hasPackage

hasParameter

string

hasServiceName

robot:Sensor

hasSensorGroundingrdfs:subClassOf

process:AtomicProcess

string

string

string

= OWL-S Process Class

= Robot Class

= ROS Grounding Class

= XMLSchema Data Type

= Object Property

= Data Property

robot:Actuator

robot:Robot

rdfs:subClassOf

robot:hasSensorrobot:hasActuator

...

.....

rosgrounding:Joyrosgrounding:PointCloud2

rosgrounding:Temperaturerosgrounding:LaserScan

rosgrounding:NavSatFixrosgrounding:Imu

rosgrounding:Range

rosgrounding:Image rosgrounding:CameraInfo

rdfs:subClassOf

hasResponseMessage

Figure 5.6: Example part of the ROS grounding ontology for a robot sensor.

102 Chapter 5: Centralized Task Control

Grounding ontologies for different middle-wares, such as Urbi or Orocos, are in general
also possible to design, but that is beyond the scope of this work. An example OWL
snippet of a ROS-grounded task for reading out laser scan messages is given in Listing 6.

<owl:Class rdf:about="robot.owl#Laser">
<rosgrounding:hasSensorGrounding>
<rosgrounding:Sensor rdf:ID="ReadLaser">
<rosgrounding:hasService>
<rosgrounding:Service
rdf:ID="ReadLaserService">
<rosgrounding:hasServiceName
rdf:datatype="XMLSchema#string">/laser

</rosgrounding:hasServiceName>
<rosgrounding:hasResponseMessage
rdf:resource="rosgrounding.owl#LaserScan"/>

</rosgrounding:Service>
</rosgrounding:hasService>

</rosgrounding:Sensor>
</rosgrounding:hasSensorGrounding>

</owl:Class>

Listing 6: ROS grounding snippet for reading out laser scanner messages.

The complete grounding ontology is used for both the grounding of primitive processes
on real robots, and for the grounding of computational (primitive) processes running in
the computing environment on the RoboEarth Cloud Engine.

5.3.5 ROS component model

Section 5.3.3 describes that all processes are coordinated by the executive. This as op-
posed to standard ROS architectures, where individual nodes are programmed to com-
municate individually after certain internal computations have been performed. As this is
effective for small dedicated platform architectures, it impedes scalability to multi-robot
architectures (considering computational offloading is a requirement). Furthermore, this
type of software entanglement is an open invitation to in-code parameterizations that are
specific for the application at hand, impeding component reuse.

This work therefore uses an altered ROS node component model, based on Radestock’s
‘separation of concerns’ [147]. This component model allows a clean separation be-
tween coordination, configuration, computation and communication. The executive in
the proposed architecture handles coordination, whereas the ROS framework is used
solely for communication. Each node now executes a generic, single computation (or
single robot process) which is parametrized based on the configuration parameters found
in the grounding ontology. As stated in Section 5.3.4 process interfacing is based on the
ROS service protocol. A time-line sketch of this interfacing is depicted in Figure 5.7.

5.3: Implementations 103

Execution

...process 1

params

init perform

request response

process 2

params

init perform

request response

messages

params

messages

Planningrobot / task /
environment
knowledge

messages

init

success
true / false

success
true / false

action ID action ID action ID

determine
next action

determine
next action

Process
execution

grounding
knowledge

Figure 5.7: ROS component model and process interfacing.

5.3.6 Component deployment

Based on the above mentioned component details, Figure 5.8 depicts a concretized com-
ponent layout of Figure 5.2.

RoboEarth Cloud
Engine client

ROS master

Actuators Sensors

RoboEarth Cloud Engine server + ROS master

RoboEarth Cloud Engine server interface

compute IK

compute pose

compute map

compute

w
e
b
U
I

Computing environment

RoboEarth knowledge base

Robot
knowledge

Environment
knowledge

Task
knowledge

Grounding
knowledge

w
e
b
U
I

w
e
b
U
I

Task
controller

OWL parser

Planner

Executive
ROS service request

ROS service request

Task request

JSON
message

JSON message JSON message

RoboEarth Cloud
Engine client

ROS master

Actuators Sensors

RoboEarth Cloud
Engine client

ROS master

Actuators Sensors

Figure 5.8: Concretized component layout of Figure 5.2.

104 Chapter 5: Centralized Task Control

5.4 Experimental use-case

To validate the functionality of the proposed system, an experimental use case has been
devised. The experiment describes two robots, the Eindhoven University Amigo and
Pico, see Figure 5.9, serving and cleaning up drinks at a ‘cocktailparty’ in the Eindhoven
University robotics lab.

Figure 5.9: TUE/e Amigo (left) and Pico (right).

5.4.1 Experiment description

The OWL-S top-level task for the ‘cocktailparty’ task6, is depicted in Figure 5.10.

Figure 5.10: Top level control flow for ’cocktailparty’ task.

6Designed with the Protegé OWL-S editor plug-in

5.4: Experimental use-case 105

The top-level cocktailparty task consists out of 4 main subtasks;

• 1) ‘TakeOrder’

– 2) if an order is received, ‘ServeDrink’

• 3) ‘FindEmptyDrink’

– 4) if an empty drink is found, ‘CleanupDrink’

The experimental description here will focus on one subtask, namely the ‘FindEmpty-
Drink’, see Figure 5.11.

Start/In

task:confirmDetection

task:navigate

Finish/Out

(a)

compute:NavMap task:Localize

Start/In

compute:Path

SWRL_Condition_3

compute:VelCmd

task:Localize Finish/Out

robot:HolonomicBase

True
False

(b)

Figure 5.11: Control flow for ‘FindEmptyDrink’(a) and subtask ‘Navigate’(b).

For this experiment, the described robot capabilities for Amigo and Pico are identical:

• hasSensor(amigo 1,Kinect)

• hasSensor(pico 1,Kinect)

• hasSensor(amigo 1,Laser)

• hasSensor(pico 1,Laser)

• hasActuator(amigo 1,Base)

• hasActuator(pico 1,Base)

106 Chapter 5: Centralized Task Control

The accompanying services running on the robots are depicted in Table 5.1.

service inputs parameters outputs
Kinect none none senMsgs/Image

senMsgs/CamInfo
senMsgs/Image
bool success

Laser none none senMsgs/LaserScan
bool success

Base geoMsgs/Twist none bool success

Table 5.1: Services running on the robots.

Furthermore, six computational nodes have been deployed in the Roboearth cloud engine,
for which their inputs, outputs and parameterizations are listed in Table 5.2:

• LocMap: computes a nav msgs/OccupancyGrid used for localization,

• NavMap: computes a nav msgs/OccupancyGrid used for navigation,

• Path: computes a nav msgs/Path from location parameters A and B. A and B
are bound by the planner to initial robot and drink locations obtained from the
‘environment.owl’ knowledge base,

• Pose: computes a geometry msgs/PoseStamped that indicates the current position
of the robot,

• Detection: detects an object, parameterized by its HUE values [151]. Successful
detection is concluded from the action return value for ’success’,

• VelCmd: computes velocity commands, based on desired path and current pose.
Returns true only if the final point in the path is reached.

service inputs parameters outputs
LocMap none locMap.yaml navMsgs/OccGrid

bool success
NavMap none navMap.yaml navMsgs/OccGrid

bool success
Path navMsgs/OccGrid robotPose(x,y,θ) navMsgs/Path

targetPose(x,y,θ) bool success
Pose navMsgs/OccGrid robotFrame geoMsgs/PoseSt.

senMsgs/LaserSc. bool success
geoMsgs/PoseSt.

Detection senMsgs/PointCl. objectHUE.yaml bool success
senMsgs/CamInfo

VelCmd navMsgs/Path maxVelLinear geoMsgs/Twist
geoMsgs/PoseSt. maxVelAngular bool success

Table 5.2: Computational nodes launched in RoboEarth Cloud Engine.

5.4: Experimental use-case 107

5.4.2 Simulator

To allow a fast development cycle and easy parameter tuning (such as the parameters for
maximum robot velocities and object HUE values), a simple test environment has been
devised in the ROS Gazebo simulator, see Figure 5.12.

(a) (b)

Figure 5.12: Gazebo simulator (a) and Rviz visualizer (b).

In this test environment, the two robots are spawned together with two ‘empty’ drinks.
The goal is to execute the ‘FindEmptyDrink’ task as devised in OWL-S, where both
robots are supposed to search for the empty drinks at the locations that nearest to their
current positions.

5.4.3 Real world

In the real-world version of the experiment, RoboEarth client interfaces are deployed on
the robots, allowing the experiment to be conducted in a real lab environment, see Figure
5.13.

Figure 5.13: Real world experiment initial positions.

108 Chapter 5: Centralized Task Control

Figure 5.14 shows the two robots reaching their final positions, where the ‘empty’ drinks
are positively detected7.

(a) (b)

Figure 5.14: Real world experiment final positions.

Planner data has been logged, and shows the following incremental plan execution:

do [NavMap(amigo_1,"tue_lab")] at time 19.02
do [NavMap(pico_1,"tue_lab")] at time 19.02
do [LocMap(amigo_1,"tue_lab")] at time 20.41
do [LocMap(pico_1,"tue_lab")] at time 20.43
do [Laser(amigo_1)] at time 21.98
do [Laser(pico_1)] at time 22.04
do [Pose(amigo_1)] at time 22.19
do [Pose(pico_1)] at time 22.25
do [Path(amigo_1,coke_1)] at time 23.98
do [Path(pico_1,coke_2)] at time 24.03
do [LocMap(amigo_1,"tue_lab")] at time 25.43
do [LocMap(pico_1,"tue_lab")] at time 25.55
do [Laser(amigo_1)] at time 26.9
do [Laser(pico_1)] at time 26.98
do [Pose(amigo_1)] at time 27.05
do [Pose(pico_1)] at time 27.17
do [VelCmd(amigo_1)] at time 31.86
do [VelCmd(pico_1)] at time 31.96
do [Base(amigo_1)] at time 33.29
do [Base(pico_1)] at time 33.52
do [LocMap(amigo_1,"tue_lab")] at time 34.89
do [LocMap(pico_1,"tue_lab")] at time 34.94
....
do [Kinect(amigo_1)] at time 57.59
do [Detection(coke_1)] at time 58.71
do [Kinect(pico_1)] at time 61.04
do [Detection(coke_2)] at time 62.45

Listing 7: Planner log.

7A video of the experiment can be found at http://youtu.be/4jCGcRs6GZI

5.4: Experimental use-case 109

What can be concluded from this log, is that the time between two consecutive localiza-
tion steps (started when the second ‘LocMap(Agt,Env)’ is performed), is approximately
9.46 [s], and hence, has an update frequency of ∼0.1 Hz. This is a lot lower than native
ROS localization components, such as AMCL8, which typically run at 20∼40 Hz. This
is caused primarily by the service based interface, which can be considered much slower
than AMCL’s topic based interface.

Furthermore the packet size per service on ‘amigo 1’ has been logged, see Table 5.39.

service sent received
Laser 4136 0
Base 1 48
Kinect 2150929 0

Table 5.3: Communication data on client ‘amigo 1’ (in bytes).

Combining the planner log from Listing 7 with the packet sizes displayed in Table 5.3,
results in an average data transfer rate of 442 Bps (Bytes/second) for one combined local-
ization and navigation step. This is however based on the earlier concluded update rate
of 0.1 Hz. If the update frequency of the service interface can be improved, and commu-
nication updates can be scaled up to a rate of 30 Hz (comparable to that of AMCL), an
average data transfer rate of 130 KBps (KiloBytes/second) will be obtained.

For dynamic look-and-move visual servoing applications [73], that typically require
point-cloud and image update rates of ∼30 Hz [38], data transferring requires a sig-
nificantly larger amount of communication bandwidth. If the Kinect service is called at
30 Hz, this will result in a data transfer rate of 61.5 MBps (MegaBytes/second). For
current wireless router protocols, such as wireless B,G and N, these speeds can not be
achieved, as their maximum data transfer rates are 1.4, 6.8 and 31 MBps respectively.
This means that for visual servoing purposes, the proposed interfacing methods are not
suitable.

Computational efforts have also been logged on both client robots, and CPU usage does
not exceed 4% during navigation (both are Intel I5 Quad-Core processors). Only when
the Kinect service is called upon, CPU usage increases temporarily to 170%, distributed
over 2 cores.

In future work, this demo will be expanded to the full ‘cocktailparty’ demo, including
user interaction for taking orders, and manipulation, for the actual serving of drinks. Also
the environment will be upscaled to the full TU/e robotics lab, increasing the work space
and the number of available order, serve, storage and dispose locations.

8http://wiki.ros.org/amcl
9As composed plans and hardware components are identical to both robots, the communication data for

‘amigo 1’ is assumed to be identical to the communication data of ‘pico 1’

110 Chapter 5: Centralized Task Control

5.5 Conclusions & Future Work

The work described in this article presents a centralized control architecture, that can be
used for the deployment of ROS enabled robots operating in human domains. A first
experiment is conducted that, although in a very first basic form, indicates the functional
success of this first implementation and the usability of such an architecture. For future
work, there are however a few enhancements that can be made to the current implemen-
tations and design choices.

A first point of remark should be pointed towards the OWL-S editor plug-in for Protegé,
that was used to model the required control procedures. The plug-in shows quite some
stability issues, resulting in frequent Protegé crashes and unresolvable modeling anoma-
lies. This translates to a low user friendliness of the editor, and therefore needs to be
solved by inspecting and debugging the plug-in. A secondary desire here, could be to
upgrade the plug-in to be used in the latest Protegé version (4.3, currently) as this ver-
sion, as opposed to version 3.5 used for the plug-in, supports easier modeling of classes,
object properties and cardinality restrictions.

What can be further noticed, is that the current interface to the robot components and the
computational algorithms running on the RoboEarth Cloud Engine using ROS services,
is not as fast as required for certain procedures. As can be seen in the OWL-S process
flow for ‘Navigate’ (Figure 5.11b), is that with every cycle the subtask ‘Localize’ is called
upon, which computes the robots pose by receiving its laser-scanner data. For standard
ROS navigation architectures this laser-scanner data is processed at 30 Hz, whereas with
the service call implementation only a rate of approximately 0.1 Hz can be achieved.
This results in having to stick with very slow movements of the robot (<1 cm/s for
translational, and <0.01 rad/s for angular speeds), as otherwise its recursive location
estimation will get lost. As concluded in Section 5.4.1, these low update rates combined
with high bandwidth requirements for the Kinect data, also make this system impractical
for dynamic look-and-move visual servoing applications.

In addition to this comes the fact that with this first implementation, no error recovery
behaviors are implemented. This means that when a certain action fails, there are cur-
rently no recovery behaviors that can bring the robot in a previous (safe) state from which
it can retry. Investigations have to be done to design such error recovery mechanisms,
starting of with first being able to monitor ‘what went wrong’. These mechanisms are of
course also to be represented in OWL-S, making them reusable and shareable amongst
other platforms with identical topologies.

As for the robot capability matching a first prototype was included, that allows a straight-
forward modeling of required components in OWL-S. Matching these against the capa-
bilities found on a robot, was achieved by manually design of the ‘robot’ knowledge
ontology. These robot descriptions can however also be derived from robot configuration
files already deployed on the robot. Work in this direction has been done by Kunze, in
the Semantic Robot Description Language (SRDL) [99].

5.5: Conclusions & Future Work 111

A final point that needs to be addressed, is the lack of dynamic state representations in
the current architecture. Although the robot position was dynamically updated in the task
planning component as an internal state variable, currently there is no advanced mecha-
nism available to track objects over time, and to associate incoming measurements with
previously identified objects. For this world model representation, object tracking and
association algorithms, such as the one described in [54], should be promising additions.

112 Chapter 5: Centralized Task Control

113

Chapter 6

Conclusions and
recommendations

6.1 Conclusions

This thesis presents an architecture suitable for the control of multiple robots operating
in the human domain, where required key methods for segmentation, tracking, learning
and planning have been investigated that allow robots to successfully advance into this
domain. This thesis therefore extends into several robotic research areas, discussing a
variety of methods useful for the centralized task control of cognitive robots operating in
human domains.

On the use of the IMM tracking method discussed in Chapter 2, the conclusion was drawn
that it outperforms a Kalman filter for maneuvering targets if the maneuvering index (the
ratio between process noise and measurement noise times the squared sample time) ex-
ceeds 0.5. When applying this IMM tracking method in a globally updated tracking
architecture, such as proposed in Figure 1.6, it will therefore be expected to show signif-
icant performance improvements over a Kalman filter compared to a small scale tracking
application, such as presented in Chapter 2. This can be motivated by the fact that the
ratio between process noise and measurement noise will remain the same (as the sensor
observing the target and the accuracy of the target model remain identical), but that the
sample time for global applications will drastically increase because of global commu-
nication delays and processing times, compared to communication delay and processing
times on an embedded application. For this reason the maneuvering index will increase,
favoring the IMM over Kalman filtering for global tracking applications.

The application of learning methods in Chapter 3 concluded that learning outcomes are

114 Chapter 6: Conclusions and recommendations

highly sensitive to the design of the reward function, and that for its design human heuris-
tics are involved that need to be accurately applied. The use of function approximation
significantly increased the performance of learned policies compared to grid-based poli-
cies, and decreased learning convergence times. These times were further decreased by
improving sample efficiency through the use of eligibility traces, especially for learning
trials performed in noisy environments. Furthermore, it was proven in these noisy en-
vironments that learned policies outperform hand coded policies, especially when also
unforeseen environment changes occur. Finally, this chapter also concluded that trans-
ferability issues arise and policy performance degrades, if simulation environments de-
veloped for learning do not match with the real-world applications on which the learned
policies will be applied. One important mismatch that can occur for vision based learning
applications is camera delay.

For the high-level, multi-robot experiments conducted in Chapters 4 and 6, a more gen-
eral point to be addressed is the amount of integration work required for the involved
experiments. It has become clear that the level of a theory relates to the amount of work
necessary to translate concerning concepts into full demonstrative applications. For the
segmentation and tracking methods discussed in Chapter 2, mostly low level perception
and actuation components were required, such as image grabbing, segmentation, tracking
and motion control, and verification of the implementations and quantitative results were
obtained through a relatively confined and isolated experiment. Subsequent validation
for the Greedy-GQ(λ) learning algorithm as proposed in Chapter 3 involved additional
steps, such as the design of a simulator mimicking the real world setup, performance
measure design, policy learning and policy execution. Because of these added steps, rel-
evant results to evaluate the theory at hand and to demonstrate its functionality on a real
world platform required more integration work and became significantly more difficult
to obtain. The planning algorithm that was investigated in Chapter 4 required even more
components, and thus, more implementations were required to demonstrate the applica-
bility of this integrated system. Furthering this work into the multi-robot, cloud based
task scheduling architecture that was presented in Chapter 5 required even more integra-
tion work, requiring a total of at least 48 man-months to be accomplished.

As with any design that involves a variety of software components, it can be observed
that the extensive number of involved components and their algorithmic complexity are
hard pledges for software reuse and open source software licensing1. Although Chapter
5 critiques their currently used component model, the ROS middle-ware in general has
proven to be an excellent initiative in this direction. Proof of this can be found in the
more than 450 software packages included in their current release (Groovy), and the
vast amount of accompanying software documentation. The company that initiated the
ROS platform (Willow Garage) has performed well in infrastructural maintenance and
support, and by now has established a firm base in both academic and industrial robotics
research.

The main advantage of having a common communication interface between different
software components is that of the ‘software language problem’. ROS provides in such

1http://opensource.org/licenses

6.2: Recommendations 115

interfaces, by forcing its developers to develop interface wrappers for software languages
commonly used in robotics, such as Python, C++, Lisp, Java and Lua. Furthermore,
representational and reasoning languages, such as OWL and Prolog are supported within
ROS through the integration of third party libraries, such as KnowRob [173] and ROSpro-
log2.

In practicality, this thesis has shown the first applications of several mechanisms use-
ful for the control of cognitive robots operating in human domains, i.e., domains that
are unstructured and unpredictable (although unpredictability can be seen as a form of
unstructuredness in the time domain) and characterized by object models and task con-
cepts related to human domains. Although the demonstrated systems can be conceptu-
ally applied to real world human domains, they do require performance improvements
and added mechanisms for fault recovery to make them as robust and stable as required
by these domains. Similar to the introduction of desktop computers and mobile phones,
robot platforms and the software that controls them needs to have a high level of robust-
ness and user friendliness. Considering the fact that these systems will not just ‘think’
(like computers), but will also ‘manipulate’, it is even more important for them to derive
the right interpretations and to make the right decisions. For this reason, it is therefore
difficult to predict when the first full autonomous systems will be deployed in our every-
day lives. Fortunately, as with phones and desktop computers, they do not necessarily
have to be as complex as what researchers at this point in time already desire them to
be. Examples in this are the simpler robot types that are currently mowing our lawns and
vacuum cleaning our living rooms. For more advanced activities, tele-operation, such as
currently being applied to underwater welding and bomb disposal robots, is currently a
good transitional step to full autonomy.

6.2 Recommendations

Chapter 2 of this thesis demonstrated an interesting alternative to established methods
that are currently mostly used in tracking applications. The focus of this chapter was
to compare distinct methods used specifically for the purpose of target tracking of a
highly agile, maneuvering target. To integrate the proposed Interacting Multiple Model
filter however in the cloud based task scheduling architecture as proposed in Chapter 1
however, several points need to be addressed in addition. As the proposed IMM filter
in Chapter 2 only deals with tracking, a first point to be addressed is the current lack
for adequate data association techniques, that associate received measurements with the
appropriate existing object instances. A recommendation in this context is therefore the
inclusion of methods for data associating, where the work of Bar-Shalom [15] can be seen
as a cornerstone in this area, especially because it combines tracking with data association
techniques. A more extensive, state of the art overview of tracking and data association
techniques can be found in the work of De Laet [46]. To furthermore apply this type of
tracking and association techniques to the human domain specifically, a second point that
needs to be addressed is the required anchoring techniques that need to be integrated.

2http://wiki.ros.org/rosprolog

116 Chapter 6: Conclusions and recommendations

Anchoring is a technique in which multiple object attributes, such as position but also
color, weight, etc. are linked against incoming measurements. An introductory overview,
and extended work in this direction can be found in the work of Saffiotti [42]. The work
of Elfring [54] combines these methods, and provides in a full ROS compatible software
implementation called Wire3.

Chapter 3 discussed a learning method that allows systems to improve upon their de-
cision making capabilities. Because the focus in this chapter is on the application and
evaluation of the Reinforcement Learning method Greedy-GQ(λ) on an application that
has a smaller state and action space than the proposed architecture from Figure 1.6, ex-
tensive effort needs to be made to scale the learning problem up to a size similar to that
of a full global learning architecture. When applying Greedy-GQ(λ) on an application
of such a global size, the question would be if temporal difference learning methods are
still viable to be performed with respect to scalability and convergence time constraints.
For such a large scale application it will probably be more worthwhile to investigate
learning methods for data classification and data outlier removal, for which data mining
techniques such as those addressed in [32] can be used, as these enable the analysis of
large data sets for unknown data patterns (data clustering) and the detection of unusual
patterns (anomaly detection). An extensive overview of data mining techniques from a
database perspective is given in [65]. Furthermore this chapter concludes that the design
of an accurate reward function based on human heuristics is a difficult task, which can be
assumed even more challenging for a large application as proposed in Figure 1.6. As a
solution, meta-learning of the reward function can be made an automated process through
the use of evolutionary algorithms, such as described in the work of Sumino [164].

The work described in Chapters 4 and 5 focused on planning and execution for robots
operating in human domains, where the latter extends to the integration of semantic web
task representations. Here, a reference was made to the ubiquitous robot network as
described in [88], where robot platforms are modeled as modular platforms with abstract
component representations. As opposed to the WSDL based grounding implementations
used there, this thesis focuses on the grounding of robot tasks on ROS [146] middle-ware,
as it currently can be regarded as one of the most used and supported middle-wares for
robots. However, to allow true integration with existing web services, home automation
systems and database information retrieval systems that are not running on ROS, it will
be necessary to provide additional grounding definitions that align with the invocation
methods of these systems. A good example can be found in the work of Ha [64], where
WSDL is used as a common grounding method for the invocation of several robotics and
home automation systems. Unfortunately however, their work is not openly accessible.

A concern that has not yet been addressed in this thesis are the ethical and privacy re-
lated concerns that inevitably will need to be addressed in a near future. As currently
large discussions are going on about the capturing and storage of data coming from the
public domain, the development of cloud based robot control architectures needs to take
place in these discussions in an early stage, as their functional existence depends on the
availability of this data, and on the infrastructural investments that are currently being

3http://wiki.ros.org/wire

6.2: Recommendations 117

made to support and process this data. No definite answers to these questions currently
exist, but it is clear that society demands for them and that scientific developments cannot
continue without having established the ethically right set of privacy related protocols.
Fortunately, as with any world-altering technological development, through rational dis-
cussion and creative (re-)engineering, consensus will always be found.

118 Chapter 6: Conclusions and recommendations

119

Bibliography

[1] World Population Ageing, 1950-2050. United Nations Publications, Room DC2-
853, 2 UN Plaza, New York, NY 10017, 2002.

[2] Rainer Bischoff 0004, Tim Guhl, Erwin Prassler, Walter Nowak, Gerhard K.
Kraetzschmar, Herman Bruyninckx, Peter Soetens, Martin Hgele, Andreas Pott,
Peter Breedveld, Jan Broenink, Davide Brugali, and Nicola Tomatis. Brics - best
practice in robotics. In ISR/ROBOTIK, pages 1–8. VDE Verlag, 2010. ISBN 978-
3-8007-3273-9.

[3] Russell J. Abbott. Knowledge abstraction. Commun. ACM, 30(8):664–671, Au-
gust 1987. ISSN 0001-0782. doi: 10.1145/27651.27652.

[4] Rachid Alami, Raja Chatila, Sara Fleury, Malik Ghallab, and Félix Ingrand. An
architecture for autonomy. I. J. Robotic Res., 17(4):315–337, 1998.

[5] Allied Vision Technologies. Prosilica drivers, August 2013.

[6] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,
Ivana Trickovic, and Sanjiva Weerawarana. BPEL4WS, Business Process Exe-
cution Language for Web Services Version 1.1. IBM, 2003.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April
2010. ISSN 0001-0782. doi: 10.1145/1721654.1721672.

[8] Rajesh Arumugam, Vikas Reddy Enti, Bingbing Liu, Xiaojun Wu, Krishnamoor-
thy Baskaran, Foo Kong Foong, Appadorai Senthil Kumar, Dee Meng Kang, and
Wai Kit Goh. Davinci: A cloud computing framework for service robots. In ICRA,
pages 3084–3089. IEEE.

[9] Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dana S.
Nau, Dan Wu, and Fusun Yaman. Shop2: An htn planning system. CoRR,
abs/1106.4869, 2011.

120 Bibliography

[10] Peter Auer and M. Long. Using confidence bounds for exploitation-exploration
trade-offs. Journal of Machine Learning Research, 3:2002, 2002.

[11] F. Augugliaro, A. Schoellig, and R. D’Andrea. Generation of collision-free tra-
jectories for a quadrocopter fleet: A sequential convex programming approach. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages
1917–1922, 2012.

[12] Jean-Christophe Baillie. Urbi: towards a universal robotic body interface. In
Humanoids, pages 33–51. IEEE. ISBN 0-7803-8863-1.

[13] Leemon Baird. Residual algorithms: Reinforcement learning with function ap-
proximation. In In Proceedings of the Twelfth International Conference on Ma-
chine Learning, pages 30–37. Morgan Kaufmann, 1995.

[14] Prith Banerjee, Rich Friedrich, Cullen Bash, P. Goldsack, Bernardo A. Huberman,
J. Manley, Chandrakant D. Patel, Parthasarathy Ranganathan, and A. Veitch. Ev-
erything as a service: Powering the new information economy. IEEE Computer,
44(3):36–43, 2011.

[15] Y. Bar-Shalom and T.E. Fortmann. Tracking and data association, volume 179 of
Mathematics in Science and Engineering. Academic Press Professional, Inc., San
Diego, CA, USA, 1987. ISBN 0-120-79760-7.

[16] Y. Bar-Shalom, S. Challa, and H.A.P. Blom. Imm estimator versus optimal esti-
mator for hybrid systems. Aerospace and Electronic Systems, IEEE Transactions
on, 41(3):986 – 991, july 2005. ISSN 0018-9251.

[17] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems, 13(4):341–379, 2003.

[18] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In Fourth IEEE International Conference on Software Engineering and
Formal Methods, SEFM, pages 3–12, 2006.

[19] M. Beetz, L. Mösenlechner, and M. Tenorth. CRAM – A Cognitive Robot Ab-
stract Machine for everyday manipulation in human environments. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1012–
1017. IEEE, 2010.

[20] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, USA, 1 edition, 1957.

[21] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and N. Thanh-Hung. Designing
autonomous robots. Robotics & Automation Magazine, IEEE, 16(1):67–77, 2009.

[22] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

[23] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1st edition, 1996. ISBN 1886529108.

Bibliography 121

[24] J.A. Besada, J. Garcia, G. De Miguel, A. Berlanga, J.M. Molina, and J.R. Casar.
Design of imm filter for radar tracking using evolution strategies. Aerospace and
Electronic Systems, IEEE Transactions on, 41(3):1109 – 1122, july 2005. ISSN
0018-9251.

[25] H.A.P. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for
systems with markovian switching coefficients. Automatic Control, IEEE Trans-
actions on, 33(8):780 –783, aug 1988.

[26] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Artif. Intell., 90(1–2):281–300, 1997.

[27] Jeen Broekstra and Arjohn Kampman. Serql: An rdf query and transformation
language. August .

[28] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In Ian Horrocks and
James Hendler, editors, Proceedings of the first Int’l Semantic Web Conference
(ISWC 2002), Lecture Notes in Computer Science, pages 54–68, Sardinia, Italy,
May . Springer Verlag. ISBN 978-3-540-43760-4. doi: 10.1007/3-540-48005-6\
7.

[29] Herman Bruyninckx. Open robot control software: the orocos project. In ICRA,
pages 2523–2528. IEEE. ISBN 0-7803-6578-X.

[30] Thomas Brunl. Embedded robotics - mobile robot design and applications with
embedded systems (3. ed.). Springer, 2008. ISBN 978-3-540-70533-8.

[31] Tom Bylander. The computational complexity of propositional strips planning.
Artificial Intelligence, 69:165–204, 1994.

[32] Peter Cabena, Pablo Hadjinian, Rolf Stadler, Jaap Verhees, and Alessandro Zanasi.
Discovering Data Mining: From Concept to Implementation. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1998. ISBN 0-13-743980-6.

[33] Arthur Carvalho and Renato Oliveira. Reinforcement learning for the soccer drib-
bling task. CoRR, abs/1305.6568, 2013.

[34] D. Chapman. Planning for conjunctive goals. Artificial intelligence, 32(3):333–
377, 1987.

[35] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo
tree search: A new framework for game ai. In Proceedings of the Fourth Artificial
Intelligence and Interactive Digital Entertainment Conference, pages 216–217,
2008.

[36] L. Chen et al. Robotic foosball table, 2007.

[37] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web services description language (wsdl) version 2.0 part 1: Core lan-
guage. World Wide Web Consortium, Recommendation REC-wsdl20-20070626,
June 2007.

122 Bibliography

[38] Hyungsuck Cho. Opto-Mechatronic systems handbook: techniques and applica-
tions. CRC Press, Abingdon, 2003.

[39] Beth Cohen. Paas: New opportunities for cloud application development. IEEE
Computer, (9):97–100.

[40] Community Project. Open CV, August 2013.

[41] S. Connelly et al. The autonomous foosball table, September 2007.

[42] S. Coradeschi and A. Saffiotti. An introduction to the anchoring problem. Robotics
and Autonomous Systems, 43(2-3):85–96, 2003.

[43] Christopher Crick, Graylin Jay, Sarah Osentoski, and Odest Chadwicke Jenkins.
Ros and rosbridge: roboticists out of the loop. In Holly A. Yanco, Aaron Steinfeld,
Vanessa Evers, and Odest Chadwicke Jenkins, editors, HRI, pages 493–494. ACM.
ISBN 978-1-4503-1063-5.

[44] Alexander Clifford Perzylo M.J.G. (Ren) Van de Molengraft Daniel Di Marco,
Rob Janssen and Paul Levi. A deliberation layer for instantiating robot execution
plans from abstract task descriptions. In Workshop on Planning and Robotics 23rd
International Conference on Automated Planning and Scheduling, 2013.

[45] Giuseppe de Giacomo, Yves Lespérance, and Hector J. Levesque. Congolog, a
concurrent programming language based on the situation calculus. Artif. Intell.,
121(1-2):109–169, August 2000. ISSN 0004-3702. doi: 10.1016/S0004-3702(00)
00031-X.

[46] Tinne De Laet. Rigorously Bayesian Multitarget Tracking and Localization. PhD
thesis, May 2010.

[47] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. OSDI, page 13, 2004.

[48] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic.
arXiv preprint arXiv:1205.4839, 2012.

[49] J. Ruiz del Solar, E. Chown, and P. Ploeger, editors. RoboCup 2010: Robot Soccer
World Cup XIV, volume 6556 of Lecture Notes In Artifical Intelligence. Springer
Verlag Berlin Heidelberg, 2011. ISBN 978-3-642-20216-2.

[50] Micheal Delp. Experiments in off-policy reinforcement learning with the
gq(lambda) algorithm. In PhD Thesis.

[51] Saadia Dhouib, Nicolas Du Lac, Jean-Loup Farges, Sébastien Gerard, Miniar
Hemaissia-Jeannin, Juan Lahera-Perez, Stéphane Millet, Bruno Patin, and Serge
Stinckwich. Control Architecture Concepts and Properties of an Ontology De-
voted to Exchanges in Mobile Robotics. In 6th National Conference on Control
Architectures of Robots, page 24 p., Grenoble, France, May 2011. INRIA Greno-
ble Rhône-Alpes.

Bibliography 123

[52] R.O. Duda and P.E. Hart. Use of the hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972. ISSN 0001-
0782.

[53] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake. The owl-s editor - a development tool for
semantic web services. In Asuncin Gmez-Prez and Jrme Euzenat, editors, ESWC,
Lecture Notes in Computer Science, pages 78–92. Springer. ISBN 3-540-26124-9.

[54] J. Elfring, S. Van Den Dries, R. van de Molengraft, and M. Steinbuch. Semantic
world modeling using probabilistic multiple hypothesis anchoring. Robot. Auton.
Syst., 61(2):95–105, February 2013. ISSN 0921-8890.

[55] Kutluhan Erol. Hierarchical Task Network Planning: Formalization, Analysis,
and Implementation. PhD thesis, College Park, MD, USA, 1996. UMI Order No.
GAX96-22054.

[56] R.E. Fikes and N.J. Nilsson. strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

[57] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Technical Report 43R, AI Center, SRI
International, 333 Ravenswood Ave, Menlo Park, CA 94025, May 1971. SRI
Project 8259.

[58] R.J. Firby. An investigation into reactive planning in complex domains. In Proc. of
the Sixth National Conference on Artificial Intelligence, volume 1, pages 202–206,
1987.

[59] Florian Fischer, Gulay nel, Barry Bishop, and Dieter Fensel. Towards a scalable,
pragmatic knowledge representation language for the web. In Amir Pnueli, Irina
Virbitskaite, and Andrei Voronkov, editors, Ershov Memorial Conference, volume
5947 of Lecture Notes in Computer Science, pages 124–134. Springer, 2009. ISBN
978-3-642-11485-4.

[60] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project: Tools for multi-
robot and distributed sensor systems. In 11th International Conference on Ad-
vanced Robotics (ICAR 2003), Coimbra, Portugal, June .

[61] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL—The Planning Domain Definition Language.

[62] Giuseppe Giacomo, Yves Lespérance, Hector J. Levesque, and Sebastian Sar-
dina. IndiGolog: A High-Level Programming Language for Embedded Reasoning
Agents. pages 31–72. 2009. doi: 10.1007/978-0-387-89299-3\ 2.

[63] E. Guizzo. Three engineers, hundreds of robots, one warehouse. Spectrum, IEEE,
45(7):26 –34, july 2008.

124 Bibliography

[64] Young-Guk Ha, Joo-Chan Sohn, Young-Jo Cho, and Hyunsoo Yoon. A robotic
service framework supporting automated integration of ubiquitous sensors and de-
vices. Inf. Sci., 177(3):657–679, 2007.

[65] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2005. ISBN 1558609016.

[66] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, July 1968. ISSN 0536-1567.

[67] Ronny Hartanto. A Hybrid Deliberative Layer for Robotic Agents - Fusing DL
Reasoning with HTN Planning in Autonomous Robots, volume 6798 of Lecture
Notes in Computer Science. Springer, 2011. ISBN 978-3-642-22579-6.

[68] T. Hester and P. Stone. Negative information and line observations for monte carlo
localization. In ICRA, pages 2764–2769, 2008.

[69] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation
through heuristic search. CoRR, abs/1106.0675, 2011.

[70] Berthold K. Horn. Robot Vision. McGraw-Hill Higher Education, 1st edition,
1986. ISBN 0070303495.

[71] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. Swrl: A semantic web rule language combining owl
and ruleml. W3c member submission, World Wide Web Consortium.

[72] Dominique Hunziker, Mohanarajah Gajamohan, Markus Waibel, and Raffaello
DAndrea. Rapyuta: The RoboEarth cloud engine. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA), Karlsruhe, Germany, pages 438–444, 2013.

[73] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control. IEEE
Trans. on Robotics and Automation, 12(5):651–670, October 1996.

[74] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: learning attractor models for motor
behaviors. Neural computation, 25(2):328–373, 2013.

[75] J. Illingworth and J. Kittler. A survey of the hough transform. Computer Vision,
Graphics, and Image Processing, 44(1):87–116, 1988. ISSN 0734-189X.

[76] J. Jackson. Microsoft robotics studio: A technical introduction. Robotics Au-
tomation Magazine, IEEE, 14(4):82 –87, dec. 2007. ISSN 1070-9932. doi:
10.1109/M-RA.2007.905745.

[77] Mohammad Jamshidi. Autonomous control of complex systems: robotic appli-
cations. Applied Mathematics and Computation, 120(1-3):15–29, 10 May 2001.
doi: doi:10.1016/S0096-3003(99)00285-4.

Bibliography 125

[78] R. Janssen, J. de Best, R. van de Molengraft, and M. Steinbuch. The design of
a semi-automated football table. In IEEE International Conference on Control
Applications (CCA), pages 89 –94, sept. 2010.

[79] Rob Janssen, Jeroen de Best, and René van de Molengraft. Real-time ball tracking
in a semi-automated foosball table. In RoboCup, pages 128–139, 2009.

[80] Rob Janssen, Mark Verrijt, Jeroen de Best, and René van de Molengraft. Ball
localization and tracking in a highly dynamic table soccer environment. Mecha-
tronics, 22(4):503–514, June 2012. ISSN 09574158.

[81] N. Jong and P. Stone. Hierarchical model-based reinforcement learning: Rmax +
MAXQ.

[82] M. Jovanovic and D. Starcevic. Software architecture for ground control station
for unmanned aerial vehicle. In Proceedings of the Tenth International Conference
on Computer Modeling and Simulation, pages 284–288, 2008. ISBN 978-0-7695-
3114-4.

[83] Alex Juarez, Christoph Bartneck, and Loe Feijs. Using semantic technologies to
describe robotic embodiments. In Proceedings of the 6th International Conference
on Human-robot Interaction, HRI ’11, pages 425–432, 2011. ISBN 978-1-4503-
0561-7.

[84] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recogni-
tion. Prentice Hall, 1 edition. ISBN 0130950696.

[85] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artif. Intell., 101(1-2):99–
134, May 1998. ISSN 0004-3702. doi: 10.1016/S0004-3702(98)00023-X.

[86] H. Kälviäinen, P. Hirvonen, L. Xu, and E. Oja. Probabilistic and non probabilistic
hough transforms: overview and comparisons. Image and Vision Computing, 13
(4):239–252, 1995. ISSN 0262-8856.

[87] Ryan Francis Kelly. Asynchronous Multi-Agent Reasoning in the Situation Calcu-
lus. Phd, The University of Melbourne, 2008.

[88] Jong-Hwan Kim, In-Bae Jeong, In-Won Park, and Kang-Hee Lee. Multi-layer ar-
chitecture of ubiquitous robot system for integrated services. I. J. Social Robotics,
1(1):19–28, 2009.

[89] T. Kirubarajan and Y. Bar-Shalom. Kalman filter versus imm estimator: when do
we need the latter? Aerospace and Electronic Systems, IEEE Transactions on, 39
(4):1452 – 1457, oct. 2003. ISSN 0018-9251.

[90] N. Kiryati, H. Kälviäinen, and S. Alaoutinen. Randomized or probabilistic hough
transform: unified performance evaluation. Pattern Recognition Letters, 21(13-
14):1157–1164, 2000. ISSN 0167-8655.

126 Bibliography

[91] M. Klusch and A. Gerber. Semantic web service composition planning with owls-
xplan. In In Proceedings of the 1st Int. AAAI Fall Symposium on Agents and the
Semantic Web, pages 55–62, 2005.

[92] J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Reinforcement learning to adjust
parametrized motor primitives to new situations. (4):361–379, 2012.

[93] Jens Kober, Katharina Mlling, Oliver Kromer, Christoph H. Lampert, Bernhard
Scholkopf, and Jan Peters. Movement templates for learning of hitting and batting.

[94] Jens Kober, Erhan Oztop, and Jan Peters. Reinforcement learning to adjust robot
movements to new situations. In Proceedings of the Twenty-Second international
joint conference on Artificial Intelligence - Volume Volume Three, IJCAI’11, pages
2650–2655, 2011. ISBN 978-1-57735-515-1.

[95] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2149–2154, 2004.

[96] J. Zico Kolter and Andrew Y. Ng. Learning omnidirectional path following using
dimensionality reduction. In Wolfram Burgard, Oliver Brock, and Cyrill Stach-
niss, editors, Robotics: Science and Systems. The MIT Press, 2007. ISBN 978-0-
262-52484-1.

[97] O. Kroemer, R. Detry, J. Piater, and J. Peters. Combining active learning and
reactive control for robot grasping. (9):1105–1116, 2010.

[98] Torsten Kröger and Friedrich M Wahl. Online trajectory generation: basic con-
cepts for instantaneous reactions to unforeseen events. IEEE Transactions on
Robotics, 26(1):94–111, 2010.

[99] L. Kunze, T. Roehm, and M. Beetz. Towards semantic robot description lan-
guages. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 5589 –5595, may 2011. doi: 10.1109/ICRA.2011.5980170.

[100] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Norwell, MA, USA, 1991. ISBN 079239206X.

[101] V. F. Leavers. Which hough transform? CVGIP: Image Understanding, 58(2):
250–264, 1993. ISSN 1049-9660.

[102] M. Lekavy and P. Návrat. Expressivity of STRIPS-Like and HTN-Like Plan-
ning, volume 4496/2007 of Lecture Notes in Computer Science, pages 121–130.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-72829-0.
doi: 10.1007/978-3-540-72830-6\ 13.

[103] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.B. Scherl. Golog: A logic
programming language for dynamic domains. The Journal of Logic Programming,
31(1-3):59–83, 1997.

Bibliography 127

[104] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking–Part III: Mea-
surement models. In Proceedings of the 2001 SPIE Conference on Signal and
Data Processing of Small Targets, volume 4473, pages 423–446, 2001.

[105] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking–Part IV:
Decision-based methods. In Proceedings of the 2002 SPIE Conference on Sig-
nal and Data Processing of Small Targets, volume 4728, pages 511–534, 2002.

[106] X.R. Li and V.P. Jilkov. Survey of maneuvering target tracking. Part I: Dynamic
models. Aerospace and Electronic Systems, IEEE Transactions on, 39(4):1333 –
1364, oct. 2003. ISSN 0018-9251.

[107] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking: Approximation
techniques for nonlinear filtering. In Proceedings of the 2004 SPIE Conference on
Signal and Data Processing of Small Targets, volume 5428, pages 537–550, 2004.

[108] X.R. Li and V.P. Jilkov. Survey of maneuvering target tracking. Part V: Multiple-
model methods. Aerospace and Electronic Systems, IEEE Transactions on, 41(4):
1255 – 1321, oct. 2005. ISSN 0018-9251.

[109] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking–Part VIa:
Density-based exact nonlinear filtering. In Proceedings of the 2010 SPIE Con-
ference on Signal and Data Processing of Small Targets, volume 7698, 2010.

[110] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking–Part VIb: Ap-
proximate nonlinear density filtering in mixed time. In Proceedings of the 2010
SPIE Conference on Signal and Data Processing of Small Targets, volume 7698,
2010.

[111] X.R. Li and V.P. Jilkov. Survey of maneuvering target tracking. Part II: Motion
models of ballistic and space targets. Aerospace and Electronic Systems, IEEE
Transactions on, 46(1):96 –119, jan. 2010. ISSN 0018-9251.

[112] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking–Part VIc: Ap-
proximate nonlinear density filtering in discrete time. In Proceedings of the 2011
SPIE Conference on Signal and Data Processing of Small Targets, volume 8137,
2011.

[113] X.R. Li and V.P. Jilkov. A survey of maneuvering target tracking–Part VId: Sam-
pling based nonlinear filtering. In Proceedings of the 2011 SPIE Conference on
Signal and Data Processing of Small Targets, volume 8137, 2011.

[114] D. Long and M. Fox. The 3rd international planning competition: Results and
analysis. J. Artif. Intell. Res. (JAIR), 20:1–59, 2003.

[115] Sergei Lupashin, Angela Schöllig, Michael Sherback, and Raffaello D’Andrea. A
simple learning strategy for high-speed quadrocopter multi-flips. In ICRA, pages
1642–1648, 2010.

[116] Hamid Reza Maei. Gradient Temporal-Difference Learning Algorithms. PhD
thesis, University of Alberta, 2011.

128 Bibliography

[117] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S. Sutton.
Toward off-policy learning control with function approximation. In ICML, pages
719–726, 2010.

[118] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-
13360-1.

[119] D. Di Marco, M. Tenorth, K. Häussermann, O. Zweigle, and P. Levi. Roboearth
action recipe execution. In 12th International Conference on Intelligent Au-
tonomous Systems, 2012.

[120] Daniel Di Marco, Moritz Tenorth, Kai Hussermann, Oliver Zweigle, and Paul
Levi. Roboearth action recipe execution. In Sukhan Lee, Kwang-Joon Yoon, and
Jangmyung Lee, editors, Frontiers of Intelligent Autonomous Systems, Studies in
Computational Intelligence, pages 117–126. Springer. ISBN 978-3-642-35484-7.

[121] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, et al. Bringing semantics to web
services: The owl-s approach. Semantic Web Services and Web Process Composi-
tion, pages 26–42, 2005.

[122] T. Martinez-Marin and R. Rodriguez. Navigation of autonomous vehicles in un-
known environments using reinforcement learning. In Intelligent Vehicles Sympo-
sium, 2007 IEEE, pages 872–876, 2007. doi: 10.1109/IVS.2007.4290226.

[123] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interacting multiple model
methods in target tracking: a survey. Aerospace and Electronic Systems, IEEE
Transactions on, 34(1):103 –123, jan 1998.

[124] John McCarthy. Situations, actions, and causal laws. Technical Report Memo 2,
Stanford Artificial Intelligence Project, Stanford University, 1983.

[125] John McCarthy and Patrick J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press, Edinburgh, 1969.

[126] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. Pddl-the planning domain definition language. The AIPS-98
Planning Competition Comitee, 1998.

[127] C. McGann, E. Berger, J. Bohren, S. Chitta, B. Gerkey, S. Glaser, B. Marthi,
W. Meeussen, T. Pratkanis, E. Marder-Eppstein, and M. Wise. Model-based, hier-
archical control of a mobile manipulation platform. In ICAPS Workshop on Plan-
ning and Plan Execution for Real-World Systems, Thessaloniki, Greece, 2009.

[128] Francisco S. Melo and M. Isabel Ribeiro. Q -learning with linear function approx-
imation. In Nader H. Bshouty and Claudio Gentile, editors, COLT, volume 4539
of Lecture Notes in Computer Science, pages 308–322. Springer, 2007. ISBN
978-3-540-72925-9.

Bibliography 129

[129] O. Michel. Webots: Professional mobile robot simulation. International Journal
of Advanced Robotic Systems, 1(1):39–42, 2004.

[130] 1/2-Inch VGA (With Freeze-Frame) Cmos Active-Pixel Digital Image Sensor,
MT9V403 Data Sheet. Micron Technology, Inc, 2004. Document number:
09005aef80c07280, Micron Part Number: MT9V403C12ST.

[131] Nick Milton, David Clarke, and Nigel Shadbolt. Knowledge engineering and
psychology: Towards a closer relationship. International Journal of Human-
Computer Studies, 64(12):1214 – 1229, 2006. ISSN 1071-5819. doi: http:
//dx.doi.org/10.1016/j.ijhcs.2006.08.001.

[132] Jos Mira, Jos Ramn lvarez Snchez, and Flix de la Paz. The knowledge engineering
approach to autonomous robotics. In Jos Mira and Jos R. lvarez, editors, IWANN
(2), volume 2687 of Lecture Notes in Computer Science, pages 161–168. Springer,
2003. ISBN 3-540-40211-X.

[133] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
slam: A factored solution to the simultaneous localization and mapping prob-
lem. In In Proceedings of the AAAI National Conference on Artificial Intelligence,
pages 593–598. AAAI, 2002.

[134] L. Mösenlechner and M. Beetz. Fast temporal projection using accurate physics-
based geometric reasoning. In IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany, May 6–10 2013. Accepted for publica-
tion.

[135] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to se-
lect and generalize striking movements in robot table tennis. In Proceedings of
the AAAI 2012 Fall Symposium on robots that Learn Interactively from Human
Teachers, 2012.

[136] A. Myrup and M. Ording-Thomsen. Automated foosball table, 2007.

[137] D. Nau, T.C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, and F. Yaman.
Shop2: An htn planning system. Journal of Artificial Intelligence Research, 20
(1):379–404, 2003.

[138] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory &
Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.
ISBN 1558608567.

[139] I.A. Nesnas, A.W., M. Bajracharya, R. Simmons, T. Estlin, and W.S. Kim. Claraty:
An architecture for reusable robotic software. In SPIE Aerosense Conference,
2003.

[140] Tim Niemueller, Gerhard Lakemeyer, and Siddhartha S. Srinivasa. A Generic
Robot Database and its Application in Fault Analysis and Performance Evaluation.
In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
2012, Vilamoura, Algarve, Portugal, 2012. IEEE/RAS.

130 Bibliography

[141] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009.

[142] Christopher Painter-Wakefield. Sparse Value Function Approximation for Rein-
forcement Learing. PhD thesis, Duke University, 2013.

[143] Rajendra Patel, Mikael Hedelind, and Pablo Lozan-Villegas. Enabling robots in
small-part assembly lines: The ”rosetta approach” - an industrial perspective. In
ROBOTIK. VDE-Verlag, 2012. ISBN 978-3-8007-3418-4.

[144] R.S. Pieters. Active Vision: Directing Visual Attention. Master’s thesis, Eind-
hoven University of Technology, 2008.

[145] Prosilica GC640/640c Data Sheet. Prosilica Inc, 2008.

[146] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A.Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop on
Open Source Software, 2009.

[147] Matthias Radestock and Susan Eisenbach. Coordinating components in middle-
ware systems. Concurrency and Computation: Practice and Experience, 15(13):
1205–1231, 2003.

[148] Vignesh Ramanathan and Axel Pinz. Active object categorization on a humanoid
robot. In Leonid Mestetskiy and Jos Braz, editors, VISAPP, pages 235–241.
SciTePress, 2011. ISBN 978-989-8425-47-8.

[149] CH.H. Reinsch. Smoothing by spline functions. Numerische Mathematik, pages
177–183.

[150] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. The MIT Press, Massachusetts, MA, illustrated
edition edition, 2001. ISBN 0262182181.

[151] Warren L. Rhodes. Color separation techniques. Color Research And Application,
5(2):123–123, 1980. ISSN 1520-6378.

[152] Leonard Richardson and Sam Ruby. Restful web services.

[153] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach
(3. internat. ed.). Pearson Education, 2010. ISBN 978-0-13-207148-2.

[154] Conrad Sanderson, Ryan Curtin, Ian Cullinan, Dimitrios Bouzas, and Stanislav
Funiak. Armadillo: C++ linear algebra library , August 2013.

[155] Dan Sanderson. Programming Google App Engine - Build and Run Scalable Web
Apps on Google’s Infrastructure. O’Reilly, 2010. ISBN 978-0-596-52272-8.

[156] S.R. Schmidt-Rohr, F. Romahn, P. Meissner, R. Jäkel, and R. Dillmann. Learn-
ing probabilistic decision making by a service robot with generalization of user
demonstrations and interactive refinement. In Frontiers of Intelligent Autonomous
Systems, pages 309–322. Springer, 2013.

Bibliography 131

[157] John Schulman, Alex Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel.
Finding locally optimal, collision-free trajectories with sequential convex opti-
mization. Submitted. Draft at https://sites. google. com/site/rss2013trajopt, 2013.

[158] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile
Robots. Bradford Company, Scituate, MA, USA, 2004. ISBN 026219502X.

[159] M. Silbert, S. Sarkani, and T. Mazzuchi. Comparing the state estimates of a
kalman filter to a perfect imm against a maneuvering target. In Information Fusion
(FUSION), 2011 Proceedings of the 14th International Conference on, pages 1–5,
july 2011.

[160] R. Simmons and D. Apfelbaum. A task description language for robot control.
In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 3, pages 1931–1937, 1998.

[161] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Htn planning for web service
composition using shop2. Web Semant., 1(4):377–396, October 2004. ISSN 1570-
8268. doi: 10.1016/j.websem.2004.06.005.

[162] Russel Smith. Open dynamics engine, May 2007.

[163] Peter Stone, Richard S. Sutton, and Satinder P. Singh. Reinforcement learning for
3 vs. 2 keepaway. In RoboCup 2000: Robot Soccer World Cup IV, pages 249–258,
London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42185-8.

[164] S. Sumino, A. Mutoh, and S. Kato. Evolutionary approach of reward function for
reinforcement learning using genetic programming. In Micro-NanoMechatronics
and Human Science (MHS), 2011 International Symposium on, pages 385–390,
2011. doi: 10.1109/MHS.2011.6102214.

[165] Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112:181–211, 1999.

[166] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction,
1998.

[167] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

[168] Richard S. Sutton, Satinder Singh, Doina Precup, and Balaraman Ravindran. Im-
proved switching among temporally abstract actions. In Advances in Neural In-
formation Processing Systems 11, pages 1066–1072. MIT Press, 1999.

[169] Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M.
Pilarski, Adam White, and Doina Precup. Horde: a scalable real-time architecture
for learning knowledge from unsupervised sensorimotor interaction. In The 10th
International Conference on Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’11, pages 761–768, Richland, SC, 2011. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN 0-9826571-6-1, 978-0-
9826571-6-4.

132 Bibliography

[170] S. Suzuki and K. Be. Topological structural analysis of digitized binary images
by border following. Computer Vision, Graphics, and Image Processing, 30(1):
32–46, April 1985. ISSN 0734189X.

[171] D. Sýkora, D. Sedláček, and K. Riege. Real-time color ball tracking for aug-
mented reality. In Proceedings of the 14th Eurographics Symposium on Virtual
Environments, pages 9–16, May 2008.

[172] S. Takata and T. Hirano. Human and robot allocation method for hybrid assembly
systems. CIRP Annals - Manufacturing Technology, 60(1):9 – 12, 2011.

[173] M. Tenorth and M. Beetz. Knowrob – knowledge processing for autonomous
personal robots. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pages 4261–4266. IEEE, 2009.

[174] M. Tenorth and M. Beetz. Knowledge processing for autonomous robot control.
In AAAI Spring Symposium on Designing Intelligent Robots: Reintegrating AI,
Stanford, CA, USA, March 26–28 2012.

[175] M. Tenorth, A. Perzylo, R. Lafrenz, and M. Beetz. The RoboEarth language: Rep-
resenting and Exchanging Knowledge about Actions, Objects, and Environments.
In IEEE International Conference on Robotics and Automation (ICRA), St. Paul,
MN, USA, 2012. Best Cognitive Robotics Paper Award.

[176] Moritz Tenorth, Fernando De la Torre, and Michael Beetz. Learning probability
distributions over partially-ordered human everyday activities. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May
6–10 2013. Accepted for publication.

[177] Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz, and Michael
Beetz. Representation and Exchange of Knowledge about Actions, Objects, and
Environments in the RoboEarth Framework. IEEE Transactions on Automation
Science and Engineering (T-ASE), 2013. Accepted for publication.

[178] The MathWorks, Inc. Matlab/simulin, August 2013.

[179] A. M. Turing. Computing machinery and intelligence. 59(236):433–460, October
1950. ISSN 0026-4423.

[180] T. van der Zant and T. Wisspeintner. Robocup x: A proposal for a new league
where robocup goes real world. RoboCup 2005: Robot Soccer World Cup IX,
pages 166–172, 2006.

[181] J. Vergés-Llahı́. Color constancy and image segmentation techniques for appli-
cations to mobile robotics. Doctoral thesis, Universitat Politècnica de Catalunya,
2005.

[182] V. Verma, T. Estlin, A. Jónsson, C. Pasareanu, R. Simmons, and K. Tso. Plan
execution interchange language (plexil) for executable plans and command se-
quences. In Intl. Symp. on Artificial Intelligence, Robotics and Automation in
Space (ISAIRAS), Germany, 2005.

Bibliography 133

[183] L.F.M. Vieira, Uichin Lee, and M. Gerla. Phero-trail: a bio-inspired location
service for mobile underwater sensor networks. IEEE Journal on Selected Areas
in Communications, 28(4):553 –563, may 2010.

[184] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez,
K. Haussermann, R. Janssen, J.M.M. Montiel, A. Perzylo, B. Schiessle,
M. Tenorth, O. Zweigle, and R. van de Molengraft. Roboearth. Robotics Au-
tomation Magazine, IEEE, 18(2):69–82, 2011. ISSN 1070-9932. doi: 10.1109/
MRA.2011.941632.

[185] Vanessa Wang, Frank Salim, and Peter Moskovits. The Definitive Guide to HTML5
WebSocket. Apress, Berkely, CA, USA, 1st edition, 2013. ISBN 1430247401,
9781430247401.

[186] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292,
1992.

[187] T. Weigel. Kiro: A table soccer robot ready for the market. In IEEE International
Conference on Robotics and Automation (ICRA), pages 4266 – 4271, april 2005.

[188] T. Weigel and B. Nebel. Starkick, 2003.

[189] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical
report, Chapel Hill, NC, USA, 1995.

[190] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition,
2009. ISBN 0596521979, 9780596521974.

[191] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012. ISSN 1471-0684.

[192] Ronald J Williams and Leemon C Baird. Analysis of some incremental variants
of policy iteration: First steps toward understanding actor-critic learning systems.
Technical Rep. NU-CCS-93-11, Boston, 1993.

[193] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing
Surveys, 38, December 2006. ISSN 0360-0300.

[194] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler. Comparative study of hough
transform methods for circle finding. Image and Vision Computing, 8(1):71–77,
1990. ISSN 0262-8856.

[195] Xianrong Zheng and Yuhong Yan. An efficient syntactic web service composition
algorithm based on the planning graph model. In Proceedings of the 2008 IEEE
International Conference on Web Services, ICWS ’08, pages 691–699, Washing-
ton, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3310-0. doi:
10.1109/ICWS.2008.134.

134 Bibliography

135

Appendix A

Analytical Time Delay
Estimation

The total time delay is a result of individual processing steps. These steps will be re-
viewed here with respect to the parameters currently used on the setup. That is, the
camera runs at fvision = 200 Hz capturing 8-bit monochrome images of 657×446 pixels.

Exposure Time

Although the exposure time can be set separately, it is desired to be as long as possible
at high frame-rates. The delay it causes will therefore be

τet =
1

fvision
(A.1)

Therefore τet = 5 ms.

Sensor Readout Time

The Prosilica GC640c sensor type is a 1/2” CMOS progressive scan MT9V403 [145].
It can capture an active resolution of 493 rows by 659 columns and has a clock speed
(fclock) of 66 MHz. Windowing can be used to reduce the capture resolution. The number
of clock cycles for reading each row (crow = 671 cycles) however, is independent of how

136 Chapter A: Analytical Time Delay Estimation

many columns (ncol) are captured [130]. The delay can be calculated with

τsrt = nrow
crow

fclock
(A.2)

where nrow is the number of rows captured with the window. At full resolution τsrt =
4.9 ms.

Data Transfer Time

The captured data is sent from the camera to the computer via Gigabit ethernet. Assuming
sending is not started before the sensor has been fully read, the maximum delay for this
operation is

τdtt =
nbitnrowncol

1e9
(A.3)

where nbit is 8 bit for monochrome images. Therefore τdtt = 2.6 [ms]

Vision Processing

The amount of time it takes to process one image is less or equal to the sample time.

τvp ≤
1

fvision
(A.4)

which therefore is 5 [ms].

Therefore, the total worst case delay due to the complete image processing pipe line is
17.5 [ms].

137

Dankwoord

A wise man often tells me that moments in life are best experienced when one pauses
for a second, when one becomes at ease, when one takes the time to be proud of who we
are and where we come from, and how important it is to fully enjoy, that what is near us.
For me this is one of these moments, the moment that I get to thank the people that have
contributed to who I am, and for where they have brought me.

I first of all would like to thank my professor, Maarten Steinbuch, for granting me a place
in his group. During my PhD, as well as during my master and bachelor program, I have
always received the exact amount of guidance and support that was needed to complete
my goals, but Maarten has also always given me the right amount of freedom, to explore
new paths with an own sense of creativity. I also want to thank Maarten for the financial
support our group has always received, that allowed us to visit conferences, develop new
platforms and work with the most state of the art equipment.

I want to thank René van de Molengraft, my supervisor, for the incredible amount of
support that I have always received, both professionally and personally, and for offering
me a possibility to join in on the RoboEarth project. I want to thank Rene for the vast
amount of hours that we spent in room -1.141, brainstorming about my project, always
with an open, free and unbound mind. I especially want to thank René for the incredible
amount of trust he has always had in me, and for the enlightening advice and inspiring
‘pep-talks’, whenever my research became difficult or hard to oversee.

I want to thank the members of my committee, for evaluating my work and proofreading
my thesis. I would like to personally thank Herman Bruyninckx and Raffaello D'Andrea,
for their additional support during my PhD, and for showing me the industrial opportu-
nities and societal impact of robotics research.

I furthermore want to thank my colleagues at Eindhoven University. Especially Rob
Hoogendijk, in which I always had both friend and teammate, in all of our travels, tour-
naments and RoboCup achievements. I want to thank Janno Lunenburg, Sjoerd van den
Dries and Jos Elfring, for they have been the best possible cooperatives in providing sup-
port, advice and reflection. The achievements described in this work could not have been
accomplished without them. I also want to thank my students, that provided me with the
huge amounts of work required for implementations and experiments, and for the many

138 Chapter A: Analytical Time Delay Estimation

hours we discussed over existing concepts and the possibilities for new advancements.

I want to thank all of my friends, that made me who I am as a person and allowed me to
have an incredible life outside my work.

I want to thank my family, and especially my father, mother and brothers, who have
always made me feel comfortable with my own self, who made me strong as a person
and who always made me laugh. They are me, and I am them.

Finally, I want to thank my wife, Allison, my everlasting support and true best friend, in
all adventures that we made thus far and will make, voor nu en voor altijd.

139

Curriculum Vitae

Rob Josephus Maria Janssen was born on December 26th 1980 in Eindhoven, The Nether-
lands. After completing the Mechanical Engineering Bachelor program of Eindhoven
University of Technology, he started their subsequent Master program in 2006. During
this period, Rob participated in the Eindhoven University Tech United robot soccer team,
where he worked on data association and opponent modeling techniques. As part of his
studies, Rob remained at the University of Florida for 4 months as an intern, where he
worked on vision based state estimation techniques for unmanned aircraft. His master
thesis was based on the design and implementation of vision based control techniques
applied to the Eindhoven University automated football table. Rob completed the Me-
chanical Engineering Master program in August 2009 (Cum Laude).

In September 2009, Rob started his PhD at Eindhoven University of Technology, as a
member of the European funded RoboEarth project. His research topics included A.I.
based learning and planning techniques, logical reasoning and the design of robot task
execution architectures. He furthermore completed the D.I.S.C. program in 2010, and
was an active member of both the Tech United robot soccer and RoboCup@Home teams.
During his PhD he visited ETH Zürich for a 4 month period, to cooperate with ETH
PhDs on the development of learning controllers applied within the RoboEarth project.
Rob defended his PhD on Tuesday, April 15th 2014.

	Summary
	Samenvatting
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 A desire for new assistive technologies
	1.1.2 The challenges
	1.1.3 Robot design advancements
	1.1.4 Robot control program design
	1.1.5 Allowing robots to learn
	1.1.6 Importance of design knowledge reuse
	1.1.7 The idea of centralized learning and planning

	1.2 Objective
	1.3 Related work and contributions
	1.3.1 Object segmentation and tracking
	1.3.2 Robot learning
	1.3.3 Knowledge engineering
	1.3.4 Planning and execution
	1.3.5 The Semantic Web

	1.4 Outline

	2 Object Localization And Tracking
	2.1 Introduction
	2.2 Related Work On Similar Applications
	2.3 Method Selection
	2.3.1 Object Representation
	2.3.2 Feature Selection
	2.3.3 Object Detection
	2.3.4 Object Tracking

	2.4 Implementations
	2.4.1 Localization
	2.4.2 Tracking

	2.5 Simulations
	2.6 Experiments
	2.6.1 Localization Performance
	2.6.2 Tracking performance

	2.7 Discussion And Conclusions
	2.7.1 IMM versus standard Kalman filter
	2.7.2 Ball Localization Performance
	2.7.3 Ball Tracking Performance

	3 Policy Learning Using Greedy-GQ()
	3.1 Introduction
	3.1.1 Designing a smarter control strategy
	3.1.2 Problem statement
	3.1.3 Contribution
	3.1.4 Outline

	3.2 System overview
	3.3 Application of methods
	3.3.1 Design of action primitives
	Temporal action abstraction
	Attractor dynamics for motion generation
	Ball avoidance and non-zero target velocities

	3.3.2 The learning algorithm: Greedy-GQ()
	Reinforcement learning basic theory
	Q-learning
	Function approximation
	Q-learning with function approximation
	Greedy-GQ()
	Efficient computations through sparse updates

	3.4 Experiments
	3.4.1 Simulator
	3.4.2 Test cases
	Reward structure and episode termination
	Case 1: 2D input state without noise
	Case 2: 2D input state with noise
	Case 3: 2D input state with unknown, moving opponents
	Case 4: 2D input state with unknown, moving/static opponents
	Case 5: 4D input state with known opponents
	Case 6: 5D input state with longitudinal ball states and attacker angle
	Case 7: On the real setup

	3.4.3 Discussion

	3.5 Conclusion & Future work

	4 Integrating Planning And Execution
	4.1 Introduction
	4.2 Contributions
	4.3 Related Work
	4.4 System Design Motivation
	4.5 Action Recipe Database
	4.6 Planner
	4.6.1 SHOP2 Planning Problem Example

	4.7 Executive
	4.7.1 CPL
	4.7.2 Designators
	4.7.3 Fluents
	4.7.4 Process modules

	4.8 Auxiliary Components
	4.8.1 Reasoner
	4.8.2 Human Machine Interface

	4.9 Basic Experiment
	4.10 Discussion and Future Work

	5 Centralized Task Control
	5.1 Introduction
	5.1.1 Contributions
	5.1.2 Outline

	5.2 System Design
	5.2.1 Requirements
	5.2.2 Basic component diagram

	5.3 Implementations
	5.3.1 Communication framework
	5.3.2 Knowledge base
	5.3.3 Task controller
	Planning
	Execution

	5.3.4 Knowledge representations
	Robot knowledge
	Environment knowledge
	Task knowledge
	Grounding knowledge

	5.3.5 ROS component model
	5.3.6 Component deployment

	5.4 Experimental use-case
	5.4.1 Experiment description
	5.4.2 Simulator
	5.4.3 Real world

	5.5 Conclusions & Future Work

	6 Conclusions and recommendations
	6.1 Conclusions
	6.2 Recommendations

	Bibliography
	A Analytical Time Delay Estimation
	Dankwoord
	Curriculum Vitae

