1,455 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Robust Energy Consumption Prediction with a Missing Value-Resilient Metaheuristic-based Neural Network in Mobile App Development

    Full text link
    Energy consumption is a fundamental concern in mobile application development, bearing substantial significance for both developers and end-users. Moreover, it is a critical determinant in the consumer's decision-making process when considering a smartphone purchase. From the sustainability perspective, it becomes imperative to explore approaches aimed at mitigating the energy consumption of mobile devices, given the significant global consequences arising from the extensive utilisation of billions of smartphones, which imparts a profound environmental impact. Despite the existence of various energy-efficient programming practices within the Android platform, the dominant mobile ecosystem, there remains a need for documented machine learning-based energy prediction algorithms tailored explicitly for mobile app development. Hence, the main objective of this research is to propose a novel neural network-based framework, enhanced by a metaheuristic approach, to achieve robust energy prediction in the context of mobile app development. The metaheuristic approach here plays a crucial role in not only identifying suitable learning algorithms and their corresponding parameters but also determining the optimal number of layers and neurons within each layer. To the best of our knowledge, prior studies have yet to employ any metaheuristic algorithm to address all these hyperparameters simultaneously. Moreover, due to limitations in accessing certain aspects of a mobile phone, there might be missing data in the data set, and the proposed framework can handle this. In addition, we conducted an optimal algorithm selection strategy, employing 13 metaheuristic algorithms, to identify the best algorithm based on accuracy and resistance to missing values. The comprehensive experiments demonstrate that our proposed approach yields significant outcomes for energy consumption prediction.Comment: The paper is submitted to a related journa

    Examining Swarm Intelligence-based Feature Selection for Multi-Label Classification

    Get PDF
    Multi-label classification addresses the issues that more than one class label assigns to each instance. Many real-world multi-label classification tasks are high-dimensional due to digital technologies, leading to reduced performance of traditional multi-label classifiers. Feature selection is a common and successful approach to tackling this problem by retaining relevant features and eliminating redundant ones to reduce dimensionality. There is several feature selection that is successfully applied in multi-label learning. Most of those features are wrapper methods that employ a multi-label classifier in their processes. They run a classifier in each step, which requires a high computational cost, and thus they suffer from scalability issues. To deal with this issue, filter methods are introduced to evaluate the feature subsets using information-theoretic mechanisms instead of running classifiers. This paper aims to provide a comprehensive review of different methods of feature selection presented for the tasks of multi-label classification. To this end, in this review, we have investigated most of the well-known and state-of-the-art methods. We then provided the main characteristics of the existing multi-label feature selection techniques and compared them analytically

    Novel sampling techniques for reservoir history matching optimisation and uncertainty quantification in flow prediction

    Get PDF
    Modern reservoir management has an increasing focus on accurately predicting the likely range of field recoveries. A variety of assisted history matching techniques has been developed across the research community concerned with this topic. These techniques are based on obtaining multiple models that closely reproduce the historical flow behaviour of a reservoir. The set of resulted history matched models is then used to quantify uncertainty in predicting the future performance of the reservoir and providing economic evaluations for different field development strategies. The key step in this workflow is to employ algorithms that sample the parameter space in an efficient but appropriate manner. The algorithm choice has an impact on how fast a model is obtained and how well the model fits the production data. The sampling techniques that have been developed to date include, among others, gradient based methods, evolutionary algorithms, and ensemble Kalman filter (EnKF). This thesis has investigated and further developed the following sampling and inference techniques: Particle Swarm Optimisation (PSO), Hamiltonian Monte Carlo, and Population Markov Chain Monte Carlo. The inspected techniques have the capability of navigating the parameter space and producing history matched models that can be used to quantify the uncertainty in the forecasts in a faster and more reliable way. The analysis of these techniques, compared with Neighbourhood Algorithm (NA), has shown how the different techniques affect the predicted recovery from petroleum systems and the benefits of the developed methods over the NA. The history matching problem is multi-objective in nature, with the production data possibly consisting of multiple types, coming from different wells, and collected at different times. Multiple objectives can be constructed from these data and explicitly be optimised in the multi-objective scheme. The thesis has extended the PSO to handle multi-objective history matching problems in which a number of possible conflicting objectives must be satisfied simultaneously. The benefits and efficiency of innovative multi-objective particle swarm scheme (MOPSO) are demonstrated for synthetic reservoirs. It is demonstrated that the MOPSO procedure can provide a substantial improvement in finding a diverse set of good fitting models with a fewer number of very costly forward simulations runs than the standard single objective case, depending on how the objectives are constructed. The thesis has also shown how to tackle a large number of unknown parameters through the coupling of high performance global optimisation algorithms, such as PSO, with model reduction techniques such as kernel principal component analysis (PCA), for parameterising spatially correlated random fields. The results of the PSO-PCA coupling applied to a recent SPE benchmark history matching problem have demonstrated that the approach is indeed applicable for practical problems. A comparison of PSO with the EnKF data assimilation method has been carried out and has concluded that both methods have obtained comparable results on the example case. This point reinforces the need for using a range of assisted history matching algorithms for more confidence in predictions

    Particle Swarm Optimisation for Feature Selection in Classification

    No full text
    Classification problems often have a large number of features, but not all of them are useful for classification. Irrelevant and redundant features may even reduce the classification accuracy. Feature selection is a process of selecting a subset of relevant features, which can decrease the dimensionality, shorten the running time, and/or improve the classification accuracy. There are two types of feature selection approaches, i.e. wrapper and filter approaches. Their main difference is that wrappers use a classification algorithm to evaluate the goodness of the features during the feature selection process while filters are independent of any classification algorithm. Feature selection is a difficult task because of feature interactions and the large search space. Existing feature selection methods suffer from different problems, such as stagnation in local optima and high computational cost. Evolutionary computation (EC) techniques are well-known global search algorithms. Particle swarm optimisation (PSO) is an EC technique that is computationally less expensive and can converge faster than other methods. PSO has been successfully applied to many areas, but its potential for feature selection has not been fully investigated. The overall goal of this thesis is to investigate and improve the capability of PSO for feature selection to select a smaller number of features and achieve similar or better classification performance than using all features. This thesis investigates the use of PSO for both wrapper and filter, and for both single objective and multi-objective feature selection, and also investigates the differences between wrappers and filters. This thesis proposes a new PSO based wrapper, single objective feature selection approach by developing new initialisation and updating mechanisms. The results show that by considering the number of features in the initialisation and updating procedures, the new algorithm can improve the classification performance, reduce the number of features and decrease computational time. This thesis develops the first PSO based wrapper multi-objective feature selection approach, which aims to maximise the classification accuracy and simultaneously minimise the number of features. The results show that the proposed multi-objective algorithm can obtain more and better feature subsets than single objective algorithms, and outperform other well-known EC based multi-objective feature selection algorithms. This thesis develops a filter, single objective feature selection approach based on PSO and information theory. Two measures are proposed to evaluate the relevance of the selected features based on each pair of features and a group of features, respectively. The results show that PSO and information based algorithms can successfully address feature selection tasks. The group based method achieves higher classification accuracies, but the pair based method is faster and selects smaller feature subsets. This thesis proposes the first PSO based multi-objective filter feature selection approach using information based measures. This work is also the first work using other two well-known multi-objective EC algorithms in filter feature selection, which are also used to compare the performance of the PSO based approach. The results show that the PSO based multiobjective filter approach can successfully address feature selection problems, outperform single objective filter algorithms and achieve better classification performance than other multi-objective algorithms. This thesis investigates the difference between wrapper and filter approaches in terms of the classification performance and computational time, and also examines the generality of wrappers. The results show that wrappers generally achieve better or similar classification performance than filters, but do not always need longer computational time than filters. The results also show that wrappers built with simple classification algorithms can be general to other classification algorithms
    corecore