
12 June 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for Early Design
Validation / Rimani, Jasmine; Viola, Nicole; Lizy-Destrez, Stéphanie. - In: AEROSPACE. - ISSN 2226-4310. -
ELETTRONICO. - 10:5(2023), p. 408. [10.3390/aerospace10050408]

Original

Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for
Early Design Validation

Publisher:

Published
DOI:10.3390/aerospace10050408

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978234 since: 2023-04-28T13:34:59Z

MDPI

Citation: Rimani, J.; Viola, N.;

Lizy-Destrez, S. Simulating

Operational Concepts for

Autonomous Robotic Space

Exploration Systems: A Framework

for Early Design Validation. Aerospace

2023, 10, 408. https://doi.org/

10.3390/aerospace10050408

Academic Editor: M. Reza Emami

Received: 24 February 2023

Revised: 23 April 2023

Accepted: 25 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Simulating Operational Concepts for Autonomous Robotic
Space Exploration Systems: A Framework for Early
Design Validation
Jasmine Rimani 1,* , Nicole Viola 1 and Stéphanie Lizy-Destrez 2

1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Turin, Italy

2 Department of Aerospace Vehicles Design and Control, ISAE-SUPAERO, 10 Av. Edouard Belin,
31400 Toulouse, France

* Correspondence: jasmine.rimani@polito.it

Abstract: During mission design, the concept of operations (ConOps) describes how the system
operates during various life cycle phases to meet stakeholder expectations. ConOps is sometimes
declined in a simple evaluation of the power consumption or data generation per mode. Different op-
erational timelines are typically developed based on expert knowledge. This approach is robust when
designing an automated system or a system with a low level of autonomy. However, when studying
highly autonomous systems, designers may be interested in understanding how the system would
react in an operational scenario when provided with knowledge about its actions and operational
environment. These considerations can help verify and validate the proposed ConOps architecture,
highlight shortcomings in both physical and functional design, and help better formulate detailed
requirements. Hence, this study aims to provide a framework for the simulation and validation
of operational scenarios for autonomous robotic space exploration systems during the preliminary
design phases. This study extends current efforts in autonomy technology for planetary systems by
focusing on testing their operability and assessing their performances in different scenarios early in
the design process. The framework uses Model-Based Systems Engineering (MBSE) as the knowledge
base for the studied system and its operations. It then leverages a Markov Decision Process (MDP) to
simulate a set of system operations in a relevant scenario. It then outputs a feasible plan with the
associated variation of a set of considered resources as step functions. This method was applied to
simulate the operations of a small rover exploring an unknown environment to observe and sample a
set of targets.

Keywords: MBSE; ConOps; OpsCon; MDP; MCTS; space mission design

1. Introduction

From a system engineering view, the study of autonomous systems brings to the table
different challenges, mainly:

• Formulation of effective and realistic requirements that do not constrain the future
system operability [1,2].

• Interfaces’ design, check, and control between hardware, software, and the human
operator [3].

• Verification of the requirements and validation of the architecture [4–7].

Autonomous systems have high interactions with their operative environment and
must make decisions based on their resources and environment state. Those capabilities
drive the overall system behaviour and operations and are hard to capture in conceptual
and preliminary design in a set of well-formed requirements [1,2]. Moreover, autonomous
systems combine highly integrated software with physical hardware while interacting with

Aerospace 2023, 10, 408. https://doi.org/10.3390/aerospace10050408 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10050408
https://doi.org/10.3390/aerospace10050408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-1048-6799
https://orcid.org/0000-0002-2141-3133
https://orcid.org/0000-0002-3956-3009
https://doi.org/10.3390/aerospace10050408
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10050408?type=check_update&version=1

Aerospace 2023, 10, 408 2 of 22

a human operator. This interaction may pose problems during the requirement formula-
tion and the verification and validation processes [3]. In [8], the author highlights how
important it is to establish correct interface requirements early in the design of autonomous
systems. Autonomous systems operations involve concurrent activities to be processed
and performed by tightly coupled subsystems [8].

Given the difficulty of realistically defining an autonomous robotic mission and related
requirements, the problem this paper addresses can be formulated as: is it possible to
provide an analysis or procedure to capture the interaction between an autonomous system,
its environment, its mission goals and its resources during preliminary design phases?
With preliminary design phases, the authors identify conceptual studies and concept and
technology development studies, as defined by the NASA life cycle standard [9].

Heritage from previous missions can help guide the decisions during initial studies.
There are a few examples of spacecraft guided predominately by AI-based processes,
such as some successful missions that push toward almost complete autonomy, such as
Deep Space 1 [10] or Earth Observing 1 [11]. In addition, different teams are studying
AI-agents capabilities on analogue platforms on Earth such as the Field Integrated Design
and Operations (FIDO) [12], or the Long Range Science Rover (Rocky) [13] or the Robotic
Antarctic Meteorite Search [14]. Those missions look into planning and robotics-related
theories during the later implementation phases and operations, not during the initial
system design. The interest of this publication is to understand how an autonomous system
may behave or plan its mission at a higher design level (namely conceptual and preliminary
design). Different round tables and discussions with experts can provide mission system
engineers with the knowledge to allocate autonomous functionalities well and define the
possible bottlenecks or criticality of different autonomy architectures. On the other hand,
providing system engineers with straightforward simulation tools to understand the impact
of autonomy at a higher design level can be helpful, and it can speed up the design process.

This study proposes a framework to study and validate operational scenarios for
autonomous robotic planetary exploration systems at early design stages. The objective
is to understand how the system, provided with knowledge about its actions and their
impact on different resources, plans its mission and interacts with the environment. The
created plan can then be run easily on a robotic platform or a simulation as a further
validation round of the computed architecture. Frameworks provide a general structure
to be followed; however, they leave the designer room to implement different algorithms
at any level. This framework would help the designer in both the mission definition and
system sizing. As analysed in [15], if operational models can be executed, it is also possible
to debug the described behaviour to match the expected performances or what the engineer
meant to capture. They may test whether the designed system has enough resources for
battery or data storage to complete the expected operational scenario(s). At the same time, it
can help validate and verify the designed functional architecture. For example, if there is the
need to consider additional operative modes or a function that was overlooked during the
initial design phases. The simulation of the operational scenarios can help with stakeholder
consultation. Presenting a straightforward simulation of resource variation associated with
a given scenario can help better frame the mission and pinpoint discrepancies between
what is expected from the stakeholders and what the designers are providing. This study
innovates from the state of the art, as follows:

• It implements a simulation-backed analysis to study and validate the feasibility of
operational scenarios;

• It stores all the mission instances in an MBSE model and provides traceability of changes;
• It defines the variables defining and MDP space starting from the resources defined in

the MBSE model.

The knowledge base for the study is the MBSE model that encodes all the param-
eters and products of the study. The proposed framework provides a plan that can be
easily interfaced with middleware, such as the Robot Operating System (ROS). Hence, it
will be possible to simulate the studied operational scenario(s) directly on an analogue

Aerospace 2023, 10, 408 3 of 22

robotic platform or a physics-based simulator to cross-validate the identified operational
capabilities. For instance, [16] proposed a virtual mission operation framework with a
validation-in-the-loop of the design applied to the satellite and leveraging STK to simulate
the autonomous manoeuvres’ sequences. However, nothing comparable has been found in
the literature for planetary surface robotic systems.

As highlighted in Figure 1, the presented framework identifies the main mission driver
for the definition of the mission scope. The focus then shifts toward defining the MBSE
model in its functional and physical declinations. The MBSE model is then morphed into a
Markov Decision Process (MDP) and applied to a reference scenario. A plan is computed,
and if its output is satisfying, the designers may proceed with their study or test it on
analogue platforms.

Figure 1. MBSE to MDP theoretical workflow.

The study case is a small rover moving on the lunar surface. The designed system
weighs around 30 kg, with 3.3 kg of payload and an expected power consumption around
100 W. It is assumed that the rover can freely recharge its batteries and relay its commu-
nications to Earth or another system on the surface. Therefore, no specific flight rules are
imposed on when to communicate or recharge the batteries. The system should observe
different waypoints and sample some of them based on their scientific reward. All the
decisions can be left to the solving algorithm.

After this initial overview of the context and objective of this research, the remain-
ing of the paper will be organized as follows: Section 2 provides a small overview of
similar studies, Section 3 focuses on the background theories and definition guiding the
proposed framework, Section 4 provides a set of sample results that can be obtained
with the framework, Section 5 draws the main conclusions on this study and details its
future development.

2. Related Work

Operational scenarios are usually studied as a part of the Concept of Operations
(ConOps) analysis, as investigated in [17]. ConOps describe how the system will be
operated during all various life cycle phases to meet stakeholder expectations [18]. They
include evaluations of mission phases, operation timelines, operational scenarios, end-
to-end communications strategy, command and data architecture, operational facilities,
integrated logistic support and critical events [17]. In [17,19], ConOps are used to flow down
requirements for complex aerospace products as habitable modules or transfer vehicles.

Aerospace 2023, 10, 408 4 of 22

Beyond the requirement definition, ConOps guarantees that the technical team thoroughly
knows the stakeholders’ expectations and how the product may meet them [20]. If there
are gaps or ambiguities in the requirement definition, the ConOps study should identify
them and lead to additional refining rounds of the initial list of stakeholder objectives [20].
In addition, thinking through ConOps and use cases frequently reveals requirements and
design features that would otherwise go unnoticed, as investigated in [20].

ConOps analysis is the design step when the systems engineers define the level of
autonomy that will characterize the mission [21]. The operational timelines related to the
space segments, the operational scenarios, and the command and data architecture are the
ConOps’s evaluations mostly affected by autonomy. On the other hand:

• The mission phases depend only on the external operational environment;
• The end-to-end communications strategy depends on the overall mission architecture,

existing relay satellites and celestial bodies’ positions;
• The operational facilities and the integrated logistic support depend on the mission

context, stakeholders, and goals.

The study of operational scenarios would include elements of logistic support. The fo-
cus would be on how the operator interacts with the system when autonomous. This
interaction can be viewed as sharing responsibilities, as detailed in [21]. ConOps have es-
tablished themselves as the analysis to help design autonomous systems during conceptual
design, as highlighted in [1,22,23]. For example, the authors of [1,22] employ operational
analysis to pinpoint the requirements associated with different levels of autonomy and
human-system interactions. Furthermore, different authors start looking for behavioural
patterns and protocols to generalize the testing and early design definition of autonomous
systems’ operations [24,25]. Moving toward a more model-based approach, ConOps’
operational scenarios can be captured in the MBSE functional architecture highlighting
operational capabilities, activities, or actions the system can perform. Different studies on
autonomous cars have started leveraging ontologies and MBSE to define testing scenarios
for operational capabilities of the autonomous AI agent [23,26]. The objective is to avoid
expensive re-design later in the system’s life cycle by introducing operational tests during
conceptual design [23].

All of these studies, model-based or not, leave the verification and validation of the
ConOps to a board of experts instead of a set of operations-related simulations. By leverag-
ing MBSE, it should be possible to relay information to other tools to test the ConOps and
better define requirements and mission architecture. Authors such as [15] emphasize how
simulations effectively detect possible defects at an early design stage when changes are
less expensive. In [15,27], executable MBSE models based on SysML are employed for re-
quirement verification. The underlying idea of the executable systems’ engineering method
(ESEM) is to create an MBSE model that ties together different subsystem models and the
output of domain-specific practices such as CAD or CFD modelling. As stated by [15],
with executable models, it is possible to debug a described behaviour checking whether
it matches what the designer meant to capture. The simulation provides a benchmark to
understand whether the system behaves as predicted. The level of MBSE maturity provided
by frameworks similar to ESEM blurs the line between design and development. However,
the ESEM methodology has been applied to automated systems, not autonomous ones.

The work presented in this paper extends the efforts of executable models, providing
a simulation framework targeting operational scenarios. The defined simulation frame-
work tests the operations of an autonomous system from its point of view, employing
techniques of AI planning. The paper also proposes a new case study, autonomous systems,
for applying executable MBSE models. AI planning is the branch of artificial intelligence
that focuses on defining an action sequence for an agent to reach a specified goal. Space
operations’ software uses planning and scheduling algorithms to achieve a high level of
autonomy for both goal-oriented autonomy onboard a spacecraft and planning activities in
the ground segment [28]. Most of the work employing AI planning focused on enabling
long-term autonomous operations, such as in [7,28–31]. Some of those algorithms and

Aerospace 2023, 10, 408 5 of 22

frameworks were concretized in the Deep Space 1 mission [10,32] and in the Earth Ob-
serving 1 mission [33]. In these studies, automated planning techniques are used during
the implementation and operation phases of the life cycle. The planners are developed
following a series of requirements defined during the formulation phases. Hence, it can be
helpful to leverage the ability of those algorithms to output a series of feasible plans (given
a set of desired goals, knowledge of the environment, and the possible actions and resources
available) to simulate an operational scenario defined in a ConOps at a conceptual design
level. No prior studies have examined possible links or synergies between automated
planning techniques and preliminary design for space systems, nor have they analysed the
reuse of systems engineering models to define planning domains, as illustrated in Table 1.

Table 1. Comparison between the literature employing MBSE or operations-based simulations and
the study of this paper.

Study Application Design Phase Autonomy MBSE-Based ConOps Validation

[23] Cars Preliminary design Yes Yes Yes, by expert review

[34] Satellites Preliminary design Yes No Not specified

[26] Cars Preliminary design Yes No Yes, by simulation

[15] Telescope Preliminary design
and operations No Yes Yes, by simulation

This paper Planetary surface robotics Preliminary design
and operations Yes Yes Yes, by simulation

3. Methods and Materials
3.1. MBSE and the Parametric Functional Model

Model-based systems engineering is a discipline that emphasizes the use of models
to design, develop, and test all parts of a system [35]. MBSE aims to shift the systems
engineering paradigm from a document-centric approach to a coherent model from which
the typical systems’ engineering documents are derived. The MBSE model includes a
functional architecture (encompassing functions, use cases, activities, actions, and states
of the system) and a physical one (including physical elements, resources, and variation
law of those resources). In this study, the functional architecture includes the operational
capabilities that the system can perform. Each of these capabilities is associated with a
physical element that can perform them. The first step is the definition of the functional
architecture. During the design formulation phases, it is possible to generalize a set of
operational capabilities for a given system, as studied in [36]. The operational capabilities
are high-level functions responding to a mission statement [36]. From a SysML point of
view, they can be identified as primary use cases. Regardless of the mission architecture,
the authors propose to generalize a set of common operational capabilities for rover-like
planetary exploration systems:

• Payload related:

– Observe target;
– Collect target data;

• Platform related:

– Communicate telemetry;
– Receive command;
– Recharge batteries;
– Check resources;
– Check goal;
– Navigate to goal;
– Wait instructions.

Aerospace 2023, 10, 408 6 of 22

The technologies that guarantee those operational capabilities are met may differ based
on the mission. For example, “navigate to goal” can be a shared operational capability for a
rover or a drone, even if the mobility system is quite different. Even how those operational
capabilities would be detailed or executed can vary. Different missions may require the
system to check different types of resources or execute a different logic. For example,
“collect target data” may encompass sampling activities, temperature or radiation recording
activities, mapping activities or similar. Some of these operational capabilities are heavily
linked to autonomous decision-making. For instance, a planetary rover can check the list of
goals provided by the control centre and remove some or send a warning to the control
centre if it detects that reaching them may endanger it. In comparison, other capabilities
are shared between autonomous and automated platforms, as for “communicate teleme-
try”. Some of these listed operational capabilities may not be considered based on the
mission’s objectives.

After identifying which high-level functions the system under study should perform,
it is possible to focus on the physical architecture and identify the components. These
components would impact resources such as power consumption, generated data or storage
space. These parameters can derive from a database of components, previous studies,
or a scale-up of existing systems. There is extensive literature on the rapid sizing of
physical hardware for robotic space systems, as in [28,37,38]. This resource consumption
can change or be refined during the different design phases. The MBSE model matures
with the system development, encoding all the related information in a coherent model.
The variation of resources due to the different components can be associated with the
operational capabilities. Hence, it is possible to assimilate these variations in the related
functions, creating a parametric functional model.

A parameterization of the functional architecture with time has already been studied
in [15]. The idea of associating some parameters with functional entities is not unheard of in
the system engineering domain. However, it appears to be less used. The branch of system
research that focuses on developing data exchanges between MBSE and other engineering
models (aerodynamic, propulsive, etc.) seems more open to adopting parametrization
at the functional level and not only on the physical level. This study proposes to push
beyond the time parametrization of [15], considering how other resources change during
an operational scenario. A resource can be an available storage space for a sample, a battery
capacity or the available memory to store some data. The steps to define a parametric
functional model used in this paper are:

1. An initial functional model is defined;
2. The different functional instances can be associated with the physical element that

can perform them;
3. The resource parameters associated with the component are back-traced to the functions;
4. A time parametrization is linked to the functions.

If different physical elements can answer one of the identified functionalities, a trade-
off is conducted relying on the quality function deployment (QFD) tool, as in [39]. The dif-
ferent figures of merit are graded considering mission objectives and the stakeholder’s
needs, as in the analysis of [39,40]. The design space is then narrowed down to a few
solutions that can be quickly tested for feasibility with the proposed framework. This last
analysis can provide new inputs for further refining trade-offs. From the definition of the
parametric functional model, it is possible to identify the parameters that can define differ-
ent states of the studied system during its mission. These states can then be formulated as
an MDP state.

3.2. Markov Decision Process

Markov decision processes are a long-studied formalism for decision making [41].
In an MDP, the agent solves several decision problems in sequence, where each current
decision influences the solution of the following problem [41,42]. This sequential nature
of the decisions is typically found in probabilistic planning problems, which generalize

Aerospace 2023, 10, 408 7 of 22

shortest-path algorithms in a stochastic environment. The objective of solving an MDP is
to find an optimal policy that associates an optimal action with any state [42]. Solving a
Markov decision problem can be thought of as controlling the agent to behave optimally,
maximizing an average accumulated income in the long run. The solutions are policies
that specify the action to be taken in each possible state, assuming that the agent possesses
a perfect knowledge of the process and its state at all times. MDP has been long used in
robotics for:

• Task planning in a probabilistic environment, as analysed in [42].
• Allocating tasks between different robots, as investigated in [43].
• Managing failure scenarios with multiple robots. For example, in [44], failure recon-

figurability comes with re-allocating tasks between robotic platforms. If a robot fails,
another is ready to take on the task.

MDP follows the Markov property: all information relevant to the prediction of the
future is contained in the present state. This property is referred to as memorylessness by
experts: the action leading to the next state can be decided based on the system’s current
state, as if the process’s complete history is known.

For the application of this paper, MDP is used instead of a partially observable Markov
decision process (POMDP). The assumption is that during the initial design studies, com-
plete knowledge is given to the agent about its state and environment. For the planetary
rover, the environment is less dynamic and changing than autonomous systems on Earth.
This assumption can stand during the initial conception phases. However, when more
dynamic robotic systems, such as flying bots, are considered, looking toward POMDP can
be a good solution. At the same time, failure models would benefit from a POMDP model
as soon as sensors and monitoring equipment are defined. Most of the process in robotics
falls into this category, like the work in [45]. An MDP problem can be easily solved if the
state transition probabilities are known. The state transition functions depend only on the
current state, not on how that state was reached. The solution of an MDP is to find an
optimal policy. A policy is a mapping from states to actions. An optimal policy should
ensure that, for a given state, no other action would provide a higher sum of discounted
future rewards. Beyond classical MDP-solving techniques in planning, such as policy or
value iteration, it is possible to define an optimal policy leveraging reinforcement learning.
These techniques are used if the problem transition matrix is complex to compute. These
strategies can be considered as planning with a simulator-type model. A simulator samples
the following possible states starting from a current state and a reward function [46]. Those
methods are called off-policy, as the values of the state transition probabilities are learnt
with many trials and errors. Hence, the optimal policy can be learnt by the reinforcement
learning algorithm. In [46], one of the identified drawbacks of this solving method is the
significant degree of knowledge engineering spent in tweaking various parameters and
somehow suggesting the solver of some optimal decision strategies.

In the application of this study, this drawback is tackled by defining the set of parame-
ters that influence the functional architecture and the system operations from the MBSE
model. The model can include flight rules to decrease the algorithm’s search space, such
as communicating data only in specific time slots or when the memory is full of a defined
amount. Suppose the application is a movable planetary system exploring a particular site
of interest. In that case, routing problems can be used to suggest optimal movement strate-
gies, as analysed in Section 3.3. Focusing back on the MDP-solving technique, the most
used simulation-based optimization to find optimal policies of MDP with reinforcement
learning is Q-learning [47]. However, this study suggests tree-based reinforcement learning
algorithms such as the Monte Carlo tree search to solve operational problems similarly
to [48].

A tree view is more adapted to represent the possible actions taken by an exploration
system during its mission. Figure 2 shows a partial view of the decision tree, where an
autonomous system should decide its following action. Each of the state-action pairs has
an associated reward. Monte Carlo Tree Search is a policy-free reinforcement learning

Aerospace 2023, 10, 408 8 of 22

algorithm. The algorithm is often applied to find the winning strategies for board or video
games, Figure 3. The algorithm learns from its trials, and when well-defined, it can provide
a near-optimal or optimal operational plan respecting a series of constraints.

Figure 2. Partial view of a decision tree for a rover exploring an unknown environment, touching
different waypoints during its mission. The different actions bring to different states defined in terms
of the rover energy, data, and sampling storage.

Figure 3. Monte Carlo tree search algorithm (adapted from [49]).

In Monte Carlo Tree Search, a tree of states connected by the action is incrementally
built, preserving data about the times the node was visited and the reward accumulated
at the node. The root of this tree corresponds to the agent’s present position. The basic
version of MCTS consists of four iterative phases:

• Selection: a root node is selected accordingly to a selection policy that can be random
or guided by a heuristic.

• Expansion: the possible children of the selected node are identified.
• Roll-out: a complete simulation is played out starting from one of the added states.

The moves can be again random or guided by a heuristic.
• Backpropagation: the simulated roll-out results are propagated back to the root node.

The root node visit index and cumulative reward are updated.

An application of the Monte Carlo Tree Search and MDP for the scheduling of satellite
operations is presented in [50,51]. On the other hand, in [46], a similar scheme is used to
model a rover control problem. With respect to the work of this study, Ref. [46] lacks a

Aerospace 2023, 10, 408 9 of 22

knowledge base derived from the MBSE model to choose the most impactful state variables.
Moreover, the study in [46] targeted implementation and operational phases. Its application
pointed to the direct use of MDP onboard the robotic surface systems.

In Monte Carlo techniques, a complete simulation is run before associating a value to
a specific state-action function. An exploration depth can be introduced if the possibility
tree is remarkably ample. Instead of running the complete simulation, the algorithm
simulates the next n-steps and then provides an indication of the goodness of that random
path. The algorithm can take some exploration action to avoid local minima or follow the
most promising path. The time the algorithm spends exploring or following the heuristic
depends on an exploration weight that usually varies between 0.5 and 2 [52]. MCTS needs
a good definition of the reward per each scenario. The simulations of this paper use a
reward defined as a linear combination of: (i) the reward provided by exploring different
sites Robserving, (ii) the reward provided by sampling the sites Rsampling, (iii) the reward
associated with an optimal path Rdistance, as shown in Equation (1).

Rscenariorewards = w1 ∗ Rsampling + w2 ∗ Robserving + w3 ∗ Rdistance − w4 ∗
Ncomm

Ntotal
− w5 ∗

Nrecharge

Ntotal
(1)

where:

• Rsampling and Robserving are the ratios between the effective scenario reward and the
maximum reward for observation and sampling for that scenario.

• Rdistance is the reward linked to the distance.
• Ncomm is the total number of communications sessions.
• Nrecharge is the total number of recharging sessions.
• Ntotal is the total number of waypoints to be touched in the simulation.

The weights w1, w2, w3 and w4, w5 sum up the unity. In the simulation results presented
at the end of this section, the weights are: w1, w2 = 0.25, w3, w4, w5 = 0.5. The algorithm
works well when the reward is between 0 and 1. Therefore, the final value of Rscenariorewards
is set to be at most equal to unity. For the simulations in this paper, the system had enough
resources to communicate and recharge only two times over the ten touched waypoints.
The Rdistance is evaluated as in Equations (2) and (3), where:

• β is a factor defining the equation’s sensitivity.
• Dopt is an optimal distance estimate to touch all the Nwaypointmax .
• Devaluated is the travelled distance between the touched waypoints during the simulation.

Equation (2) tends toward one when the x evaluated in Equation (3) tends toward
zero. The factor β quantifies the boundaries from which there is a sensitive increment of
the reward related to distance, as showed in Figure 4. For the simulations of this paper β is
assumed to be equal to 1000.

Rdistance = e(−
x2
β) (2)

x = Dopt − Devaluated (3)

The optimal distance between a set of waypoints can be evaluated with routing
algorithms. The results of the routing algorithms can be used in the MDP framework to
provide a heuristic suggesting a preferential movement sequence. Different scenarios can
have quite different reward formulations. Therefore, the algorithm requires a first tuning
to define it.

Aerospace 2023, 10, 408 10 of 22

Figure 4. Variation of the reward related to distance with the difference between the optimal and real
distance travelled in the scenario with the variation of β.

3.3. Routing Problems

To lower the number of trials of the MCTS algorithm, the authors suggest using
a routing problem to provide a heuristic guiding the path of the planetary exploration
system. The formulation used to estimate an optimal path between the waypoints is the
“open vehicle routing problem with reward with a distance constraint”. The formulation
employed to define the problem is mixed-linear integer programming (MILP). There are
formulations available for the “closed vehicle routing problems” [53], the “closed vehicle
routing problems with reward” [54], and the “open vehicle routing problem” [55,56]. In-
deed, the solving method used in this study circles back to the closed solution. The problem
can be observed as a directional graph to which two phantom nodes are added if the initial
point is not fixed:

• The distance from the first phantom node and all the other nodes is zero. How-
ever, the distance between the other nodes and the initial one is infinite (or set to a
high value).

• The distance from all the nodes to the second phantom node is zero. However, the dis-
tance from the second phantom node is infinite for all but the first phantom node.

For example, if the problem has five nodes, the obtained distance matrix would look
like the one in Equation (4), where Dij are the distance between the waypoints and yp1/2
are the phantom nodes .

yp1 y1 y2 y3 y4 y5 yp2
yp1 0 0 0 0 0 0 0
y1 +in f 0 D12 D13 D14 D15 0
y2 +in f D21 0 D23 D24 D25 0
y3 +in f D31 D32 0 D34 D35 0
y4 +in f D41 D42 D43 0 D45 0
y5 +in f D51 D52 D53 D54 0 0

yp2 0 +in f +in f +in f +in f +in f 0

(4)

When the algorithm looks at the distance matrix, it can always evaluate a closed path using
the two phantom nodes. The closed loop ensures an easy formulation. Let us assume that
each vertex yi is connected by a branch identified as xij. If the routing problem is closed,
then if that node is considered (yi = 1), the sum of xij on the column and row associated
with yi should equal one. This constraint is simple to enforce in a MILP formulation. If the
initial position is fixed, the initial phantom node merges with the indicated initial position.

Aerospace 2023, 10, 408 11 of 22

Eventually, the MILP problem can be formulated as shown in Equations from (5) to (10):
Maximize reward for every waypoint yi in V:

max
n

∑
i=1

yi ∗ Ri − α ∗
n

∑
i=1

n

∑
j=1

xij ∗ Dij (5)

Subject to: n

∑
i=1

n

∑
j=1

xij ∗ Dij ≤ Dmax (6)

n

∑
i=1,i 6=j

xij = yj ∀ j ∈ V (7)

n

∑
j=1,j 6=i

xij = yi ∀ i ∈ V (8)

∑
(i,j)∈(S)

xij ≤ |S| − 1 ∀ S ⊆ V , |S| > 1 (9)

yi ∈ {0, 1}, xij ∈ {0, 1} (10)

where:

• yi are the waypoints indexes. If a waypoint is not considered, then yi equals zero.
• Ri is the scientific reward associated with those waypoints.
• α is a weight defining the importance of the second optimization target. The suggested

value used in this paper is 0.01.
• xij are the edges between the waypoints’ indexes.
• Dij is the distance between the waypoint.
• Dmax is the maximum traversable distance under one battery discharge as evaluated

from [57].

The scientific reward is evaluated as a specific waypoint’s scientific interest or priority.
Equation (5) describes the objective function: maximizing the accumulated reward touching
different waypoints while minimizing the distance to touch them. Equation (6) imposes
a constraint on the maximum traversable distance. The aim is always to touch the more
interesting waypoints with the highest reward, respecting energy constraints driven by
the Dmax, while simultaneously lowering the overall travelled distance. If no energy
constraints are needed, Dmax can be set to a high value. For example, in the code developed
for the framework presented in this paper, when no distance constraint is imposed, Dmax
is evaluated by solving a travelling salesman problem. If the robotic system can recharge
when it reaches a waypoint, then the first constraints’ (Equation (6)) can be dropped.
A reachability analysis is used when defining the distance matrix. If the distance between
two waypoints is more than the Dmax, then the related xij is set to be infinitely distant.
Equations (7) and (8) impose that if a node is selected, then there must be one incoming and
one outcoming edge. The index i represent the rows, while index j represents the columns.
Equation (9) is imposed to avoid subtours. It avoids that the number of selected arcs within
S (a subset of V) to be equal to or larger than the number of nodes in S [58]. Equation (10)
defines the allowed values for yi and xij.

The distance between the waypoints can be evaluated as a simple Euclidean distance
or using more refined path planning algorithms such as A*. If the environment the system
explores is not particularly texturized, the Euclidean distance may provide a good enough
estimate of the travelled distance. A simple example of a routing plan considering the
Euclidean distance and the “open vehicle routing problem with reward with a distance
constraint” is shown in Figure 5. Figure 6 shows the same simulation considering an A*
algorithm to assess the path between the different waypoints. The green areas in Figure 6

Aerospace 2023, 10, 408 12 of 22

represent clusters of obstacles the system should avoid. The distance evaluated with the A*
algorithm and the one estimated as Euclidean distance differ by about 10%.

Figure 5. Example of path evaluated with the “open vehicle routing problem with reward with
a distance constraint”. The numbers at each waypoint indicate the associated scientific reward.
The minimum covered distance is evaluated as Euclidean distance, and it is equal to 327 m.

Figure 6. Example of path evaluated with the “open vehicle routing problem with reward with a
distance constraint” routing problem. The numbers at each waypoint indicate the associated scientific
reward. The distance between waypoints is evaluated with an A* algorithm, and it is equal to 360 m.

4. Results and Discussion

As highlighted in the previous section, the first step is to study and analyse the
functional architecture related to the studied system. The tool used for the modelling is
Papyrus, an open-source MBSE tool based on the system modelling language (SysML). In
the study case, the rover should touch different waypoints, each with a scientific rating
related to observing or sampling the site. The objective of the simulation is:

• To verify whether the identified operational capabilities cover all the functions that
the system should perform for a successful mission;

Aerospace 2023, 10, 408 13 of 22

• To check whether the rover has enough resources to complete its mission;
• To understand how the rover will plan its mission to touch the different waypoints if

given the freedom to decide its own plan.

The operational capabilities identified in Section 3.1 are the starting point for the
functional architecture. Their relationships with physical elements can be visualized in a
use case diagram, such as the one in Figure 7. At the same time, their interactions can be
investigated, leveraging an activity diagram, as in Figure 8.

Figure 7. Set of operational capabilities typical of exploration system.

The payload team provides a set of mission goals associated with observing or sam-
pling a site of interest on the map. The mission team may provide the system with further
directions, or they can initiate communication with the system. The system and its software
or hardware components should take care of most of the operational capabilities, making
the system highly autonomous. The subsystems are modelled as secondary actors. The pri-
mary actors invoke the use case, while the secondary actors participate in the use case by
performing actions, as analysed in [59].

After the initial modelling of the functional architecture and identification of the main
elements of the physical architecture, it is possible to parametrize the functional model. In
this simple example, the different operational capabilities are directly linked to the different
hardware that can perform them. The parametrization can be manual, or the XMI file in the
backend of Papyrus can be extracted and converted into a tabulated and human-readable
file with:

• The list of functions performed by the system.
• The physical components’ parameters associated with the functions.
• A time specification for the function.

The time for the operational capability “navigate to goal” depends on the distance to
be covered and the exploration system velocity (a parameter of the mobility system set to
0.1 m/s for the presented simulations). Similarly, the amount of data to communicate or
time to recharge the battery drives the time allocated to these operational capabilities. The
time specifications for the “observe target” and “sample target” are set to be around 10
min. While the “check resources” is an almost instantaneous loop evaluating whether the
system has enough resources to perform a specific operation. This check also lowers the
number of possible outcomes in the MCTS algorithm.

Aerospace 2023, 10, 408 14 of 22

Figure 8. Activity diagram view of a generic exploration mission with a high degree of autonomy.

Aerospace 2023, 10, 408 15 of 22

Tables 2 and 3 show the results of the analysis on the parametrization with respect
to the power consumption and data generation. The operational capabilities’ names in
the tables are shortened to just the verb, instead of the conventional verb plus noun that
is typical of systems engineering. The values in the tables have been identified through
an analogue system tested on Earth during the IGLUNA analogue mission. The details of
the IGLUNA testing are provided in [60]. They can be used as reference values for a small
rover (up to 30 kg), and they agree with the available literature on small planetary robotic
platforms, as in [37,38,61].

The IGLUNA rover has two batteries, one dedicated to the mobility system and one
for the payload. The rover base is a commercial platform called Leo Rover [62]. It has its
own battery dedicated to navigation capabilities. The base is then enriched with a set of
sensors (the payload), the robotic arm, a new onboard computer (connected to the bottom
one) and a dedicated battery for the payload.

Table 2. Power consumption per operational capability per component in [W] (Comm is the abbrevi-
ation for Communicate).

System Navigate [W] Observe [W] Recharge [W] Sample [W] Comm. [W]

OBC 6 6 1 6 1

Mobility sensors 3 0 0 0 0

Mobility hardware 14 0 0 0 0

TTC 7 7 7 7 9

Tracking camera 2 0 0 0 0

Depth camera 4 4 0 4 0

Robotic arm camera 0 0 0 0.4 0

Robotic arm 0 0 0 7 0

Total power 36 17 8 24.4 10

Table 3. Data Generation per operational capability per component in [kbytes/s] (Comm is the
abbreviation for Communicate).

System Navigate [kps] Observe [kps] Recharge [kps] Sample [kps] Comm. [kps]

Telemetry 0.3 0.3 0.3 0.3 0.3

LiDAR 80 80 0 0 0

Robotic arm camera 0 25 0 25 0

Tracking camera 150 0 0 0 0

Depth camera 0 180 0 180 0

Total data 230.3 285.3 0.3 205.3 0.3

After defining the MBSE model, the designer can define the variables that identify
the system’s state. The state should provide the system with all the needed information to
decide on the best next step. For a planetary exploration system, this state has been defined
as described in Table 4:

• Waypoint to visit indicates which waypoints have been visited and which have not
during the given simulated episode.

• The last action performed poses a limit to which actions can be chosen at a lower level
of the tree based on the provided flight rules.

• The current waypoint is an indication of where the system is at a given moment. It is
most useful during debugging.

Aerospace 2023, 10, 408 16 of 22

• The battery capacity, storage capacity and data volume capacity are linked to the
constraints the system should not overshoot.

• The number of recharges, number of communication, idle time, and mission time
are metrics used to evaluate the performances of the given scenario: does the sys-
tem have enough capacity to store the data, or does it need an almost continuous
communication?

All this information is written as a tuple that defines a specific scenario. At the
end of the simulation, a reward characterizes each scenario. The reward defines how
appropriate or suitable this scenario is with respect to others, helping the algorithm prune
some branches of the tree. During the preliminary design phases, the objective is to study
the feasibility of the proposed architecture and operational scenario. During the analysis,
the systems’ engineers may point toward a near-optimal or optimal solution. In this second
case, some time should be allocated to defining the exploration parameter of the MCTS
algorithm and the number of samples before deciding on the following best path. However,
to test the feasibility of the design, a near-optimal solution can be satisfying. In the results
presented in this paper, the authors focus on near-optimal solutions, setting the MCTS
exploration parameter to 1.5 and the number of samples before the decision to 100. To
lower the number of samples, it is possible to impose flight rules suggesting preferential
algorithm-solving strategies. For the example in this study, the engineers may suggest
the algorithm preferential bounds on when to recharge or communicate. After testing
the feasibility of the scenario and obtaining a suboptimal solution without any alteration,
the engineers can tweak some boundaries so that the MCTS follows a preferential branch.
This interaction may provide further insights and test cases on the performances of the
system in its operative environment. In the results of this paper, the system is biased toward
communicating data when the storage of its flash memory is equal to or above 60% of
its maximum. The system is also biased toward recharging when one of its batteries is
below 20% of its charging state. These values were set after two algorithm runs, to help
optimise the results without sacrificing a quick run time. The overall run time is relatively
low, taking only a handful of minutes to assess the feasibility of a scenario.

Table 4. Set of variables that define a state of the rover.

Variable Described by/Derived from

Waypoints to visit Analysed test scenario

Last action Functional analysis and ConOps definition

Current waypoint Analysed test scenario

Battery capacity Rover sizing rules and rover resources template

Sample storage capacity Rover sizing rules and rover resources template

Data volume (In the system memory) rover sizing rules and rover resources template

Number of recharges Terminal variable

Number of communication Terminal variable

Idle time Terminal variable

Mission time Analysed test scenario

At the end of the simulation, the designers will be able to visualize a plan and the
variation of the system resources during the simulated scenario. An example of the results
that this analysis can provide is shown from Figures 9–12. The visualization of the plan
in Figure 9 is heavily inspired by the tools routinely used in mission control centres. It is
an intuitive view, defined as a function of mission time. This view can provide an initial
operational timeline to be discussed in round tables with the stakeholders or refined during
the different design phases. It is interesting to pinpoint that this operational timeline is

Aerospace 2023, 10, 408 17 of 22

directly generated from the identified set of system functionalities. Hence, timelines with
different granularity can be generated while detailing the functional architecture. Figure 10
shows the two batteries’ (lower and upper) consumptions clearly. The performances agree
with what was recorded from IGLUNA and the specification of the Leo rover [62]. The
battery connected to mobility has a capacity of around five hours. In comparison, the upper
battery has more capacity but a higher power consumption. For example, during IGLUNA
the upper battery was the one depleting the fastest due to the high power requirements of
navigation equipment such as LiDAR and the cameras. Figure 11 shows the data generated.
The system needs to relay data multiple times not to surpass the provided limit of 2 Gbytes.
The rover has a sampling storage set at 1 g, while a sample weighs around 0.2 g. The system
can only sample some of the waypoints, trying to maximize its sampling-related reward
set as Rsamplingraw = [8, 4, 10, 9, 10, 4, 6, 8, 4, 4]. The optimal path evaluated with the routing
algorithm provides a reference for the optimal navigation actions. These optimal actions
are suggested to the algorithm. Figure 12 shows the path followed by the simulated system.
The green points delimit areas with rugged terrain or obstacles not-traversable for the rover.
The path planning algorithm used during the simulation is an A*. The battery does not
limit the distance, as the rover can recharge multiple times during its traverse.

Figure 9. Output plan for the simulated scenario.

Figure 10. Battery consumption and recharge cycles throughout the simulated scenario.

The results, from Figures 9–12, show how the presented framework can provide an
indication on:

Aerospace 2023, 10, 408 18 of 22

• The plan that an autonomous system, knowing its resources and action, can lay down
for an identified operational scenario;

• The variation of the main rover resources during a typical mission;
• An operational timeline as a product of the MBSE model simulated as an MDP.

These outcomes show that the system has enough resources to complete the particular
considered mission, touching all waypoints. All of these results are products of the MBSE
model and may be traced back to it, creating one knowledge base for the overall design.

Figure 11. Data generation and dumping throughout the simulated scenario.

Figure 12. Path of the rover between the different waypoints. The green dots identify areas that the
system cannot traverse. The path is evaluated with an A* algorithm. The displayed reward is the
sum of the observation and sampling rewards associated with that specific waypoint.

The plan can be directly interfaced in a simulated or analogue platform as soon as it is
generated. The authors used the Robot Operating System (ROS) to interface a similar plan
with the IGLUNA rover in [60], testing the overall feasibility of this approach.

5. Conclusions and Future Work

This paper presents a framework to simulate operational scenarios for autonomous
robotic systems during the initial design phases. During the design of a mission, an MBSE

Aerospace 2023, 10, 408 19 of 22

model is created. The MBSE models group both a functional architecture and a physical
one. From those inputs, a simulation of the studied system in a relevant scenario is laid out,
relying on MDP and MCTS. The simulation is developed from the system point of view,
in which knowing its resources and mission goals provides the user with a feasible plan
to maximize the scientific return. The framework introduces the concept of a parametric
functional model. The functional architecture inherits the parameters of the physical
architecture linked to that specific function. Moreover, the functions are enriched with a
definition of time to perform them. These parameters are then used in the MDP to advance
the plan based on the mission goals and a set of resources.

This study highlights how MBSE is a versatile concept that adapts well to different
applications. The designers can easily capture their operations’ definition in the MBSE
model and validate it in this framework. As a result, they can understand the performance
of a system under constrained resources. They can assess the feasibility of a relevant
scenario from both a functional point of view, with the operational capabilities, and a
physical one, looking at the system resources and the mission time. It is possible to use
this framework also to size variables in the system. For example, instead of imposing
a data limit, the user can set a flight rule that enforces communicating only in certain
circumstances or temporal windows. These flight rules can be easily added to the model
through some heuristics or an if-then condition in the MDP model. The framework can
also be used to understand the impact of different faults or failures on the mission. If,
for example, a fault in the mobility system makes it consume more than the nominal value,
the system may need to reconfigure its mission accordingly, as it is trying to maximize its
scientific reward under these new power constraints.

The framework allows a modular approach to design. At the same time, it eases
reusability between similar projects. For example, the generalized set of operational
capabilities for a planetary exploration system identified in Section 3.1 can be re-employed
as a starting functional analysis (focusing on operations) across different projects. This
preferential behavioural model can be used on different simulated platforms, helping assess
their likely-to-be performances on a particular mission of different solutions. The change in
the physical model will define a different resource consumption or generation associated
with an operational capability.

The work presented in this paper will be extended toward applying multiple collabo-
rating systems. The framework should suggest to the designers a promising subdivision of
tasks between different systems, starting from their system modelling. On the other hand,
part of the future work related to this study will focus on exploring a different simulation-
based optimization to find the MDP policy. The solution explored in this paper provides a
near-optimal solution with around 100 samples. However, around 500 samples are needed
to find the optimal policy for the paper’s case study (without suggesting some winning
solution to the algorithm). The authors are exploring other algorithms and implementations
of MCTS with neural networks to reach the optimal solution faster. The framework may
be useful to outline the first feasible operational timeline for control centres. It can be
included in a mixed-initiative tool where the AI and operator can interact and optimize the
operations of an analysed system together. MDP and MCTS can help the mission architect
explore the design space. The MCTS algorithm can be coupled with deep neural networks
to explore the design space quickly and more efficiently. In this case, the MDP state would
be defined in terms of the cost, maturity, and development time of a specific physical
element, not only in terms of the power consumed and data generated. The trade-space
exploration will rely on a precompiled database of technologies and related functionality,
as developed in [36].

Author Contributions: Conceptualization, J.R.; methodology, J.R.; software, J.R.; validation, N.V. and
S.L.-D.; formal analysis, J.R.; investigation, J.R.; writing—original draft preparation, J.R.; writing—review
and editing, N.V. and S.L.-D.; supervision, N.V. and S.L.-D. All authors have read and agreed to the
published version of the manuscript.

Aerospace 2023, 10, 408 20 of 22

Funding: This research received no external funding.

Data Availability Statement: A simplified version of the MBSE model implemented in Papyrus
used in this study can be found at https://github.com/JasmineRimani/PapyrusModelsRepository
(accessed on 23 February 2023). The version includes all the links in the functional model, the links
between the functional and the physical architecture, and an example of the links between the
physical architecture and the mathematical formulations that can be traced back to the functional
architecture.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAD Computer-Aided Design
CFD Computational Fluid Dynamics
ConOps Concept of Operations
ESEM Executable Systems Engineering Method
HDDL Hierarchical Domain Definition Language
MBSE Model-Based System Engineering
MILP Mixed-Integer Linear Programming
MDP Markov Decision Process
MCTS Monte Carlo Tree Search
OR Operational Research
QFD Quality Function Deployment

References
1. Vassev, E.; Hinchey, M. Autonomy requirements engineering. In Autonomy Requirements Engineering for Space Missions; Springer:

Cham, Switzerland, 2014; pp. 105–172.
2. Pinto, A. Requirement Specification, Analysis and Verification for Autonomous Systems. In Proceedings of the 2021 58th

ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1315–1318.

3. Luckcuck, M. Using formal methods for autonomous systems: Five recipes for formal verification. Proc. Inst. Mech. Eng. Part O J.
Risk Reliab. 2021, 237. [CrossRef]

4. Bensalem, S.; Havelund, K.; Orlandini, A. Verification and validation meet planning and scheduling. Int. J. Softw. Tools Technol.
Transf. 2014, 16, 1–2. [CrossRef]

5. Koopman, P.; Wagner, M. Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 2016, 4, 15–24.
[CrossRef]

6. Cardoso, R.C.; Kourtis, G.; Dennis, L.A.; Dixon, C.; Farrell, M.; Fisher, M.; Webster, M. A Review of Verification and Validation for
Space Autonomous Systems. Curr. Robot. Rep. 2021, 2, 273–283. [CrossRef]

7. Truszkowski, W.; Hallock, H.; Rouff, C.; Karlin, J.; Rash, J.; Hinchey, M.; Sterritt, R. Autonomous and Autonomic Systems: With
Applications to NASA Intelligent Spacecraft Operations and Exploration Systems; Springer Science & Business Media: London,
UK, 2009.

8. Frost, C.; Butt, A.; Silva, D. Challenges and opportunities for autonomous systems in space. In Proceedings of the Frontiers of
Engineering: Reports on Leading-Edge Engineering from the 2010 Symposium, Armonk, NY, USA, 23–25 September 2010.

9. Shishko, R.; Aster, R. NASA Systems Engineering Handbook; NASA: Washington, DC, USA, 1995; Volume 6105.
10. Muscettola, N.; Fry, C.; Rajan, K.; Smith, B.; Chien, S.; Rabideau, G.; Yan, D. On-board planning for new millennium deep space

one autonomy. In Proceedings of the 1997 IEEE Aerospace Conference, Snowmass, CO, USA, 13 February 1997; IEEE: Piscataway,
NJ, USA, 1997; Volume 1, pp. 303–318.

11. Rabideau, G.; Tran, D.; Chien, S.; Cichy, B.; Sherwood, R.; Mandl, D.; Frye, S.; Shulman, S.; Szwaczkowski, J.; Boyer, D.; et al.
Mission operations of earth observing-1 with onboard autonomy. In Proceedings of the 2nd IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-IT’06), Pasadena, CA, USA, 17–20 July 2006; IEEE: Piscataway, NJ,
USA, 2006; p. 7.

12. Schenker, P.; Baumgartner, E.; Backes, P.; Aghazarian, H.; Dorsky, L.; Norris, J.; Huntsberger, T.; Cheng, Y.; Trebi-Ollennu,
A.; Garrett, M. FIDO: A Field Integrated Design & Operation rover for Mars surface exploration. In Proceeding of the 6th
International Symposium on Artificial Intelligence and Robotics & Automation in Space, i-SAIRAS 2001, Montreal, QC, Canada,
Canada, 18–22 June 2001.

13. Hayati, S.; Arvidson, R. Long Range Science Rover (Rocky7) Mojave Desert Field Tests. Proc. i-SAIRAS’97 1997, 3, 361–367.

https://github.com/JasmineRimani/PapyrusModelsRepository
http://doi.org/10.1177/1748006X211034970
http://dx.doi.org/10.1007/s10009-013-0294-x
http://dx.doi.org/10.4271/2016-01-0128
http://dx.doi.org/10.1007/s43154-021-00058-1

Aerospace 2023, 10, 408 21 of 22

14. Apostolopoulos, D.; Wagner, M.; Whittaker, W. Technology and Field Demonstration Results in the Robotic Search for
Antarctic Meteorites. 2000. Available online: https://kilthub.cmu.edu/articles/journal_contribution/Technology_and_Field_
Demonstration_Results_in_the_Robotic_Search_for_Antarctic_Meteorites/6561158 (accessed on 22 February 2023).

15. Karban, R.; Dekens, F.G.; Herzig, S.; Elaasar, M.; Jankevičius, N. Creating system engineering products with executable models in
a model-based engineering environment. In Proceedings of the Modeling, Systems Engineering, and Project Management for
Astronomy VII, Edinburgh, UK, 26 June–1 July 2016; Volume 9911, pp. 96–111.

16. Lee, M.; Weidner, R.J. Virtual mission operation framework. In Proceedings of the 2004 IEEE Aerospace Conference Proceedings
(IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 6–13 March 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 6, pp. 4015–4025.

17. Viscio, M.A.; Viola, N.; Fusaro, R.; Basso, V. Methodology for requirements definition of complex space missions and systems.
Acta Astronaut. 2015, 114, 79–92. [CrossRef]

18. Viola, N.; Corpino, S.; Fioriti, M.; Stesina, F. Functional analysis in systems engineering: Methodology and applications. In
Systems Engineering-Practice and Theory; IntechOpen: London, UK, 2012.

19. Li, R.; Verhagen, W.J.; Curran, R. Toward a methodology of requirements definition for prognostics and health management
system to support aircraft predictive maintenance. Aerosp. Sci. Technol. 2020, 102, 105877. [CrossRef]

20. Shea, G. NASA Systems Engineering Handbook Revision 2; National Aeronautics and Space Administration: Washington, DC,
USA, 2017.

21. Tessier, C. Robots autonomy: Some technical issues. In Autonomy and Artificial Intelligence: A Threat or Savior? Springer: Cham,
Switzerland, 2017; pp. 179–194.

22. Schuchardt, B.I.; Becker, D.; Becker, R.G.; End, A.; Gerz, T.; Meller, F.; Metz, I.C.; Niklaß, M.; Pak, H.; Schier-Morgenthal, S.; et al.
Urban Air Mobility Research at the DLR German Aerospace Center—Getting the HorizonUAM Project Started. In Proceedings of
the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021; p. 3197.

23. Damak, Y.; Leroy, Y.; Trehard, G.; Jankovic, M. Operational Context-Based Design Method of Autonomous Vehicles Logical
Architectures. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest,
Hungary, 2–4 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 439–444.

24. Sifakis, J. System Design in the Era of IOT—Meeting the Autonomy Challenge. arXiv 2018, arXiv:1806.09846.
25. Väätänen, A.; Laarni, J.; Höyhtyä, M. Development of a concept of operations for autonomous systems. In Proceedings of the

International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019; Springer: Cham,
Switzerland, 2019, pp. 208–216.

26. Bagschik, G.; Menzel, T.; Maurer, M. Ontology based scene creation for the development of automated vehicles. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 1813–1820.

27. Karban, R. Using Executable SysML Models to Generate System Engineering Products. 2016. Available online: https://ntrs.nasa.
gov/citations/20190033608 (accessed on 22 February 2023).

28. Gao, Y.; Burroughes, G.; Ocón, J.; Fratini, S.; Policella, N.; Donati, A. Mission Operations and Autonomy; Wiley: Hoboken, NJ, USA,
2016.

29. Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; Das, H. The CLARAty architecture for robotic autonomy. In Proceedings of
the 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), Big Sky, MT, USA, 10–17 March 2001; IEEE: Piscataway,
NJ, USA, 2001; Volume 1, pp. 1–121.

30. Fong, T. NASA Autonomous Systems & Robotics: Roadmap and Investments. In Proceedings of the Lunar Surface Innovation
Consortium Fall 2021 Meeting, Bowie, MD, USA, 3–4 November 2021.

31. Watson, D.P.; Scheidt, D.H. Autonomous systems. Johns Hopkins APL Tech. Dig. 2005, 26, 368–376.
32. Rayman, M.D.; Varghese, P.; Lehman, D.H.; Livesay, L.L. Results from the Deep Space 1 technology validation mission. Acta

Astronaut. 2000, 47, 475–487. [CrossRef]
33. Tran, D.; Chien, S.; Rabideau, G.; Cichy, B. Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1.

2004. Available online: https://dataverse.jpl.nasa.gov/dataset.xhtml?persistentId=hdl:2014/37970 (accessed on 22 February
2023).

34. Vassev, E.; Hinchey, M. On the autonomy requirements for space missions. In Proceedings of the 16th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC 2013), Paderborn, Germany,
19–21 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–10.

35. Kolcio, K.; Fesq, L. Model-based off-nominal state isolation and detection system for autonomous fault management. In
Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1–13.

36. Viola, N.; Fusaro, R.; Vercella, V. Technology roadmapping methodology for future hypersonic transportation systems. Acta
Astronaut. 2022, 195, 430–444. [CrossRef]

37. Lamamy, J.A.; Miller, D.W. Designing the Next Generation of Rovers through a Mid-rover Analysis. ASTRA 2006, 2006, 28–30.
38. de Paor, C.; Roque, A.; Rimani, J.; Lizy-Destrez, S. An Integrated Design Platform to Analyse and Size Planetary Exploration

Systems Applied to Lunar Lava Tube Exploration. In Proceedings of the 73rd International Astronautical Congress (IAC 2022),
Paris, France, 18–22 September 2022.

https://kilthub.cmu.edu/articles/journal_contribution/Technology_and_Field_Demonstration_Results_in_the_Robotic_Search_for_Antarctic_Meteorites/6561158
https://kilthub.cmu.edu/articles/journal_contribution/Technology_and_Field_Demonstration_Results_in_the_Robotic_Search_for_Antarctic_Meteorites/6561158
http://dx.doi.org/10.1016/j.actaastro.2015.04.018
http://dx.doi.org/10.1016/j.ast.2020.105877
https://ntrs.nasa.gov/citations/20190033608
https://ntrs.nasa.gov/citations/20190033608
http://dx.doi.org/10.1016/S0094-5765(00)00087-4
https://dataverse.jpl.nasa.gov/dataset.xhtml?persistentId=hdl:2014/37970
http://dx.doi.org/10.1016/j.actaastro.2022.03.038

Aerospace 2023, 10, 408 22 of 22

39. Fusaro, R.; Viola, N.; Fenoglio, F.; Santoro, F. Conceptual design of a crewed reusable space transportation system aimed at
parabolic flights: Stakeholder analysis, mission concept selection, and spacecraft architecture definition. Ceas Space J. 2017, 9, 5–34.
[CrossRef]

40. Governale, G.; Rimani, J.; Viola, N.; Villace, V.F. A trade-off methodology for micro-launchers. Aerosp. Syst. 2021, 4, 209–226.
[CrossRef]

41. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014.
42. Chanel, C.C.; Teichteil-Königsbuch, F.; Lesire, C. Multi-target detection and recognition by uavs using online pomdps. In

Proceedings of the AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013; Volume 27, pp. 1381–1387.
43. Rizk, Y.; Awad, M.; Tunstel, E.W. Decision making in multiagent systems: A survey. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 514–529.

[CrossRef]
44. Asikin, D.; Dolan, J.M. Reliability impact on planetary robotic missions. In Proceedings of the 2010 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 4095–4100.
45. Chanel, C.P.C.; Lesire, C.; Teichteil-Königsbuch, F. A robotic execution framework for online probabilistic (re)planning. In

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling, Portsmouth, NH, USA,
21–26 June 2014.

46. Bernstein, D.; Zilberstein, S.; Washington, R.; Bresina, J. Planetary rover control as a markov decision process. In Proceedings of
the Sixth International Symposium on Artificial Intelligence, Robotics, and Automation in Space, Montreal, QC, Canada, 21–26
October 2001.

47. Gosavi, A. Solving Markov decision processes via simulation. In Handbook of Simulation Optimization; Springer: New York, NY,
USA, 2015; pp. 341–379.

48. Fu, M.C. AlphaGo and Monte Carlo tree search: The simulation optimization perspective. In Proceedings of the 2016 Winter
Simulation Conference (WSC), Washington, DC, USA, 11–14 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 659–670.

49. Pepels, T.; Winands, M.H.; Lanctot, M. Real-time monte carlo tree search in ms pac-man. IEEE Trans. Comput. Intell. AI Games
2014, 6, 245–257. [CrossRef]

50. Eddy, D.; Kochenderfer, M. Markov decision processes for multi-objective satellite task planning. In Proceedings of the 2020
IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–12.

51. Herrmann, A.; Schaub, H. Autonomous spacecraft tasking using monte carlo tree search methods. In Proceedings of the
AAS/AIAA Space Flight Mechanics Meeting, Charlotte, NC, USA, 1–4 January 2021.

52. Lapan, M. Deep Reinforcement Learning Hands-On: Apply Modern RL Methods, with Deep Q-Networks, Value Iteration, Policy Gradients,
TRPO, AlphaGo Zero and More; Packt Publishing Ltd.: Birmingham, UK, 2018.

53. Mor, A.; Speranza, M.G. Vehicle routing problems over time: A survey. Ann. Oper. Res. 2022, 314, 255–275. [CrossRef]
54. Ralphs, T.K.; Kopman, L.; Pulleyblank, W.R.; Trotter, L.E. On the capacitated vehicle routing problem. Math. Program. 2003,

94, 343–359. [CrossRef]
55. Sariklis, D.; Powell, S. A heuristic method for the open vehicle routing problem. J. Oper. Res. Soc. 2000, 51, 564–573. [CrossRef]
56. Li, F.; Golden, B.; Wasil, E. The open vehicle routing problem: Algorithms, large-scale test problems, and computational results.

Comput. Oper. Res. 2007, 34, 2918–2930. [CrossRef]
57. Xiao, X.; Whittaker, W.L. Energy Utilization and Energetic Estimation of Achievable Range for Wheeled Mobile Robots Operating on a

Single Battery Discharge; Robotics Institute: Pittsburgh, PA, USA, 2014.
58. De Giovanni, L.; Marco, D.S. Lecture notes in Methods and Model for Combinatorial Optimization. Available online: https:

//www.math.unipd.it/~luigi/courses/metmodoc1718/m08.01.TSPexact.en.pdf (accessed on 20 April 2023).
59. Delligatti, L. SysML Distilled: A Brief Guide to the Systems Modeling Language; Addison-Wesley: Boston, MA, USA, 2013.
60. Rimani, J.; Viola, N.; Lizy-Destrez, S. Application of a hierarchical task planner to a lunar lava tube analogue robotic mission. In

Proceedings of the International Astronautical Congress, Dubai, United Arab Emirates, 25–29 October 2021.
61. Della Torre, A.; Finzi, A.E.; Genta, G.; Curti, F.; Schirone, L.; Capuano, G.; Sacchetti, A.; Vukman, I.; Mailland, F.; Monchieri, E.;

et al. AMALIA Mission Lunar Rover—The conceptual design of the Team ITALIA Rover, candidate for the Google Lunar X Prize
Challenge. Acta Astronaut. 2010, 67, 961–978. [CrossRef]

62. Leo Rover. Available online: https://www.leorover.tech/ (accessed on 22 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12567-016-0131-7
http://dx.doi.org/10.1007/s42401-021-00095-w
http://dx.doi.org/10.1109/TCDS.2018.2840971
http://dx.doi.org/10.1109/TCIAIG.2013.2291577
http://dx.doi.org/10.1007/s10479-021-04488-0
http://dx.doi.org/10.1007/s10107-002-0323-0
http://dx.doi.org/10.1057/palgrave.jors.2600924
http://dx.doi.org/10.1016/j.cor.2005.11.018
https://www.math.unipd.it/~luigi/courses/metmodoc1718/m08.01.TSPexact.en.pdf
https://www.math.unipd.it/~luigi/courses/metmodoc1718/m08.01.TSPexact.en.pdf
http://dx.doi.org/10.1016/j.actaastro.2010.05.023
https://www.leorover.tech/

