
 

 

 

 

 

 

 

Novel Sampling Techniques for 

Reservoir History Matching 

Optimisation and Uncertainty 

Quantification in Flow Prediction 

 

 

Lina Mahgoub Yahya Mohamed 

 

 

Submitted for the 
Degree of Doctor of Philosophy 

Institute of Petroleum Engineering 
Heriot-Watt University 

January 2011 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that the copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without the 

prior written consent of the author or the University (as may be appropriate). 



 

 

 

 

Abstract 

Modern reservoir management has an increasing focus on accurately predicting the 

likely range of field recoveries.  A variety of assisted history matching techniques has 

been developed across the research community concerned with this topic.  These 

techniques are based on obtaining multiple models that closely reproduce the historical 

flow behaviour of a reservoir.  The set of resulted history matched models is then used 

to quantify uncertainty in predicting the future performance of the reservoir and 

providing economic evaluations for different field development strategies. The key step 

in this workflow is to employ algorithms that sample the parameter space in an efficient 

but appropriate manner. The algorithm choice has an impact on how fast a model is 

obtained and how well the model fits the production data.  The sampling techniques that 

have been developed to date include, among others, gradient based methods, 

evolutionary algorithms, and ensemble Kalman filter (EnKF).  

 

This thesis has investigated and further developed the following sampling and inference 

techniques: Particle Swarm Optimisation (PSO), Hamiltonian Monte Carlo, and 

Population Markov Chain Monte Carlo.  The inspected techniques have the capability 

of navigating the parameter space and producing history matched models that can be 

used to quantify the uncertainty in the forecasts in a faster and more reliable way.  The 

analysis of these techniques, compared with Neighbourhood Algorithm (NA), has 

shown how the different techniques affect the predicted recovery from petroleum 

systems and the benefits of the developed methods over the NA.  

 

The history matching problem is multi-objective in nature, with the production data 

possibly consisting of multiple types, coming from different wells, and collected at 

different times. Multiple objectives can be constructed from these data and explicitly be 



 

 

 

 

optimised in the multi-objective scheme. The thesis has extended the PSO to handle 

multi-objective history matching problems in which a number of possible conflicting 

objectives must be satisfied simultaneously.  The benefits and efficiency of innovative 

multi-objective particle swarm scheme (MOPSO) are demonstrated for synthetic 

reservoirs.  It is demonstrated that the MOPSO procedure can provide a substantial 

improvement in finding a diverse set of good fitting models with a fewer number of 

very costly forward simulations runs than the standard single objective case, depending 

on how the objectives are constructed.   

 

The thesis has also shown how to tackle a large number of unknown parameters through 

the coupling of high performance global optimisation algorithms, such as PSO, with 

model reduction techniques such as kernel principal component analysis (PCA), for 

parameterising spatially correlated random fields.  The results of the PSO-PCA 

coupling applied to a recent SPE benchmark history matching problem have 

demonstrated that the approach is indeed applicable for practical problems.  A 

comparison of PSO with the EnKF data assimilation method has been carried out and 

has concluded that both methods have obtained comparable results on the example case.  

This point reinforces the need for using a range of assisted history matching algorithms 

for more confidence in predictions.    
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Chapter 1 – Introduction 

1.1 Reservoir Model History Matching as an Inverse Problem 

To conduct analysis and attain an understanding of subsurface system such as oil flows 

underground in oil reservoirs, aquifers underground porous media, and waste deposits, a 

numerical simulation model is required.  The simulation model is constructed to 

characterise the spatial correlations of the physical properties such as porosities, 

permeabilities and facies that govern the flows of fluid in porous media.   The models 

are then used to make approximations of reserves and fluid displacements.  

 

Simulation models are three dimensional mathematical illustration of the reservoir 

involving millions of gridcells.  Each gridcell centre is given values for their respective 

physical property.  The data are noisy, limited, obtained from sparse precise locations, 

and unreliable.  Yet, the conceptual model of geological history is needed to make 

models of the entire reservoir and utilise these models to determine the value of the 

reservoir by predicting the size, shape and the amount of oil or gas that the field may 

produce.  

 

All available data then has to be integrated and modelled in 3D to simulate the flow.  

There are several sources of information that are visualised in different computerised 

platforms and which participate in constructing the reservoir model.  The data will 

include the static data, which refers to the hard data coming from the wells and is 

gathered ahead of production, and the dynamic data, which refers to the production data 

recorded after the start of production and is called the historical data.  Constructing a 

reservoir simulation model that is consistent with historical dynamic data is called the 

history matching problem. 
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History matching is an important and challenging task in any reservoir engineering 

study, even though solving this problem is not the ultimate objective but rather the 

prediction of oil or gas that will be produced.  The aim of history matching is to adjust 

unknown reservoir properties such as permeabilities and porosities in order to obtain a 

model that can be utilised to reproduce a match with historical production data in a 

minimum manner observed at wells.  Forecasts are then made on the basis of the 

matched model.  The anticipation is that incorporating all the information will deliver 

reservoir models that are more predictive and reliable, and thus have more confidence in 

the predicted uncertainty.  It is known that uncertainty pervades all phases of reservoir 

modelling and therefore statistical analysis is essentially required to account for 

different scenarios.  

 

History matching problem is a difficult task for two reasons.  Firstly, there are a large 

number of uncertain parameters that have to be estimated.  Secondly, there is a 

nonlinear relationship between the model parameters and the model misfit surface 

which is a least square formula consisting of the sum of squared differences between 

model response and simulated data.  The nonlinearity of the problem leads to the 

presence of multiple local minima while the linear least squares problem one would 

have a parabolic curve structure, convex and a closed-form solution that is unique, 

given that the number of data points used for fitting equals or goes over the number of 

unknown parameters, apart from special degenerate circumstances, thus leading to a 

single minimum.  The existence of multiple minima means that global optimisation 

methods may get entrapped in local minima in which case the model solution is not the 

global minimum.  In other words, different values of the model parameters may be 

consistent with the data.  History matching problem is known to belong to a family of 

mathematical problems referred to as inverse problems (Tarantola, 1987).  In Figure 1.1 

the forward problem represents finding the result of a given model.  Inverse problems, 

by contrast, of which history matching is considered a member, involve finding a model 

for a given output.  Solving inverse problems has challenges due to ill-posedness that 

may occur (Sun, 1994).  A well-posed problem as introduced by Jacques Hadamard 

should meet all the following conditions  

 A solution should exist, 

 The solution should be unique, 

 The solution should continuously depend on the data. 
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If any of these conditions is not met, the problem is called ill-posed.  Usually the third 

condition is hard to meet.  In history matching special case there is no unique solution. 

Furthermore, solutions are very sensitive to small perturbations in input data, 

particularly noise that may force large errors in the solution.  First efforts to solve this 

problem were initiated by Nelson (1960) and Jacquard and Jaїn (1965).  

 

 
Figure 1.1: The forward problem and the inverse problem 

 

 

In brief, history matching and uncertainty quantification are important and challenging 

tasks in reservoir engineering studies.  The aim of history matching methods is to obtain 

a match with historical production data.  An ensemble of good fitting models can then 

be used to quantify the uncertainty of the forecasts. The quality of such forecasts is 

affected by the selection of the estimated reservoir properties, as well as the accuracy of 

the reservoir model itself. 

1.2 Thesis Objectives  

The goal of this thesis is to investigate and develop reliable techniques that can produce 

models, capable of navigating the parameter space quickly, able to overcome local 

minima by avoiding entrapment, and have a high probability of locating all optimal 

regions of the parameter space without exhaustive sampling of the parameter space.  

Achieving this goal will improve confidence in our predictions in petroleum industry in 

a faster and more reliable way.  The thesis has the following specific objectives:  

 To explore new developments of novel state-of-the-art promising optimisation 

and inference methods from computer science background such as Particle 

Swarm Optimisation with its different variants.  

Forward Problem Reservoir 

Model 

Production 

Data 

Reservoir 

Model 

Production 

Data 

Inverse Problem 
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 To optimally balance the different objectives (individual least squared 

differences for all production data types) simultaneously while maintaining 

solutions diversity, and to examine the trade-offs, called Pareto optimal front.  

This requires investigation of innovative Multi-Objective Optimisation schemes 

in the field of petroleum engineering. 

 To inspect Hamiltonian Monte Carlo and to introduce new Population MCMC in 

petroleum engineering.  

 To compare these developed methods with the population-based Neighbourhood 

Algorithm and study the impact of different methods on history matching  

 To investigate these techniques on simple and synthetic examples and examine 

the influence of sampling performance of the different methods 

 To study how to handle complex nonlinear response surfaces with these methods 

 To tackle the inverse history matching problem with both a huge number of 

unknown parameters and very costly forward simulations runs that hinder the 

use of global optimisation algorithms. 

 To examine the Particle Swarm Optimisation for addressing large problems and 

compare the results with the Particle Filter Data Assimilation method. 

1.3 Thesis Structure 

The outline of this thesis is as following 

This chapter has introduced the parameters estimation, inverse history matching and 

uncertainty quantification problems.  Thus, assisted history matching and 

inference methods will be the theme of the thesis.   

 

Chapter 2 presents a review of the literature on reservoir modelling fundamentals 

including reservoir performance prediction techniques and a review of recent 

research on reservoir characterisation and modelling topics.  

 

Chapter 3 reviews history matching and uncertainty quantification concepts and 

techniques.  The Bayesian methodology and other topics set the basis for the 

next chapters.  

Chapter 4 introduces the novel Particle Swarm Optimisation (PSO) for solving 

nonlinear ill-posed reservoir history matching problems.  The chapter starts 

with definitions of the main components of the algorithm which serves as the 
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foundation for understanding the technique.  The main adaptations and variants 

investigated in this thesis are presented.  The technique is applied to two 

petroleum examples.  Comparisons of the performance of the different variants 

of the method are studied for better employment on large problems. 

 

Chapter 5 extends the application of Particle Swarm Optimisation algorithm to handle 

multi-objective optimisation in reservoir history matching context.  The chapter 

introduces Multi-Objective Particle Swarm Optimisation (MOPSO).  The 

application of the technique to two challenging synthetic petroleum examples 

is shown. 

 

Chapter 6 reviews basic concepts and then introduces the Hamiltonian Monte Carlo 

(HMC) algorithm for uncertainty quantification.  The key elements of the 

method and implementations are discussed.  Analysis is drawn for some 

numerical examples, and then an application of the method on reservoir 

example is demonstrated.  

 

Chapter 7 investigates the efficiency of three stochastic sampling algorithms for 

generating history matched reservoir models: Hamiltonian Monte Carlo 

algorithm, Particle Swarm Optimisation algorithm, and the Neighbourhood 

Algorithm.  The comparative analysis is presented for the two case studies.  

The effects of the different sampling methods are examined and analysed. 

 

Chapter 8 presents the application of Population MCMC (Pop-MCMC) method to 

history matching and uncertainty quantification.  The technique is tested on 

analytical examples followed with application on the IC Fault model.  

Comparisons with other methods are shown. 

 

Chapter 9 focuses on the handling of large history matching problems with the Particle 

Swarm Optimisation on more realistic large Brugge field (a recent SPE 

benchmark case study) with the insights gained from previous chapters.  The 

history matching results are compared with the ones obtained with Ensemble 

Kalman Filter (EnKF) data assimilation method.  A comparative analysis and 

details of the results are then provided. 
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Chapter 10 concludes with the main research contributions and achieved results of the 

thesis.  The thesis has suggested a number of areas that require further 

investigation and identified future research directions.  
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Chapter 2 – Reservoir Simulation 

and Characterisation: Literature 

Review 

The present chapter provides a review of the literature on reservoir modelling 

fundamentals including reservoir performance prediction techniques and a review of 

recent progress on reservoir characterisation and modelling topics.  A demonstration of 

the background for reservoir simulation is given. 

2.1 Reservoir Analysis Techniques 

The responsibilities associated with fundamental reservoir analysis present information 

that is needed to prepare input data for a simulation study. These tasks include 

volumetric and reservoir performance prediction techniques. Fluid volumes in a 

reservoir are values that can be obtained from multiple sources and therefore serve as 

quality control. For instance geoscientists use static information to determine volume in 

a procedure that is referred to as volumetric analysis (Fanchi, 2001). Material balance 

and reservoir simulation approaches use dynamic data to obtain the same information. 

An accurate reservoir characterisation should obtain consistent estimates of the initial 

reservoir fluid volumes in place regardless of the approach selected to find out the fluid 

volumes. 

2.1.1 Volumetric Analysis 

The equation for volumetric estimates of initial oil and gas in place is given by Eq. (2.1) 

(Craft et al., 1991; Dake, 1978; Fanchi, 2001, 2006). 

7758
[STB]r ri

ri

Ah S
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B


               Eq. (2.1) 
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where N is the initial oil/gas in place, ϕ is the reservoir porosity, A is the reservoir area, 

hr is the net thickness of oil/gas zone, Sri is the initial reservoir oil/gas saturation, and Bri 

is the initial oil/gas formation volume factor. To convert from acre-feet to stock tank 

barrels, the constant value of 7758 is used. An acre of reservoir 1 foot thick would 

include 7758 barrels of oil in a situation of 100% porosity, zero water saturation and no 

oil shrinkage.  

2.1.2 Reservoir Performance Prediction Techniques 

Reservoir performance prediction techniques can be used to determine a number of 

designs, operational and troubleshooting problems during all phases in the development 

of a field. Several techniques exist in the petroleum community for estimating the 

reservoir performance forecasts: material balance analysis, decline curve analysis and 

reservoir simulation.  

 

2.1.2.1 Material Balance  

Material balance describes material entering or leaving a physical system in which the 

law of conservation of mass and energy is the foundation for computations. The amount 

of material leaving a control volume is equal to the amount of material entering the 

volume minus the amount of material accumulated in the volume. This is demonstrated 

in Eq. (2.2) together with Figure 2.1 in which the volume balance is evaluated in the 

general form of the material balance for a hydrocarbon reservoir, provided below (Dake, 

1978). 

 

withdrawal  =  expansion of oil + originally dissolved gas  

+ expansion of the gascap gas 

+ reduction in hydrocarbon pore volume due to connate water  

   expansion 

+ reduction in pore volume due to rock compressibility  

+ aquifer influx      

               Eq. (2.2) 
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Figure 2.1: Effect of pressure drop causes to fluid expansion in material balance approach 

 

Material balance calculations treat the reservoir as a large tank of material and uses 

measurable quantities to investigate the amount of a material that cannot be directly 

measured such as the volume of hydrocarbons in place where measurable quantities 

include cumulative fluid production volumes for oil, water, and gas phases, accurate 

reservoir pressures measured over time and fluid property data from samples of 

produced fluids. Several goals can be achieved with material balance as it provides an 

independent approach of estimating the volume of oil, water, and gas in the reservoir for 

comparison with volumetric estimates. The magnitude of different factors in the 

material balance equations indicates the relative contributions of different reservoir 

working drive mechanisms. Material balance can be used to predict future reservoir 

performance and assist in estimating cumulative recovery efficiency. Derivation of the 

material balance equation and discussions of these subjects can be found in Craft et al. 

(1991), Crichlow (1977), Dake (1978), and Mattax and Dalton (1990). Since material 

balance ignores the reservoir heterogeneity it has a limited prediction performance and 

more sophisticated approaches like reservoir simulation need to be utilised alongside for 

more reliable predictions.  
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2.1.2.2 Decline Curve Analysis  

Decline Curve Analysis is a graphical technique for estimating the reservoir‟s ultimate 

oil or gas recovery and predicting production in oil reservoirs and oil fields. The decline 

curve depicts how a cumulative production curve decreases as a function of time, 

usually as a result of loss of reservoir pressure or the changing relative volumes of the 

produced fluids.  The basis for the decline curve analysis concept is fitting a line 

through the reservoir performance history and assuming this same line will take a 

similar trend into the future forms. The curve is extrapolated to an end point. However 

no pressure data can be extrapolated (Arps, 1945; Arnold, 2008; Fanchi, 2001). 

 

Historically, Arps (1945, 1956) collected these ideas into a comprehensive set of line 

equations defining three curves. Later, Fetkovich (1980) developed a broad set of type 

curves to enhance the application of decline curve analysis. The advent of the computer 

revolutionised the decline curves analysis by making the process less time consuming. 

 

Arps investigated the relationship between flow rate and time for producing wells.  He 

employed the equation of a hyperbola to define three general equations to model 

production declines.  These models are exponential, hyperbolic and harmonic equations. 

In order to locate a hyperbola in space the following three parameters are needed: the 

starting point on the production represented by the y-axis, the initial decline rate, and the 

degree of curvature of the line. The main decline curves analysis characteristics are: 

 

 All production rate-time curves must trend in a downward behaviour. 

 The semilog rate-time decline lines are curved for the hyperbolic and harmonic 

equations, while the exponential equation decline line is a straight line. 

 The Cartesian rate-cumulative recovery plots are curved for the hyperbolic and 

harmonic cases, and a straight line for the exponential case. 

 The semilog rate-cumulative production plots for the exponential and hyperbolic 

declines are curved, while the harmonic equation results in a straight line. 

 

Decline curves generally tend to have limitations such as underestimating reserves, 

underestimating production rates, or overestimating reservoir performance. Even 

though, the Arps equations were developed in the mid-1900s, they are still used 

(Towler, 2002) despite their shortcomings.  This is because data curves can still be used 

as an adequate useful analysis tool for more valid predictions in steady reservoirs when 
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no change is observed in reservoir properties, driving strategies, states of the wells, or 

the number of wells (MacKay, 1994). 

 

2.1.2.3 Reservoir Simulation  

Reservoir simulation is an essential and more powerful tool for reservoir management 

and forecasting the reservoir performance. Reservoir simulation entails solving the 

partial differential equations (PDEs) of heat and mass transfer which describe the flow 

of fluids in petroleum reservoirs numerically, subject to appropriate initial and boundary 

conditions. There are two ways to develop discrete equations either by writing balance 

equations directly over control volumes (or grid blocks) or by developing general PDEs 

and then introducing appropriate discretisation for a particular coordinate system. The 

mass balance principle is achieved in each gridlock by equating the accumulation of 

mass in the block with the difference between the mass leaving the block and the mass 

entering the block. The simulation model is different from the reservoir engineering 

material balance in the ability of the simulator to account for flow between blocks. The 

simulation model can be enlarged to include position-dependent effects by modifying 

the grid representing the reservoir architecture. 

 

Any reservoir simulation study consists of two parts, the input data to be acquired and 

evaluated and the model.  This data consists of the density at surface conditions, PVT 

relations (volume factors, viscosity), constant gas resolution factor, relative 

permeabilities as functions of water saturation, and water – oil capillary pressure. In the 

following we briefly highlight some of these data and a general list of the types of data 

that are required in a model study is given in Table 2.1 Fanchi (2001).  

 

One of the most significant properties of rock that must be included in a reservoir model 

is porosity. Porosity (ϕ) is the fraction of a porous medium that is void space. Porosity 

values have dependence on rock type as shown in Table 2.2. Two basic techniques for 

measuring porosity are core analysis in the laboratory and well logging. 
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Table 2.1: Data required for a simulation study (Source: Fanchi (2001)) 

Property Source 

Porosity, rock compressibility  Core analyses, Well logs 

Permeability Pressure transient tests, Core analyses, 

Correlations, Well performance 

Saturations Well logs, Core analyses, Pressure cores, 

Single-well tracer tests 

Relative permeability and capillary 

pressure 

Laboratory core flow tests 

Fluid property (PVT) data Laboratory analyses of reservoir fluid 

samples 

Faults, boundaries, fluid contacts Seismic, Pressure transient tests 

Aquifers  Seismic, Material balance calculations, 

Regional exploration studies 

Fracture spacing, orientation, 

connectivity 

Core analyses, Well logs, Seismic, 

Pressure transient tests, Interference 

testing, Wellbore performance 

Rate and pressure data, completion 

and work over 

Field performance history  

 

 

Table 2.2: Porosity values depend on rock type. (Source: Fanchi (2001)) 

Rock Type Porosity Range (%) Typical Porosity (%) 

Sandstone  15−35 25 

Unconsolidated sandstone 20−35 30 

Carbonate 

– Intercrystalline limestone 

– Oolitic limestone 

– Dolomite 

 

5−20 

20−35 

10−25 

 

15 

25 

20 

 

 

Permeability is a physical constant defined by Darcy‟s law describing flow in a given 

sample for a given fluid with a set of experimental conditions. It represents the ability of 

a rock to let fluid flow through it. Generally, permeability of oil reservoirs is of the 

order of hundreds of mD and that of an aquifer is of the order of a Darcy and it may 

contrast inside a single reservoir by several orders of magnitude. The Permeability 

distribution is usually highly non-symmetrical and is usually approximated by a 

lognormal distribution (Freeze, 1975).  Permeability is a scalar if the medium is 

isotropic while it is a second order tensor if the medium is anisotropic. Thus, 

permeability has a directional component in which permeability may be larger in one 

direction than another in bed scale. Vertical permeabilities are usually assumed rather 
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than measured. A rule of thumb is assuming vertical permeability is approximately one 

tenth of horizontal permeability.  These are reasonable assumptions when there is no 

available data to suggest the contrary (Fanchi, 2001).   In the existence of some data, 

complex functions can be used to describe the relationship between vertical and 

horizontal permeabilities. 

 

Multiphase flow combinations like, gas-oil, gas-water, and gas-oil-water, are modelled 

by including relative permeability curves in the simulator. Saturation end points for the 

relative permeability curves are used to establish initial fluid in place in addition to 

modelling fluid behaviour. Relative permeability curves represent flow mechanisms, 

such as drainage or imbibition, or fluid wettability. Each phase curve is used to 

calculate an effective permeability.  

 

Reservoir models usually include capillary pressure data primarily to determine the 

initial fluid contacts, transitions zones and controlling the flow of fluid between the 

fracture and the rock matrix in fractured reservoir models. The relationship between 

capillary pressure and elevation is used to establish the initial transition zone in the 

reservoir.  

2.2 Flow Equations 

The general equations for describing fluid flow in a porous media include a dispersion 

term, a convection term, a source/sink term representing wells, the time varying 

accumulation term, and Darcy‟s law.  Darcy‟s law is the basic elliptic equation relating 

the flow to the gradient of pressure and thus describing the fluid flow in a simulator. 

The establishment of Darcy‟s Law (Darcy, 1856) was based on the results of Henry 

Darcy‟s experiments on the flow of water through beds of sand.  For single-phase flow, 

Darcy‟s equation as given in Eq. (2.3) states that the flow rate, q, is equal to cross-

sectional area, A, times permeability, k, and pressure difference, ΔP, across distance 

length, L, and is inversely proportional to the viscosity of fluid, μ. The direction of flow 

is opposite to the direction of increasing pressure; fluids flow from high pressure to low 

pressure in a horizontal (gravity-free) system. A one-dimensional single phase flow 

horizontal form is shown in Figure 2.2.  In Darcy‟s law the fluid flow rate is 

proportional to pressure gradient. 

2 1 2 1; ;
kA P

q P P P P P
L


                        Eq. (2.3) 
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Dividing the flow rate, q, in the differential form by the cross-section area of the rock 

sample, A, leads to Darcy or filtration velocity as written in Eq. (2.4). Darcy velocity 

represents the volume of fluid that perpendicularly crosses a surface unit of porous 

medium per time unit. 

( )
k

u grad P


                Eq. (2.4) 

 

  
Figure 2.2: Reservoir simulation approach 

 

2.2.1 Simulator Selection 

The selection of a reservoir simulator depends on factors like the objective of the study, 

fluid type, and dimensionality of the system. Standard black oil and compositional 

simulators assume isothermal flow and mass transport is instantaneous through a 

gridcell. The most reservoir simulators assume reservoir temperature is constant 

throughout the life of the field and the equilibrium is established instantaneously which 

usually are sounded assumptions. Hence, temperature gradients or the time needed for a 

mixture to get to equilibrium is not considered in the majority of simulators.  A black oil 

simulator represents oil, water, and gas phases, while, a compositional simulator 

represents the fluid as a mixture of hydrocarbon components. Black oil simulator may 

be viewed as a compositional simulator with two components, where they can have gas 

dissolved in the oil phase as well as oil dissolved in the gas phase.  

 

Constructed fluid flow equations are a set of nonlinear partial differential equations that 

must be solved with computer simulators. The partial derivatives can be substituted with 

finite differences which are derived from Taylor‟s series (Fanchi, 2006). The gridcell 

length is the spatial finite difference interval while the timestep is the temporal finite 

difference. The finite difference representations of the partial derivatives substituted in 

the original flow equations can be rearranged algebraically and then solved. The regular 

solution schemes are IMplicit Pressure-Explicit Saturation (IMPES), Newton-Raphson 

and fully implicit advanced techniques.  Detailed technical background can be found in 
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Aziz and Settari (1979), Fanchi (2006), Gerritsen and Durlofsky (2005), Mattax and 

Dalton (1990), Peaceman (1977), Rosenberg (1977), Thomas (1982), and Thomas and 

Thurnau (1983). 

 

2.2.2 Streamlines Simulation 

A method which is used for more accurate transport calculations is the streamline 

simulation. Streamline simulations have been in the literature since first application by 

Muskat and Wyckoff (1934) and have received much attention and popularity with an 

extensive discussion in the literature (Baker et al., 2002; Batycky et al., 1997; Blunt et 

al., 1996; Datta-Gupta, 2000; Datta-Gupta and King, 2007; King and Datta-Gupta, 

1998; Lolomari et al., 2000; Thiele, 2001; Thiele, 2010; Thiele and Batycky, 2001). The 

streamline is a line or path that is everywhere tangent to the local velocity distribution at 

a given instant in time. In streamline simulations, the pressure equations are solved once 

using total mobilities and streamlines are calculated. Fluids are transported over a 

timestep along streamlines rather than from gridcell to gridcell as in conventional finite-

difference approaches. Streamlines reflect the immediate velocity distribution. 

Consequently, fluids are advanced to move with the total velocity distribution, obtained 

from the newly obtained spatial pressure distribution, the static petrophysical 

description, and Darcy‟s law, along the streamlines until the velocity distribution is 

updated at a later time to account for its changing behaviour. The spatial distribution of 

the static petrophysical properties (e.g., permeability, porosity, and relative permeability 

regions) and the volumes produced/injected at the wells is reflected directly in the 

constructed geometry of the streamlines and the velocity at which fluids move along 

each individual streamline (Thiele, 2010).  The approach can computationally be much 

faster than conventional finite-difference simulations when applied to large and 

heterogeneous models. Current streamline models are suitable for modelling tracer 

transport and waterflooding where the velocity field are fairly static and the streamlines 

require updating occasionally. In these circumstances streamline models can be orders 

of magnitude faster than conventional finite difference simulators (Datta-Gupta and 

King, 1995; Batycky et al., 1997).  Because the pressure equations are only solved a 

small number of times during the simulation rather than possibly thousands of times. 

While this approach is less accurate than conventional simulations schemes, it is 

feasible to carry out streamlines simulations on the grids containing millions of blocks. 
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Streamline simulation also has advantages in its ability to screen highly detailed 

geological models, allowing the engineer to visualise fluid flow paths in the reservoir 

(e.g. FrontSim Software), identifying regions and parameters in the reservoir that need 

to be history matched, as well as its rapid production data integration, speed and 

versatility which have led to many novel applications. Streamline models are not 

considered as a replacement to grid-based simulators but can play an important role in 

bridging the gap between geologic modelling and flow simulation (Datta-Gupta, 2000). 

2.2.3 Top–down Reservoir Modelling 

The Top–Down Reservoir Modelling (TDRM) is an integrated approach developed by 

British Petroleum (BP) to incorporate historical data into reservoir simulation models to 

facilitate fast uncertainty investigation. The Top–Down philosophy is “to start 

investigations with the simplest possible model and simulator appropriate for the 

business decision”. (Williams et al. 2004).  

 

In the TDRM approach a search is made over a large number of reservoir parameters, an 

uncertainty space with dozens of dimensions. The parameter values controlling 

properties in the simulation model are changed to match the observed data. These 

parameters are the same ones that might be adjusted in a manual history match, such as 

reservoir pore volumes and/or permeabilities, aquifer strength or fault transmissibilities 

(Walker and Lane, 2007). 

2.3 Gridding and Upscaling Techniques  

Several gridding techniques have been developed to build a simulation model (Arnold, 

2008).  Most models used in this thesis are Cartesian grids where the cell size is 

constant and the cells are oriented in the same general direction.  

 

Reservoir models built with geostatistical techniques are an integration of several 

measurement scales.  The gridcell of the geostatistical model inferred from well log data 

can be of order 10
3
 m

3
 in size while the gridcell size of the geostatistical model that has 

been inferred from core data may be of order 20 cm
3
.  Thus, high level of resolution of 

reservoir models involves very large number of gridcells, and is computationally 

expensive usually for numerical flow simulators.  This limitation increases with history 

matching since a significant number of flow simulations are often required.  Fine 

gridcells are aggregated into coarse ones in order to reduce the model size.  The 
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problem that arises is deciding on the equivalent transport properties (permeability and 

porosity) of the coarse gridblocks.  The equivalent properties rely on the properties 

simulated at the fine scale ones.  The procedure of converting fine scale into coarse 

scale one is called upscaling. 

 

Permeability upscaling in hydrocarbon reservoirs is a challenge to engineers, because of 

the multiphase nature of the fluids.  Upscaling of absolute permeability is easier and 

several methods ranging from simple averaging of the permeabilities to pressure 

solution methods have been developed (Renard and de Marsily, 1997).  In Rendard and 

de Marsily (1997), the various methods used to calculate the equivalent permeability of 

a heterogeneous reservoir are discussed in an excellent review. 

 

Upscaling methods can be categorised with respect to the types of parameters being 

upscaled (single or multi-phase systems) and the approach in which these parameters 

are computed (local and global calculations) (Durlofsky, 2003; Farmer, 2002). In 

single-phase systems, the upscaled parameter is usually the absolute permeability, and 

the goal is to maintain the gross features of flow on the coarse grid. In multiphase 

systems (Christie, 2001) for instance two-phase upscaling of relative permeability and 

capillary pressure must also be considered (Christie, 1996; Sablok and Aziz, 2008). 

Available single-phase upscaling techniques include renormalisation technique (King, 

1989, 1996; King et al., 1993, 1995), effective medium theory, pressure-solver methods, 

homogenization theory, and harmonic/arithmetic averaging methods (Christie, 1996). A 

comparison of the performance of different upscaling methods on a test problem, the 

10
th

 SPE Comparative Solution Project on Upscaling, is provided in Christie and Blunt 

(2001). Recent comparison between wavelet and renormalisation upscaling methods 

and adaptive iterative upscaling-downscaling approach is provided in Babaei and King 

(2011). 

 

Pickup et al. (2004) suggested a new way of generating coarse-scale permeabilities 

without upscaling by history matching a two-phase flow simulation. By comparing 

coarse-scale permeabilities with the conventional upscaled permeabilities and the fine-

scale results, the resulting errors obtained from the history matched coarse-scale 

permeabilities were close to the ones acquired with the fine-scale models.  
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Note that a history match in production data does not automatically mean a match in 

reservoir parameters, and a model that gives a good fit in one respect could do very 

badly in the other (Tavassoli et al., 2004).  

2.4 Reservoir Characterisation and Modelling 

Definition 2.1. Stationarity Assuming X is a variable with property value x(u) at 

location u, X is stationary of order two when (1) the expected value E(X(u)) exists and 

invariant with the study area and (2) the variance and the covariance between X(u) and 

X(u+h) exist and depend only on the separation vector h. This is an empirical decision 

determined to be accepted or not based on the data. 

 

Definition 2.2. Experimental (semi)variogram: measures the dissimilarity between 

data separated by vector h, named the lag. The semivariogram is the average squared 

difference between every data pair separated by h as in Eq. (2.5).  Plotting γ(h) vs. h, 

while taking each h in the same direction θ, pictures the increase in variability between 

two property values with increasing |h| in that direction θ. The direction θ is 

characterised by two angles the azimuth and dip angles (Caers, 2005).   

     
( )

2

1

1
( ) ( ) ( )

2 ( )

N h

i

h x u x u h
N h




                               Eq. (2.5) 

The number of pairs is n(n – 1)/2 for n data pairs. Once the semivariogram of the 

geological data has been determined, three main characteristics are inspected (Caers, 

2005).  

 Sill: the maximum value of the semivariogram for the parameter u. it is also the 

variance of the measured data. Usually, while the separation distance increases, 

the variogram increases reaching a plateau implying a stationarity. The 

asymptotic value achieved by the variance is called the sill. The presence of non-

stationarity or multi-scale structure can be detected by certain behaviour of the 

variogram. For example the variogram will increase indefinitely or continually 

oscillate. 

 Range: is an estimate of the maximum correlation length between two points at a 

defined separation distance, that is, the distance from which the variogram 

arrives at the sill asymptotically. 

 Nugget effect: is the value of the semivariogram at zero lag.  This discontinuity 

or vertical jump at the origin of the variogram is caused by the dissimilarity 

which is in turn due to the sampling errors and short scale variability at 
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extremely short distances. The term nugget derived from the observation that the 

lag for a finite size gold nugget has non-zero value. 

 

Usually the sample variogram is approximated via a variogram model or the 

experimental variogram. The models usually used are nugget effect model, spherical, 

exponential, Gaussian, and power. In addition variograms are often built as linear 

combinations of basic models which characterises the nest model.   

 

By using the available data, a prediction image for the reservoir, i.e. reservoir properties 

can be built.  This is achieved through the use of kriging which is named in honour of 

the innovative work of Krige (1951). There are several kriging techniques including 

simple kriging, ordinary kriging, and kriging with a trend simply containing linear 

interpolation with weighting coefficient factors. In these techniques the variance of the 

kriging estimator is unbiased and its variance is as small as possible. Sometimes the 

kriging estimator is referred to as the Best Linear Unbiased Estimator (BLUE).  The 

simple kriging estimator for example is a linear combination of the differences between 

data and mean obtained for each reservoir gridblock as shown in Eq. (2.6) where αi is 

the weight which depends on the location u. The kriging weights depend on the 

variogram or the covariance matrix adapted by the sample variogram, the location of the 

sample gridblocks and the location of the gridblock to be estimated. 

 
1

( ) ( ) ( )
n

k i i

i

X u m u X u m


                 Eq. (2.6) 

The major goal of estimating reservoir properties is to minimise the risk of estimates 

varying significantly from the unknown values. Nevertheless kriging smoothes the 

spatial variability and leads to a realisation whose histogram is not consistent with the 

sample realisation (Le Ravalec-Dupin, 2005).  

 

Simulating reservoir properties techniques can be used to simultaneously generate a set 

of geological representations (realisations) constrained to static data. These include 

Cholesky decomposition method (Albert, 1987; Davis, 1987) and the sequential 

simulations algorithms (Chilès and Delfiner, 1999; Goovaerts, 1997; Strebelle, 2002). 

The generated realisations are equiprobable (having the same probability), and honour 

the sample histogram and variogram, and as kriging estimators, simulators reproduce all 

data values at data locations.  
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A commonly used simulation algorithm for modelling continuous realisations is based 

upon a sequential procedure called Sequential Gaussian Simulation (SGS) (Chilès and 

Delfiner, 1999; Goovaerts, 1997). In this method assuming the reservoir has N 

gridblocks, the sequential principle idea involves minimising the problem of simulating 

an N-dimensional random vector into a sequence of N univariate simulation problems. 

A random path is defined at first to visit each grid block only once. At each grid block, 

the mean and the variance of the Gaussian cumulative density function constrained to 

the known well data are determined as well as the values drawn for previously visited 

gridblocks to preserve the spatial structure of the data. Computations are carried out 

based on simple kriging, and therefore are dependent on the well data used and the 

spatial correlation of that data. A value attributed to the relevant specific gridblock is 

then drawn from the identified conditional cumulative density function. This procedure 

is repeated along the random path until all gridblocks have been visited. 

 

Conditioning continuous realisations to static data through kriging is achieved as 

follows: assuming there are n static well data points and y a realisation of the continuous 

random field, Y, and only reproduces the n well data points by chance. Then the 

expression in Eq. (2.7) accomplishes conditioning realisation y to the n static data 

(Chilès and Delfiner, 1999). That is, the conditional realisation which honours both the 

variogram inferred from the data, to respect the spatial structure, and the static data 

values at the n well locations, yc, in terms of the unconditional realisation, y, and the 

kriging estimators, ydK and yK, for the known data and the y simulated at the n static 

points respectively. 

 ( ) ( ) ( ) ( )c dK Ky u y u y u y u                 Eq. (2.7) 

 

This procedure iterated for n different unconditional realisations produces n different 

conditional realisations where the mean and the variance of the conditional realisations 

approach the kriging estimator, ydK, and kriging variance respectively as n approaches 

infinity.  Note that at the well location in Eq. (2.7), y(u) – yk(u) =  0, therefore yc = ydK at 

the well location which in turn is the value of the static property data at the well. SGS 

can be considered one of the most popular methods for simulating reservoir properties 

in reservoir modelling workflows (Doyen, 2007). The approach has simple 

implementation and is flexible and suitable for integrating seismic data. 
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2.4.1 Discrete Realisations  

Similar stochastic modelling techniques have been developed for mapping facies 

realisations in the reservoir using discrete or categorical realisations due to the diversity 

of complex geological environments and connectivity structures. Two main categories 

of stochastic model that generate discrete realisations outlined here are object-based 

models and indicator models. 

 

2.4.1.1 Object-Based Simulation Models 

These models are constructed from geometrical objects spread in space and are often 

used to represent fracture networks or channels in the reservoir. The locations, shapes 

and orientations of the objects are characterised with probability laws and portions 

relationships. The Boolean model (Matheron, 1967) is a specific form of object-based 

model. Object-based simulation models are well recognised and have been successfully 

applied for many years particularly for fluvio-deltaic reservoirs (Doyen, 2007).  These 

models are constructed from the union of independently generated elementary objects, 

i.e. sinuous channels, ellipse, and barchans, where object locations are defined from a 

Poisson point process of constant density in the stationarity state. The shapes and sizes 

of the objects are independent of their locations. They use iterative optimisation 

algorithms like simulated annealing to place objects with predetermined shapes in the 

model with location constraints provided by well data. The main problem with the 

object-based models which needs to be overcome is with regard to conditioning to well 

data (Lantuéjoul, 1997).  

 

Arnold (2008) utilised an object-based methodology framework where the IRAP 

RMS™ geological modelling commercial software was employed successfully to model 

complex object-based geological structures. He indicated that even though there is 

difficulty conditioning to well data and considerable CPU demand with the long 

iterations caused by slow convergence rates because of the optimisation procedure 

within the framework, it is still a useful tool for generating realistic facies distribution 

and was the only sourced software available at the time. The developed framework 

methodology and object-based models examples are thoroughly detailed in Arnold 

(2008). 
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2.4.1.2 Indicator Simulation Models 

Indicator models differ from object-based models, in the need for the simulation of a 

value for each gridblock.  This characteristic is similar to continuous Gaussian models. 

Indicator realisations can be constructed using (1) Truncated Gaussian Simulation 

(TGS) (Galli et al., 1994; Hu, Ravalec, and Blanc, 2001; Matherson et al., 1987; Xu and 

Journel, 1993) or its extended form, the Pluri-Gaussian Simulation (PGS) (Lantuéjoul, 

2002; Le Loc‟h and Galli, 1997; Le Loc‟h et al., 1994), and (2) the Sequential Indicator 

Simulation method (Journel and Gomez-Hernandez, 1993). 

 

The basic idea of truncated Gaussian simulation (TGS) is to generate realisations of 

normalised Gaussian random field and to truncate them using a threshold to generate 

facies realisations.  The threshold value establishes the facies proportions whereas the 

spatial covariance structure of the Gaussian field determines the spatial continuity of the 

facies distribution.  Because only one Gaussian random field needs to be simulated in 

order to simulate multiple facies it has a better speed than SIS in addition to the 

possibility of controlling the association between different facies by careful ordering of 

the Gaussian classes.  The limitation of TGS lies in the usage of a single spatial 

covariance function of the Gaussian field to control the spatial relationship of multiple 

facies which makes it impossible to compel different anisotropy characteristics on the 

individual facies. The generalised version of the TGS, called the Pluri-Gaussian 

Simulation (PGS) has been developed to give more flexibility on anisotropy modelling 

and more control on the spatial correlation relationship between facies. This involves 

the simultaneous truncating of several Gaussian random functions. Each facies field 

imposes its spatial correlation relationship to one or more of the facies in accordance 

with the identified threshold. Another possibility is to use non-stationary thresholds, i.e. 

thresholds that are location-dependent. 

 

The Sequential Indicator Simulation (SIS) is a modelling facies approach. An indicator 

variable is defined based on variogram models for each facies indicator property since 

each facie may have different variograms with different correlation lengths and 

anisotropy characteristics reflecting the difference in spatial continuity of the various 

existing facies. Kriging, as a least square error estimator, allows calculation of the 

probabilities needed in sequential simulation by performing an estimation of the 

indicator values. A random path is defined at first to visit sequentially each grid block 
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only once. At each grid block, a local sand/shale probability distribution by Indicator 

Kriging is calculated, based on a weighted linear combination of indicator data, using 

the original known well data and previously visited simulated gridblocks values as 

control points. In the next step, a simulated value (1 or 0) attributed to the relevant 

specific gridblock is then drawn at random from this identified local distribution. The 

simulated binary value is then utilised as an additional control point for the remaining 

simulation steps. A complete lithology simulation is obtained by repeating this process 

alongside the random path until all gridblocks have been visited. 

2.4.2 Multiple-Point Statistics (MPS) 

The pixel-based approaches outlined earlier reproduce a sample variogram estimated 

from data pairs and therefore preserve two point statistics. Nevertheless, two-point 

statistics has limited control on pattern geometry and connectivity, thus, cannot be used 

to characterise complex structures such as channels.  Guardiano and Srivastava (1993) 

proposed to consider more than two locations at a time and introduced multiple-point 

statistics to extend the technique in an attempt to merge the flexible data conditioning 

achieved by pixel-based approaches with realistic shape information captured by 

Boolean methods and assist in capturing complex geological structures such as channels 

and curvilinear structures.  Later the approach is efficiently implemented by Strebelle 

and Journel (2000), called single normal equation simulation (snesim) (Strebelle, 2002).  

A reservoir image with objects manually drawn from outcrop observation for instance 

or simulated from object-based simulation algorithms produced by geologists could be 

used. The basic idea is to learn multi-point statistics from this initial geological image 

called a training image and analyse the occurrence of different possible patterns. A new 

image or realisation is subsequently generated with a pixel-based sequential simulation 

procedure demonstrated earlier to create facies simulations that are conditioned to well 

data and approximately reproduce the MPS inferred from the training image.  Assuming 

the reservoir has N gridblocks, a random path is defined at first to visit each grid block 

only once.  At each gridblock, the conditional cumulative density function is determined 

based on the training image. In the next step, a uniform deviate is randomly drawn and 

transformed into facies indicator using the conditional cumulative density function. This 

procedure is iterated until all gridblocks are visited. The resulted simulated image 

realisation reproduces the probabilities inferred from the training image. The approach 

has two features: it reproduces realisations with realistic geological features and it 
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makes conditioning to static data very easy. MPS simulation techniques have gained 

popularity with many recent advanced schemes presented (Caers et al., 1998; Caers et 

al., 2003; Daly and Caers, 2010; Strebelle, 2002; Strebelle and Journel, 2001; Strebelle 

et al., 2003). 

 

Simulated annealing (SA) optimisation approach is investigated in stochastic simulation 

where SA generates numerical models or realisations by formulating an optimisation 

problem to be solved.  By optimising an objective function such as minimising  a 

weighted sum of mismatch terms with respect to observed values, SA tries to reproduce 

different spatial statistics and respect constraints imposed in that objective function 

(Besag, 1986; Farmer, 1992; Geman and Geman, 1984; Kirkpatrick et al., 1983; 

Metropolis, 1953; Rothman, 1985).  The applications of SA on the geostatistical topics 

are investigated by Deutsch and Cockerham (1994) and Datta-Gupta, et al.  (1995).   

2.5 Parameterisation 

One of the key uncertainties in reservoir characterisation and simulation is populating 

with multiphase flow properties. For instance, relative permeabilities are measured on 

only a few core samples and then populated in reservoir simulation to large 

heterogeneous gridblocks that may contain many rock types.  As a consequence, relative 

permeabilities are rarely considered reliable and are often modified with no physical 

justification during history matching. However, to predict recovery and to design an 

improved oil recovery strategy, it is required to input the relationships between relative 

permeability and saturation during multiphase fluid flow in porous media. 

Consequently, the prediction of relative permeability and saturation has been the subject 

of many studies in the past years using pore-scale modelling pioneered by Bryant et al. 

(1993a, 1993b).  More extensions and experiments investigated in Adler and Thovert 

(1998), Bakke and Øren (1997), Bryant and Blunt (1992), Blunt et al. (2002), Øren and 

Bakke, (2002), and Øren et al. (1998). 

 

Discretisation of reservoir simulation models commonly involves sizes of more than 10
6
 

gridblocks and even with upscaling generally the number of gridblocks is large. A 

resumption of interest in geostatistical inversion and practical needs have brought to 

research and industry problems with a huge number of parameters (permeability or 

porosity values). A key aspect in solving the optimisation problem is selecting a proper 
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parameterisation and so perturbing the initial reservoir model with a fewer number of 

parameters as well as honouring the prior spatial variability structure conditions.  

2.5.1 Number of Model Parameters  

Increasing the number of model parameters characterising the reservoir increases the 

number of degrees of freedom and therefore a larger number of possible directions to 

navigate the parameter space will need to be explored during the optimisation process. 

At present there is no specific definitive measure to tell how many parameters should be 

used in the optimisation. Increasing the number of parameters can facilitate reducing the 

objective function characterising the mismatch between the dynamic data and the 

observed history. However, overparameterisation may slow the exploration procedure 

as well. For example, adjusting hundreds of parameters in order to history match dozens 

of dynamic production data would be unfruitful, may complicate the model, and could 

generate parameters with no physical meaning. In addition, if this optimal set of 

parameters would enable the dynamic data to be perfectly reproduced, it may still have 

no predictive capacity. Thus, a balance of choices will need to be considered.   

 

Visualising high dimensions is also an issue since it is difficult to view higher 

dimensional spaces. Al-Dossary (2004) investigated different ways to be able to analyse 

the large number of parameters. 

2.5.2  Compartmentalisation 

A common approach utilised in hydrology and petroleum engineering to reduce the 

number of parameters is the compartmentalisation (zonation or regionalisation) 

technique (Stallman, 1956a). An abbreviated version of the paper can be found in 

Stallman (1956b) which was later reprinted as a benchmark paper in hydrology (Freeze 

and Back, 1983). This paper pioneered the development of methods for ground water 

inverse problem and introduced the inverse problem to hydrogeologists and 

undoubtedly stimulated much of the research that led to numerous recent advances in 

this research area. The work involved the application of numerical methods for the 

solution of the finite-difference equations governing ground water flow, and led to his 

innovative work on the solution of the inverse problem. The compartmentalisation 

technique as adopted in petroleum reservoirs models involves grouping gridblocks to 

create subregions with constant permeability values (Figure 2.3 for a realisation with a 

spherical variogram). The optimisation is then achieved by adjusting these values. 
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Although the compartmentalisation technique does not handle the spatial variability 

model inferred from the static data, it is a standard method in petroleum practices 

(Floris et al., 2001).  Section 5.9.1.1 in the thesis shows an application example of the 

compartmentalisation technique. 

  
Figure 2.3: Compartmentalisation technique principle where gridblocks are grouped to create 

zones with constant permeability values (Source: Le Ravalec-Dupin (2005)) 

 

This method has an extensive history in petroleum engineering application.  It started 

with early history matching studies of Jacquard and Jaїn (1965) and Jahns (1966). 

Gavalas et al. (1976) and Shah et al. (1978) studied the use of zonation approach for 

history matching, but they have concluded that Bayesian history matching approach has 

been more accurate and has quick convergence. It is however noted that the misfit 

obtained with the zonation approach is larger than desired because of the small number 

of degrees of freedom and the predefined prior ranges.  Furthermore, the method may 

not approximate geology accurately and has discontinuities at the boundaries (Oliver 

and Chen, 2010).  

2.5.3 Gradual Deformation Method (GDM) 

The gradual deformation method is a stochastic parameterisation technique introduced 

by Roggero and Hu (1998) which allows narrowing of the parameter space. The gradual 

deformation method was initially developed for gradually changing Gaussian stochastic 

reservoirs models while maintaining their spatial variability (Hu, 2000). It was then 

extended to non-Gaussian reservoir models simulated from sequential indicator 

simulation (Hu, Blanc, and Noetinger, 2001) and Boolean techniques (Le Ravalec-

Dupin and Hu, 2004).  

 

The working mechanism for gradual deformation to construct a realisation from Q+ 1 

independent realisations characterised by mean y0 and the same covariance as the 
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combined realisations, is given in Eq. (2.8) where θi are the deformation parameters 

(Roggero and Hu, 1998).   

     0 1 0 1 0

11 1

, [1, ] cos( ) sin( ) cos( )
Q QQ

i i i j i

ii j i

y i Q y y y y y    

  

               Eq. (2.8) 

The major characteristics of the GDM are the reduction of the number of parameters 

and the preservation of the spatial variability while changing continuously the reservoir 

model, thus the entire reservoir model is simply modified by changing a few 

deformation parameters for any number of gridblocks. More details can be found in Le 

Ravalec-Dupin (2005). 

2.5.4 Pilot Point Method (PPM) 

The pilot point method also called master point method (de Marsily, 1978; de Marsily et 

al., 1984) was first developed for prediction purpose, then extended to calibrate 

permeability field to dynamic data (Cuypers et al., 1998; Gomez-Hernandez et al., 1997; 

RamaRao et al., 1995). 

 

To adjust a realisation discretised over a grid, a set of gridblocks or points called pilot 

points is chosen with the goal of modifying their values. The resulting perturbation is 

mapped to the entire realisation using the kriging equation.  Here, the conditional 

realisation respects the static data and the pilot points in addition to the variogram 

inferred from static data. The pilot points are assimilated to static data, whose values 

can be adjusted to oblige the realisation to respect the dynamic data similar to the 

gradual deformation method. As the adjustments are propagated to the entire realisation 

with kriging the spatial variability structure model is maintained. This method is applied 

to locally modify realisations from a limited number of parameters, while preserving the 

spatial variability of the studied attribute (permeability, porosity, etc) where the spatial 

variability is approximated by a variogram model inferred from static data.  

2.5.5 Gradual Pilot Point Method  

The two techniques demonstrated earlier, the gradual deformation method and the pilot 

point method were designed to reduce the number of parameters and to honour the 

inferred spatial structure. The weaknesses for the pilot point method have been revealed 

that pilot points can be assigned unreasonably extreme values and possible correlations 

among the pilot points are neglected. The gradual pilot point method was introduced 

(Le Ravalec-Dupin and Hu, 2007) to overcome these limitations by combining the pilot 
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point and gradual deformation methods. The crucial difference compared to the original 

pilot point method is that pilot points are changed via gradual deformation rather than 

optimisation. In the proposed approach the method does not produce extreme variations 

compared to the original pilot point method. In the proposed approach intermediate 

gradual deformation parameters are introduced which govern the pilot point values. In 

addition, the correlations among the pilot points are respected when modifying 

simultaneously the entire set of pilot points from a single deformation parameter. 

Hence, many pilot points can be placed on the random field, irrespective to their 

locations and they can produce local and global deformation. The approach applied for 

calibrating permeability fields was a two-step approach where firstly the gradual 

deformation method is used to globally deform the permeability fields.  When the 

permeability fields had been globally improved, they were locally refined using the 

gradual pilot point method. 

2.5.6 Facies Proportions Calibration Technique 

Enchery et al. (2010) proposed a parameterisation technique to automatically adjust 

facies proportions during a history matching process. This method depends on the ratio 

of average proportions between facies classes with a priori poorly known proportion. 

Two different schemes were introduced depending on the geological environment. The 

first generates discontinuity between the target area and the embedding environment. 

This approach does not ensure the continuity of the facies proportions between the 

transformation region and the rest of the reservoir and it helps to increase the contrast in 

the proportions between different geological objects like channels. On the other hand, 

the second scheme ensures continuity of proportions at the boundary of the modified 

region and aims more at reproducing an average trend in the proportions of the 

identified architectural elements. The methods were tested for improving the calibration 

of 4D seismic data (Enchery et al., 2010) on a faulted turbidite field located in offshore 

Angola. 

2.5.7 Stochastic Partial Differential Equations 

Potsepaev and Farmer (2010) proposed a coordinate free approach called stochastic 

elliptic partial differential equations for modelling stochastic textures in reservoirs. 

Often reservoir properties are modelled using a Gaussian stationary random field then 

mapped back to the physical space The approach avoids the construction of a map from 

physical to parametric space resulting in stratigraphic coordinates, , where it is possible 
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to generate realisations directly in the physical space in the presence of deformations 

and faults. The method is tested in simple reservoir property modelling cases and 

generalisations involving nonlinear terms are to be considered. 

2.5.8 MP Simulations without Computing MP Statistics 

Mariethoz et al. (2010) presented a method that produces conditional realisations 

honouring the high-order statistics of univariate or multivariate training images. The 

method is simple and easy to parallelise and therefore it can produce very large and 

complex realisations. It is based on a sampling method introduced by Shannon (1948), 

however, it does not require conditional probabilities computations and to store them. A 

distance metric between data configurations is used in the sampling process to simulate 

both discrete and continuous parameters. The method does not require storage needs, 

thus, neighbourhoods can have virtually any size and neighbourhoods are not restricted 

to a template, making multiple-grids unnecessary. The method was applied to simple 

cases and it has promising preliminary results. 

2.5.9 Machine Learning Methods  

Recent machine learning methods have been applied in reservoir modelling for 

predicting reservoir properties and reproducing complex geological structures including 

Principal Component Analysis (PCA) (Mohamed et al., 2010a; Sarma et al., 2008b), 

Support Vector Machines (SVM) (Alanazi, 2009; Demyanov et al. 2008; Gallardo and 

Leuangthong, 2009), Multiple Kernel Learning (Demyanov, Foresti, Christie, and 

Kanevski, 2011; Demyanov, Foresti, Kanevski, and Christie, 2010), and Kernel Ridge 

Regression (KRR) (Sætrom and Omre, 2010).  The methods have demonstrated their 

capacity in analysing and describing different geological scenarios (Caers, 2008).  Next 

we briefly review the working mechanisms for some of these methods. Section 9.2.1 

provides a demonstration of principal component analysis technique applied in the 

thesis in detail.  

 

2.5.9.1 Support Vector Regression (SVR) 

Support vector machines (SVM) were first introduced by Vapnik. There are two main 

classes for support vector machines: support vector classification (SVC) and support 

vector regression (SVR). Support Vector Regression is a kernel-based non-linear 

rigorous technique for regression prediction introduced by Vapnik et al. (1997). Support 

Vector Regression (SVR) is the most common application form of SVMs. The basic 
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ideas underlying support vector machines for regression and function estimation has 

been overviewed in Smola and Schölkopf (1998) and Schölkopf and Smola (2002) with 

a summary of currently used algorithms for training SVMs. The basic idea in kernel 

methods, called the kernel trick, is to map the data into a high-dimensional feature space 

via a nonlinear mapping, known as a kernel function, k, and to do linear regression in 

this space (Vapnik, 1999) as in Eq. (2.9) where   is the map in the feature space for 

data vector x.  

( , ) ( ) ( )i ik x x x x                                  Eq. (2.9) 

SVR controls the complexity of the model and provides accurate results with high-

dimensional and noisy data by constructing sparse kernel models. The SVR model is 

based on the use of an -insensitive loss function, which preserves the sparseness 

property. The SVR model is built by kernel functions linear expansion, k(x, xi) as in Eq. 

(2.10) for predicting new inputs expressed in terms of kernel functions where N is the 

number of data points. The function encapsulated weighted dot products in the high-

dimensional feature space between x and the support vectors xi obtained by the SVR 

model which are the closest samples to decision boundary. The weights of the 

expansion have non-zero values to contribute to the maximum marginal solution and 

they are produced by quadratic programming, thus as the problem is convex, its solution 

is unique. The SVR generated model depends only on a subset of the training data, 

because the cost function for building the model ignores any training data close to the 

model prediction within a threshold ε.  

1

ˆ( ) ( ) ( , ; )
N

i i i

i

y x k x x b  


                                   Eq. (2.10) 

The effectiveness of SVR lies in the selection of kernels and what is called soft margin 

parameters (C, ε).  Soft Margin approach selects a hyper plane that splits the training 

data as cleanly as possible, whilst still maximising the distance to the nearest cleanly 

split examples.  The method introduces slack variables, ξi,, which measure the degree of 

misclassification of the datum xi. C > 0 refers to the parameter that controls the trade-off 

between minimising training errors and controlling model complexity and   is called 

the hyper parameter utilised for constructing sparse models with a reduced set of the 

training data only.  For kernels, different pairs of (C, ε) values could be used, however, 

in practice the one with the best cross-validation accuracy is usually picked. Attempting 

exponentially growing sequences of C is a practical method to identify good parameters. 

The one with the best accuracy can be selected for classification and prediction which 
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can be then used in future for testing and prediction. Figure 2.4 illustrates the problems 

that SVM can tackles. 

 

 
Figure 2.4: SVMs kernel trick, SVM does classification (c) or regression (e,f) or characterisation of 

a dataset in one-class SVM (d) (Source: (Loshchilov et al. (2010))   

 

SVR application in modelling petrophysical properties distribution of a fluvial 

environment has been investigated in Demyanov et al. (2008) and has shown promising 

results in modelling complex structures. In this application approach, a geomanifold is 

identified using two classes of features.  One comes from well data and the seismic 

attribute acoustic impendence (for correlating with porosity), called labelled data, and 

the second represents the spatial geological structure, and called unlabelled data. The 

SVR model computes linear regression in high dimensional space using a single unique 

kernel in a feature space as a correlation model for all input variables. Properties are 

then populated into the gridblocks whilst maintaining the spatial structure and 

preserving the seismic and static well data. 

 

2.5.9.2 Multiple Kernel Learning (MKL) 

The kernel used in the Demyanov et al. (2008) application is a unique kernel which they 

indicated is a limitation of the SVR technique because reproducing multi-scale non-

stationary structure is difficult even while using a semi-supervised learning approach 

with unlabelled data, since the correlation on multiple scales is not explicitly reflected in 

the model. Recent advances have been investigated to deal with this aspect where a 
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multi-kernel SVR (Gert et al., 2004) has been applied for a spatial regression problem in 

Pozdnoukhov and Kanevski (2008).  

 

The use of multiple kernels gives flexibility and adaptability to the data and can enhance 

the performance of the prediction model. Multiple kernel learning can be achieved by 

defining a convex combination of basis kernels. A simple kernel can be constructed by 

substituting k(x, x’) as in Eq. (2.11) in which di refers to the weights augmented to each 

kernel and βi   is the corresponding kernel parameter. 

1 1

( , ) ( , ; ); 1 0
Q Q

i i i i i

i i

k x x d k x x where d and d i
 

            Eq. (2.11) 

Different multiple kernel learning variations differ in simultaneously optimising the 

SVR weights α and d. Among these variants Rakotomamonjy et al. (2008) introduced a 

simple two-step optimisation approach, called Simple MKL. During the first step in the 

approach the weight vector d is optimised and then followed by solving the SVR 

problem in the second step. 

 

The main strength of the MKL technique is its ability to determine the relevance of 

particular features or groups of features, i.e. permeability distribution to yield a better 

understanding of the problem and hence enhance the performance as a result of noisy 

features elimination. MKL can be a successful predictive model which serves as an 

exploratory tool. The method works by incorporating features obtained from data at 

difference scales such as seismic static data, well data, and reservoir images in a 

statistical consistent way in order to provide proper predictions by analysing and 

detecting the important features. The MKL formulation is flexible and can be used in a 

variety of ways: the features, combination of features spaces accounting for different 

features, different scales (same features, but different kernel parameters) or all can be 

considered. The performance of the conventional SVR and its MKL extension is 

compared in Foresti et al. (2009; 2010) for spatial wind speed mapping which is a 

similar problem to reservoir modelling. The MKL method obtained superior results 

compare to the SVR approach.   Demyanov, Foresti, Christie, and Kanevski (2011), and 

Demyanov, Foresti, Kanevski, and Christie (2010) applied the MKL approach on the 

same example outlined earlier to model reservoir petrophysical properties of a fluvial 

system which features multi-scale structures of a meandering channel and a broken 

fading channel with highly noisy data. The resulting MKL application showed a 
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potential in detecting and modelling complex structured geobodies in addition to the 

ability to interpret the results in comprehensive fashion.  

2.5.10 Other Methods 

Farmer (1989, 1992) introduced simulated annealing technique based on Two-point 

Histogram to create patterns of discrete rock types representing different lithologies 

(King, 1992). Incorporation of large-scale soft data will be conditioned via an objective 

function in the simulated-annealing method. Two-point histogram can not encapsulate 

sufficient information to reflect complex geological structural models, and the results 

can not capture spatial relationships.  Deutsch and Journel (1992) then proposed the 

Multipoint Histogram that captures much more information than the two-point 

histogram.  Le Ravalec et al. (2000) proposed the Fast Fourier Transform-Moving 

Average (FFT-MA) generator approach to produces unconditional Gaussian fields with 

stationary covariance functions based upon the moving average framework.  In 

Bayesian image analysis, data are most usually available as a degraded image, corrupted 

by noise and smoothed in some ways (Besag, 1986; Geman and Geman, 1984; Ripley, 

1988).  Sætrom and Omre (2010) used Ensemble Kalman filtering with shrinkage 

regression techniques and Ensemble Kalman filtering for non-linear likelihood models 

using kernel-shrinkage regression techniques also called Kernel Ridge Regression 

which belongs to the kernel methods family.  The probability perturbation method was 

introduced by Caers (2003; 2004) and applied by Hoffman and Caers (2003, 2004) in 

the North Sea reservoir.  Jafarpour and McLaughlin (2007, 2009) used the discrete 

cosine transform and presented good results. More recently, Caers et al. (2010) 

developed multi-dimensional scaling (MDS) modelling techniques in metric space, 

which means that processes are reformulated and achieved in metric space, where the 

location of any model is determined entirely by the mutual differences in responses as 

defined by a distance term.   

2.5.11 Parameterisation Summary  

Several techniques, suitable for building fine or high-resolution reservoir models, have 

been reviewed in this section. The methods are investigated thoroughly in the 

specialised literature and some are utilised in current petroleum community software. A 

comprehensive description can be found in Beucher and Renard (2005), Caers (2005), 

Dubrule (2003), Doyen (2007), and Le Ravalec-Dupin (2005) in which excellent 

illustrative examples are demonstrated.  
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Generally, the aim of these methods is to produce geologically realistic reservoir models 

which preserve the spatial variability model inferred from the available static data for 

meaningful results. The geostatistical techniques described are often used to populate a 

reservoir model with porosity values. A permeability-porosity relationship as in Eq. 

(2.12), derived from a petrophysical study, can then be used to attribute permeability 

values to all the reservoir gridblocks. 

10log ( )k                                    Eq. (2.12) 

 

where ϕ is the porosity and k permeability. α and β are static coefficients estimated per 

facies. Since, ϕ distribution is normal, k distribution is lognormal.  

 

Another technique called collocated cokriging (Xu et al., 1992) can be used for 

populating permeability in gridblocks where the permeability variogram, describing the 

spatial continuity that may have different correlation lengths and anisotropy 

characteristics, is available. In this technique the porosity attribute is called a covariable 

where a simple linear correlation between porosity and log permeability is evaluated by 

a correlation coefficient which can be computed by scatter plotting logpermeability 

versus porosity acquired from the core data. The basic idea is to produce a permeability 

model which reflects the continuity modelled in its variogram and maintain the 

permeability data from wells in addition to having the observed correlation with the 

porosity. The applicability of the technique has been widely used to interpolate the 

depth in structural modelling (Doyen, 2007; Caers, 2005).  

 

The dependencies between covariates, e.g. between porosity and permeability, can also 

be co-estimated using some more flexible and efficient geostatistics based methods 

indicated earlier such as SVM or the more general MKL and KRR.  

2.6 Chapter Summary  

This chapter presented an overview of the literature on reservoir modelling 

fundamentals, including reservoir performance prediction techniques and a review of 

the recent development on reservoir characterisation and modelling topics.   
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Chapter 3 – Reservoir Model History 

Matching and Uncertainty 

Quantification Techniques: 

Literature Review 

 

This chapter presents history matching and uncertainty quantification concepts with a 

review of the assisted history matching techniques and uncertainty quantification 

methods.  The Bayesian methodology and uncertainty quantification framework used in 

this thesis and other topics that set the basis for the next chapters are provided.  

3.1 Objective Function 

Conditioning to dynamic data, the production data, well pressures, water cuts, etc, is a 

nonlinear problem which may be solved using linearisation or optimisation.  The 

optimisation approach is favoured among engineers because they have to deal with 

complex geological structures. Zimmerman et al. (1998) indicated that optimisation 

provides better results than linearisation.  

 

Optimisation algorithms use an objective function, also called a cost function or misfit 

function. It is a function of unknown parameters and measures the discrepancies 

between simulated and observed data. The objective of the optimisation process is to 

minimise the objective function by fine tuning the unknown parameters. Defining an 

appropriate objective function and quantifying the mismatch are critical challenges for 

any reservoir engineering study.  Objective function values define a multidimensional 
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surface that may have many twisting valleys.  Often, the objective function is the 

negative log of the likelihood as defined in Eq. (3.1).                                  

  log |M p O m                                  Eq. (3.1) 

 

where m is the model parameters and O is the observed data.  p(m|O) is the probability 

of the model given the data.  Assuming the measurement errors are Gaussian, 

independent and identically distributed with zero mean and assume that there is no error 

in the numerical solution of the model, the posterior can be defined as in Eq. (3.2).  

Figure 3.1 shows the likelihood definition based on this assumption.  The misfit can be 

computed using the conventional least squares formula in Eq. (3.3).   
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where T is the number of observations, q is the rate, obs and sim refer to observed and 

simulated, and ζ
2
 is the variance of the observed data.  Other statistical models for 

observational noise give rise to different expressions for the misfit.  

 

 
Figure 3.1: Likelihood function definition 
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It is noted that refining the grid size in reservoir models does not guarantee that the 

model will capture all the physics. This is termed the model inadequacy (Kennedy and 

O‟Hagan, 2001). Simulation error model can be included in the history matching 

procedure where fine grid models are compared with the coarse model (Christie et al., 

2008; O‟Sullivan, 2004; Park et al., 2010). 

 

The measurement errors can be estimated from the data with statistical data fitting 

approaches. Erbas (2007) used the best history matched model while Arnold (2008) 

utilised a simple polynomial curve to estimate errors in a similar approach. Valjak 

(2008) used Wiener filtering approach to estimate the errors from the production data 

directly. The common recommended practice (Roggero and Hu, 1998) is to allow 5% 

error tolerance from observed data for oil and gas production rates.  

3.2 History Matching  

A reservoir is characterised by a set of model parameters. History matching is the 

process of adjusting the value of these model parameters to produce a model that 

matches the production data, as well as honouring the static data from wells and any 

seismic survey. Extensive advances have been made during the last few decades in 

inverse problem theory to integrate dynamic data into reservoir models resulting in the 

growth of a broad list of history matching approaches.  The time-lapse or 4D seismic 

data also needs to be integrated quantitatively into reservoir characterisation at the 

history matching stage to update reservoir models (Aanonsen et al. 2002; Castro, 2007).  

Figure 3.2 shows the development of research on the subject since the first attempts to 

solve the inverse problem were initiated by Nelson (1960) and Jacquard and Jaїn 

(1965).   

 



CHAPTER 3: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION TECHNIQUES: LITERATURE REVIEW 

 

38 

 

 
Figure 3.2: Number of papers on history matching prepared each year for SPE conferences and 

journals (Source: Oliver and Chen (2010)) 

3.2.1 Manual History Matching 

Traditional manual history matching is achieved through a deterministic trial-and-error 

process in which the engineer‟s knowledge, judgment, and expertise are exploited. The 

process is tough, very time-consuming and only provides a single forecast and may not 

be feasible for large reservoirs. 

 

There is no single universal method for achieving a history match but there are some 

guiding principles to aid the history matching procedure considered in the literature 

such as Crichlow (1977), Fanchi (2001), Mattax and Dalton (1990), Saleri et al. (1992), 

and Thomas (1982) in the following steps. 

1. Match the volume measurements with material balance and recognise aquifer 

support 

2. Match the energy of the reservoir energy – the pressure both globally and locally 

for each well. Global model quality can be initiated by matching the average 

field pressure as overall material balance. The pressure distribution displays the 

spatial variation linked to local variability of reservoir performance. Thus, local 

pressure matches can be examined with well test plots at certain locations in 

time.  

3. Match variables that are dependent on saturation. These variables like gas-oil 

ratio (GOR) and water-oil ratio (WOR) are often the most sensitive production 
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variables since they have an impact on both breakthrough time and the profile of 

the WOR or GOR curve. 

4. Match flowing pressure for wells. 

 

As a result of ensuring material balance is used correctly, the pressure profiles should 

match the observed data, and the matching of water rates then follows.  The first two 

steps need to be accomplished before the final two steps since if they cannot be 

achieved, then there is a strong possibility that the model is inadequate as a result of: 

inaccurate or incomplete field data, poor characterisation of the model, or the wrong 

model was selected to name a few examples. Reviews of the model will be essential. 

3.3 Assisted History Matching Algorithms 

Even though all history matching approaches aim generally at minimising the objective 

function (misfit), there are variations on how to do the minimisation and quantify the 

uncertainty. This arises from the fact that some optimisation algorithms suit some 

history matching problems better than others, and some algorithms also have simpler 

implementations than others. Choosing the optimisation algorithm on specific history 

matching optimisation problems can be facilitated by the objective function structure.   

 

There are a number of algorithms that have been used in the petroleum literature to 

generate history matched models and quantify uncertainties, and these algorithms fall 

into two principal types:  data assimilation methods and calibration methods (Christie et 

al., 2005). Data assimilation methods calibrate a number of estimates of model 

parameters sequentially to points in a time-series of observed data. In calibration 

methods on the other hand, a complete run of the simulation is carried out and the match 

quality to the historical production data is used to move the estimates of the model 

parameters towards a better solution.  

 

This section summarises some of the calibration algorithms that have been employed in 

the specialised history matching literature, examples of where it was performing well 

and their feasibility to work in complex real life problems. More details can be found in 

Oliver and Chen (2010). 
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3.3.1 History Matching Optimisation with Deterministic Techniques 

Gradient methods are highly efficient and have been widely used for history matching 

problems. These methods require the calculation of the derivative of the objective 

function with respect to the reservoir model parameters as either gradients or sensitivity 

coefficients. This computation requires a lot of computational time when a large number 

of parameters is included.  An effective method in obtaining the gradients is the adjoint 

approach (Chavent et al., 1973).  Sensitivities (gradients) can also be estimated or 

approximated using a single flow simulation, the so-called streamline approach (Datta-

Gupta, 2000). 

 

Techniques available include: steepest descent, Newton, quasi-Newton, Gauss-Newton, 

conjugate gradient, and Levenberg-Marquardt (Press et al., 1988; Ranganathan, 2004; 

Sun, 1994; Tarantola, 1987) which can be found in some modern commercial history 

matching software such as SimOpt (2005).  Early work by Bissell et al. (1994) history 

matched two real case studies using gradient methods and found that the results were 

comparable with hand matches.  Lepine et al. (1999) estimated the uncertainty of 

production forecasts using linear perturbation analysis. A range of possible future 

production profiles were obtained and the confidence intervals for the future production 

performance were derived to quantify the uncertainty. The main problem of using 

gradient based methods is that they can easily get trapped in local minima due to the 

complexity of the flow problem.  

 

In recent years, research has involved around quantifying uncertainty by generation of 

multiple history matched reservoir models, rather than just seeking the best history 

matched model.  A practical reason for using multiple history matched models is that a 

single model, even if it is the best history matched model, may not provide a good 

prediction (Tavassoli et al., 2004).  Stochastic methods that have other mechanisms that 

produce multiple models are demonstrated next. 

3.3.2 History Matching Optimisation with Stochastic Techniques  

Modern reservoir management has an increasing focus on predicting the likely range of 

field recoveries and consequently providing economic evaluations of different field 

development strategies. The favoured route to such uncertainty quantification is by 
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obtaining multiple history matched simulation models and using them to estimate 

ranges in likely recovery factors.  

 

Recently stochastic sampling algorithms have gained some popularity and have been 

among the most rapidly developing with more oil and gas companies adopting them as a 

strong component of the reservoir history matching process. This is due to their 

relatively simple implementations and capacity for parallelisation capacity. With an 

increased availability of computing resources, it is possible to obtain multiple models. 

The methods do not require the computation of the gradients. They are equipped with 

various heuristics for randomising the search and hence exploring the global space and 

preventing entrapment in local minima as well as the sequence of parameter values 

generated generally improve the history match as time evolves. However, they are slow 

and computationally require a significant number of objective function evaluations.  

 

Examples of stochastic methods include the golden section that deals with only single 

parameter, simulated annealing, the Metropolis-Hastings method, chaotic approach, 

simplex method, genetic algorithms and evolutionary strategies, which deal with high-

dimensional problems. 

 

The Golden section method (Press et al., 1988) is usually utilised to solve optimisation 

problems which include a single parameter where the parameter space is partitioned off 

into two to bracket the optimum.  The produced ranges decrease over time and goes 

towards the optimal parameter value.  The name of the method is derived from the way 

the method works which is partitioning the parameter space according to the Golden 

number.  A similar approach, interval halving, works by taking an interval [a,c] and 

dividing it into two intervals of equal size.  Then checking a point in the middle, b . If 

the function altered sign in the interval [a,b] , that is f(a)f(b) < 0 , then by the 

intermediate value theorem there is a solution in this interval. If not, then the solution is 

in the interval [b,c] .  This is repeated until a sufficiently small interval is obtained. 

 

Simulated annealing (SA) (Kirkpatrick et al., 1983; Černý, 1985; Press et al., 1988) is a 

method inspired by thermodynamics for the solving global optimisation problems by 

trying to find the global optimum of a given function in a large parameter space.  The 

approach is an adaptation of the Metropolis-Hastings algorithm (Metropolis et al., 
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1953).  The name and inspiration come from annealing in metallurgy, an approach 

consisting of heating and controlled cooling of a material to increase the size of its 

crystals and reduce their deficiencies.   With high temperature values, the molecules of a 

liquid have a free movement according to one another.  When the temperature decreases 

slowly, the thermal mobility vanishes.  If cooling is very fast, the final state can be a 

shapeless state whose energy is fairly higher than the energy of the crystallised state.  

The energy here is understood as the objective function where temperature is the control 

parameter.  Starting from a point in parameter space, a random update is accepted or 

rejected according to the energy difference.  That is, the state is accepted if it has 

improved the objective function.  In this method, there is a possibility that the system 

state gets out of local minimum for a global optimum.  Ouenes et al. (1993) show an 

application in petroleum engineering. 

 

Mantica et al. (2002) used a method where an optimisation problem can benefit from an 

analogy with electric forces.  The optimisation procedure called chaotic dynamic begins 

with a set of possible solutions.  Zabalza-Mezghani (2000) extended a method called the 

simplex method by incorporating gradient information  

 

Genetic algorithm (GA) (Goldberg, 1953; Holland, 1975) based on natural processes 

has been used widely in history matching, and is available in a variety of forms.  The 

method is inspired by the probabilistic change rules motivated by Darwin‟s theory of 

evolution to solve optimisation problems with an evolutionary process.  The method 

simply starts with a population of solutions or individuals who produce new population 

based on their objective function values.  The evolution procedure includes three simple 

operators: reproduction, crossover and mutation.  The evolutionary optimisation 

procedure is repeated until an acceptable individual solution is produced.  Variations of 

the method include binary coded GAs and real-coded GAs. Romero et al. (2000a) 

applied a modified genetic algorithm to a realistic synthetic reservoir model and studied 

the main issues of the algorithm formulation. Yu et al. (2008) used genetic 

programming to construct proxies for reservoir simulators while Carter and Ballester 

(2004), Erbas and Christie (2007a), and Romero et al. (2000b) also investigated the 

method on real field applications and have shown how this method can find an 

ensemble of solutions.  An overview of genetic algorithm in the oil industry is provided 

in Velez-Langs (2005).  
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Some innovative global optimisation approaches that have had a good track record of 

successful application within the petroleum industry are: evolutionary strategies 

(Schulze-Riegert et al., 2001; Schulze-Riegert and Ghedan, 2007; Schulze-Riegert et al., 

2009), population-based incremental learning (Petrovska and Carter, 2007), estimation 

of distribution algorithms (Petrovska, 2009; Petrovska and Carter, 2006; 2010), 

differential evolution (Jahangiri, 2007; Hajizadeh et al., 2011), ant colony optimisation 

(Razavi and Jalali–Farahani, 2008a, 2008b; Hajizadeh et al., 2009), and neighbourhood 

algorithm (Christie et al., 2002).  The latter will have a particular focus in the next 

section since it is used in the thesis for comparisons.   

 

3.3.2.1 The Neighbourhood Algorithm 

The Neighbourhood Algorithm (NA) is a stochastic sampling algorithm that was 

originally developed by Sambridge (1999a) for solving geophysical inverse problems. It 

is a derivative-free method that aims at finding an ensemble of acceptable models rather 

than seeking for a single solution.   NA is a sampling technique that uses the properties 

of Voronoi cells in high dimensions to achieve multiple history matched models. The 

key approximation in NA is that the misfit surface is constant in the Voronoi cell 

surrounding a sample point in parameter space. Quantifying the uncertainty using the 

NA involves two phases: a search phase, in which we generate an ensemble of 

acceptable solutions of the inverse problem, and an appraisal phase, in which NA-Bayes 

(NAB) (Sambridge, 1999b) computes the posterior probability based on the misfits of 

the sampled models and the Voronoi approximation of the misfit surface. NA has been 

used in a number of reservoir history matching studies (Christie et al., 2002; Christie et 

al., 2011; Erbas and Christie, 2007a; Rotondi et al., 2006; Subbey et al., 2003; Subbey 

et al., 2004).  

 

The search phase can be summarised as follows: 

1. The NA algorithm is initialised with a population of an initial set of ninit models 

randomly generated in the search space by a quasi random number generator; for 

each model the forward problem is solved and the corresponding misfit value is 

obtained.  

2. Determine the nr models having the lowest misfit values, among the previously 

generated models ns. 

3. Generate a total of ns new models in the nr Voronoi cells previously selected.   
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4. NA returns to Step 2 and the process is repeated until it reaches the user defined 

number of iterations. 

 

Thus a total of N = ninit + ns × no. of iterations models is generated by the algorithm. 

The ratio ns/nr controls the behaviour of the algorithm: the lowest value of ns/nr = 1 aims 

to explore the space and find multiple regions of good fitting models;  as the value of 

ns/nr is increased, the algorithm tends to improve the matches obtained at the expense of 

finding multiple clusters of good fitting models.  A general guideline is to start with a 

value of ns/nr = 2 to obtain a balance between exploration and exploitation. Figure 3.3 

summarises the NA workflow. 

 

 
Figure 3.3: NA optimisation workflow (Source (Erbas, 2007)) 

3.4 Quantifying the Uncertainty 

Uncertainties are present in any scientific application including simulations due to: 

inaccurate representation of the initial boundary conditions, inexact model parameters, 

and incomplete knowledge of the modelling system. The two main sources of error 

influencing uncertainty in our predictions in history matching context, and which need 

be accounted for are the model and observation errors. The data errors encompass lack 
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of knowledge of the subsurface geology and errors inherent in the time-dependent 

dynamic data.  The model errors on the other hand are based on incorrect physics, 

impact of non-linearity, and the choice of numerical simulator we pick such as mass 

balance or streamline, finite element or finite difference. These errors occur from the 

approximation of the initially continuous conservation and flow equations with discrete 

analogues, and the inability to capture sub-grid details. The major error however, is the 

result of being unable to capture these sub-grid details (O‟Sullivan, 2004; Okano, 2006). 

Concern must be taken with errors caused by numerical diffusion and cell-aspect ratio.  

Numerical diffusion dictates that front resolution is impossible over fewer than three 

grid cells, while cell-aspect ratio errors are caused by the sensitivity of simulation to cell 

height-thickness ratio. Simulation errors are also correlated in time. This time 

correlation has to be accounted for in evaluating model fit to data, otherwise acceptable 

models are rejected when many points are contained in the time series of production 

data and would have a major effect on any method that needed real time rate and 

pressure data.  

 

Integrating uncertainty information in the simulation representation, propagating these 

uncertainties through the history matching framework, and finally putting together the 

uncertainties in the model prediction is of practical importance. The uncertainties in the 

model outputs have major effects in reservoir plan optimisation and facilitate policy-

making. Through increasing model complexity and the amount of computation entailed, 

several traditional uncertainty quantification techniques have their strengths and 

limitations. Remarkable algorithms which have been developed for handling uncertainty 

over the past decade includes Bayesian approaches (Andrieu, 2004; Clyde and George, 

2003; Oden et al., 2010a, 2010b), and particle filter methods (Evensen, 1986).  

Examples of algorithms for uncertainty quantification are discussed below.  

3.4.1 Uncertainty Quantification with Global Optimisation-Based Algorithms  

Because the sampling density of the misfits obtained with global optimisation 

algorithms is not related to the posterior probability density, a separate calculation has 

to be carried out to compute probabilities of the models with the NA-Bayes algorithm 

(Christie, 2011).   The NA-Bayes (NAB) algorithm, developed by Sambridge (1999b), 

evaluates the posterior probability density function, based on the ensemble of models 

generated during the automated history matching.  This calculation assumes that the 
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misfit is constant in each Voronoi cell, and calculates the probability as the exponential 

of the negative misfit times the volume of the Voronoi cell.  Consequently, the forward 

simulation are only required for the models that are resampled by NAB.  The NAB 

resampling procedure is described below. The resulting ensemble of models with their 

posterior probabilities can then be used to estimate the p10-p50-p90 uncertainty 

envelopes.  Figure 3.4 presents the Bayesian framework for the uncertainty 

quantification used in this thesis.   

 

 
Figure 3.4: Bayesian framework for uncertainty quantification (Source: Christie et al., 2006) 

 

 

3.4.1.1 NA-Bayes 

This is the appraisal stage of the Neighbourhood Algorithm referred to as the NA-Bayes 

or NAB.  The NAB procedure can be summarised as follows. 

1. A starting point is selected, usually the minimum misfit corresponding to the 

most likely model, represented by point B in Figure 3.5. 

2. Random steps are then performed along each parameter as shown by the two 

steps in Figure 3.5.  

3. A range is defined for each parameter axis and denoted as li to ui in which a 

conditional probability distribution function, such as  |NA i iP x x  as shown in 

Figure 3.5, is constructed based on intersection points of the range with the 

Voronoi cells of the ensemble. 

4. A new step is proposed by random deviation from uniform distribution through 

the range.  



CHAPTER 3: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION TECHNIQUES: LITERATURE REVIEW 

 

47 

 

5. The proposed step p

ix is accepted or rejected according to Eq. (3.4) in which  

 |max

NA i iP x x  represents the conditional maximum value throughout along the 

range and r refers to a second random deviation in the interval (0,1). 

 
 

|

|

p

NA i i

max

NA i i

P x x
r

P x x





               Eq. (3.4) 

6. This procedure is repeated until a proposal step is accepted. 

 

 
Figure 3.5: NAB resampling (Source: Sambridge (1999b)) 

3.4.2 Markov Chain Monte Carlo (MCMC) 

The Metropolis-Hastings algorithm (Hastings, 1970) is an extension of simulated 

annealing via the Metropolis algorithm (Metropolis et al., 1953).  It is a Markov chain 

Monte Carlo (MCMC) method that constructs a Markov chain that converges to the 

posterior probability thus producing an ensemble of model solutions rather than a single 

one.  Accelerated by progress in approaches and technology for posterior computation, 

the capacity of these MCMC approaches has broadened significantly. The main driving 
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forces of these advances have involved novel approaches for semiautomatic prior 

realism and posterior exploration. The Markov chain Monte Carlo approach for 

uncertainty quantification is provided in detail in Chapter 6. 

3.4.3 Ensemble Kalman Filter (EnKF) 

Data assimilation methods calibrate a number of estimates of model parameters 

sequentially to points on a time-series of observed data. In calibration methods, on the 

other hand a complete run of the simulation is carried out and the match quality to the 

historical production data is used to move the estimates of the model parameters 

towards a better solution.  The main data assimilation method used for history matching 

in the oil industry is the Ensemble Kalman Filter (EnKF).  Evensen (2007) explained 

the theory of EnKF and shows a number of applications of EnKF to history matching 

field examples. Liu and Oliver (2005) showed that the EnKF compared favourably with 

gradient based methods when applied to history match a truncated Gaussian 

geostatistical model of facies distributions.  The number of applications of EnKF is 

growing rapidly, with several papers presented at the 2009 and 2011 SPE Reservoir 

Simulation Symposium.  Examples of developed methods include Particle Filtering 

Methods (Chen and Oliver, 2010; Evensen, 1994).  

 

The Ensemble Kalman Filter (EnKF) is a Monte Carlo data assimilation method that 

was introduced by Evensen (1994) as an extension to the earlier developed Kalman 

Filter (Kalman, 1960). EnKF has gained popularity as an efficient filtering technique 

and has seen much success in many applications including atmospheric and ocean 

modelling, weather forecasting, and petroleum. The first application to reservoir 

modelling was attributed to Nævdal et al. (2002). It has been since then extensively 

employed as a reservoir characterisation and history matching tool in the literature 

(Aanonsen et al., 2009). A brief overview of the approach is provided below.  

The EnKF approach consists of a forecast step (stepping forward in time) and an 

assimilation/analysis step, in which variables characterising the state of the system are 

corrected to honour the observations. EnKF is a sequential data assimilation method 

where observations are incorporated in time. 

 

In reservoir modelling applications, we can represent all the reservoir model parameters 

that are uncertain as a state vector which contains all static uncertain parameters such as 
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porosity, permeability and net-to-gross and dynamic data predictions like pressure, 

water and gas saturations, and solution gas-oil ratio in each grid cell. Predicted data may 

include well bottom-hole pressures, water cuts, gas-oil ratio, and water-oil ratio values. 

Assume the state vector is denoted as in Eq. (3.5). 

),,,,( 321 NYYYY y  
        

      Eq. (3.5)

  

where each member 
iY  stands for a state parameter like porosity or pressure in a 

specified grid cell. The error covariance matrix is defined by  

T

ttYYC ))(( yyyy 
                                      

Eq. (3.6) 

where ty  is the state vector corresponding to the truth. Suppose T

mdddd ),,,,( 321 d  

refers to the m observations of the system and suppose H is a matrix containing zeros 

and ones defined as following 

td HY  
                                   

      Eq. (3.7) 

where  is the measurement error. The assimilation equation minimising the error 

covariance YYC based on the assumption that the measurements are Gaussian and 

independent is given by 

( )a f fY Y K d HY  
                             

      Eq. (3.8) 

In Eq. (3.8), the matrix 1 ( )T T

YY YY DK C H HC H C    is called the Kalman gain and 

with the EnKF, the covariance matrix YYC  is estimated from the ensemble of RN  

realisations ),,,,(
321 RNY yyyy  . The matrix T

DC   represents the covariance 

matrix of the observation data. The finite size of the ensemble limits the performance of 

the EnKF to the initial realisations due to the inherent uncertainty in the prior geological 

description. The change in covariance shows the models‟ sensitivity to the individual 

parameters.  In Eq. (3.8), fY refers to the model state before assimilation while aY  

stands for the model state after the assimilation step. The improvement of the history 

matches can be observed by a comparison with the initial realisations forecast of 

pressure and flow rates.   

The practical EnKF workflow can be summarised as follows: 

1. Generate an ensemble of model realisations e.g. 100 initial realisations represent 

the prior knowledge of the initial state of the system and its probability 

distribution 
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2. Run the simulator for each realisation up to a timestep where the first 

observation is available 

3. Approximate the correlation between the model parameters and model 

predictions 

4. Correct the parameters in each realisation proportionally to: 

a. The difference between predicted and observed data 

b. The correlation between each parameter and the prediction 

5. Run until the next observation is available. 

6. Repeat steps 3–5. 

 

One of the main reasons the EnKF is appealing is that since each member of the 

ensemble can be simulated independently, the forecast step is naturally parallel. 

Furthermore, the linear algebraic equations defined above are computationally 

inexpensive compared to the forward reservoir simulation (Evensen, 2007). 

3.5 Comparison of Uncertainty Quantification Methods 

A number of papers discussed comparisons of methods including some MCMC 

methods (Oliver et al., 2008), ensemble Kalman filter data assimilation method 

(Aanonsen et al., 2009) and stochastic sampling methods in Mohamed et al. (2010b).  A 

review of methods from a statistical viewpoint can be found in Oliver and Chen (2010). 

Table 3.1 shows a comparison of advantages and disadvantages of five history matching 

methods utilised in petroleum literature. 
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Table 3.1: Comparison of advantages and disadvantages of five history matching 

methods (adapted and modified from Source: (Oliver and Chen, 2010)) 

Class Advantages Disadvantages 

Manual Great flexibility for parameters and 

data 

 

Poor assessment of uncertainty. Large 

manpower requirement. Not suitable for 

large numbers of variables. Cannot get 

detailed matches. 

Adjoint/Gradient  Rapid convergence near minimum. 

Relatively efficient for a single 

history match 

Uncertainty assessment requires multiple 

history matches. Difficult to adapt to 

different simulators or variables. 

MCMC Statistically sound and accurate 

methods if worked. 

Slow mixing and convergence. Simple 

MCMC variants are prohibitively 

expensive due to random walk making it 

difficult to use in practical applications. 

Chapter 6 and 8 show advanced MCMC 

methods to overcome these aspects. 

Evolutionary 

algorithms 

Highly parallelisable. Suitable for 

discrete parameters as well as 

continuous ones. Suitable for 

highly non-Gaussian distributions. 

Easily adaptable to various 

simulators 

 

Slow convergence. Not suitable for large 

numbers of variables (possible solutions 

discussed in Chapter 9). Need separate 

calculations to computer probability of 

model obtained.  

EnKF Highly parallelisable. Suitable for 

large numbers of variables. 

Uncertainty assessment is a by-

product of assimilation. Easily 

adaptable to different simulators 

and variables.  

Generally underestimates uncertainty. 

Requires additional parameterisation to 

adapt to discrete variables. Not well suited 

for variables multimodal distributions 

unless transformations are possible. 

3.6 Chapter Summary 

In this chapter we have carried out an overview of objective function definitions, history 

matching and uncertainty quantification concepts with a review on the assisted history 

matching techniques and uncertainty quantification methods which have included global 

optimisation methods and the particle filter approach.  The Bayesian methodology and 

uncertainty quantification framework used in the thesis and other topics that set the 

basis for the next chapters have been provided.  A comparison of methods, their 

advantages and their limitations have been briefly outlined as motivation for this 

research.  
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Chapter 4 – History Matching and 

Uncertainty Quantification of 

Reservoir Simulation Models with 

Particle Swarm Optimisation  

History matching optimisation in a Bayesian framework is a fairly recent approach 

(Valjak, 2008) to quantifying uncertainty in oil industry practices in which multiple 

history matched simulation models are obtained and used to estimate ranges in likely 

recovery factors. While some innovative global optimisation approaches have gained 

popularity in research among oil companies for tackling history matching problems, 

some of the existing assisted history matching methods have limitations in how fast they 

can obtain these models, how realistic the models are, and how reliable the model 

forecasts are.  

 

This chapter is devoted to one of the techniques that belong to the so-called swarm 

intelligence algorithms for solving nonlinear global optimisation problems. Swarm 

intelligence (SI) is an innovative distributed intelligent paradigm in which the 

cooperative social behaviours of simple individual particles or agents cooperate locally 

and with their environment. SI integrates swarming intelligent behaviours by 

simulations of the social behaviour of swarms of bees, flocks of birds, colonies of ants, 

schools of fish, and human social behaviour (Bonabeau et al., 1999; Holland, 1998; 

Kennedy and Eberhart, 2001). The individual particles follow very simple rules, and 

interactions between them result in the emergence of "intelligent" global behaviour.  
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Swarm intelligence natural search algorithms try to find optimal regions of complex 

parameter spaces through the communication of individuals in a swarm of particles 

(Clerc, 2006). Swarm intelligence-based techniques include among others: stochastic 

diffusion search, bee colony optimisation, ant colony optimisation, and particle swarm 

optimisation. The methods have exhibited a good performance across a wide range of 

applications (Abraham et al., 2006; Chang et al., 2004; Du et al., 2005; Parsopoulos and 

Vrahatis, 2002b; Schutte and Groenwold, 2005; Sousa, et al., 2004; Ursem and 

Vadstrup, 2004).  

 

This chapter introduces the Particle Swarm Optimisation (PSO) (Kennedy and Eberhart, 

1995) as one of the swarm intelligence algorithms for solving nonlinear ill-posed 

inverse problems.  The chapter shows the development of simple useful variants of 

novel Particle Swarm Optimisation (PSO) to address the question of how to tune PSO 

and adjust it to make it efficient in the history matching optimisation context.   The 

variants have the flexibility in converging quickly towards good solutions as well as 

carrying out global exploration depending on the choice of the task and the variant 

choice.  Part of the work carried out here in particle swarm optimisation (PSO) is 

reported in Mohamed et al. (2009, 2010d).  

 

Contemporary and paralleled work on PSO has been applied by others. Kathrada and 

Carter (2010) tested a variant of the PSO called Flexi-PSO (Kathrada, 2009a, 2009b), 

coupled with hierarchical clustering on synthetic history matching problem though the 

uncertainty was not quantified in the study.  García-Gonzalo and Fernández-Martínez 

(2010) applied PSO to environmental geophysics and petroleum reservoir engineering.  

Onwunalu and Durlofsky (2010) have tested PSO for a well placement problem and 

have compared the results with the Genetic Algorithm (GA).  Ravalec-Dupin et al. 

(2010) used the PSO approach on a synthetic application to modify spatial distributions 

of petrophysical properties from the gradual deformation method and identify facies 

reservoir models.  

 

The chapter is organised as follows. We begin with definitions of the main components 

of the algorithm. We will outline the original particle swarm optimisation and workflow 

described by Kennedy and Eberhart (1995). The main adaptations and variants 

investigated in this thesis will also be presented. A discussion of the implementation of 

the algorithm for generating reservoir models follows and we will show the application 
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of PSO for reservoir model history matching and uncertainty quantification on two 

petroleum examples: a simple real reservoir in the Gulf of Mexico and a complex 

synthetic example.  In these examples, it is demonstrated that algorithms based on 

swarm intelligence concepts have the potential to be effective tools in uncertainty 

quantification in the oil industry.  A comparison of results in terms of the model 

diversity and quality of history match obtained on the example problems will be 

presented. Finally, conclusions and guidelines from the examples to facilitate 

deployment on the algorithm will be commented on.  

4.1 Particle Swarm Optimisation (PSO) 

The particle swarm optimisation algorithm (PSO) is a swarm intelligence technique 

originally introduced by Kennedy and Eberhart (1995). PSO is a population-based 

metaheuristic stochastic optimisation technique inspired by social behaviour of bird 

flocking or fish schooling.  PSO has proven to be a powerful contender to other 

population based evolutionary algorithms for global optimisation problems (Matott et 

al., 2006). PSO has been successfully applied in a variety of fields, research and 

application areas, which include fuzzy computing, chaos theory, and engineering 

applications (Kennedy and Eberhart, 1995; Eberhart and Shi, 2001).  It is demonstrated 

that PSO gets better results in a faster and cheaper way compared with other stochastic 

techniques like GA for problems investigated in Mouser and Dunn (2005) and was 

much easier to configure and more likely to produce an acceptable model. Another 

reason that PSO is attractive is that it has a small number of parameters to adjust. PSO 

has both simple formulation and computer implementation.  

 

PSO models the exploration of a parameter space by a population of particles or agents 

that fly through the search space by following the current optimum particles. The 

position of a particle is a candidate solution to the optimisation problem. The particles‟ 

history of success affects their own exploration pattern and those of their peers. The 

search is focused toward promising regions by biasing each particle‟s velocity vector 

towards their own remembered best positions as well as the best swarm position. 

4.1.1 Basic PSO Algorithm  

The basic PSO algorithm starts with the random initialisation of a swarm of particles in 

the search space. Each particle is considered as a candidate solution to a problem in d-

dimensional space, with the position of particle i represented by xi. Each particle 
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maintains a memory of its previous best position, pbesti, and a velocity along each 

dimension, represented as vi. The pbest vector of the particle with the best fitness in the 

neighbourhood is designated gbest. The importance of these two positions, gbest
 
and the 

pbesti, is weighted by two factors known as the cognitive and social scaling factor 

parameters at each iteration (Shi and Eberhart, 1998). These two elements are among 

the main governing parameters of swarm behaviour and algorithm efficiency, and have 

been the subject of extensive studies (Kennedy, 1997, 1998; Suganthan, 1999).  The 

algorithm convergence has been investigated by a number of authors (Engelbrecht, 

2005). 

 

4.1.1.1 Velocity Update  

In the basic PSO algorithm, at each iteration k, particle i‟s velocity vi
k
 is updated using 

Eq. (4.1).  

1

1 1 2 2   (  )   ( ) k k k k k k

i i i i iv v c r pbest x c r gbest x                          Eq. (4.1) 

in which xi
k
 refers to the current position of a particle i at iteration k. c1 and c2 are user-

defined non-negative constant real parameters which weight the particle's attraction 

towards its own best known position pbesti
k 

and the global best known position of the 

entire swarm gbest
k
 up to iteration k, respectively. r1, and r2 are two random vectors 

with each component corresponding to a uniform random number between 0 and 1. The 

introduction of such random elements into the optimisation is intended to simulate the 

slightly stochastic unpredictable component of natural swarm behaviour. In addition to 

this, the user also chooses the swarm size N.  

 

The velocity update in Eq. (4.1) has three major components (Engelbrecht, 2005). 

Figure 4.1 illustrates the velocity update mechanism in PSO. 

1. The first component of the velocity update equation, referred to as inertia, 

models the tendency of the particle to continue in the same direction it has been 

moving.  

2. The second component of the velocity update equation, referred to as memory, 

is a linear attraction towards the best position ever found by the particle.  

3. The third component of the velocity update equation, referred to as social 

knowledge, is a linear attraction towards the best position found by any particle. 
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Figure 4.1: Velocity component construction 

 

4.1.1.2 Position Update  

The particle‟s position is added to the particle‟s velocity once it has been calculated to 

determine the new position of the particle. 

1 1  k k k

i i ix x v                                                             Eq. (4.2) 

The particle‟s position is therefore updated regardless of progress to its objective 

function. 

 

The update equation of the personal best position pbesti is presented in Eq. (4.3), 

assuming a minimisation problem where f denotes the objective function that is being 

minimised and k is the iteration (generation) number.         

    

   

   

if

if

k k+1 k

i i ik+1

i
k+1 k+1 k

i i i

pbest      f x    f pbest   
pbest = 

x     f x  <    f pbest

 



                                       Eq. (4.3) 

 

The main computational PSO workflow is described in the following steps: 

1. Initialise the swarm of ninit models by assigning at locations randomly generated 

in parameter space. Each particle is also assigned a plausible random velocity. 

2. For each model (particle) the forward problem is solved and the relevant 

objective function value M is obtained. 
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3. For each particle, update the position and value of pbest – the best solution the 

particle has seen. If the current objective function value of one particle is better 

than its pbest value, then its pbest value and the corresponding position are 

replaced by the current objective function value and position, respectively as in 

Eq. (4.3). 

4. Find the global best objective function value and the corresponding best position 

gbest across the whole swarm's pbest and update if appropriate. 

5. Update the velocities and positions of all the particles using Eqs. (4.1) and (4.2) 

where c1 is a weighting factor, termed the cognition component which represents 

the acceleration constant which changes the velocity of the particle towards 

pbesti. c2 is a weighting factor, termed the social component which represents 

the acceleration constant which changes the velocity of the particle towards 

gbest
 k
. 

6. Repeat steps 2–5 until a stopping criterion is met (e.g. the maximum number of 

iterations is reached or a sufficiently good objective function value). 

4.1.2 Topology of the Particle Swarm 

There are two general neighbourhood topologies used commonly in PSO: 1) global best 

(gbest) and 2) local best (lbest). In the gbest neighbourhood, each particle is influenced 

by the best solution found from the entire swarm. It is a star topology, in which each 

particle has access to the information of all other particles in the swarm, as shown in 

Figure 4.2(a).  In the local best approach, each particle is influenced only by particles in 

its local neighbourhood and has access only to the information corresponding to its 

direct neighbours. The two most common topologies are the wheel topology in which 

the individuals are isolated from one another as information has to be communicated 

through a focal individual (see Figure 4.2(b)), and the ring topology in which each 

particle connected to two neighbours, as shown in Figure 4.2(c).  In the application of 

the thesis a global neighbourhood is used when exchanging information about swarm 

best values and positions. Furthermore, the synchronous parallelisation scheme is used 

in which the swarm best value, particle best remembered positions, velocities and 

fitness values are updated on a per swarm basis, rather than a per individual basis. 

Therefore, fitness evaluations involving reservoir simulations are concurrently 

performed on different processors.  The particle positions are updated after 

synchronising results from the participating processors at the end of each iteration. The 

solution characteristics, parallel speed–up and efficiency as well as maintaining load 



CHAPTER 4: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: PARTICLE SWARM OPTIMISATION 

 

 

 

58 

 

balance between processors can be further improved with other parallelisation schemes 

(Kalivarapu et al., 2009; Koh et al., 2006; Schutte et al., 2004; Venter and 

Sobieszczanski-Sobieski, 2006).  

 

   
(a) Star (b) Wheel (c) Ring 

Figure 4.2: PSO common topologies 

 

4.1.3 Particle Swarm Variants  

Ever since the start of PSO in 1995 a substantial number of adaptations have been made 

to the basic algorithm despite its wide use and popularity for realising performance 

improvements. For example, one of these variations involves looking at the presence of 

problem-dependent algorithm parameters. Some researchers have attempted to establish 

universal values for the PSO parameters (Carlisle and Dozier, 2001) primarily on 

analytical optimisation problems. As a result the PSO has undergone rapid 

development, with several modifications to improve the speed of convergence and 

enhance the performance of the algorithm. These variants include the introduction of 

velocity clamping, an inertia weight, velocity constriction coefficient type, different 

approaches of finding out the personal best and global best (or local best) positions as 

well as with dynamic neighbourhood topologies, different velocity update rules, 

enhanced diversity variants, and with components from other optimisation techniques. 

Sophisticated variants ideas and approaches have been described in detail within the 

particle swarm literature (Eberhart and Shi, 2007; Engelbrecht, 2005). Pedersen and 

Chipperfield (2009) have recently shown another research trend by simplifying the 

original PSO method. They have reported its success over others methods. This section 

discusses the basic modifications concerning the inertia weight choices and various 

strategies to control any particles which fly outside the predefined feasible regions by 

constraint handling strategies. 
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4.1.3.1 Velocity Clamping 

To reduce excessively large stepsizes which lead to particles leaving the boundary of 

the search space in the position update Eq. (4.2), Eberhart and Shi (2001) applied an 

imposed upper limit on the maximum velocity vmax
 
for particles. Initially the values of 

the velocity vectors are randomly generated with vi
k=0

 ∈ [–vmax ,vmax]. Usually vmax
 
is 

problem-dependent and chosen to be a fraction of the domain of each dimension of 

parameter space. In our implementation we used 0.5 consistent with Schutte et al. 

(2004). 

 

4.1.3.2 Inertial Weight Choices 

A significant aspect that determines the efficiency and accuracy of an optimisation 

algorithm is the exploitation-exploration trade-off. The inertial weight was introduced 

by Shi and Eberhart (1998) in the velocity update equation Eq. (4.4), as a mechanism to 

control the exploration and exploitation ability of the swarm. It monitors the way in 

which a great deal of memory of the past flight vector will affect the new velocity and 

influences the convergence of the algorithm. Large values for ω facilitate exploration of 

different regions of the search space in order to locate good optimum, with increased 

diversity. A small ω enhances local exploitation on a promising area in order to refine a 

potential solution. With respect to ω ≥ 1, velocities rise up gradually over time, 

increasing towards the upper limit velocity causing the swarm to diverge. Particles 

cannot change direction so as to move backwards towards potential regions. For ω < 1, 

particles slow down until their velocities reach zero.  

1

1 1 2 2    (  )    ( ) k k k k k k

i i i i iv v c r pbest x c r gbest x                               Eq. (4.4) 

The optimal value for the inertial weight is problem-dependent. Some implementations 

of the inertial weight use a static value for all particles for each dimension for the entire 

course of optimisation. Some static inertia weight examples being used (Birge, 2003) 

are Trelea Set Type I' (denoted T1) in which c1 = c2 = 1.494, ω = 0.729 and Trelea Set 

Type I" (denoted T2) in which c1 = c2 = 1.7, ω = 0.6 (Trelea, 2003). Alternatively, 

dynamic approaches which vary the inertial weight during the search duration could be 

used such as linear decreasing (denoted LD) in which an initially large inertia weight 

(usually 0.9) is linearly decreased over time to a small value (usually 0.4).  In this way, 

particles can explore in the initial optimisation course, and then refine potential regions 

as time increases (Shi and Eberhart, 1998). On the other hand, in the linear increasing 
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inertia weight variant (denoted LI) the inertia weight is linearly increased from 0.4 to 

0.9.  The selection of value for ω has to be made in combination with the selection of 

the values for c1 and c2. (Kennedy and Eberhart, 1995) suggested using c1 = c2 = 2 to 

allow the product c1 rand1 or c2 rand2 to have a mean of 1.  In this case the particles 

overshoot the target half the time, thus maintaining partition within the grouping and 

allowing for a greater area to be searched.  If c1 + c2 ≥ 4, velocities and positions will go 

towards infinity (Schutte, 2001).  Other variants for tuning the inertial weight or the 

controlling weights include constant inertial weight, random adjustments like Gaussian 

and Peng options, adaptive inertial weight motivated by Clerc, and fuzzy adaptive 

inertia.  Clerc developed a dynamic approach equivalent to inertial weight which differs 

in the constriction parameters, does require velocity clamping and guarantees 

convergence under given constraints (see Engelbrecht, 2005). In this thesis, we focused 

on the application of investigated variants that seem to provide plausible and more 

stable results on our petroleum examples.  

 

The pseudo-code for particle swarm is given in Algorithm 4.1. The “For” loop is 

achieved in parallel mode to speed up the computation processing in reservoir 

modelling applications. 

 

Algorithm 4.1: Particle Swarm Optimiser 

1. Initialise t  = 0, Swarm, SwarmSize, pbesti, gbest, c1, c2, ω 

2. For k = 1 to NumberOfIterations do 

3.            Update ω     #  Update inertial weight 

4.            For i = 1 to SwarmSize do 

                            # Update position and velocity  

5.                     
1

1 1 2 2    (  )    ( ) k k k k k k

i i i i iv v c r pbest x c r gbest x         #Update velocity 

6.                     
1 1  k k k

i i ix x v         #  Update position 

7.                       Evaluate Objective Function  

8.                      If    k+1 k

i if x f pbest  then     

9.                                
k+1 k

i ipbest pbest    #  Update personal best pbest              

10.                      Else 

11.                                
k+1 k+1

i ipbest x      

12.                      End If 

13.            End For  

14.            Update global best gbest  

15.            k ++ 

16. End For 

17. Return  
0

,
Nmodels

i i i
x v
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4.1.3.3 Handling Boundary Strategies for Particle Swarm 

Various boundary conditions are proposed to keep particles within the search domain. 

The four boundary strategies that are used in literature (Birge, 2003; Huang and Mohan, 

2005; Schutte et al., 2004) and we currently found useful among others are: 

1. Respawn strategy (random): when the particle moves outside the feasible 

parameter space in one of the dimensions, it is randomly reinitialised with a 

sensible random velocity component in that dimension, as shown in Figure 

4.3(a). 

2. Reflecting strategy (bouncing): when the particle moves outside the feasible 

parameter space in one of the dimensions, it is repositioned at the boundary 

of parameter space in that dimension, and the sign of the velocity component 

in that dimension is changed, as shown in Figure 4.3(b).  

3. Damping strategy: when the particle moves outside the feasible parameter 

space in one of the dimensions, it is repositioned at the boundary of the 

parameter space in that dimension, and the velocity component in that 

dimension is damped in the opposite direction with a fraction of velocity that 

can be obtained by multiplying velocity by a random number between 0 and 

vmax, as shown in Figure 4.3(c). 

4. Absorbing strategy (saturation at limit): when the particle moves outside the 

feasible parameter space in one of the dimensions, it is repositioned at the 

boundary of parameter space in that dimension, and the velocity component 

in that dimension is zeroed, as shown in Figure 4.3(d).  

(a) 

Respawn 

 
(b) Reflecting 

(c) 

Damping 

(d) 

Absorbing  

Figure 4.3: Boundary strategies for particle swarms 

  

The acronyms in Table 4.1 are the different variants that will be used in the analysis and 

discussion in the thesis to differentiate between them.  Each is composed of three 

letters. The first and second letters represent the inertial weight choice. The last letter 

represents the boundary strategy. 
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Table 4.1: Acronyms used to denote the PSO variants 

Acronym Name 

LDR Linear decrease inertia weight with random boundary strategy. 

LIR Linear increase inertia weight with random boundary strategy. 

T1R Trelea Set Type I' with random boundary strategy. 

T2R Trelea Set Type I" with random boundary strategy. 

LDB Linear decrease inertia weight with bouncing boundary strategy. 

LIB Linear increase inertia weight with bouncing boundary strategy. 

T1B Trelea Set Type I' with bouncing boundary strategy. 

T2B Trelea Set Type I" with bouncing boundary strategy. 

LDD Linear decrease inertia weight with damping boundary strategy. 

LID Linear increase inertia weight with damping boundary strategy. 

T1D Trelea Set Type I' with damping boundary strategy. 

T2D Trelea Set Type I" with damping boundary strategy. 

LDS Linear decrease inertia weight with absorbing boundary strategy. 

LIS Linear increase inertia weight with absorbing boundary strategy. 

T1S Trelea Set Type I' with absorbing boundary strategy. 

T2S Trelea Set Type I" with absorbing boundary strategy. 

4.2 Efficiency Criteria for Evaluating the Algorithms  

The plots which will be used to measure and compare the performance of the 

optimisation course for the PSO variants include: the generational minimum, the global 

best per generation, sampling history trails, and the diversity defined by Eq. (4.5) 

(Engelbrecht, 2005). 

 
2

1 1

1
( ) ( )

sn d
k k

ij j

i js

diversity k x x
n  

                                                        Eq. (4.5) 

In this equation k is the generation number, ns is the swarm size, d is the dimensionality 

of the problem, and xj̄ is the average of the j
–th

 dimension over all particles.  Large 

diversity values mean that a larger area of the parameter space has been explored 

(Engelbrecht, 2005).  Note that in our applications in the thesis the diversity is 

calculated for the scaled parameter values.  The notation „≻‟ will be used for 

comparison to denote: more diverse, faster convergence or wider uncertainty ranges 
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while „≺‟ will be used for the opposite, that is less diverse, slower convergence, or 

narrower uncertainty ranges.  

4.3 Petroleum Test Studies  

The algorithm has been tested on benchmark test suite functions to test the convergence 

of the simple variants investigated and ensure the consistency of the results in 

comparison with the results obtained previously in these benchmark problems.  Tests 

are then being carried out on history matching problems.  In the next section we report 

the results of obtaining multiple history matched models with the particle swarm 

optimisation variants indicated earlier. A comparative study of the four boundary 

strategies with each of the four inertial weight choices is conducted on two reservoirs. 

Firstly, we will compare the inertial weight choices and the four boundary strategies 

from a history matching application perspective. Uncertainty evaluation and prediction 

results then follow. Comparisons of simulation results are presented from two different 

points of view: the diversity of the models obtained and the efficiency of the algorithm 

and the impact on the forecasts in the two studies.  

 

Two petroleum applications are used for testing the algorithms. Teal South is a real 

reservoir with one producing well. The second model, the IC Fault model, is a synthetic 

challenging benchmark case study that has been widely used for testing different 

optimisation algorithms for reservoir history matching. IC Fault has a single injector 

and single producer with fault affecting the fluid flow.  

4.3.1 Teal South Reservoir  

Teal South is a reservoir located in the Gulf of Mexico approximately 144km south 

west of Morgan City, Louisiana, shown in Figure 4.4.  A 4500ft sand deposit is bounded 

on three sides by faults and closed by a dip to the north, shown in Figure 4.5. Fluids are 

produced from a single horizontal well through solution gas drive, aquifer drive and 

compaction drive.  The Fetkovich model is used for describing water influx in the 

aquifer.  Production started in late 1996 and data is available in the form of monthly oil, 

water and gas measurements, and two pressure measurements of 3096 psi initially and 

2485 psi after 570 days of production (Christie et al., 2002). A number of automated 

history matching techniques have been investigated on Teal South reservoir (Christie, 

2011; Christie et al., 2002; Mohamed et al., 2010b, 2010d) and also time-lapse studies 

by Texaco. 
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Figure 4.4: The Teal South Field Location 

  
Figure 4.5: The Teal South 4500-ft sand 

structure map and the 11115 

simulation grid 
 

4.3.1.1 Teal South Model Uncertain Parameters 

Teal South is a small reservoir located in the Gulf of Mexico. We used a relatively 

coarse simulation model with a grid size of 11115.  We set up the model with 8 

uncertain parameters: horizontal permeabilities of the five geological layers, a single 

value for kv/kh, rock compressibility and aquifer strength. Parameters are denoted from 

P1 to P8 respectively.  We chose uniform priors in the logarithms of the variables as 

shown in Table 4.2.  

 

Table 4.2: Parameterisation and prior ranges for the Teal South model 

Parameter Units Prior range 

kh (for each of the 5 layers) mD 10 
[1,3]

 

kv/kh – 10 
[–2,–1]

 

Rock compressibility psi
–1

 10 
[–4.096,–3.699]

 

Aquifer strength MMstb 10 
[7,9]

 

 

Figure 4.6 shows the observed production rates for oil and water, as a function of time 

for 1247 days. The oil rate peaked after 80 days of production and then declined rapidly. 

Water production started after the oil rate peaked and stayed steady for the majority of 

the time. The first 181 days of production data were used in the history matching (6 

measurements out of 41 measurements) and the remaining 3 years is used as prediction 

data to measure the predictive quality of the history matches. The simulator production 

was controlled to match total liquid rate, and history matching was carried out by 

matching the field oil rate.   

 

~~  114444  kkiilloommeettrreess  ssoouutthhwweesstt  ooff  MMoorrggaann  

CCiittyy,,  LLoouuiissiiaannaa  
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Figure 4.6: Production history for Teal South reservoir 

 

4.3.1.2 Objective Function Definition 

A least squares misfit is commonly used in history matching as the objective function to 

measure the goodness of fit of a specific set of reservoir model parameters as defined in 

Eq. (4.6).  

 
2

2
1 2

obs sim
T

t

t

q q
M




                                                                                Eq. (4.6) 

Here T is the number of observations, q is the flow rate for observed and simulated data, 

and 2 is the variance of the observed data. This definition is based on the assumption 

that the measurement errors are Gaussian and independent. The standard deviation of 

the oil production measurement errors was set to 100 STB/D as an estimation of the oil 

production measurement errors on our reservoir model case study. 

 

4.3.1.3 Teal South Setup Specifications   

An initial population comprised of 30 models has been generated randomly in the 

parameter space. Figure 4.7 shows an example of two different 2D projections of the 

initial models. On the left we show the models plotted against the scaled values of two 

layer permeability multipliers (P1 and P2), and on the right the models are plotted 

against the scaled aquifer strength and the scaled rock compressibility multipliers. The 
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points are colour coded according to the misfit where the blue points represent the 

models of misfits of 6 or less. This setup is going to be used throughout the thesis for 

testing different methods unless stated otherwise. 

 

  

Figure 4.7: Two different 2D projections of initial population of 30 randomly generated models in 

8D parameter space 

 

4.3.1.4 History Matching of Teal South Reservoir 

For all the variants we start from a fixed initial population comprising 30 models 

generated randomly in parameter space. The optimisation is done for 45 iterations. The 

total number of reservoir model simulations is 1380 for all the performed tests. The 

performed tests were repeated for 10 seeds. 

 

4.3.1.4.1 Inertial Weight Choices 

We compare the four inertial weight choices per each boundary strategy. In the 

application, the cognition and social components were chosen to be 2 for the dynamic 

inertial weight variants.  The best fitting models obtained by the four variants in this 

history matching have a misfit value of around 4.2 (see Table 4.5: Page 82) for three 

strategies except for the random strategy variants: PSO–LDR and PSO–T2R (refer to 

acronyms in Table 4.1: Page 63 for description) which have a slightly higher misfit 

value of 4.3.  Figures 4.8(a), (b), (c), and (d) show the misfit reduction of the global best 

for each boundary strategy per generation starting from the same initial population (we 

will call this seed hereinafter).  Figures 4.8(e), (f), (g), and (h) show the corresponding 

best history matches obtained at the end of the optimisation course for each strategy. 

The plots show that the obtained models match the observed data before and after the 

history matching period plausibly well.  
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(a) Misfit reduction – Random 

 
(e) Lowest misfit model – Random 

 
(b) Misfit reduction – Reflecting 

 
(f) Lowest misfit model – Reflecting 

 
(c) Misfit reduction – Damping 

 
(g) Lowest misfit model – Damping 

 
(d) Misfit reduction – Absorbing 

 
(h) Lowest misfit model – Absorbing 

Figure 4.8: Misfit reduction and corresponding global best history match for variants 
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We note that around 93% of the errors between simulated and observed are obtained 

from the outliers in the 3
rd

 (day 61 around 60%) and 4
th

 (day 92 around 33%) timesteps, 

which seem to be unrealistic measurements, as shown in Figures 4.8(e), (f), (g), and (h) 

(note the index of the observation counts the initial step at zero to be the first 

observation).  If we remove the two timesteps (3
rd

 and 4
th

) for PSO–LDS, our 

optimisation process for the same setup obtains a misfit of around 3.0 (computed with 

the 4 measurements) as well as improving the speed of convergence to low misfit 

models as shown in Figure 4.9(a) where 10 runs were performed and convergence 

achieved where simulations could be stopped at around iteration three while the first 

case convergence achieved around iteration ten as depicted in Figure 4.9(b). 

 

Sampling history plots to look at the performance during the optimisation course are 

shown in Figures 4.10, 4.11, 4.12, and 4.13 per strategy.  Each plot has 8 panes, 

showing the evolution of the parameter sampling as we sample in time. The horizontal 

axis is the model number and the vertical axis shows the scaled values of each 

parameter multiplier between 0 and 1. The points are colour coded according to the 

misfit where blue points indicate the low misfit models of 4 or below.  The red points 

have misfit 10 or above, and include many models that do not match at all well. The 

green points indicate models with misfit in the range [6,4) and the orange points 

indicate models with misfit in the range [8,6).  As sampling advances in time, the 

concentration in promising regions with low misfit models is observed.  The good 

fitting models generated have misfits of 6 or below – corresponding to an average 

deviation from observed values of 1.4 standard deviations or below.   
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(a) Four measurements used in history matching after removing outliers 

 

 
(b) Six measurements used in history matching 

Figure 4.9: Misfit reduction after removing two outlier points (the 3rd and 4th) 
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(a) Sampling history of PSO–LDR 

 

 
(b) Sampling history of PSO–LIR 

 
(c) Sampling history of PSO–T1R 

 
(d) Sampling history of PSO–T2R 

Figure 4.10: Random strategy sampling history for each inertial weight choice 
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(a) Sampling history of PSO–LDB 

 
(b) Sampling history of PSO–LIB 

  

 
(c) Sampling history of PSO–T1B 

 
(d) Sampling history of PSO–T2B 

Figure 4.11: Reflecting strategy sampling history for each inertial weight choice 
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(a) Sampling history of PSO–LDD 

 
(b) Sampling history of PSO–LID 

 

 
(c) Sampling history of PSO–T1D 

 
(d) Sampling history of PSO–T2D 

Figure 4.12: Damping strategy sampling history for each inertial weight choice 
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(a) Sampling history of PSO–LDS 

 
(b) Sampling history of PSO–LIS 

 
(c) Sampling history of PSO–T1S 

 
(d) Sampling history of PSO–T2S 

Figure 4.13: Absorbing strategy sampling history for each inertial weight choice 

 

For a meaningful comparison and to test the reliability for each corresponding variant 

we performed 10 runs. Each run started from identical sets of 30 points with a new 

random seed. The mean generational minimum misfit evolution, along with the standard 

deviation around each point is shown in plots (a), (b), (c), and (d) of Figures 4.14, 4.15, 

4.16, and 4.17.  Similarly, the mean generational global misfit per generation, along 

with the standard deviation around each point is shown in plots (e), (f), (g), and (h) of 

Figures 4.14, 4.15, 4.16, and 4.17. For instance, both static PSO–T1B and dynamic 
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PSO–LDB variants reach the same misfit values, however, we can see on average the 

static PSO–T1B reduces the misfit in each generation more quickly than PSO–LDB.  

The two set of plots (the left and middle corresponding to mean generational minimum 

and the mean generational minimum so far) in the previous figures are close as 

efficiency plot measures for testing convergence speed.  However, due to the stochastic 

nature of the algorithm they may differ in some other examples (see Section 4.3.2). 

 

Plots of (i), (j), (k), and (l) in Figures 4.14, 4.15, 4.16, and 4.17 show the corresponding 

calculated diversity of the swarm per generation along with one standard deviation 

around each point for the 10 performed runs starting from the same 10 identical points 

calculated using Eq. (4.5). We can see that the diversity is reducing during the 

optimisation process which is to be expected. For example, we can observe that the 

degree of dispersion of particles in the dynamic PSO–LDB, in Figure 4.15(i), is more 

than in the PSO–T1B variant, in Figure 4.15(k). This could also be supported by Figure 

4.11(a) and (c) in which we use sampling history plots to show the performance during 

the course of the optimisation.  The parameter values for the good history matched 

models can be seen by looking at the range of the blue points.  Both variants appear to 

concentrate on sampling for similar zones, although dynamic PSO–LDB is able to 

maintain population diversity more while PSO–T1B improves the sampling (shown in 

the blue points) as the optimisation progresses.  Table 4.3 summarises these efficiency 

plot measures for each of the strategies per each of the inertial weight choices. There is 

a noticeable trend for diversity which is that the diversity decreases in the direction: 

Trelea Set Type I', Trelea Set Type I'', linear increase, linear decrease, T1≺T2≺LI≺LD.  

A less solid tendency is observed for convergence of global best.  If we compare the 

two measures, diversity and convergence of global best, per strategy there is no specific 

trend observed. 

Table 4.3: Measures summary – 10 Seeds  

          Measure                               

 

Strategy 

Convergence of global best Diversity 

Random T2R≻LDR≻LIR≻T1R T1R≺T2R≺LIR≺LDR 

Reflecting LIB≻T2B≻T1B≻LDB T1B≺T2B≺LIB≺LDB 

Damping LDD≻LID≻T2D≻T1D T1D≺T2D≺LID≺LDD 

Absorbing T1S≻T2S≻LDS≻LIS T1S≺T2S≺LIS≺LDS 
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Generational minimum Generational minimum 

so far 

Generational diversity 

 
(a) 

 
(e) 

 
(i) 

 
(b) 

 
(f) 

 
(j) 

 
(c) 

 
(g) 

 
(k) 

 
(d) 

 
(h) 

 
(l) 

Figure 4.14: Random boundary strategy measures 
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Generational minimum Generational minimum 

so far 

Generational diversity 

 
(a) 

 
(e) 

 
(i) 

 
(b) 

 
(f) 

 
(j) 

 
(c) 

 
(g) 

 
(k) 

 
(d) 

 
(h) 

 
(l) 

Figure 4.15: Reflecting boundary strategy measures 
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Generational minimum Generational minimum so 

far 

Generational diversity 

 
(a) 

 
(e) 

 
(i) 

 
(b) 

 
(f) 

 
(j) 

 
(c) 

 
(g) 

 
(k) 

 
(d) 

 
(h) 

 
(l) 

Figure 4.16: Damping boundary strategy measures 
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Generational minimum Generational minimum 

so far 

Generational diversity 

 
(a) 

 
(e) 

 
(i) 

 
(b) 

 
(f) 

 
(j) 

 
(c) 

 
(g) 

 
(k) 

 
(d) 

 
(h) 

 
(l) 

Figure 4.17: Absorbing boundary strategy measures 

 

4.3.1.4.2 Handling Boundary Strategies for Particle Swarm Optimisation 

Here we comment on the results of generating multiple history matched models with the 

four PSO boundary strategies (refer to Table 4.1 for acronyms). The comparison is 

based on the four inertial weight choices.  

 

It is notable that the damping and absorbing strategies reduce the global best misfit 

quickly; however when no use is made of the old position and velocity, particularly 
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when the particle moves outside the boundary as in the random PSO–LDR strategy, the 

misfit values do not decline as fast as others during the search procedure. The reflecting 

strategy seems to have similar process to the random one.  The previous plots in Figures 

4.14, 4.15, 4.16, and 4.17 show the mean generational minimum misfit, the mean global 

best, diversity per generation evolution plus and minus one standard deviation around 

each point for the 10 achieved runs as shown in Table 4.4 which summarises the 

performance measures.  In the comparison between the measures per inertial weight 

choice, a rough trend can be picked between diversity and convergence speed. 

Absorbing or damping strategies have faster convergence than random or reflecting 

strategies while the random or reflecting solutions have more diversity than absorbing 

or damping. 

Table 4.4: Measures summary – 10 Seeds 

          

                 Measure                               

 

IW Choice 

Convergence Diversity 

Linear Decrease LDS≻LDD≻LDR≻LDB LDS≺LDD≺LDB≺LDR 

Linear Increase LID≻LIS≻LIB≻LIR LID≺LIS≺LIB≺LIR 

Type I' T1S≻T1D≻T1B≻T1R T1S≺T1D≺T1B≺T1R 

Type I'' T2S≻T2D≻T2R≻T2B T2D≺T2S≺T2B≺T2R 

 

 

4.3.1.5 Uncertainty Assessment and Predictions  

In the previous section the history matching optimisation performances for the PSO 

variants were compared in terms of misfit reduction and diversity of models obtained. 

In this section we show how that influenced our uncertainty predictions using the 

ensemble of models obtained.  As PSO was developed as an optimisation tool, we have 

to extend the algorithm to quantify uncertainty in reservoir modelling.  We choose to 

extend the algorithm using the same concepts as the Neighbourhood Algorithm (NA), 

by running the NAB resampler code which computes the posterior probability.  The 

NAB resampler (Sambridge, 1999b) is employed for the posterior uncertainty analysis 

purpose of the ensemble of models generated in the search stage by PSO variants, rather 

than making inferences from the single, best–fitting model with the lowest misfit value 

obtained. NAB utilises this ensemble to approximate the values of various Bayesian 

integrals with the standard Gibbs sampler. The misfit surface is assumed to be constant 

over each Voronoi cell surrounding a particle which is a property that is used by the 

NAB resampler. As a result, no forward modelling is carried out. The posterior 
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probability distribution (PPD) is approximated everywhere in parameter space using the 

Neighbourhood approximation of the PPD from the input ensemble. Inertial weight 

uncertainty evaluation is demonstrated next, followed by similar comparison for 

boundary strategies used. 

 

4.3.1.5.1 Inertial Weight Choices 

The forecast misfit calculated for the best history matched models with the same 

objective function definition indicated earlier in Eq. (4.6) including the corresponding 

number of observations used in the forecast and their associated history misfits for the 

PSO variants starting from a single seed are shown in Table 4.5.   

Table 4.5: Best history and forecast misfit values of PSO variants 

PSO Variant Best  History Misfit   Forecast Misfit 

PSO–LDR 4.28 8.80 

PSO–LIR 4.20 7.73 

PSO–T1R 4.17 7.14 

PSO–T2R 4.31 7.87 

PSO–LDB 4.23 7.61 

PSO–LIB 4.22 7.32 

PSO–T1B 4.21 7.61 

PSO–T2B 4.30 7.75 

PSO–LDD 4.21 7.33 

PSO–LID 4.24 7.75 

PSO–T1D 4.21 7.01 

PSO–T2D 4.17 7.32 

PSO–LDS 4.21 8.04 

PSO–LIS 4.21 7.32 

PSO–T1S 4.21 7.10 

PSO–T2S 4.16 7.14 

 

Figure 4.18, 4.19, 4.20, and 4.21 show the Bayesian credible intervals (p10–p50–p90) 

for oil rate after history matching to the first 181 days of production.  All variants 

capture the observed measurements for the history matching period and predictions.  

However, the uncertainty bounds are however wider in the dynamic inertial weight than 

the static ones. We prefer to have realistic reliable wider ranges of uncertainty in oil 

industry history matching applications. The reason is that in real–life case studies the 

predictions tend to underestimate the uncertainty (Valjak, 2008). The exploitation of 

search in the PSO–T1B to obtain models with low misfit values for instance, although it 

required fewer reservoir simulations, shown in Figure 4.15(c), resulted in local 

approximation of the posterior by NAB leading to narrower ranges of uncertainty than 
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the case with the PSO–LDB, in Figure 4.15(a).  The predictions are affected by the 

individual contributions of the models.  This could clearly be seen in the right plots (e), 

(f), (g), and (h) of Figure 4.22 in which the relative uncertainty is shown increasing over 

time at each simulated timestep. The corresponding diversity plots for these single runs 

are shown in (a), (b), (c), and (d) of same figures.  In dynamic PSO–LDB the relative 

uncertainty is larger than in the case of PSO–T1B, in Figure 4.22(f). The diversity of 

models plot shows a larger dispersion of models in the dynamic PSO–LDB than in the 

static PSO–T1B in Figure 4.22(b), which is reflected in the relative uncertainty figure.  

Table 4.6 summarises the relative uncertainty with their corresponding global best and 

diversity evolutions for the single seed. 

 

 (a) PSO–LDR 
 

(b) PSO–LIR 

 

 (c) PSO–T1R 
 

(d) PSO–T2R 
Figure 4.18: Bayesian credible intervals generated with random strategy variants 
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 (a) PSO–LDB 
 

(b) PSO–LIB 

 

 (c) PSO–T1B 
 

(d) PSO–T2B 
Figure 4.19: Bayesian credible intervals generated with reflecting strategy variants 

 



CHAPTER 4: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: PARTICLE SWARM OPTIMISATION 

 

 

 

83 

 

 

 
(a) PSO–LDD 

 

 
(b) PSO–LID 

 
(c) PSO–T1D  (d) PSO–T2D 

Figure 4.20: Bayesian credible intervals generated with damping strategy variants 
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(a) PSO–LDS 

 

 
(b) PSO–LIS 

 (c) PSO–T1S 
 

(d) PSO–T2S 
Figure 4.21: Bayesian credible intervals generated with absorbing strategy variants 
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(a) Random – Diversity 

 
(e) Random – Relative uncertainty 

 
(b) Reflecting – Diversity  (f) Reflecting – Relative uncertainty 

 
(c) Damping – Diversity 

 
(g) Damping – Relative uncertainty 

 
(d) Absorbing – Diversity  

 
(h) Absorbing – Relative uncertainty 

Figure 4.22: Diversity per generation and relative uncertainty 
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Table 4.6: Measures summary – 1 Seed 

        Measure                               

 

Strategy 

Convergence Diversity Uncertainty estimation 

Random T1R≻LIR≻T2R≻LDR T1R≺T2R≺LIR≺LDR T2R≺T1R≺LIR≺LDR 

Reflecting T1B≻LIB≻LDB≻T2B T1B≺T2B≺LIB≺LDB T2B≺T1B≺LIB≺LDB 

Damping T2D≻T1D≻LDD≻LID T1D≺LID≺T2D≺LDD T1D≺T2D≺LID≺LDD 

Absorbing T2S≻T1S≻LIS≻LDS T1S≺T2S≺LIS≺LDS T2S≺T1S≺LIS≺LDS 

 

4.3.1.5.2 Handling Boundary Strategies for Particle Swarm 

Similar comparison plots are carried out with the four strategies.  As indicated earlier, 

the comparison here shows a trend between diversity and convergence speed.  The 

Bayesian credible intervals (p10–p50–p90) for oil rate have captured the observed 

measurements in the history matching period and predictions for all the PSO strategies 

as shown previously.  Figure 4.24 shows the relative uncertainty (e) depicted in Figure 

4.24 with the corresponding diversity plots.  If we look at the linear decrease choice for 

example with all the strategies we see that the refinement behaviour observed in the 

absorbing and damping strategies, PSO–LDS, and PSO–LDD, that entailed less 

reservoir simulation models to converge to low misfit models, have the effect that the 

uncertainty envelopes for PSO–LDS and PSO–LDD are relatively narrower than in 

PSO–LDB and PSO–LDR with the first element in each group having the largest range 

over than the second element in the same group, as shown in Figure 4.24(a) and (e). The 

PSO–LDB and PSO–LDR have more diverse models which encompass the good fitting 

models with low misfit values as well as the poor–fitting ones. As a result, the NAB 

inferences reflected the two different sampling behaviours in the two concentrative 

(observed in PSO–LDS and PSO–LDD) and explorative sampling (observed in PSO–

LDR and PSO–LDB).  For the same example (LD) the relative uncertainty is higher for 

reflecting PSO–LDB than a random PSO–LDR even though the random PSO–LDR has 

a noticeably larger diversity of particles compared to the reflecting PSO–LDB. The 

reason for this is that the good fitting models for the random PSO–LDR are relatively as 

good as that for the reflecting PSO–LDB, as noted earlier in the sampling history in 

Figures 4.10(a) and 4.11(a) and the mean generational minimum in Figures 4.14(a) and 

4.15(a). Subsequently, the uncertainty estimations are reflected by two factors: the 

quality of the sampling and the dispersion of the low misfit reservoir models obtained in 

parameter space. The strategies PSO–LDS and PSO–LDD have similar performances as 

they both move near the boundaries of promising regions. However, we note that the 
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performance of the PSO–LDS has the wider ranges of uncertainty than the PSO–LDD 

with fast convergence, as shown in Figures 4.24(e) and 4.23(a).  Table 4.7 summarises 

the relative uncertainty with their corresponding global best and diversity evolutions for 

the different tuning of inertial weight choices for a single seed. 

 

 
(a) LD – Misfit reduction 

 
(b) LI – Misfit reduction 

 

 
(c) T1 – Misfit reduction 

 
(d) T2 – Misfit reduction 

Figure 4.23: Misfit reduction for variants 
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(a) LD – Diversity 

 
(e) LD – Relative uncertainty 

 
(b) LI – Diversity 

 
(f) LI – Relative uncertainty 

 
(c) T1 – Diversity 

 
(g) T1 – Relative uncertainty 

 
(d) T2 – Diversity 

 
(h) T2 – Relative uncertainty 

Figure 4.24: Diversity per generation and relative uncertainty 
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Table 4.7: Measures summary – 1 Seed 

          Measure                               

 

IW Choice 

Convergence Diversity Uncertainty estimation 

Linear 

Decrease LDD≻LDS≻LDB≻LDR LDD≺LDS≺LDB≺LDR LDD≺LDS≺LDR≺LDB 

Linear Increase LIS≻LID≻LIB≻LIR LID≺LIS≺LIB≺LIR LID≺LIR≺LIS≺LIB 

Type I' T1R≻T1D≻T1S≻T1B T1D≺T1S≺T1B≺T1R T1R≺T1S≺T1D≺T1B 

Type I'' T2S≻T2D≻T2B≻T2R T2S≺T2D≺T2B≺T2R T2B≺T2R≺T2D≺T2S 

 

Finally, the total oil recovery prediction after 1247 days for Teal South reservoir is 

shown in Figure 4.25. All PSO variants captured the measured observed value which is 

shown as a horizontal dashed line. 

 

 
Figure 4.25: Bayesian credible intervals of total recovery prediction for PSO variants 

 

4.3.2 Imperial College Fault Model   

The Imperial College Fault model (Tavassoli et al., 2004) is a simple synthetic test case 

which is known to be a very challenging test example (Busby and Feraille, 2008; Bush 

and Carter, 1996; Carter and Ballester, 2004; Carter et al., 2006; Erbas and Christie, 

2007b; Tavassoli et al., 2004) where standard methods for history matching often fail 

and can be very unreliable. The IC Fault model response surface is a complicated 
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surface with many local minima. Examples of methods which have been tested include 

genetic algorithms (Ballester and Carter, 2006; Carter and Ballester, 2004), estimation 

of distribution algorithms (Petrovska and Carter, 2006, 2010) and support vector 

machines (Demyanov, Pozdnoukhov, Christie, and Kanevski, 2010). 

 

The geological model consists of six layers of alternating high and low permeability 

sands. The three good quality layers have identical properties, and the three poor quality 

layers have a different set of identical properties. The thickness of the layers gradually 

decreases from top (thickness 12.5 ft) to bottom (7.5 ft) with a total reservoir thickness 

of 60 ft. The width of the model is 1000 ft, with a simple vertical fault in the middle, 

which affects the connectivity between layers. A water injector well is located at the 

left-hand edge, and a producer well at the right-hand edge. Both wells are completed in 

all layers, and operated at fixed bottom hole pressures to control the production from the 

reservoir. There are no oil-water or gas-oil contacts. The simulation model is 100×12 

grid blocks. Each geological layer is divided into two equal simulation layers as shown 

in Figure 4.26.  A more detailed description of the model is provided in Carter (2004), 

and Tavassoli et al. (2004). 

 

4.3.2.1 IC Fault Model Uncertain Parameters 

The simplified reservoir of the IC Fault model is characterised by three uncertain input 

parameters corresponding to the fault throw thickness (h), and the values of good (khigh) 

and poor permeability (klow). The porosities of the high quality sand are set to 0.30 and 

the poor quality sand to 0.15. The uniform prior ranges and the truth case values used 

are shown in Table 4.8 following Christie et al. (2006), Erbas and Christie (2007b), and 

Tavassoli et al. (2004). 

Table 4.8: Parameterisation for the IC Fault model and prior ranges 

Parameter Units Prior range Truth case Truth case scaled to [0,1] 

khigh mD [100,200] 131.6 0.1316 

klow mD [0,50] 1.3 0.0260 

h ft [0,60] 10.4 0.1733 

 

Figure 4.27 shows the true production rates for oil and water, as a function of time.  The 

observed data consists of the first three years of monthly oil and water rates obtained 

from the truth case simulation. The next seven years are used as the forecast data to 
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measure the predictive quality of the history matches.  The 2D saturation map of 

oil/water for the truth case simulation at the end of the history matching period of 3 

years is shown in Figure 4.28. 

 

 
Figure 4.26: IC Fault Model (2010) 

(Tavassoli et al., 2004) 

 
Figure 4.27: IC Fault model truth case 

production data (oil and water rates) 

 

 

 
Figure 4.28: 2D saturation map for the IC Fault model truth case  

 

 

4.3.2.2 Objective Function Definition 

The misfit M – the negative log of the likelihood – is calculated using the least squares 

formula Eq. (4.7). 
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                                      Eq. (4.7) 

 

where T is the number of observations equal to 36, qp represents oil and water 

production rates, and obs and sim refer to observed (truth case) and simulated 

respectively. ζ = 0.03×( obs

pq + w) is the standard deviation of the observed data (the 
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added random Gaussian noise) where w = 10
–6

 is an offset that has an impact on the 

misfit surface smoothness (Ballester, 2005).  The summation for the water rate starts 

from when the water is produced.  

 

The challenge in sampling with search algorithms is due to the complexity in sampling 

the response surface of the model.  This can be illustrated by the minimum located in a 

sharp region in the response surface in Figure 4.29 where 1D cross-sections were 

depicted for the three uncertain parameters by fixing two parameters to their true values 

(refer to Table 4.8) and changing the third each in turn.  Along the throw parameter 

three regions with steep minima can be identified.  The response surface is influenced 

by the water flow from injector to producer, the production rates and water 

breakthrough time.  Faults affect flow in reservoir simulation, altering the connectivity 

of the sedimentological layers and displacements across the faults possibly connecting 

stratigraphically disconnected high permeability layers as well as juxtaposing high 

against low permeability units.  These effects are conventionally incorporated in flow 

simulators using the fault transmissibility multipliers.  Thus, changing the throw 

parameter values has an impact on the placement on low and high permeability 

geological layers leading to different fault transmissibility values. This presents a 

challenge to assisted history matching techniques in finding models that match the 

historical data well and to be able quantify the uncertainty in the forecasts.  

 

 (a) khigh 
 

(b) klow  (c) throw 

Figure 4.29: The truth value cross-section along each parameter 

 

Because the IC Fault Model is simple and quick, it is possible to generate a large 

number of samples using Uniform Monte Carlo sampling to act as a benchmark result.  

Bush and Carter (1996) demonstrated in a previous work that it is difficult to obtain a 

history match using simple optimisation and thus generated a large number of 

realisations as shown in Tavassoli et al. (2004). Although this method does not 
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guarantee finding the global optimum it may get sufficiently close as well as identifying 

if local optima exist.  A database of 159,661 uniform sampled models following the 

original study of Tavassoli et al. (2004) was regenerated.  Figure 4.30 shows all models 

in the database with misfit M ≤ 25.  Note that this hard cutoff of M ≤ 25 is only used for 

plotting purposes to illustrate the complex twisting, ribbon-like shape of the low misfit 

region in three dimensions.  The database result shows a complex, twisting, ribbon-like 

structure of models that match history.  

 

 
Figure 4.30: Database models with M ≤ 25 

 

4.3.2.3 IC Fault Model Setup Specifications   

The previous section compared the performance of PSO variants on Teal South, a 

simple single well field in the Gulf of Mexico with 8 parameters.  In the second 

example we will compare PSO variants on the IC Fault Model, which exhibits a 

complex misfit surface. 

 

To compare on this example we used a set of 20 initial starting points obtained with 

Latin Hypercube Sampling (LHS) for its characteristics. Figure 4.31 shows an example 

of a set of initial models with a minimum misfit of 57. The LHS is briefly illustrated 

next. For comparison purposes PSO variants were set up to be as similar as possible by 

using the same initial points. This setup will be used within the thesis for testing 

different methods unless otherwise stated.  
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Figure 4.31: Initial population of 20 starting points obtained with Latin Hypercube Sampling in 3D 

parameter space 

 

4.3.2.3.1 Latin Hypercube Sampling (LHS) 

Latin Hypercube Sampling (LHS) was originally used for selecting parameter values in 

computer models for Monte Carlo simulation purposes (Iman and Conover, 1980; 

McKay et al., 1979). It has been applied in environmental studies and soil science for 

predictions in uncertainty assessment (Minasny and McBratney, 2002), as well as in 

geostatistics for simulation of Gaussian random fields (Pebesma and Heuvelink, 1999; 

Zhang and Pinder, 2003). LHS is a stratified-random sampling technique that performs 

sampling efficiently from parameter‟s distributions (Iman and Conover, 1980). The 

LHS can be looked at as a sampling technique that lies between simple random 

sampling, which entails no stratification, and stratified sampling, which stratifies on 

sample space (Wahanani et al., 2009). In contrast to simple random sampling, this 

technique guarantees a full coverage of each parameter‟s range since it stratifies each 

marginal distribution to maximum.  

 

Considering d parameters x1, x2, …, xd, LHS sampling samples m values from their 

distributions by dividing the cumulative distribution for each into N equiprobable 

intervals.  From each interval a random value is drawn as in Figure 4.32. In the next 

step the N values acquired for each parameter are paired randomly with the other 

parameters. The LHS procedure is summarised in the following steps: 

 The cumulative distribution of each parameter is divided into N equiprobable 

intervals. 

 A value is selected randomly from each interval. Then the sampled cumulative 

probability for interval i, is as in Eq. (4.8) (Wyss and Jorgensen, 1998) where ru 

refers to a uniformly distributed random number in the range [0,1]. 
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   Prob   1 1i uN r i N                    Eq. (4.8) 

 By using the inverse of the distribution function F
-1

 as in Eq. (4.9), the 

probability values sampled are transformed into the values x: 

 -1  F Probx                             Eq. (4.9) 

 For each parameter x, the N values acquired are paired in a random manner with the 

m values of the other parameters, in equally likely combinations. 

 

The technique assumes that the parameters are independent. This may be considered as 

a limitation since in practical applications that may not be the case and the parameters 

may be correlated. Note that independent parameters tend to bias uncertainty. In 

addition, random pairing of correlated parameters could lead to impossible or infeasible 

combinations (Minasny and McBratney, 2006).  

 

Figure 4.32: LHS for two parameters with normal distribution.  For each parameter the cumulative 

probability is split into five equal strata, and a random sample is drawn at each strata. Five 

samples from each parameter are then paired randomly forming a Latin square (Source: Minasny 

and McBratney (2006)) 
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4.3.2.4 History Matching of IC Fault Model 

For all the variants we start from a fixed initial population comprising 20 models 

generated with LHS in parameter space. The optimisation is done for 65 generations 

where each generation consists of these 20 models. The total number of reservoir model 

simulations is 1300 for all the tests performed. Each test was repeated for 10 seeds.  We 

compare the four inertial weight choices per each boundary strategy. The cognition and 

social components were chosen to be 2 for dynamic inertial weight choices.   Sampling 

history plots to look at the performance during the course of the optimisation are shown 

in Figures 4.33, 4.34, 4.35, and 4.36 per strategy. Each plot has 3 panes, showing the 

evolution of the parameter sampling as we sample in time. The horizontal axis is the 

model number and the vertical axis shows the scaled values of each parameter 

multiplier between 0 and 1. The points are colour coded according to the misfit where 

levels of blue points indicate the low misfit models. The orange points have a misfit of 

200 or above, and include many models that do not match at all well. As sampling 

advances in time, the concentration in promising regions with low misfit models is 

observed.  Due to the complexity of the response surface the colour varies for each 

variant.  We aim to find good models particularly exploring different areas along the 

throw axis to capture as many multiple minima as possible. Using all the strategies with 

linear decrease inertial weight in particular achieves this objective to some extent.  This 

is also supported by the representation of samples in the 3D view depicted in Figures 

4.37 and 4.38 where points in red are the models which have misfits equal to 25 or 

below.  Note that the predictions are influenced by two factors the good quality models 

as well as the poor ones (shown in pink) and the density in sampling in the parameter 

space.  Finding models in the same cluster will probably have the same prediction 

profile.  Thus, we need to find as many distinct minima as possible to have different 

divergent descriptions.  In particle swarm increasing the size of the swarm when the 

response surface is very complex can help even more in finding these models.  Our test 

here aims to come up with initial guesses and ready options for achieving certain 

objectives and tasks, such as faster convergence or more diverse models, or a balance 

between the two, by investigating how different variants influence the sampling.  In 

real-field applications where we have sharp minima we need to consider the linear 

decrease inertial weight as starting test.  
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For a meaningful comparison and to test the reliability of each corresponding variant we 

performed 10 runs. Each run started from an identical set of 10 points with a new 

random seed.  Since our good models have misfits of below 1 or above 200 we used the 

box plots to show the performance results for the plots.  We present box plots of 

generational minimum per generation and global best per generation for the 10 runs 

similar to previous Teal South model for all the PSO variants as illustrated in Figures 

4.39, 4.40, 4.41, and 4.42.  This is done by calculating the generational minimum in 10 

runs starting from the same starting samples.  In the box plot the line in the box refers to 

the median, the lower and upper bound points to the 25% and 75% quartiles 

respectively, and the “circle” sign refers to the outliers.  The box plot for generational 

minimum misfit evolution, along with the standard deviation around each point is 

shown in plots (a), (b), (c), and (d) of Figures 4.39, 4.40, 4.41, and 4.42.  Similarly, the 

mean generational global misfit per generation, along with the standard deviation 

around each point is shown in plots (e), (f), (g), and (h) of Figures 4.39, 4.40, 4.41, and 

4.42. For instance, we can see on average the static PSO–T1S reduces the median misfit 

in each generation more quickly as shown in Figure 4.42(c) and (g)  than PSO–LIS in 

Figure 4.42(b) and (f) .   
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(a) Sampling history of PSO–LDR 

 
(b) Sampling history of  

PSO–LIR 

 

 
(c) Sampling history of PSO–T1R 

 
(d) Sampling history of PSO–T2R 

Figure 4.33: Random strategy sampling history for each inertial weight choice 
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(a) Sampling history of PSO–LDB 

 
(b) Sampling history of PSO–LIB 

 

 
(c) Sampling history of PSO–T1B 

 
(d) Sampling history of PSO–T2B 

Figure 4.34: Reflecting strategy sampling history for each inertial weight choice 
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(a) Sampling history of PSO–LDD 

 
(b) Sampling history of PSO–LID 

 

 
(c) Sampling history of PSO–T1D 

 
(d) Sampling history of PSO–T2D 

Figure 4.35: Damping strategy sampling history for each inertial weight choice 
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(a) Sampling history of PSO–LDS 

 
(b) Sampling history of PSO–LIS 

 

 
(c) Sampling history of PSO–T1S 

 
(d) Sampling history of PSO–T2S 

Figure 4.36: Absorbing strategy sampling history for each inertial weight choice 
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(a) PSO–LDR 

 
(e) PSO–LDB 

 
(b) PSO–LIR 

 
(f) PSO–LIB 

 
(c) PSO–T1R 

 
(g) PSO–T1B 

 
(d) PSO–T2R 

 
(h) PSO–T2B 

Figure 4.37: 3D view – random and reflecting boundary strategies  
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(a) PSO–LDD 

 
(e) PSO–LDS 

 
(b) PSO–LID 

 
(f) PSO–LIS 

 
(c) PSO–T1D 

 
(g) PSO–T1S 

 
(d) PSO–T2D 

 
(h) PSO–T2S 

Figure 4.38: 3D view – damping and absorbing boundary strategies 
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Generational minimum Generational minimum so far 

 
(a) PSO–LDR 

 
(e) PSO–LDR 

 
(b) PSO–LIR 

 
(f) PSO–LIR 

 
(c) PSO–T1R 

 
(g) PSO–T1R 

 
(d) PSO–T2R 

 
(h) PSO–T2R 

Figure 4.39: Random boundary strategy measures 
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Generational minimum Generational minimum so far 

 
(a) PSO–LDB 

 
(e) PSO–LDB 

 
(b) PSO–LIB 

 
(f) PSO–LIB 

 
(c) PSO–T1R 

 
(g) PSO–T1R 

 
(d) PSO–T2R 

 
(h) PSO–T2B 

Figure 4.40: Reflecting boundary strategy measures 
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Generational minimum Generational minimum so far 

 
(a) PSO–LDD 

 
(e) PSO–LDD 

 
(b) PSO–LID 

 
(f) PSO–LID 

 
(c) PSO–T1D 

 
(g) PSO–T1D 

 
(d) PSO– T2D 

 
(h) PSO– T2D 

Figure 4.41: Damping boundary strategy measures 
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Generational minimum Generational minimum so far 

 
(a) PSO–LDS 

 
(e) PSO–LDS 

 
(b) PSO–LIS 

 
(f) PSO–LIS 

 
(c) PSO–T1S 

 
(g) PSO–T1S 

 
(d) PSO–T2S 

 
(h) PSO–T2S 

Figure 4.42: Absorbing boundary strategy measures 
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Plots of (a), (b), (c), and (d) in Figures 4.43, 4.44, 4.45, and 4.46 show the 

corresponding box plot calculated diversity of the swarm per generation for the 10 

performed runs calculated with Eq. (4.5). We can see that the diversity is reducing 

during the optimisation process which is to be expected. We can also observe that for 

example that the degree of dispersion of particles in the dynamic PSO–LDB is more 

than in the PSO–T1B variant as shown in (a) and (c) of Figure 4.44. This could also be 

supported by Figure 4.34(a) and (c) in which we used sampling history plots to show 

the performance during the course of the optimisation.  The parameter values for the 

good history matched models can be seen by looking at the range of the blue points.  

Both variants appear to concentrate on sampling for similar zones, although the 

dynamic PSO–LDB is able to maintain population diversity more while PSO–T1B 

improves the sampling (shown in the blue points) as the optimisation progresses.  Table 

4.9 and Table 4.10 summarise the performance measures per each of the strategies and 

per each of the inertial weight choices respectively for the 10 seeds.  There is a trend in 

results between diversity and convergence speed observable in the particular per 

strategy as shown in Table 4.9 where static inertial weight choice has faster 

convergence compared to the dynamic ones, regardless of boundary strategy used, while 

the dynamic choices have more diverse solutions compared to the static ones for this 

example (the comparison is noticeable if we look vertically in the tables to compare 

both measures).  Random and reflecting boundary strategies have more diverse models 

in comparison to the damping and absorbing boundary strategies (Table 4.10). 

Table 4.9: Measures summary per strategy – 10 Seeds 

          Measure                               

 

Strategy 

Convergence Diversity 

Random T2R≻LDR≻T1R≻LIR T2R≺T1R≺LIR≺LDR 

Reflecting T1B≻T2B≻LIB≻LDB T2B≺T1B≺LIB≺LDB 

Damping T2D≻T1D≻LDD≻LID T2D≺T1D≺LID≺LDD 

Absorbing T2S≻T1S≻LDS≻LIS T2S≺T1S≺LIS≺LDS 
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Table 4.10: Measures summary per inertial weight choice – 10 Seeds 

          Measure                               

 

IW Choice 

Convergence Diversity 

Linear Decrease LDD≻LDR≻LDS≻LDB LDD≺LDS≺LDB≺LDR 

Linear Increase LIB≻LIS≻LIR≻LID LIS≺LID≺LIB≺LIR 

Type I' T1S≻T1B≻T1D≻T1R T1S≺T1D≺T1B≺T1R 

Type I'' T2D≻T1S≻T2B≻T2R T2D≺T2S≺T2B≺T2R 

 

 

 
(a) PSO–LDR 

 
(b) PSO–LIR 

 
(c) PSO–T1R 

 
(d) PSO–T2R 

Figure 4.43: Random boundary strategy measures – generational diversity 
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(a) PSO–LDB 

 
(b) PSO–LIB 

 
(c) PSO–T1B 

 
(d) PSO–T2B 

Figure 4.44: Reflecting boundary strategy measures – generational diversity 

 

 
(a) PSO–LDD 

 
(b) PSO–LID 

 
(c) PSO–T1D 

 
(d) PSO–T2D 

Figure 4.45: Damping boundary strategy measures – generational diversity 
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(a) PSO–LDS 

 
(b) PSO–LIS 

 
(c) PSO–T1S 

 
(d) PSO–T2S 

Figure 4.46: Absorbing boundary strategy measures – generational diversity 

 

4.3.2.5 Uncertainty Assessment and Predictions: Comparison of PSO Variants 

In the previous section the history matching optimisation performance for the PSO 

variants was compared in terms of misfit reduction and diversity of models obtained.  In 

this section we show how that influenced our uncertainty predictions using the 

ensemble of models obtained in the test example and resampled with NAB routine.   

 

Figure 4.47 presents the Bayesian credible intervals (p10–p50–p90) of the database 

benchmark case for oil rate, water rate and total oil recovery after history matching to 

the first three years of production history.  The forecast is carried out for the next seven 

years to measure the predictive capability of the history matches.  The FOPT profile 

simulated with the truth is below p10 of database prediction as depicted in Figure 

4.47(c). 

 

Figures 4.48, 4.49, 4.50, and 4.51 show the Bayesian credible intervals (p10–p50–p90) 

for oil rate, water rate and total oil recovery after history matching for all the PSO 

variants.  The uncertainty bounds vary in this example where wider uncertainty 

estimates are obtained with PSO–LIB, PSO–LDS, PSO–LIS, and PSO–T1S.  The total 

oil recovery prediction after 10 years for IC Fault model is shown in Figure 4.52 in 
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comparison with the database prediction which is shown in purple.  The PSO variants 

which have obtained relatively close results to the database are: PSO–LDB, PSO–T2B, 

PSO–LDD, PSO–LID, PSO–T1D, and PSO–T2S as illustrated in Figure 4.52.  The PSO 

variants which have obtained relatively wider uncertainty estimates results are: PSO–

LDB, PSO–LDS, PSO–LIS, and PSO–T1S as illustrated in Figures 4.49(i), 4.51(i), 

4.51(j), and 4.51(k) respectively.  The dashed horizontal line shows the truth equivalent 

value.  Table 4.11 and Table 4.12 show the convergence speed and diversity of models 

for the particular single runs and how it influences the uncertainty estimation based on 

how closely it matches the database result and how wide the uncertainty ranges are as 

shown in Figure 4.52.  However, this table result is based on a single run only for each 

variant.   

It is noted that the comparisons from the plots are based on the overall sampling since 

each sampling point is a simulation that may take hours to run and so the overall 

performance is important.  If the comparison is based solely on the last iteration, the 

tables may have different behaviour. 

FOPR FWPR FOPT 

 
(a) DB 

 
(b) DB 

 
(c) DB 

Figure 4.47: Bayesian credible intervals generated with the database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DB DB DB 
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FOPR FWPR FOPT 

 
(a) PSO–LDR 

 
(e) PSO–LDR 

 
(i) PSO–LDR 

 
(b) PSO–LIR 

 
(f) PSO–LIR 

 
(j) PSO–LIR 

 
(c) PSO–T1R 

 
(g) PSO–T1R 

 
(k) PSO–T1R 

 
(d) PSO–T2R 

 
(h) PSO–T2R 

 
(l) PSO–T2R 

Figure 4.48: Bayesian credible intervals generated with random strategy variants 
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FOPR FWPR FOPT 

 
(a) PSO–LDB 

 
(e) PSO–LDB 

 
(i) PSO–LDB 

 
(b) PSO–LIB 

 
(f) PSO–LIB 

 
(j) PSO–LIB 

 
(c) PSO–T1B 

  
(g) PSO–T1B 

 
(k) PSO–T1B 

 
(d) PSO–T2B 

 
(h) PSO–T2B 

 
(l) PSO–T2B 

Figure 4.49: Bayesian credible intervals generated with reflecting strategy variants 

 

 

 

 

 



CHAPTER 4: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: PARTICLE SWARM OPTIMISATION 

 

 

 

115 

 

FOPR FWPR FOPT 

 
(a) PSO–LDD 

 
(e) PSO–LDD 

 
(i) PSO–LDD 

 
(b) PSO–LID 

 
(f) PSO–LIB 

 
(j) PSO–LID 

 
(c) PSO–T1D 

 
(g) PSO–T1D 

 
(k) PSO–T1D 

 
(d) PSO–T2D 

 
(h) PSO–T2D 

 
(l) PSO–T2D 

Figure 4.50: Bayesian credible intervals generated with damping strategy variants 
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FOPR FWPR FOPT 

 
(a) PSO–LDS 

 
(e) PSO–LDS 

 
(i) PSO–LDS 

 
(b) PSO–LIS 

 
(f) PSO–LIS 

 
(j) PSO–LIS 

 
(c) PSO–T1S 

 
(g) PSO–T1S 

 
(k) PSO–T1S 

 
(d) PSO–T2S 

 
(h) PSO–T2S 

 
(l) PSO–T2S 

Figure 4.51: Bayesian credible intervals generated with absorbing strategy variants 
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Figure 4.52: Bayesian credible intervals of total recovery prediction for PSO variants 

 

Table 4.11: Measures summary – 1 Seed 

         Measure                               

 

Strategy 

Convergence Diversity Uncertainty estimation 

Random T2R≻LDR≻T1R≻LIR T2R≺T1R≺LIR≺LDR T1R≺T2R≺LIR≺LDR 

Reflecting T1B≻T2B≻LIB≻LDB T2B≺T1B≺LIB≺LDB LIB≺T1B≺T2B≺LDB 

Damping T2D≻T1D≻LDD≻LID T2D≺T1D≺LID≺LDD T2D≺LID≺T1D≺LDD 

Absorbing T2S≻T1S≻LDS≻LIS T2S≺T1S≺LIS≺LDS T2S≺T1S≺LIS≺LDS 

 

 

Table 4.12: Measures summary – 1 Seed 

             

             Measure                               

 

IW Choice 

Convergence Diversity Uncertainty estimation 

Linear Decrease LDD≻LDR≻LDS≻LDB LDD≺LDS≺LDB≺LDR LDR≺LDD≺LDB≺LDS 

Linear Increase LIB≻LIS≻LIR≻LID LIS≺LID≺LIB≺LIR LIB≺LIR≺LID≺LIS 

Type I' T1S≻T1B≻T1D≻T1R T1S≺T1D≺T1B≺T1R T1R≺T1B≺T1D≺T1S 

Type I'' T2D≻T1S≻LDB≻LIR T2D≺T2S≺T2B≺T2R T2R≺T2D≺T2S≺T2B 
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4.4 Chapter Summary 

In this chapter the novel particle swarm optimisation (PSO) algorithm has been 

introduced in reservoir modelling to generate multiple history matched reservoir 

models.  The results show that algorithms based on swarm intelligence concepts have 

the potential to be effective tools in uncertainty quantification in the oil industry.  The 

technique has been tested on two reservoir examples.  The first example is the Teal 

South reservoir with 8 unknown parameters and the second example is the 3-parameter 

model, the IC Fault model.  The technique has been applied on the more realistic 

Brugge model and this is discussed in Chapter 9.   

 

The question of how to tune PSO and adjust it to make the algorithm efficient in solving 

history matching problem is addressed.  This is achieved through the development of 

simple useful variants of PSO.  The variants have flexibility in converging quickly 

towards good solutions as well as in global exploration depending on the choice of the 

task and the variant choice.  The efficiency of some of the basic modifications of the 

PSO has been investigated to test the reliability of the technique.  Different variants of 

the method involving four boundary strategies and four inertial weight choices have 

been studied.  It is seen that the forecasted uncertainty envelopes are influenced by two 

factors: the goodness of fit and diversity of the models in the ensemble obtained.  It is 

shown that PSO could be improved by optimising the PSO control parameters. Some 

variants converge faster to good fitting regions in parameter space leading to a fewer 

number of reservoir simulation runs, though others better maintain the diversity of the 

reservoir models for performed reservoir examples tests.  Recommendations and 

guidelines from the studies help facilitate deployment on the PSO algorithm and how to 

better employ the algorithm for complex response surface in reservoir model history 

matching and uncertainty quantification. 

 

It was reported in the literature that many variants obtain good results.  However, when 

tested on the two petroleum studies those conclusions were not supported.  For instance 

in a boundary strategy called the wraparound (Birge, 2003), some of Clerc's 

formulations that are mentioned to avoid any boundary considerations and some inertial 

weight choice like nonlinear decreasing, randomly sampled from Gaussian or Peng 

version (see Engelbrecht (2005)) inertial weight choices have led to divergence of 

particles.  The discussed variants used here are the ones which have obtained good 
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convergence speed, diversity and quality of history match among them based on the 

task chosen.   

 

Particular conclusions drawn from the results of the two datasets used could be 

summarised as follows: 

 The use of static inertial weight choices:  c1 = c2 = 1.494, ω = 0.729 (Trelea Set 

Type I') and c1 = c2 = 1.7, and ω = 0.6 (Trelea Set Type I'') yields low misfit 

models faster than the use of the dynamic choices: linear decreasing and linear 

increasing inertial weights.  Yet, the dynamic versions obtained more diverse set 

of models and wider envelopes of uncertainty. This behaviour was consistently 

repeated for a set of 10 seeds and initial conditions. The results obtained are 

robust.  

 The absorbing and damping boundary strategies obtained similar low misfit 

models faster with narrower uncertainty bounds in the Teal South example 

(generally in high dimensional cases as shown for a high dimensional case in 

Chapter 9, they are fast) and wider uncertainty envelopes in the IC Fault model 

example.  The location of minima in the parameter space has an impact on the 

differences in the variants results. 

 Teal South has a relatively smooth misfit surface though in 8-parameters as it 

produces good convergence where the difference of the uncertainty estimations 

results for PSO variants is marginal.  The IC Fault model has a much more 

complex misfit surface with multiple diverse local minima, thus the different 

behaviour of PSO variants which were studied in terms of convergence and 

diversity analysis.  It is also worth noting that the minima in the Teal South 

example appear to be located in boundaries and that seems to be true for most 

high-dimensional cases.  There are multiple local minima in the Teal South 

model but they are not as extreme as for the IC Fault case. 

 There is a trade-off between an accurate estimation of model parameters, 

diversity and quick convergence.  The results show that PSO variants used here 

could all produce reasonably reliable forecasts in the Teal South real field 

example while most obtained relatively reasonable estimates in the IC Fault 

model case compared with the database one. 
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 Since these results have been obtained on simple and synthetic field datasets, 

further studies on more complex fields will be needed to establish definitive 

guidelines.
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Chapter 5  – History Matching and 

Uncertainty Quantification: Multi-

Objective Particle Swarm 

Optimisation Approach 

5.1 Multi-Objective Optimisation in Petroleum 

Research studies in assisted history matching techniques, such as genetic algorithms 

(Romero et al., 2000a), neighbourhood algorithm (Christie et al., 2006; Nicotra et al., 

2005), chaotic approach (Mantica et al., 2002), evolutionary strategies (Schulze-Riegert 

et al., 2001), and particle swarm optimisation (Mohamed et al., 2010b), primarily 

focused on a specific optimisation method using a single aggregated objective function.  

The goals of these methods are to navigate the parameter space for multiple good fitting 

models quickly and identify as many different optima as possible.  Obtaining multiple 

optima can result in an ensemble of history matches that has divergent prediction 

profiles for more accurate and reliable predictive uncertainty estimates.  Assisted history 

matching techniques which have been proposed use nonlinear optimisation to minimise 

the objective function and produce the best least square fit of the historical observed 

data. The objective function can be defined in least square sense as in Eq. (5.1) in which 

T is the number of observations, q
sim

 and q
obs

 is the simulated and observed data 

respectively representing production rates, cumulative or pressure measurements from a 

reservoir. The term ( )sim obs

tq q  is called the residual.  wt is the weighting factor and 

can be estimated with various data analysis and filtering techniques introduced.  

However, the standard approach or the best choice for each field study still remains an 

open question.   
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T

sim obs

e t
t

r w q q


                                     Eq. (5.1) 

Little attention in history matching reservoir simulation research has been drawn to 

multi-objective optimisation schemes (Schulze-Riegert et al., 2007; Ferraro and Verga, 

2009) in which the aim is to find a set of solutions which optimally balance the different 

objectives rather than the single best solution as in the single aggregated one. History 

matching problem, as many real-world optimisation problems, is a multi-objective in 

the sense that well measurements like fluid rates, water rates or water breakthroughs 

vary in time, space and type.  Figure 5.1 shows an example where either one objective is 

well matched or the other depending on different choices of the weights. Defining the 

conflicting objectives of complex real field in order to simultaneously optimise more 

than one objective is a challenging task in reservoir simulation studies and needs the 

engineer‟s expertise and careful judgement of results. 

 

 
(a) WBHP is better matched with solution 1 

than in solution 2 while WCUT is better 

matched with solution 2 than in solution 1  

 
(b) WWPR is better matched for well 1 with 

solution 1 than in solution 2 while for well 2 is 

better matched with solution 2 than solution 1  

Figure 5.1: Matching one objective worsens the other when solution perturbed 

 

In the multi-objective optimisation scheme, multiple objectives can be defined 

representing each or some of the weighted squared differences of a production type.  By 

constructing multiple objectives that measure the contribution of each objective in the 

multi-objective optimisation scheme, it can be possible to find a set of solutions which 

optimally balances the different objectives simultaneously while maintaining solution 

diversity.  The advantage of this construction is that the tradeoffs between the objectives 

can be explored and utilised explicitly in the optimisation procedure to find all possible 

combination of good fitting model solutions that have similar match quality.  In history 

matching, it is desirable to have various solutions that map to relatively similar low 

misfit values that can represent all the possible geological scenarios.   
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De Almeida et al. (2001) applied multi-objective approach to production scheduling of 

petroleum refinery.  They reviewed a multi-objective fitness evaluation method called 

energy minimisation and presented an analysis of the method‟s behaviour while using 

genetic algorithm.  The numerical results were presented and analysed, leading to an 

overall assessment of the benefits provided by the multi-objective approach.  First 

attempts on multi-objective history matching optimisation have been tested in reservoir 

modelling application by Schulze-Riegert et al. (2007) and Schulze-Riegert and Ghedan 

(2007).   Schulze-Riegert et al. (2007) used Pareto-based method known as Strength 

Pareto Evolutionary Algorithm (SPEA) that utilises the popular Pareto concept among 

computational intelligence researches.  In Schulze-Riegert et al. (2011) multiple 

optimisation algorithms are used to optimise partial objectives individually worked 

well. The methodology has been tested on the well placement optimisation problem in a 

gas condensate field. The goal in this was to find the optimum well trajectories by 

maximising cumulative gas production. One of the early attempts using the Pareto 

concept and comparing it with the single objective approach in history matching context 

is attributed to Ferraro and Verga (2009).  They applied the multi-objective genetic 

algorithm and evolution strategies for history matching and uncertainty quantification of 

the PUNQ-S3 synthetic case study and compared the results with the single objective 

scenarios of the algorithms.  They showed the benefits of using the multi-objective 

scheme over the single objective aggregated function.  Recently, Busby and Sergienko 

(2010) have combined probabilistic inversion and multi-objective optimisation for the 

production development of a reservoir, in which the approach defines different weights 

for the multiple objective functions by considering independent measurement errors for 

each time-dependent output.  It is noted that in such an approach the posterior 

distribution is sensitive to the choice of the objective function weights: the higher the 

assumed measurement errors the wider the posterior distribution. Ciaurri et al. (2010) 

have used versions of direct search methods (generalised pattern search and Hooke-

Jeeves direct search) in combination with nonlinear constraint handling techniques 

called filtering method in which borrowed ideas from multi-objective optimisation 

schemes (Pareto) were utilised in order to determine optimum well controls to maximise 

the net present value as the objective function for generally-constrained production 

optimisation problems.  
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Kathrada (2009b) applied a variant of niching in reservoir modelling called sequential 

niching, to locate multiple solutions.  Sequential niching finds and isolates niches so 

that future explorations do not duplicate sampling in niches that have already been 

identified, usually by modifying the fitness landscape around the niche.  Multi-objective 

optimisation (MOO) is similar to niching, since both approaches identify multiple 

solutions to an optimisation problem.  The difference is that MOO algorithms have to 

find a set of solutions which optimally balance the different objectives, whereas niching 

algorithms locate multiple solutions to a single objective.  In brief, there are few multi-

objective reservoir history matching application studies using a small number of 

algorithms and thus the area warrant further investigation. 

 

The goal of this thesis is to develop algorithms for history matching and uncertainty 

quantification that would be able to find multiple solutions to be used in uncertainty 

modelling. This chapter tries to narrow the gap between theory and practice in the 

context of reservoir history matching optimisation.  To this end multi-objective particle 

swarm optimisation (MOPSO) variations have been looked at.  In the previous chapter 

we have reviewed the main concepts of particle swarm optimisation and showed its 

applications in reservoir modelling. The present chapter extends the application of 

particle swarm optimisation algorithm to handle MOO in the reservoir history matching. 

This study provides the first application of extending PSO in petroleum history 

matching and uncertainty quantification, attempting to fill the research gaps in our 

knowledge in this respect and to better employ the innovative computing tools and 

technology available.  Part of the work carried out here is reported in Mohamed et al. 

(2011a). 

 

The chapter is organised as follows. Firstly, the chapter introduces the goals of MOO 

and reviews different approaches such as aggregation methods, criterion-based methods, 

and Pareto-optimality or dominance, with a focus later on Multi-Objective Particle 

Swarm Optimisation (MOPSO) describing the current applications in the literature of 

MOPSO.  The definitions and the overview are based on surveys by Engelbrecht 

(2005), Deb (2009) and Reyes and Coello (2006) where the popular optimisation 

techniques have been discussed. The application of a developed novel variant is 

introduced and we show the application of the multi-objective particle swarm 

optimisation technique to two challenging synthetic petroleum examples and the results 
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has been compared with the single objective methodology.  Analyses of history 

matching quality and predictive uncertainty estimation based on the resulted models 

have been conducted to obtain the uncertainty predictions envelopes for both strategies.  

The comparative results suggest that the multi-objective particle swarm approach 

obtains better history matches and has achieved over twofold faster convergence speed 

than the single objective approach in the first example while in the second the results 

has depended on how the objective functions are constructed.   

5.2 Basic Multi-Objective Optimisation Concepts 

The goal in single objective optimisation (SOO) where only one objective is optimised 

is to find the global optimum. The definition of optimality in MOO is not simple. The 

main problem is the presence of conflicting objectives, where improvements in one 

objective may cause deterioration in another. Trade-offs exist between such conflicting 

objectives, and the task is to find solutions which balance these trade-offs. Such a 

balance is achieved when a solution cannot improve any objective without degrading 

one or more of the other objectives. These solutions are called the non-dominated 

solutions, of which many may exist. A number of definitions are provided below for 

MOO demonstration. Assuming the minimisation problems: 

Minimise 

1( ) [ ( ),..., ( )]kf x f x f x                    Eq. (5.2) 

Subject to: 

( ) 0 1,2, ,

( ) 0 1,2, ,

i

i

g x i m

h x i p

 

 
                   Eq. (5.3) 

where x is the parameter vector where [ , ],min maxx x x , gi,hi are the inequality and 

equality constraints of the problem, and , 1, ,if i k are the objective functions.  To 

describe the concept of optimality, we will introduce the next few definitions from Deb 

(2009), Engelbrecht (2005), and Reyes and Coello (2006). 

 

Definition 5.1. Domination: A solution, x1, dominates a solution, x2 (denoted 

by 1 2x x ) if and only if  

 x1 is not worse than x2 in all objectives, i.e. 1 2( ) ( ), 1, , ,i if x f x i k    and 

 x1 is strictly better than x2 in at least one objective, i.e.  some  1, ,i k for 

which 1 2 ( ) ( ).i if x f x  
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An objective vector, f1, dominates another objective vector, f2, (denoted by 1 2f f ) if f1 

is not worse than f2 in all objective values, and f1 is better than f2 in at least one of the 

objective values.  The striped area depicted in Figure 5.2 illustrates the concept of 

dominance for a two-objective function,  1 2f ( ) ( ), ( )x f x f x  in which the area of 

objective vectors is dominated by f. 

 

 
Figure 5.2: Pictorial view of dominance concept (Source: (Engelbrecht, 2005)) 

 

Definition 5.2. Weak domination: A solution vector x1, weakly dominates a solution 

vector x2 (denoted by
1 2x x ) if and only if  

 x1 is not worse than x2 in all objectives, i.e. 1 2( ) ( ), 1, , .i if x f x i k     

 

Definition 5.3. Pareto-optimal: A solution vector *x F (where F is the feasible 

region) is Pareto-optimal if it is non-dominated with respect to F. That is there does not 

exist a solution vector, * ,x x F  that dominates it  *: ( ) ( ) .i ii f x f x  An objective 

vector *f ( ),x is Pareto-optimal if x is Pareto-optimal. 

 

The concept of Pareto-optimality was firstly brought up by Francis Ysidro Edgeworth. 

The Italian economist mathematician, Vilfredo Pareto, generalised the concept in his 

work Manual of Political Economy. The concept has been named after him 

(Engelbrecht, 2005).  In economics terminologies, Pareto-optimality stands for the event 

when a society enjoys maximum ophelimity when no one can be made better off 

without making someone else worse off.  

Definition 5.4. Pareto-optimal set: The set containing the solutions or balanced trade-

offs for the multi-objective problem and could be defined as Eq. (5.4). 

 * * *| :P x F x F x x                                 Eq. (5.4) 

f1 

 
f1(x) 

Dominated by f 

f2 

f2(x) 
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Definition 5.5. Pareto-optimal front: It is defined by the set which contains all the 

objective vectors corresponding to parameter vectors which are not dominated by any 

other parameter vector,   * * * * *

1 2f ( ), ( ), , ( ) | .kPF f x f x f x x P    

 

The MOO tries to determine the Pareto optimal set from the set F of all the parameter 

vectors. In some applications, though, the whole of the Pareto optimal set is not 

normally attainable or sought-after as it may not be desirable to have various solutions 

that map to the same values in objective function space (Reyes and Coello, 2006). 

 

Definition 5.6. ε-Domination: A solution vector, x1, ε-dominates a solution vector, x2 

(denoted by 1 2x x ) for some 0,   if and only if  

 1 2( ) / (1 ) ( ), 1, , ,i if x f x i k     and 

   1 2 some 1, ,  for which ( ) (1 ) ( )i ii k f x f x     

Figure 5.3 illustrates the concept of ε-dominance for a two-objective function in which 

the shaded area being dominated has been extended by a value proportional to the 

parameter ε which is to be defined by the user. 

 

 

 
Figure 5.3: Pictorial view of ε-dominance concept (Source: (Engelbrecht, 2005)) 

  

Definition 5.7. Objective space: One of the differences between multi-objective and 

single objective optimisation is that the former contains a multi-dimensional space 

known as the objective space, O, besides the common parameter space (Deb, 2009). For 

each solution x in the parameter space, there exists a point in the objective 

f2(x) 

ε - Dominated by f 

f1 

 

f2 

f1(x) 

f2(x)/(1+ε) 

f1(x)/(1+ε) 
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space  1 2f ( ) , ,...,
T k

kx o o o o   Ο . Figure 5.4 depicts the two spaces and mapping 

between a d-dimensional solution vector and a k dimensional objective vector. 

 

 
Figure 5.4:  The parameter space and the corresponding objective space pictorial (Source: (Deb, 

2009)) 

 

The term vector optimisation is sometimes used interchangeably to multi-objective 

optimisation since a vector of objectives rather than a single objective is optimised. 

5.3 Objectives and Mechanisms of MOPSO 

The main objective of MOO is to find a set of solutions which optimally balances the 

trade-offs among the different objectives. That is to find the set of non-dominated 

solutions or the Pareto-optimal set. Solving multi-objective problems entails achieving 

three main goals for obtaining all the solutions that estimate the Pareto front (Zitzler at 

al., 1999): 

1. Minimise the distance between solutions and the Pareto front (if known). 

2. Maximise the diversity and spread of the non-dominated solutions to represent 

as much as possible of the Pareto front. 

3. Maximise the number of elements of the Pareto optimal set found and maintain 

already found ones. 

 

Research studies addressed these objectives mainly with the following. 

1. The first objective is addressed by defining a fitness function (so called leader) 

to quantify the quality of a solution with respect to the multiple objectives. 

Three types of leaders have been utilised in the literature to favour the selection 

of non-dominated solutions over dominated ones: 

Parameter space 

x1 

 

x3 

x 
 

x2 

Objective space 

f1 

 

f2 

o 
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a. Aggregation-based methods: These are the simplest approaches that can 

handle MOO problems by aggregating the objective functions into a 

single objective as a weighted sum and then applying the single objective 

optimisation algorithm.  

In the aggregation approaches the algorithm is designed to obtain the 

optimum.  Therefore, the algorithm has to be repeated many times in 

order to obtain different solutions and even with that there is no 

guarantee that different solutions will be found.  Some authors use 

niching strategies to locate multiple solutions.  Furthermore, the class of 

aggregation methods can only be applied when the Pareto front is 

concave to produce solutions of the Pareto-optimal set despite the 

weights values choice (Das and Dennis, 1997; Jin et al., 2001).   

b. Criteria-based methods: These techniques do not handle all objectives 

simultaneously but rather different phases of the optimisation course 

operate on different objectives. 

c. Pareto dominance-based methods: These methods make use of leader 

selection techniques based on Pareto preference to find a set of non-

dominated solutions and maintain diversity of the estimated Pareto front.  

This is achieved usually by utilising a repository or archive of all located 

non-dominated solutions. Several variations developed by different 

researchers as a result of various schemes exist. 

Additional criteria and quality measures have been proposed in the MOO area 

for leader selection based on density measures promoting diversity and 

closeness of particles within the swarm. The most important measures are: 

a. Crowding distance  

The crowding distance of a non-dominated solution provides an estimate 

of the density of solutions surrounding it.  It is also known as the nearest 

neighbour density estimator (Deb et al., 2002). It is estimated by the size 

of the largest cuboid enclosing each particle without including any other. 

The areas with a larger crowding distance are preferred for selection of 

local leader in particular. This measure is detailed in Section 5.5.5.  

b. Niche count 

This quality measure defines a neighbourhood of each particle sharing 

resources with others in terms of a parameter called ζshare which indicates 
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the radius of the neighbourhood.  A niche count, ηi, is computed for each 

particle as the number of other particles within a ζshare distance form i. 

These neighbourhoods of particles are termed niches. The fitness of a 

particle is deteriorated relatively to the number and closeness to particles 

which enclose it within a certain perimeter (Deb and Goldberg, 1989; 

Goldberg and Richardson, 1987; Reyes and Coello, 2006). That is to say 

when the niche of a particle is less crowded, with a lower niche count, 

that particle is favoured as depicted in Figure 5.5. The efficiency of the 

strategy depends on the value of ζshare selected by the user. An adaptive 

version of niche radius has also been suggested (Fonseca and Fleming, 

1993). This measure is also known as kernel density estimator. 

 

 
Figure 5.5: For each particle’s niche, the particle whose niche is less crowded is favoured (Source: 

(Reyes and Coello, 2006)) 

 

c. Random replacement 

In this mechanism, overcrowded regions with particles of the front are 

deleted and replaced with randomly generated particles. Either crowding 

distance (choosing particles with smallest crowding distance) or niche 

count (choosing particles with largest niche count) can be used for 

selecting particles for replacement. New particles will then select a 

solution as its leader from the least populated regions of the front.  The 

leaders are selected by sorting all the non-dominated solutions in 

decreasing order of crowding distance or increasing order of niche count. 

The leader is then chosen randomly from the top of this list. 

2. The second objective is addressed by promoting diversity mechanisms of non-

dominated solutions to increase the probability of attracting new solutions 
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towards low-density areas of the Pareto front.  The rapid loss of diversity within 

the swarm during the optimisation process is the main cause of premature 

convergence and entrapment into a single solution. Diversity within the swarm 

could be preserved through the selection of leaders.  Nevertheless, it can also be 

achieved through two main schemes for constructing new solutions: 

a. Updating the positions   

i. Neighbourhood topology of the swarm determines how rapidly 

the information will be exchanged within the particles in the 

swarm as the leader is determined as soon as the topology is 

chosen. A star (or full-connected) topology, as mentioned in 

Section 4.1.2 will lose the diversity faster since it has faster rate 

of exchanges through the global best of the swarm. Smaller 

neighbourhoods therefore facilitate diversity of solutions for a 

longer period. 

ii. Inertia weight, defined in Eq. (4.4), can assist in enhancing 

diversity and spread of solutions in the swarm since it influences 

the amount of the previous flight taken to the current one. Large 

values facilitate exploration while a small value encourages local 

exploitation. 

b. Mutation operator usage 

The purpose of this strategy is to add some mutation (craziness or 

unconsciousness) to a particle. When a swarm stagnates, that is, when 

the velocities of the particles are almost zero causing the whole swarm to 

be trapped in local optima, the mutation reflects the change in a particle‟s 

flight.  Mutation is achieved by randomly changing each component of a 

single particle position (or velocity) with certain probability. This 

mechanism potentially presents a way of escaping local optima and 

speeding up the search if the new leader attracting particle is the mutated 

particle (Stacey et al., 2003). Several mutation operators have been 

introduced that mutate components of either the position or the velocity 

of a particle.  

3. The third objective is addressed by maintaining an external archive to retain the 

non-dominated solutions previously found along the entire course of the 

optimisation. This is similar to elitist strategy in EAs in which a repository is 
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used to store best solutions. A solution goes into the archive either if it is non-

dominated solution with regard to the solutions stored in the archive or if it 

dominates all solutions in the archive in which case the dominated solutions may 

be eliminated from the archive.  In addition, to ensure that the found solutions 

are maintained, the archive is used to select the global best and personal best 

positions, which are non-dominated solutions for each particle.  In this case they 

are called the global best and local best leaders.  

 

Different design aspects of archives have been proposed. The most important 

aspect is determining the size of the archive. Permitting the archive to grow 

indefinitely has the advantages that a good diversity of solutions is facilitated 

through unlimited archives and the number of non-dominated solutions that can 

be located is not bounded.  This means archiving approaches can use smaller 

swarms than non-archiving algorithms.  However, the drawback of the 

unrestricted archives is that the computational complexity increases substantially 

as the archive size and number of objectives increase.  This is largely due to 

non-dominance ranking and leader selection computations required. If all 

particles go into the archive, at each iteration as the worst case scenario, each 

update will have a computational complexity of O(kN
2
), where k is the number 

of objectives and N is the size of the swarm.   

 

Several approaches have been developed to address the computational 

complexity of archiving algorithms.  Different data structures can be used for 

faster comparison of the stored non-dominated solutions and the clustering 

scheme in which non-dominated solutions are replaced by each cluster centroid. 

The selection of non-dominated solutions is made from the merging of two 

consecutive swarms.  The truncation approach which limits the archive size is 

one of the common approaches being used in MOPSO algorithms. Even though, 

the truncation approach imposes an upper limit on the computational 

complexity, additional aspects arise: the non-dominated solutions already found 

may get lost because of the deletion required when the archive reaches its limit 

capacity, the loss of diversity in the Pareto-optimal set, selection of the non-

dominated solution to be deleted, and the selection of the non-dominated 

solutions of the current swarm to get into the archive. Different archiving 
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approaches have different answers to these questions.   A summarised survey of 

the deletion and selection schemes is presented in Bartz-Beielstein et al. (2003). 

 

Relaxed forms of dominance have also been suggested and the major one has 

been ε-dominance, depicted in Figure 5.3. The size of the final external archive 

in this approach is dynamic and depends on a predefined parameter ε. Laumanns 

et al. (2002) proposed using ε-dominance as a way of filtering solutions in the 

external archive. The main idea is to define a set of boxes of size ε where only 

one non-dominated solution is retrieved from each box. This is illustrated in 

Figure 5.6, for two objective functions in which the one closest to the lower left 

hand corner is retrieved. In the plot solution 1 dominates solution 2, thus, 

solution 1 is favoured.  Solutions 3 and 4 are incomparable (in terms of 

dominance as    1 1f 3 f 4  and    2 2f 4 <f 3 ).  However, solution 3 is favoured 

over solution 4, because solution 3 is the nearer to the lower left-hand corner 

corresponding to the location (2ε,2ε).  Solution 5 dominates solution 6, thus, 

solution 5 is favoured. Solution 7 is rejected because the enclosing box, 

corresponding to the location (2ε,3ε) is dominated by the box corresponding to 

the location (2ε,2ε).  This procedure ensures that the retrieved solutions are non-

dominated with regards to all solutions produced during the search.   As this 

places a limit on the computational complexity, the ε-dominance concept also 

improves diversity.  This is shown in a comparative study with existing 

clustering approaches for fixing the archive size in Mostaghim and Teich 

(2003b).  They obtained comparable diversity and convergence to the clustering 

strategies. 
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Figure 5.6: Use of ε-dominance in an external archive (Source: (Reyes and Coello, 2006)) 

 

 

Algorithm 5.1 and Algorithm 5.2 show the pseudo-codes for the general PSO and 

MOPSO algorithms respectively. The significant changes to the PSO to solve MOO 

problems are italicised in Algorithm 5.2.  The MOPSO algorithm starts by initialising 

the swarm and the leaders with non-dominated particles of the swarm being stored in 

the external repository.  In each generation, for each particle, a leader is selected by 

computing a selection criterion measure which quantifies the quality of the leader 

(crowding distance or niche count, etc) and the update of velocity and position is carried 

out as in the general PSO algorithm.  The mutation procedure may then be performed 

on the produced solutions. The particle objective functions are then evaluated and its 

corresponding personal best pbest is updated. The replacement of a particle‟s pbest by 

its new self is generally carried out either when they are both non-dominated with 

regard to each other or when the new particle is non-dominated.  At the end of the entire 

swarm update, the leaders are updated.  The final step in the process is re-computing the 

selection criterion measure of the leaders and a replacement procedure is carried out as 

required if archive is full. The procedure is repeated for either a specified number of 

iterations or a specified objective functions values. 
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Algorithm 5.1 General PSO algorithm 

pseudo-code 

Algorithm 5.2 General MOPSO algorithm pseudo-

code 

Begin 

        iter = 0 

        Initialise the swarm  

        Select leader 

 

        Repeat 

                For each particle 

 

                        Update velocity  

                        Update position  

 

                        Evaluate Misfit 

                        Update personal best pbest 

                End For 

                Update leader 

\ 

 

                Next iteration (iter++) 

        Until stopping criteria is true  

 

End 

Begin 

        iter = 0 

        Initialise the swarm  

        Select leaders in an external archive  

        Evaluate(leader) 

        Repeat 

                For each particle 

                        Select leader 

                        Update velocity  

                        Update position  

                        Mutation 

                        Evaluate Misfit 

                        Update personal best pbest 

                End For 

                Update leaders in the external archive 

                Random replacement when archive is full 

                Evaluate(leader) 

                Next iteration (iter++) 

        Until stopping criteria is true  

        Report results in the external archive 

End 

 

5.4 Categorisation of MOPSO Techniques 

We highlighted earlier the point that history matching problems are multi-objective in 

nature, since they normally have several (possibly conflicting) objectives that must be 

satisfied simultaneously. Currently, there is a large amount of mathematical programs of 

multi-objective optimisation techniques, each one corresponding to a different 

understanding of the term “optimum” depending on the designer‟s choice of which one 

better fits to the application. We have, however, reviewed earlier the general platform 

for implementing MOPSO that allows the testing and comparison of existing and future 

MOO techniques.  A categorisation of various MOPSO techniques based on the leader 

selection (or fitness function) is provided in Table 5.1 where their major characteristics 

are highlighted (Engelbrecht, 2005; Reyes and Coello, 2006).   
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Table 5.1: MOPSO variants (adapted from source: Reyes and Coello (2006)) 

MOPSO Variant 
Neighbourhood 

Topology 
Leaders Selection 

External 

Archive 

Dynamic 

ω 

Mutation 

Operator 

Aggregation-based methods      

Parsopolous and Vrahatis 

(2002a) 
fully connected single-objective no 

yes 

(1.0 →  0.4) 
no 

Baumgartner et al. (2004) fully connected single-objective no no no 

Criterion-based methods      

Hu and Eberhart (2002) ring single-objective no 
yes 

rnd(0.5, 1.0) 
no 

Parsopoulos et al. (2004) fully connected single-objective yes no no 

Zhang et al. (2003) fully connected 
composite leader 

(relative to each other) 
no 

yes 

(0.8 →  0.4) 
no 

Pareto-Based approaches      

Moore and Chapman (1999) ring dominance no no no 

Ray and Liew (2002) fully connected density estimator yes no no 
Fieldsend and Singh (2002) fully connected dominance & closeness yes no yes 

Coello and Salazar-Lechuga 

(2002) and Coello et al. 
(2004) 

fully connected density of solutions yes no yes 

Pulido and Coello (2004) fully connected randomly no no no 

Mostaghim and Teich 
(2003a) 

fully connected sigma value yes no yes 

Mostaghim and Teich 

(2003b) 
fully connected sigma value yes no yes 

Mostaghim and Teich (2004) fully connected sigma value yes no yes 

Li (2003) fully connected 
niche count; density 

estimator 
yes 

yes 

(1.0 →  0.4) 
yes 

Hu et al. (2003) ring single-objective yes 
yes 

rnd(0.5,1.0) 
no 

Srinivasan and Seow (2003) fully connected 
niche count & 

dominance 
no no yes 

Bartz-Beielstein et al. (2003) fully connected 
density of solutions; 

success 
yes no no 

Raquel and Naval (2005) fully connected density estimator yes no yes 

Reyes and Coello (2005) fully connected density estimator yes 
yes 

rnd(0.1,0.5) 
yes 

Alvarez-Benitez et al. (2005) fully connected dominance yes no yes 

Ho et al. (2005) fully connected fitness & age yes 
yes 

proposed 
yes 

Villalobos-Arias et al. (2005) fully connected stripes yes no yes 

Salazar-Lechuga and Rowe 

(2005) 
fully connected niche count yes no no 

Zhao and Cao (2005) fully connected fuzzy membership yes no no 

Janson and Merkle (2005) fully connected random yes no no 

 

5.5 Multi-Objective Particle Swarm Optimisation Variant 

Among successful MOPSO variants is one which uses the crowding distance developed 

by Raquel and Naval (2005). In the next subsections we will focus on the details of the 

implementation of this adapted approach. 

5.5.1 Particle Swarm Optimisation with Crowding Distance Implementation 

The original version of the approach developed by Raquel and Naval (2005), called 

Particle Swarm Optimisation with Crowding Distance (MOPSO), which extends the 

algorithm of the SOPSO to handle MOO problems. In this approach the crowding 

distance technique is employed for selecting the leader and also for eliminating particles 

from the restricted external archive of non-dominated solutions to preserve the diversity 
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of the swarm. The approach uses the mutation operator proposed in Parsopoulos and 

Vrahatis (2002a) and the constraint-handling technique from the NSGA-II (Zitzler et al., 

2000). These mechanisms are detailed below. In the implementation we have added the 

use of the linear decrease inertia weight from 0.8 to 0.4 as well as cognition and social 

weighing factors c1 and c2 which provided a better performance than the original version 

in the performed reservoir modelling applications. 

5.5.2 Leader Selection 

The selection of the global guide, the leader, of the particle swarm is fundamental in 

MOPSO algorithm.  The leader choice influences diversity of the non-dominated 

solutions within the swarm and the convergence rate. The approach uses an external 

archive in order to promote the swarm attraction towards the less crowded (sparse) areas 

of the search space. The archive is sorted based on the decreasing crowding distance 

computed for non-dominated solutions so as to facilitate the swarm particles to be 

generated in the less populated regions of the non-dominated solutions in the objective 

space.  The leader is then chosen randomly from the top of this list. 

5.5.3 Random Replacement 

A random replacement mechanism is employed when the archive reaches its full 

capacity.  Overcrowded regions in the front are deleted and replaced with randomly 

generated particles.  The crowding distance is computed in order to select the particle 

which is to be eliminated by choosing particles with the smallest crowding distance for 

replacement.  New particles will then select a solution as its leader from the least 

populated regions of the front. 

5.5.4 Mutation 

A mutation operator that acts on the entire swarm initially is employed in order to 

facilitate the exploration ability of the swarm and avoid premature convergence to local 

Pareto fronts existing in several multi-objective optimisation problems.   Then over time 

fewer particles are mutated to allow rapid convergence.  This version was an adaption 

of an earlier MOPSO considered by Coello et al. (2004). 
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5.5.5 Crowding Distance Computation 

The crowding distance value of a non-dominated solution provides an estimate of the 

density of solutions surrounding that solution (Deb et al., 2000). Figure 5.7 illustrates 

the calculation of the crowding distance of point i which is an estimate of the size of the 

largest cuboid enclosing i without including any other point. For a specific point, i, the 

two points on either side of point i are selected. The crowding distance is the average of 

the distances between each of these points and i and are computed with respect to each 

objective. Areas with a larger crowding distance are particularly favoured for the 

selection of a local leader in particular (Engelbrecht, 2005).  

 

The procedure for computing the crowding distance is as follows. For each objective 

function, the set of particles is ordered in descending order of objective function values 

at first. A certain particle‟s crowding distance is the average distance of its two 

neighbouring particles. The solution particles located at the boundaries which have the 

smallest and largest objective function values are given infinite crowding distance 

values with the intention of always being selected.  The final crowding distance value of 

a particle is obtained by summing over all the particle‟s crowding distance values for 

each objective function. This is demonstrated in the pseudo-code presented in 

Algorithm 5.3 (Raquel and Naval, 2005). 

 

 
Figure 5.7: Crowding distance computation for two objective functions.  Particles with a larger 

value are preferred 
 
 
 

 

i+1 

i –1 
cuboid 

i 

f1 

 

f2 
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Algorithm 5.3 Crowding Distance Algorithm 

1. Find the number of non-dominated solutions in the external archive S 

a) n = | S | 

2. Initialise distance 

a) For i = 0 to n + swarm size 

Si.distance = 0 

3. Calculate the crowding distance for each particle 

a) For each objective m from k 

Sort using each objective value S = sort(S, m) 

              For i = 1 to (n – 1) 

               Si.distance = Si.distance + (Si+1.m – Si–1.m)    #  The ‟.‟ means in respect to m 

b) Set the maximum distance to the boundary points so that they are always selected as 

S0.distance = Sn.distance = maximum distance 

5.5.6 Constraint Handling in MOPSO 

MOPSO adapted the constraint handling technique employed by NSGA-II because of 

its simplicity. Feasibility and non-dominance of solutions are the considered criteria 

when comparing solutions to handle particles that fly outside the feasible regions in 

constrained optimisation problems. A constrained-dominance concept is used to 

compare between two particles. 

1. If both particles are feasible, the non-dominated particle is chosen. 

2. If one of the particles is feasible, that particle is chosen. 

3. If both particles are infeasible, the particle with the least constraints violated is 

chosen. 

Thus, the particle which dominates the other particle when assessing two feasible 

particles is considered a better solution and if both particles are infeasible, the particle 

with the least constraints violated is the better solution. 

5.5.7 The Time Complexity of MOPSO 

The contribution in the computational complexity of the approach is originated from 

the objective function computation, crowding distance computation, and the non-

dominated comparisons of the swarm‟s particles in the predefined restricted archive.  

Suppose the swarm has N particles and the problem has k objective functions, then the 

computations of sorting the objective functions have computational complexity of 

O(kN). The main expensive component in crowding distance computation for leader 

selection operation is based on ranking the solutions in each objective function.  This 

can be evaluated as following: assuming the archive has h elements, ordering the 

elements in the archive has a computational complexity of O(khlogh) (with merge or 

heap sorting). With the equal number of solutions, N, in the swarm and the archive, 

ordering comparisons of the non-dominated solutions has the computational complexity 
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O(kN
2
) for inserting a new particle from the swarm. Thus, each update in MOPSO will 

have a computational complexity O(kN
2
). The overall computational complexity is 

therefore of O(kN
2
).  The complete pseudo-code of MOPSO adapted from Raquel and 

Naval (2005) is provided in Algorithm 5.4. 

 

Algorithm 5.4 MOPSO Algorithm 

1. Initialise swarm  

a. For i = 1 to N (N is the swarm size) 

i. Initialise the position of particle i denoted xi
k 
randomly in the swarm of particles X 

ii. Initialise the velocity of particle i denoted vi
k 
= 0  

iii. Evaluate fitness of xi
k 
 

iv. Initialise the personal best of each particle as pbesti 
k
 = xi

k
 

b. End For 

2. Initialise leaders in an external archive S that stores non-dominated solutions originated from X 

3. Quality Measure (leaders) 

4. k = 0  − initialise the iteration counter 

5. While k < Tmax        #  (Tmax is the maximum number of iterations) 

a. Compute the crowding distance values of each non-dominated solution in the archive S 

b. Sort the non-dominated solutions in S in descending crowding distance values 

c. For i = 1 to N 

i. Select the global best leader randomly for xi
k
 from a specified top portion (e.g. top 

   10%) of the sorted archive S and store its position to gbest
 k
. 

ii. Update the velocity: 

      vi
k+1 

= ω vi
k   

+  c1× rand1×  ( pbesti 
k
  −  xi

k 
 ) +  c2× rand2 × (S(gbest

 k
) −  xi

k 
 ) 

                                                                                                                       Eq. (5.5)  

(ω is the inertia weight, c1 and c2 are the cognition and social components 

respectively,  rand1 and rand2  are selected at random from the range [0,1]) (pbesti 
k
 

is the best position that the particle i has seen) (S(gbest
 k
) is the leader) 

iii. Update the position: 

xi
k+1 

= xi
k  

+  vi
k+1        

                                      Eq. (5.6) 

iv. If xi
k+1 

flies outside the boundaries, then it is repositioned using one of the strategies 

     discussed in Section 4.1.3.3. 

v. If (t < (Tmax × pmut), then perform mutation on xi
k 
where pmut is the probability of 

    mutation 

vi. Evaluate fitness of xi
k 
 

d. End For 

e. Insert all new non-dominated solution into S if they are not dominated by any of the 

    stored solutions. All dominated solutions in the archive by the new solution are removed from 

    the archive. If the archive is full, the solution to be replaced is determined by the following 

   steps: 

i. Compute the crowding distance values of each non-dominated solution in the archive      

   S 

ii. Sort the non-dominated solutions in S in descending crowding distance values 

iii. Randomly select a particle from a specified bottom portion (e.g. lower 10%) which 

comprise the most crowded particles in the archive then replace it with the new solution 

f. Update the personal best solution of each particle in X. If the current pbests dominates the 

    position in memory, the particle best position is updated using  

pbesti 
k
 = xi

k 

            g. Quality Measure(leaders) 

               h. k++ 

6. End While 

7. Report results in the external archive 
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5.6 Numerical Experiments  

The performance of the MOPSO technique is evaluated using four test functions 

designed for testing multi-objective optimisation problems.  The MOPSO results are 

compared with the SOPSO.  For all the test functions and both SOPSO and MOPSO 

approaches, the setup used is as following:  

 Number of particles in the swarm = 20 

 Maximum number of generations = 200  

 For MOPSO, the capacity of the archive = 500 

 Total number of function evaluations = 4000 

5.6.1 Numerical Example Test 1 

The first test function proposed by Kita (Kita et al., 1996) is a multi-objective 

maximisation function which has three constraints. It is an example of two objective 

functions, two parameters, and concave Pareto optimal front shape.  The maximisation 

problem function is given in Eq. (5.7). 

 

 

 1 2

2

1

2

Maximise

f ( ) ( , ), ( , )

where

( , )

1
( , ) 1

2

subject to

1 13 1 15
0 ;0 ;0 5 30

6 2 2 2

with a range of 0 , 7.

x f x y f x y

f x y x y

f x y x y

x y x y x y

x y



  

  

        

 

         Eq. (5.7) 

 

The result for applying MOPSO is shown in Figure 5.8(b) where the Pareto front is 

highlighted in red.  The SOPSO result obtained by aggregating the two objectives into a 

single one is shown in Figure 5.8(a) where only part of the Pareto front is produced. 

However, we note that the result is obtained without the three constraints since our 

implementation does not handle it. 

 



CHAPTER 5: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: MULTIOBJECTIVE PARTICLE SWARM 

 

 

 

142 

 

 
(a) SOPSO 

 
(b) MOPSO 

Figure 5.8: Result of example test 1 

5.6.2 Numerical Example Test 2 

The second test function has been introduced by Kursawe (1991) (Li, 2003) which has 

three nonconvex disconnected Pareto curves. Its solution mapping in the objective space 

is very convoluted. It is an example of two objective functions and three parameters.  

The minimisation problem function is given in Eq. (5.8) where k = 3. 

  

 

1
2 2

1 1

1

0.8 3

2

1

1 2 3

Minimise ( ) 10exp 0.2

Minimise ( ) | | 5sin( )

where 5 , , 5.

k

i i

i

k

i i

i

f x x x

f x x x

x x x









   

 

  



            Eq. (5.8) 

 

The result for applying MOPSO is shown in Figure 5.9(b) where the disconnected 

Pareto front is highlighted in red.  The SOPSO result obtained by aggregating the two 

objectives into a single one is shown in Figure 5.9(a).  Here, we see that while MOPSO 

focuses on balancing the two objectives, SOPSO obtained more points in a corner near 

–15.   Yet, both approaches perform well for this example. 
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(a) SOPSO 

 
  (b) MOPSO 

Figure 5.9: Result of example test 2 

 

5.6.3 Numerical Example Test 3 

The third test function used has been introduced by Deb (Deb, 1999) and has a bimodal 

function g(x2) which has local and global minimum values. It is an example of two 

objective functions, two parameters, and convex Pareto optimal front shape.  The 

minimisation problem function is given in Eq. (5.9). 

 

1

2

2 2

Minimise ( , )

( )
Minimise ( , )

0.2 0.6
where ( ) 2.0 exp 0.8exp

0.004 0.04

and 0.1 , 1.0.

f x y x

g y
f x y

x

y y
g y

x y





          
          

         

 

       Eq. (5.9) 

 

The result for applying MOPSO is shown in Figure 5.10(b) where the convex estimated 

Pareto front is clearly covered in MOPSO than in SOPSO as depicted in Figure 5.10(a).  

The Pareto front in MOPSO is closer to the lower-left corner than in SOPSO indicating 

that the models with the lowest misfit obtained by the sum of the two objectives in this 

case is smaller in the MOPSO case. 
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(a) SOPSO  (b) MOPSO 

Figure 5.10: Result of example test 3 

5.6.4 Numerical Example Test 4 

The fourth test function used to test the performance of MOPSO is from DTLZ (Deb-

Thiele-Laumanns-Zitzler) test suites.  The numerical test function is DTLZ6 that has 

been introduced by Deb (Deb et al., 2001; 2002; 2005).  It is an example of three 

objective functions and 22 parameters. The minimisation problem function is given in 

Eq. (5.10) for the general case with M objective functions. 
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        Eq. (5.10) 

 

The minimisation problem for the three objective functions is given in Eq. (5.11).  

DTLZ6 has 2
2
 = 4 disconnected Pareto-optimal regions.   
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        Eq. (5.11) 

 

Similarly, the result for applying MOPSO is shown in Figure 5.11(b) while SOPSO one 

is depicted in Figure 5.11(a).  The Pareto front obtained with MOPSO is shown as red 

colour points in Figure 5.11(c), and the pink coloured points shows all the models 

sampled.  It is clearly shown that MOPSO tried to find all diverse models that balanced 

between the three objectives focused on some boundaries that have lower misfit values 

(since it is the sum).  The SOPSO, on the other hand, focused on the area in which the 

models have the lowest misfit values that MOPSO found as one of the Pareto-optimal 

regions.  Note that in this case the models in other areas found by MOPSO were good 

fitting models, but they were not the models with the lowest misfit values.  Since the 

target in SOPSO is the finding of the optimum, the optimisation is concentrating on the 

lowest misfit part while in the MOPSO the optimum is defined by all the points in the 

Pareto set, which are all of the non-dominated solutions that balance between the three 

objectives. 

 
(a) SOPSO 

 
(b) MOPSO 

 
(c) MOPSO-Pareto-optimal 

Figure 5.11: Result of example test 4  
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5.7 Use of Multi-Objective Particle Swarm Optimisation in Calibration of 

Reservoir Models 

In the previous section we have shown the application of MOPSO in testing multi-

objective optimisation problems.  In this section, we report the results of generating 

multiple history matched models with MOPSO on two reservoir models: IC Fault 

Model (Tavassoli et al., 2004), and PUNQ-S3 (Floris et al., 2001).  The posterior 

probabilities for the models obtained are calculated using the NAB routine (Sambridge, 

1999b). 

5.8 Field Application Test 1: IC Fault Model  

The IC Fault Model with the 3 unknown parameters: khigh, klow, and throw in Table 4.8, 

is used with the uniform priors indicated.  

5.8.1 Algorithm Setup Specifications   

A set of 50 initial starting points obtained with Latin Hypercube Sampling (LHS) for 

SOPSO and MOPSO (refer to Section 4.3.2.3.1) was used. We ran 40 iterations for both 

PSO and MOPSO algorithms leading to a total of 2000 reservoir model simulations.  

For single objective particle swarm (SOPSO) we used absorbing boundary strategy 

where the normal component of a particle's velocity is zeroed. The setup for both 

SOPSO and MOPSO is shown in Table 5.2. 

Table 5.2: SOPSO and MOPSO algorithm setup 

Algorithm 

Number 

of 

particles 

Generations 

Total 

number of 

simulations 

ω c1 c2 vf Mutation 

SOPSO 50 40 2000 0.8–

0.4 

2.0 2.0 0.5 – 

MOPSO 50 40 2000 0.8–

0.4 
1.0 1.0 – 0.5 

 

 

5.8.1.1 Objective Function Definition 

For MOPSO we consider the least square weighted residuals of oil rate at the 

production well as the first objective and the least square weighted residuals of water 

rate as the second objective.  The aggregated global objective function to be minimised 

was defined as the sum of the two objective functions defined in Eq. (5.12) equivalent 

to Eq. (4.7) for the SOPSO approach. 

1 2  + M Obj Obj                             Eq. (5.12) 



CHAPTER 5: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: MULTIOBJECTIVE PARTICLE SWARM 

 

 

 

147 

 

5.8.2 History Matching Results  

The history matching summary results for IC fault model for SOPSO and MOPSO are 

shown in Table 5.3 which shows the best misfit obtained for two runs of each approach 

in the entire algorithm run.  In both runs, the best misfit obtained was for MOPSO, yet 

they are close.  The number of NAB models in the first case is larger in SOPSO while in 

the second case it is larger in MOPSO.   

Table 5.3: Results of the performance of SOPSO and MOPSO with a population of 50 

particles 

Algorithm 

Generational 

minimum 

objective 

function 

(last iteration) 

Minimum 

objective 

function 

Number 

of models 

below 

objective 

function 

(M≤25) 

Number 

of NAB 

models 

Size of Pareto = 

|Pareto Front Set| 

 

SOPSO1 0.19 0.16  343 373 –  

MOPSO1 0.47  0.11  1299 235 179 

SOPSO2 0.32   0.31  150 61         – 

MOPSO2 0.30  0.30  733 248 18 

 

Sampling history plots for each parameter for the first run are shown in Figure 5.12 

where the models are colour coded according to the misfit. While SOPSO was 

exploring more parts in space, MOPSO found a larger region of good quality models 

along the throw axis.  The number of models below the threshold of 25 (indicating the 

good quality models) is larger in the MOPSO case as shown in Table 5.3 and depicted 

in the 3D representation in Figure 5.13 where these models are shown as red points.  

Thus, the multi-objective particle swarm approach have explored the parameter space 

and obtained a well distributed set of good fitting reservoir models more representative 

to the models with low misfits in the ribbon-like structure of the benchmark database 

case resulting in more divergent prediction qualities. 

 

Stochastic sampling evolutionary algorithms sample a large portion of the search space 

avoiding local minima, but unfortunately their convergence to the global optimum is 

slow. On the other hand, the employment of a multi-objective optimisation scheme 

contributed more knowledge to the optimisation when compared to the single-objective 

scheme.  A set of non-dominated solutions populating the repository were reported 

when the optimisation runs finished, the Pareto optimal front as shown in Figure 5.14 

for two single runs of MOPSO with different seeds. In the single objective scheme, on 
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the other hand, only one global solution is targeted.  The optimal Pareto set may also 

involve a number of solutions equivalent to different calibrations of the reservoir model.   

 

 
(a) Sampling History of SOPSO 

 
(b) Sampling History of MOPSO 

Figure 5.12: Sampling history of SOPSO and MOPSO 

 

 
 (a) SOPSO 

 
(b) MOPSO 

 Figure 5.13: SOPSO vs. MOPSO Sampling 

 

A summary of the best ten non-dominated solutions is given in Table 5.4 which shows 

the two objective values.  The ten solutions correspond to the best objective functions 

ranked out of the total number in the archive.  The models in the full archive are shown 

in the Pareto front plot obtained with the two runs (MOPSO1 and MOPSO2 in Figure 

5.14).  It is noticeable that while MOPSO2 has focused on the parts towards south-west 

corner, MOPSO1 has focused in finding more diverse models with higher FWPR in the 

Pareto front.  One reason that may explain this performance is that in the IC Fault model 

case the water production mismatch is the main contributor to the global misfit function. 

As MOPSO tries to balance the objectives with more diverse solutions, the crowding 
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distance does that role by giving the boundary points infinite crowding distances so that 

they are always selected (see Section 5.5.5).  Thus, we can relax the behaviour in Figure 

5.14(a) by making the choice to stay in the archive controlled by some other factor such 

as ranking based on the global best when the models obtain a misfit value larger than 

predefined thresholds for each objective when a reasonable level of diversity is reached 

in such cases.  The ranking idea could be coupled and that would be interesting to 

investigate. 

 

 
(a) Pareto front MOPSO (179 models)  (b) Pareto front MOPSO2 (18 models) 

Figure 5.14: Pareto front for MOPSO1 and MOPSO2 

 

Table 5.4: Summary of best 10 non-dominated elements (ranked by global misfit out of 

179) stored in the archive and their respective objectives for MOPSO1 

Model ID 
Objective 1 

(FOPR) 

Objective 2 

(FWPR) 

Global objective 

function 

1 0.078021 0.034099 0.112120 

2 0.078176 0.033957 0.112133 

3 0.076751 0.044862 0.121613 

4 0.076716 0.048693 0.125409 

5 0.076455 0.056497 0.132952 

6 0.076091 0.072707 0.148798 

7 0.075951 0.074662 0.150613 

8 0.075835 0.115798 0.191633 

9 0.075609 0.11751 0.193119 

10 0.075518 0.125434 0.200952 

 

For checking the robustness and sensitivity of the both single objective SOPSO and 

multi-objective MOPSO schemes, we performed 20 runs for each scheme starting from 

different initial seed values.  Two plots that can be used to evaluate the performance and 

assessment of the global optimisers‟ efficiency are the global best and generational 



CHAPTER 5: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: MULTIOBJECTIVE PARTICLE SWARM 

 

 

 

150 

 

minimum.  The box plot for the two efficiency measures can aggregate the information 

gained in the 20 runs. 

 

Using the global best (minimum so far) box plots for 20 runs is not necessarily a good 

indicator for the comparison between the SOPSO and MOPSO schemes, since in 

MOPSO the leader for each particle is chosen randomly from the top 10% of the non-

dominated solutions stored in the external archive that has been sorted in descending 

crowding distance.  In SOPSO, on the other hand, the leader used is the typical global 

best of the entire swarm.  Thus, only the generational minimum per generation for 20 

runs is used here. We show the overall performance of SOPSO and MOPSO algorithms 

during the course of the optimisation with box plots demonstrated in Figures 5.15 and 

5.16.  This is achieved by calculating the generational minimum in 20 runs starting from 

the same 50 starting points for both schemes.  In the box plot the line in the box refers 

to the median, the lower and upper bound points to the 25% and 75% quartiles 

respectively and the circle sign refers to the outliers.  Box plots are frequently used to 

represent meaningful statistical results.  

 

The box plots demonstrate the benefit of using the multi-objective approach by looking 

at the boundary points of the maximum and the minimum value of the box plots where 

faster convergence of MOPSO has been observed.  A better anticipation of the 

minimum objective function in the multi-objective approach is apparent in the first 

explorative runs.  In particular, the objective function accomplished at generation 12 

was remarkably better in MOPSO than in the single-objective procedure.  The study of 

the performance of the MOPSO reflected that the objective function decreased sharply 

at the early stages of the evolution while it flattened later on.  The difference between 

the 25% and 75% quartiles indicates how the values of the misfit vary along the 

corresponding generation.  It is noticeable how the multi-objective schemes has 

obtained smaller ranges compared to the single objective implying that history matches 

produced with the multi-objective approach are less sensitive to difference in seed value 

and provide more good fitting models.  The MOPSO has achieved better than the 

SOPSO and this result is robust while using the 20 seeds.   
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Figure 5.15: Convergence speed of SOPSO approach with a swarm of 50 particles for 40 

generations using 20 seeds – median of M around 0 at iteration 28 

 

 
Figure 5.16: Convergence speed of MOPSO approach with a swarm of 50 particles for 40 

generations using 20 seeds – median of M around 0 at iteration 12 
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5.8.3 Uncertainty Quantification 

The best history matched models from the two schemes were run forward for the 

prediction period for a single run of each scheme.  Table 5.5 shows the result of the 

forecast misfit for the best model.  Both schemes obtain a good forecast for their runs.  

The corresponding history matched figures are shown in Figure 5.17 for oil rate, water 

rate, total recovery, and water injection rate. 

Table 5.5: Best model history and forecast misfits 

Algorithm History misfit Forecast misfit 

SOPSO 0.16  2.04 

MOPSO 0.11  2.10 
 

 
(a) Oil rate 

 
(b) Water rate 

 

 
(c) Total recovery 

 
(d) Water injection rate 

Figure 5.17: Best history matches for SOPSO and MOPSO approaches 

 

The Bayesian credible intervals for the two schemes compared to the database are 

shown for a single run of each scheme in Figure 5.18 indicating 30% error difference in 

water rate prediction of SOPSO in Figure 5.18(e) compared to the database result in 



CHAPTER 5: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: MULTIOBJECTIVE PARTICLE SWARM 

 

 

 

153 

 

Figure 5.18(d) while obtaining 5% error difference with MOPSO in Figure 5.18(f) 

compared to the database indicating an improvement in water prediction by 25%.  The 

error difference with the SOPSO in total oil prediction in Figure 5.18(h) is 20% from 

the database result in Figure 5.18(g) while obtaining a 12% error difference with 

MOPSO in Figure 5.18(i) from the database result indicating an improvement in total 

oil prediction by 8%.   

 

DB SOPSO MOPSO 

 
(a) FOPR: P90–P10 = 

0.0024877 

 
(b) FOPR: P90–P10 = 

0.0028824 

 
(c) FOPR: P90–P10 = 

0.0056497 

 
(d) FWPR: P90–P10 = 

0.07842 

 
(e) FWPR: P90–P10 = 

0.05516 (30%) 

 
(f) FWPR: P90–P10 = 

0.08220 (5%) 

 
(g) FOPT: P90–P10 = 49.6 

 
(h) FOPT: P90–P10 = 

39.56 (20%) 

 
(i) FOPT: P90–P10 = 

55.95 (12%) 
Figure 5.18: Comparison of Bayesian credible intervals for a single run of each scheme – database 

vs. SOPSO and MOPSO 

 

 

 

DB 
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Finally, the total recovery at the last step is depicted in Figure 5.19 where both have 

obtained good results relatively close to the database result.  MOPSO has obtained a 

wider estimate of uncertainty that captured the truth, while SOPSO has produced 

narrower uncertainty estimates. 

 

 
Figure 5.19: Prediction uncertainties derived from the database, SOPSO, and MOPSO 

 

5.9 Field Application Test 2: PUNQ-S3 Model  

The particle swarm algorithm two schemes has also been applied to a complex three-

phase synthetic petroleum field, prepared as part of the PUNQ (production forecasting 

with uncertainty quantification) project sponsored by the European Community, which 

is a small-size industrial reservoir model drawn from a reservoir engineering study on a 

real field carried out by Elf Exploration & Production (Bos, 2000). Ten partners from 

universities, research institutes, and industry collaborated on investigating uncertainty 

quantification methods in the PUNQ project for oil production forecasting (Floris et al., 

2001). 

 

The PUNQ-S3 model has an oil reservoir with a gas cap and five geological layers. The 

reservoir is surrounded to the east and south by a fault, and to the north and west by 
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quite a strong aquifer maintaining the pressure in the field. The small gas cap is 

positioned in the centre of the dome-shaped geological structure (Barker et al., 2001). 

The reservoir was produced through six wells positioned around the gas-oil contact.  

The model dimension is 19×28×5 gridblocks (including 1761 active ones).  Figure 5.20 

shows a representation of the PUNQ-S3 reservoir model. 

 

 
Figure 5.20: Top structure map of PUNQ-S3 (Floris et al., 2001) 

 

 

5.9.1.1  PUNQ-S3 Model Uncertain Parameters 

The model setup used as provided in Hajizadeh et al. (2011) includes the division of the 

five layers in PUNQ-S3 model into nine regions leading to 45 unknown parameters for 

porosity that is used in the history matching optimisation process.  The horizontal and 

vertical permeability are then computed with the correlations (Bos, 2000) from fitting to 

the hard well data as provided in Eq. (5.13).  Table 5.6 shows the uniform prior ranges 

for uncertainty parameters.  

 ln 0.77 9.03

3.124 0.306

h

v h

k

k k

 

 
                         Eq. (5.13) 
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Table 5.6: Model uniform prior ranges 

Layer  Porosity  Horizontal Permeability (mD)  Vertical Permeability (mD)  

1  0.15 – 0.30  133 – 3013  44 – 925  

2  0.05 – 0.15  16 – 133  8 – 44  

3  0.15 – 0.30  133 – 3013  44 – 925  

4  0.10 – 0.20  47 – 376  17 – 118  

5  0.15 – 0.30  133 – 3013  44 – 925  

 

5.9.1.2 Objective Function Definition 

The global objective function – the misfit M represented by the negative log of the 

likelihood – is calculated using the least squares formula in Eq. (5.14) for the SOPSO 

approach. 

   
2

2

;1 1 1
obs k sim k

ij ij t
ijk

i j kw p t ijk

O t O t p
M w

n n n 

 
 
 
 

                               Eq. (5.14) 

where nw represents the number of wells, np represents the number of observed 

production data types, nt represents the number of data points, O
obs

 refers to observed 

and O
sim

 refers to the simulated data for model.  i stands for gas-oil-ratio, water cut, or 

well pressures, and k runs overall number of timesteps. w represents the weighting 

factor assigned to normalise the contributions to the objective function while ζ refers to 

the standard deviation of measurement errors which both are given (PUNQ-S3 Model, 

2010) to participate to the objective function calculations. 

 

The production history in terms of bottom hole pressure (WBHP), water cuts (WWCT) 

and gas-oil ratios (WGOR) for each well from the six wells for the reservoir is available 

for an 8-year period. Gaussian noise was added to both the historical data and the well 

observations before the data sets with uncertainties were accessible to the partners.  

After 8 years of production, the recovery strategy considered for production is to keep 

on producing with the original six wells for another 8.5 years. The total simulation 

period was 16.5 years.  The simulator is controlled to match oil rate. 

 

We consider two choices for defining two objective functions for the MOPSO 

application as following.   

1. Sum the individual least square weighted residuals of pressures measured at the 

wells from its simulated value for all the wells as the first objective and the 

individual least square weighted residuals of gas-oil-ratios and watercuts 
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measured at the production wells from its simulated value for all the wells as the 

second objective as given in Eq. (5.15). 

 

 

1

2

  ;                  {1,4,5,11,12,15}

;   {1,4,5,11,12,15}

i

i

Obj WBHP i

Obj WGOR WWCT i

 

  
             Eq. (5.15) 

 

2. Sum the individual least square weighted residuals of all production data types 

from its simulated value for wells 1, 4, and 5 as the first objective and the 

individual least square weighted residuals of all production data types from its 

simulated value for wells 11, 12, and 15 as the second objective as provided in 

Eq. (5.16).  

 

 

1

2

  ;     {1,4,5}

;     {11,12,15} 

i

i

Obj WBHP WGOR WWCT i

Obj WBHP WGOR WWCT i

   

   
                 Eq. (5.16) 

 

The aggregated global objective function to be minimised was defined as the sum of the 

two objective functions defined as in Eq. (5.17) equivalent to Eq. (5.14). 

1 2  + M Obj Obj                             Eq. (5.17) 

 

It is noted that using an objective function constructed by the sum of the least squared 

residuals of three objective functions: the gas-oil ratio, the water cut and the bottom 

hole pressures gives high misfit values with MOPSO (M > 4) for the global best.  In this 

MOPSO variant diversity increases as number of objectives increases, in other words, it 

gives diversity at the cost of performance trade-off.  This definition of objectives was 

not further pursued since it did not provide results as good as the two choices provided 

above. 

5.9.2 Algorithm Setup Specifications  

The algorithm parameter setup is shown in Table 5.7.  For a better comparison of the 

performance of the schemes we have carried out 20 different seeds each starting from 

the same initial population generated with Latin Hypercube Sampling (LHS) for both 

SOPSO and MOPSO.  
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Table 5.7: Algorithms parameter setups for PUNQ-S3 

Algorithm 

Number 

of 

particles 

Generations 

Total 

number of 

simulations 
ω c1 , c2 

Top

% 
Mutation 

SOPSO 30 100 3000 
0.8–

0.4 
2,2 –  – 

MOPSO–choice 1 30 100 3000 
0.8–

0.4 
1,1 10 0.5 

MOPSO–choice 2 30 100 3000 
0.8–

0.4 
1,1 10 0.5 

5.9.3 History Matching Results  

The history matching summary results for the PUNQ-S3 model for SOPSO and 

MOPSO two choices are shown in Table 5.8 which shows the results of the 

performance with a population of 30 particles for 100 iterations.  The best misfit 

obtained for a single run for each approach is reported in the entire algorithm run.  Both 

SOPSO and MOPSO-choice 2 obtain comparable good quality models.  The number of 

models below the threshold of 5 is larger in SOPSO which is double the MOPSO-

choice2 while MOPSO-choice1 is smaller than the other two. Yet, the number of NAB 

models in MOPSO-choice2 is larger than both SOPSO and MOPSO-choice1.  

 

Table 5.8: Results of the performance of SOPSO and MOPSO with a population of 30 

particles for 100 iterations 

Algorithm 

Generational 

Minimum 

objective 

function 

(last iteration) 

Minimum 

objective 

function 

Number of 

models below 

objective 

function 

(M<5) 

Number 

of NAB 

Models 

Size of 

Pareto = 

|Pareto 

Front 

Set| 

 

SOPSO 1.578510 1.578510 2153 1068 – 

MOPSO-choice1 4.267193 2.295731 100 451 15 

MOPSO-choice2 1.511936 1.459408 1061 1596 14 

 

 

The best history matched models from the two schemes were run forward for the 

prediction period.  Both schemes obtained a good forecast for their runs.  The 

corresponding history matching plots are shown in Figure 5.21 and Figure 5.22 for well 

1 and 15 bottom hole pressures. Well 1 gas-oil ratio is shown in Figure 5.23 while well 

11 watercut is shown in Figure 5.24. 
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Figure 5.21: Well 1 pressure for the best history matched model 

 

  
Figure 5.22: Well 15 pressure for the best history matched model 
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Figure 5.23: Well 1 GOR for the best history matched model 

 

 
Figure 5.24: Well 11 watercut for the best history matched model 

 

A summary of the best ten non-dominated solutions for both MOPSO choices are given 

in Table 5.9 and Table 5.10 which show the two objective values and the global best 



CHAPTER 5: HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION: MULTIOBJECTIVE PARTICLE SWARM 

 

 

 

161 

 

misfit.  While solution 1 corresponds to the minimum global objective function, 

MOPSO-choice1 found 14 Pareto optimal solutions. The history match of the field 

WBHP, particularly, was better for solutions 4, 5, 6, 7, 8, and 10, which in contrast 

achieved a worse match of the field WWCT and WGOR.  Similarly, MOPSO-choice2 

found other 14 Pareto optimal solutions other than the global one. The history match of 

the wells 11, 12, and 15 production data was better, particularly, for solutions 8 (plus 

the other 4 in the archive) which in contrast achieved a worse match of the production 

data for wells 1, 4, and 5.  We can interpret that the conflicting multiple objectives‟ 

solutions as multiple history matches.  The models in the full archive are shown in the 

Pareto front plot Figure 5.25 obtained with the two choices. 

 

 
(a) MOPSO-choice1 

 
(b) MOPSO-choice2 

Figure 5.25: Pareto front for MOPSO 

 

Table 5.9: Summary of best 10 non-dominated elements stored in the archive and their 

respective objectives (MOPSO-choice 1) 

Model 

ID 

Objective 1 

(WBHP) 

Objective 2 

(WGOR+WWCT) 

Global objective 

function 

1 1.7603 0.5355 2.2958 

2 1.4379 1.2550 2.6929 

3 1.5145 1.2494 2.7639 

4 1.3682 1.6192 2.9874 

5 1.1071 2.0246 3.1317 

6 1.2949 1.9160 3.2109 

7 1.3495 1.8733 3.2228 

8 1.0757 2.1666 3.2423 

9 3.0687 0.4430 3.5117 

10 1.0143 3.1019 4.1162 
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Table 5.10: Summary of best 10 non-dominated elements stored in the archive and their 

respective objectives (MOPSO-choice 2) 

Model 

ID 

Objective 1 for 

Wells {1,4,5} 

Objective 2 for 

Wells {11,12,15} 

Global objective 

function 

1 0.425539 1.033870 1.459409 

2 0.405824 1.106112 1.511936 

3 0.712924 1.029459 1.742383 

4 0.324444 1.639111 1.963555 

5 0.390050 1.584124 1.974174 

6 0.369850 1.616830 1.986680 

7 0.310960 2.106286 2.417246 

8 1.601236 0.980622 2.581858 

9 0.258055 2.698885 2.956940 

10 0.252916 2.982797 3.235713 
 

 
Sampling history plots for all the schemes are shown in Figures 5.26, 5.27, and 5.28 in 

which the x-axis is the simulation index and the y-axis is the scaled parameter value in 

the range [0,1].  SOPSO was concentrating on good quality models indicated by the 

blue coloured points (refer to Table 5.8), while MOPSO-choice1 and MOPSO-choice2 

were sampling different parts of the parameter space and larger region of good quality 

models indicated by the blue and green coloured points representing different range of 

misfits for example P1, P25, P26, and P37.  MOPSO-choice2, in particular have larger 

spread of good fitting solutions as shown in Figure 5.28 with the colour code indicates 

the quality of the solution.  

 

The box plot for 20 runs generational minimum per generation for both SOPSO and 

MOPSO two choices are shown in Figures 5.29, 5.30, and 5.31.  SOPSO and MOPSO-

choice2 have fast convergence speed compared to MOPSO-choice1.  This suggests that 

the grouping of the wells and production data have an impact on the speed of 

convergence and demonstrates the benefit of using the multi-objective approach in 

MOPSO-choice2 where a diverse set of models has been obtained as was highlighted in 

Figure 5.28. 
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Figure 5.26: Sampling history for SOPSO 

 

 
Figure 5.27: Sampling history for MOPSO – choice 1 
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Figure 5.28: Sampling history for MOPSO – choice 2 

 

 
Figure 5.29: Speed of convergence for SOPSO approach with a population of 30 individuals for 100 

generations – 20 runs 
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Figure 5.30: Speed of convergence for MOPSO – choice 1 approach with a population of 30 

individuals for 100 generations – 20 runs 

 

 
Figure 5.31: Speed of convergence for MOPSO – choice 2 approach with a population of 30 

individuals for 100 generations – 20 runs 
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5.9.4 Uncertainty Quantification 

The Bayesian credible intervals for the three schemes are shown in Figure 5.32, 5.33, 

and 5.34 where all methods captured the simulated truth estimate. 

   

 
Figure 5.32: FOPT Bayesian credible intervals for SOPSO: P90–P10 = 201.0 STB 

 

 
Figure 5.33: FOPT Bayesian credible intervals for MOPSO-choice1: P90–P10 = 407.5 STB 
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Figure 5.34: FOPT Bayesian credible intervals for MOPSO-choice2: P90–P10 = 297.5 STB 

 

The total recovery at the last step is depicted in Figure 5.35 where all methods captured 

the true value in the Bayesian credible intervals and both multi-objective MOPSO 

schemes obtain wider ranges of uncertainty than SOPSO. 

 

 
Figure 5.35: Total Recovery for the SOPSO, MOPSO-choice1, and MOPSO-choice2 
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Finally, the cumulative distribution function for oil rate and the incremental oil 

production after 16.5 years for the schemes are shown in Figure 5.36 and 5.37.  For oil 

rate the largest uncertainty estimates were obtained with the two MOPSO choices while 

SOPSO obtained narrower ranges in comparison.  The uncertainty estimate for the 

incremental oil production after 16.5 years obtained with the MOPSO-choice1 is 

slightly larger than MOPSO-choice2 and SOPSO even though the sampling 

performance and the quality of the history match were not as good as in the others, 

followed by MOPSO-choice2, then SOPSO, yet, these estimates are comparable.  

 

 
Figure 5.36: CDF for FOPR  
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Figure 5.37: CDF for FOPT 

 

5.10 Chapter Summary 

Assisted history matching algorithms in previous research studies have been widely 

utilised and have primarily focused on optimising a single objective function in which 

all the objective function components are aggregated into a single one.  Yet, the nature 

of the history matching process is multi-objective where we have multiple types of 

measurements being collected at different times from different wells.  An alternative 

technique is the multi-objective approach which has seen successful applications and 

large growth replacing the single objective approach among engineering communities 

by finding a set of solutions which optimally balance the different objectives 

simultaneously while maintaining diversity. The success of these techniques is due to 

the characteristics of the multi-objective approach to individually improve the multiple 

objectives relevant to the different matching quantities. Multi-objective optimisation 

techniques aim to find multiple minima and to characterise a theoretical method for 

finding multiple scenarios as the input for reliable uncertainty estimations. 

 

This chapter has reviewed the main aspects of MOPSO variants used in the literature, 

investigated, and modified a multi-objective particle swarm optimisation scheme that 
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uses a crowding distance mechanism in cooperation with a mutation operator to 

preserve the diversity of solutions.  This technique was applied on two well-known 

synthetic reservoir simulation models and the results were compared with the single 

objective methodology.  Analysis of matching quality and predictive uncertainty based 

on the resulting models was conducted to obtain the uncertainty predictions envelopes 

for both strategies.  The comparative results suggest that, for the reservoirs under 

consideration, with the specified definition of the objective functions, that, the multi-

objective particle swarm approach is highly competitive in obtaining a well distributed 

set of good fitting reservoir models.  

 

In the first IC Fault model example MOPSO has been more than twice faster than the 

single objective approach to achieve a similar match quality for more robust future 

predictions.  In the example the speed efficiency result is robust using 20 seeds.  

MOPSO scheme has provided more accurate estimation of uncertainty in predictions in 

comparison to the benchmark database results than the single-objective SOPSO scheme. 

This study showed how the MOPSO algorithm could efficiently improve the history 

matching.  The benefits of using a multi-objective scheme are to enhance obtaining a 

diverse set of history matches while if possible reducing the number of simulations 

required for achieving a similar matching performance in comparison with the single 

scheme as shown in the IC Fault model example.   

 

In PUNQ-S3 model, two ways of defining the objective functions have been tested. The 

second choice, MOPSO-choice2, where the wells are divided into two groups, has 

obtained better match than the first choice, MOPSO-choice1, where the type of the 

production data as way of defining the objectives has been used as in the IC Fault 

model. The second MOPSO-choice2 scheme has provided a slightly slower 

convergence than the SOPSO with more diverse good fitting models which has led to 

larger uncertainty estimates.   

 

The conclusions drawn from the two case studies are that the MOPSO scheme gives 

flexibility in optimising different objectives simultaneously, obtains better history 

matches, has faster convergence speed, and gives a more accurate estimation of 

uncertainty.  To answer the question of how many objectives to use: the rule of thumb is 

to start simple with fewer objectives and then add more objectives as required.  Multi-
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objective optimisation can also be used to understand, analyse the simulations, and 

group the conflicting objectives in different ways, leading to the identification of more 

possible scenarios and then use them in predictions to facilitate decision-making. 
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Chapter 6  – Advanced MCMC 

Techniques for History Matching 

Uncertainty Quantification – Part I: 

Hamiltonian Monte Carlo 

Assisted history matching and uncertainty quantification techniques for reservoir 

simulation broadly reviewed in Chapter 3 involve approaches based on optimisation and 

those based on Bayesian inference.  

 

Global optimisation methods such as Genetic Algorithms (Carter and Ballester, 2004; 

Erbas and Christie, 2007a), Neighbourhood Algorithm (Sambridge, 1999a), Estimation 

of Distribution (Petrovska and Carter, 2006), and Particle Swarm Optimisation 

(Mohamed et al., 2010a, 2010b, 2010d), find better models through an automated 

process which changes unknown parameter values.  These algorithms generate a 

sequence of parameter values that generally improve the history match as time evolves. 

However, they do not provide any statistically valid method of assessing uncertainty 

without additional calculations – the reason for this is that the distribution of parameter 

values is mainly controlled by the algorithm settings; an example of the variability in 

estimates can be seen in Figure 6.1 from Erbas and Christie (2007a) as well as our 

results using particle swarm optimisation in Chapter 4. This can be corrected by running 

a second code to compute probabilities associated with each set of parameters, for 

example the NAB code developed by Sambridge (1999b). 

 

Approaches based on Bayesian inference (Bayes and Price, 1763; Jaynes, 2003), on the 

other hand, aim at estimating the posterior probability over the reservoir properties, and
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are based on, for example, particle filters such as the Ensemble Kalman Filter (EnKF) 

(Aanonsen et al., 2009; Evensen, 2007) or Markov Chain Monte Carlo (MCMC) 

approaches, such as the Metropolis Algorithm, Langevin MCMC (Ma et al., 2008), 

Hamiltonian Monte Carlo (Mohamed et al., 2010b) and combinations of  evolutionary 

algorithms with MCMC (Holloman et al., 2006; Vrugt et al., 2009).  

 

 
Figure 6.1: Different sampling conditions affected an infill well decision (Erbas and Christie, 2007a) 

 

This chapter presents the application of the Hamiltonian Monte Carlo method to 

generate history matched reservoir models.  The Hamiltonian Monte Carlo algorithm 

was originally developed in a landmark paper by Duane et al. (1987) to model physical 

systems. The method originally called “Hybrid Monte Carlo” abbreviates to “HMC”, 

the later “Hamiltonian Monte Carlo” is commonly used being more specific and 

descriptive.  Hamiltonian Monte Carlo unites the MCMC and molecular dynamics 

approaches. The method has seen many applications early on in quantum 

chromodynamics. Ever since then it has become popular in many applications including 

statistical physics (Akhmatskaya and Reich, 2010; Akhmatskaya et al., 2009; Gupta et 

al., 1988; Gupta et al., 1990; Hasenbusch, 2001; Sexton and Weingarten, 1992), neural 

network models (Choo, 2000; Neal, 1996a; Zlochin and Baram, 2001), Bayesian neural 

networks (Neal, 1996a, 1996b), data assimilation (Alexander et al., 2005), 

computational chemistry (Hansmann et al., 1996; Schütte, 1999; Tuckerman et al., 

1993), statistical problems (Ishwaran, 1999; Liu, 2008; Schmidt, 2009), and Bayesian 

statistical inference (Chen et al., 2000; Girolami and Calderhead, 2011; Neal, 1993). 
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Firstly, a review of the Bayesian approach to tackle inverse problems and parameter 

estimation is provided. An overview of some classical Markov chain Monte Carlo 

(MCMC) methods along with the basic concepts and definitions then follows based on 

materials from Alfaki (2008), Choo (2000), Neal (2011), Robert and Casella (2011) and 

others.  In Section 6.3, Hamiltonian Monte Carlo and its use in constructing a Markov 

chain Monte Carlo is presented.  It discusses the main components of the algorithm and 

the implementation of the algorithm. Numerical testing is carried out on analytical 

functions experiments first and intended as a proof of the concept of how HMC could 

be used in the field of history matching by establishing a specific formalism and 

implementing it for simple examples.  This step allows us to explore the underlying 

workflow of the technique which is an essential step for further treatment. This is then 

followed by an application in a reservoir model history matching problem. 

6.1 Inverse Problems: A Bayesian Perspective  

The Bayesian approach to solve inverse problems differs fundamentally from the 

conventional deterministic optimisation approach in the nature of the solution. Rather 

than obtaining the single best solution in the deterministic approach we obtain a 

probability distribution over the solutions instead in the Bayesian approach (Aster et al., 

2005). The interpretation is due to data uncertainty e.g. as a result of incomplete 

information or imprecise measurements.  Bayes theorem allows higher levels of 

interpretation like the selection or rejection of particular models (Hanson et al., 1997). 

 

The Bayesian approach has the following advantages: it can easily represents the 

insufficiency of the data in terms of the probability, it provides a unified way for model 

uncertainty in a single framework, and it can conveniently update the degree of 

uncertainty for example increasing confidence by adding more data to prior information.  

6.1.1 Bayesian Inference 

Bayes Theorem (Bayes and Price, 1763) is the formal rule by which probabilities are 

updated given new data (Feller, 1966; Jaynes, 2003). Bayes Theorem is given by Eq. 

(6.1): 

 
( | ) ( )

( | )
( )

L O m m
p m O

p O


                                Eq. (6.1) 

p(m|O) is the posterior probability inferred – that is the probability of the model has the 

values ,Mm  of M variables, m1, . . . , mM given the observed data O.  The 
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conditional probability distribution L(O|m) is the likelihood term – it is the probability 

of the data assuming a particular setting if the model is true. The normalising constant 

( ) ( | ) ( )
M

p O L O m m dm   is referred to as the evidence of plausibility; if this term is 

small, it suggests that the model does not fit the data well. This term allows comparison 

of all models in the set for consistency with the data O.  Choosing the best models for 

given data among classes of models is an active area of research in modern Bayesian 

statistics (Robert, 2007).  ( )m  is the prior probability over parameters m expressing 

our prior belief about m, and can be given as a sum of independent probabilities for 

model parameters, or as some more complex combination of model inputs. It is noted 

that it is difficult to guess a good setting for the parameters; however it is easier to guess 

a prior distribution for parameters, in terms of its mean and some measure of its spread. 

The priors may be based on problem-specific attributes such as ancillary modelling 

predictions, empirical evidence, scientific knowledge, or expert judgement (Taylor, 

1993). Priors may alternatively signify default priors, based on a more generic problem 

characterisation, for example uniform priors or may even symbolise the results of a 

previous iteration of updating. In the sequential outlook of Bayesian analysis each 

posterior distribution becomes a prior for the next stage of assessment. Such a 

sequential analysis is complementary to the iterative conventional optimisation 

approach discussed in Section 3.4.1.  Recent research to determine a realistic prior 

based on geological data and geological characteristics has been investigated by Arnold 

(2008) and Mittermeir et al. (2010).  More recent work in obtaining richer informative 

3D priors for channel systems with novel machine learning methods has also been 

explored by Rojas (2010). 

 

The posterior probability distribution represents the basis for computing useful 

statistical quantities of interest.  The marginal probability of a certain parameter mi, 

given all other parameters mj, is inferred by integrating the posterior probability over the 

other parameters as in Eq. (6.2). Similarly, two-parameter interactions may be obtained 

as for ( , | ; { \ , })i j k k i jp m m m m m m m . 

1

( | ; { \ })  ( | )
d

i j j i j

j
j i

p m m m m m p m O dm



                                   Eq. (6.2) 
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In order to compute the term in Eq. (6.2), the generic Bayesian integral, J , in Eq. 

(6.3) has to be firstly calculated in which J(m) is a function such that the expectation 

values E[J(m)] fully characterises the distribution of the random variable m such as the 

distribution of model parameters. This is known as the (generalised) problem of 

moments.  The term J  in Eq. (6.3) similarly needs the evaluation of the normalising 

constant ( | ) ( )
M

L O m m dm in Eq. (6.1). The normalising constant is usually intractable 

even for very low values of d. 

 ( ) ( | )
N

J J m p m O dm                                                  Eq. (6.3) 

A Monte Carlo strategy provides a way for evaluating the integral in Eq. (6.1) by 

generating a representative ensemble 1 2{ , , , }Nm m m of samples from p(m|O) that are in 

some way random but rather than coming from regions of low contribution to the 

integral, they are more likely to come from regions of high contribution to the integral. 

The integral of J(m) can then be approximated without explicit evaluation of the 

normalising constant. Therefore, the integral in Eq. (6.3) is approximated with the 

Monte Carlo approach as given in Eq. (6.4) where N represents the number of models in 

the ensemble. 

1

( ) ( | )1
 

( )

N
i i

i i

J m p m O
J

N h m

                                          Eq. (6.4) 

The posterior p(m|O) in most practical cases can be quite a non-standard distribution 

and thus direct drawing of independent samples may be impossible. In a relaxed 

formulation, the ensemble  ( ){ }im  may be obtained by any process that draws samples 

by the support of p(m|O) in proper proportions so that the integral of J(m) with respect 

to the distribution p(m|O) is approximated by the sample mean. Thus, 

if ( | )  ( )i ip m O h m where the samples ( ){ }im  do not necessitate independency then Eq. 

(6.5) holds.  

 

1

1

( ) ( | )1
 

( )

1
 ( )     for    ( ) ( | )

 ( )

N
i i

i i

N

i i i

i

i i

J m p m O
J

N h m

J m h m p m O
N

m m m







 





                                    Eq. (6.5) 
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In the Markov chain Monte Carlo (MCMC) methods, generating an ensemble of 

models, m1, m2, . . . , mN, whose distribution h(m), approximates p(m|O), can reduce the 

task of evaluating the generic integrals to computing averages over J(mi).  This is 

achieved using a Markov chain which has its stationary distribution defined by p(m|O) 

(Gilks et al., 1996; Kolehmainen, 2001). This expression accounts for probability 

density rather than probability. 

 

Once an independent and identically distributed set of samples from the chain ({m1, m2, 

…, mN} from p(m|O)) have been drawn, we can then calculate posterior quantities of 

interest and some statistics: e.g. the posterior mean of field oil recovery as in Eq. (6.6), 

and the variance which quantifies the uncertainty as in Eq. (6.7). 

 
1

1
Mean

N
obs

t i t
i t

q m
N 

 
  
 
              Eq. (6.6) 

        
2

1

1
Var Mean

T
obs

t i

t t

q m
T 

 
  
 
                                 Eq. (6.7) 

In the following Section 6.2 the basic principles of Markov chain Monte Carlo 

(MCMC) methods and the most common one, the Metropolis-Hastings algorithm are 

presented.  

6.2 Markov Chain Monte Carlo (MCMC) Methods  

This section will present necessary background and review of some classical Markov 

chain Monte Carlo (MCMC) methods at a level of technical detail sufficient to explain 

the work in this thesis. More detailed presentations may be found elsewhere (e.g., Choo, 

2000; Feller, 1968; Gamerman, 1997; Gilks et al., 1996; Mackay, 2003; Neal, 1993, 

2011; Robert and Casella, 2000).  

6.2.1 Basic Definitions and Background  

Definition 6.1. (Markov chain) A Markov chain, named after Andrey Markov, is a 

series of random variables { | }tX t T  called a stochastic process such that the 

distribution of Xt  given all the earlier states, X0, . . . , Xt−1, depends only upon the given 

preceding one Xt-1. That is, given Xt-1, Xt is independent of all earlier X‟s. This is stated 

in Eq. (6.8) and known as the Markov property.  

1 2 0 1 1( | , , , ) ( | ) ( | )t t t t t t tP X X X X P X X T X X                   Eq. (6.8) 
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A Markov chain is defined by three components: the state space in which all Xi‟s live, 

the distribution over the initial state P(X0), and the transition probability function or so 

called transition kernel T.  The Markov chain is called time-homogeneous if the 

transition matrix is the same after each step meaning that the transition kernel does not 

depend on the time (t–1).  

 

Definition 6.2. (Ergodicity) A Markov chain is called an ergodic chain if the Markov 

chain satisfies the following properties: 

1. Stationarity: As t → ∞ the Markov chain converges to its invariant (stationary or 

equilibrium) distribution. 

2. Irreducibility: Starting from any starting point, the Markov chain has positive 

probability to reach a non-empty set of states within a finite number of steps. 

That is to reach any state from any other state. 

3. Aperiodicity: The state can return to itself at irregular times. This guarantees that 

the chain will not oscillate between different sets of states. 

The ergodicity condition of the Markov chain is sufficient for the existence of the 

invariant distribution π(x) independent of the initial probability at the initial state. If a 

Markov chain has a proper invariant distribution π(x), and it is both irreducible and 

aperiodic, then π is the unique invariant distribution and is also the equilibrium 

distribution of the chain (Tierney, 1994; Rosenthal, 2001).  

 

Definition 6.3. The reversibility condition expressed in the detailed balance equation in 

Eq. (6.9) is sufficient, but not a necessary condition for a distribution π(x) to be 

stationary distribution.  

( ) ( , ) ( ) ( , )x T x x x T x x                             Eq. (6.9) 

A Markov chain that converges to a desired distribution can be constructed by ensuring 

that it is aperiodic, irreducible, and has the target distribution as an invariant 

distribution. The first portion of a Markov chain is typically not representative of the 

invariant distribution, and is usually discarded. These samples can be used to estimate 

usefully required statistical properties with a large number of samples generated to 

improve the estimation accuracy. 

 

Definition 6.4. (Markov Chain Monte Carlo) A Markov chain Monte Carlo (MCMC) 

for simulating a target distribution π(x) is any method that constructs an ergodic Markov 
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chain  
1

N

t t
X


with probability transition kernel T that converges to stationary 

distribution π(x) in the long run, independent of the initial state of the chain.  

 

6.2.2 Basic MCMC Techniques  

Many strategies are available for constructing Markov chains with a specified invariant 

distribution. Gibbs sampling and Metropolis-Hastings algorithms are two commonly 

used basic MCMC techniques and are outlined in the following subsections. 

 

6.2.2.1 The Gibbs Sampler Algorithm 

The Gibbs sampling algorithm, named after the physicist Josiah Gibbs, is a Markov 

chain with invariant distribution is constructed with conditioning (Casella and George, 

1992). The Gibbs sampler (Geman and Geman, 1984) has its roots in image processing 

and is usually used for simulating multivariate distributions. 

 

In this approach only one parameter is drawn from the conditional distribution at a time, 

holding all others fixed. At each update the parameter is replaced by a sample point 

drawn from its distribution conditioned on all the other parameters with their most 

recent values. The new candidate point is always accepted. The Markov chain 

constructed with Gibbs sampling is an ergodic chain in which the three properties hold. 

The new value of the parameter is selected regardless of the old value it replaces, thus 

the desired distribution is invariant and the resulting multivariate state is drawn 

according to the target distribution. Moreover, since all values of Xt have non-zero 

probability to be drawn, the Markov chain constructed is irreducible and aperiodic 

provided that all parameters are updated with time t. Algorithm 6.1 presents the pseudo-

code for Gibbs sampler. Gibbs sampler is simple, yet requires sampling from the full 

conditional distributions, i.e. the conditional distribution of each parameter, which may 

not be possible for complex distributions and makes it less applicable in practice 

(Martinez and Martinez, 2002). There are other schemes which do not require this.  
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Algorithm 6.1: The Gibbs Sampler 

1. Initialise t  = 0, Nsamples, Initial point  (0) (0)

0 1 , , dX x x   

2. For t = 0 to (Nsamples – 1) do 

3.       Draw  ( 1) ( ) ( )

1 1 1 2| , ,t t t

dx x x x
 

4.       Draw  ( 1) ( 1) ( ) ( )

2 2 2 1 3| , , ,t t t t

dx x x x x 
 

              

5.       Draw  ( 1) ( 1) ( 1)

1 1| , ,t t t

d d d dx x x x  


 

6.        ( 1) ( 1)

1 1 , ,t t

t dX x x 

   

7. End For 

 

6.2.2.2 The Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm was originally introduced by Metropolis et al. 

(1953) and generalised by Hastings (1970). It is a well-known algorithm for 

constructing a Markov chain with a desired invariant distribution. The algorithm has 

been used extensively in statistical physics (Hammersley and Handscomb, 1964) which 

provided later the seed to use these methods in the statistics literature (Bernardo and 

Smith, 1994; Gelfand and Smith, 1990; Müller, 1993; Smith and Roberts, 1993; 

Tierney, 1994), as well as in many other fields. The Metropolis-Hastings algorithm has 

been cited as being among the top ten algorithms having the greatest influence on the 

development and practice of science and engineering in the 20
th

 century (Beichl and 

Sullivan, 2000; Cipra, 2000). The general algorithm framework is demonstrated in 

Meyn and Tweedie (1993). In Roberts and Tweedie (1996) an application of 

Metropolis-Hastings methods is provided.  

 

The Metropolis-Hastings algorithm with simple proposals requires only that we are able 

to evaluate the target probability density π(x) at a given state. In this algorithm, all the 

parameters can be changed at once. Thus, the Gibbs sampler can be viewed as a 

particular case of one of the Metropolis algorithm variants (multiple-block Metropolis-

Hastings). In the simplest Metropolis-Hastings, the parameter vector is perturbed from 

the current sequence point by adding a trial step drawn randomly from an easy-to-

sample symmetric proposal distribution,  . | ,tq x  that has the same property as the 

target distribution. A convenient choice for a proposal distribution is the normal 

distribution centred at the current state, ,tx  in the simulation and with a fixed 

covariance matrix. The proposal distribution should satisfy the irreducibility and 

aperiodicity conditions which can be achieved if the proposal distribution has a positive 



CHAPTER 6 – ADVANCED MCMC TECHNIQUES – PART I: HAMILTONIAN MONTE CARLO 

 

 

 

181 

 

density on the same support as the target distribution. The trial proposed state/position 

is either accepted or rejected for the next state in the chain on the basis of the 

probability at the trial proposed position relative to the current one given by Eq. (6.10).  

 

 1

, with probability      ,

, with probability 1 ,

t t t

t

t t t

x x x
x = 

x x x






 



                     Eq. (6.10) 

where 

 
 

 

| ( )
, min ,1 .

| ( )

t t t

t t

t t t

q x x x
x x

q x x x






  
     

                           Eq. (6.11) 

 

If the trial proposed state is rejected, the state 
1tx 
is set to be the previous state .tx  the 

ratio in Eq. (6.11) does not require computing the normalising constants ratio if 

unknown since the ratio is 1. Thus, it is a good attribute of the Metropolis-Hastings.  

 

Algorithm 6.2 presents the variant of Metropolis-Hastings pseudo-code called Global 

Metropolis-Hastings. In this variant all parameters of the current state tx are perturbed. 

Choosing a spherically and symmetric proposal distribution is preferred in this variant 

(Neal, 1993). In the local Metropolis-Hastings variant, on the other hand, the 

perturbation is achieved for each parameter one after another. Therefore any appropriate 

proposal distribution can be used.  

 

Algorithm 6.2: Metropolis-Hastings Sampler 

1. Initialise t  = 0, Nsamples, Initial point  (0) (0)

0 1 , , dX x x   

2. For t = 1 to Nsamples do 

3.            Propose  1. |t tx q x 
  

4.            Draw [0,1]u Uniform  

5.            Compute   
   

   

|
,

|

t t t

t t

t t t

q x x x
x x

q x x x






 
 


 

6.            If   min , ,1t tu x x  then 

7.                   t tx x          

8.            Else        

9.                   1t tx x   

10.            End If 

11. End For 

 

It can be shown that the Metropolis algorithm ensures that the target distribution is an 

invariant distribution of the Markov chain by satisfying the detailed balance in Eq. (6.9) 
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(Walsh, 2004). Nevertheless, this does not ensure that the Markov chain is aperiodic 

and irreducible (Choo, 2000). 

 

The sampling efficiency of the Metropolis algorithm can be tested in sampling a target 

distribution while using a simple Gaussian distribution, in Eq. (6.12), as the proposal 

with a fixed covariance  centred at the current state 
tx  in which d represents the 

number of parameters. 

 
   1

2

1 1
( ) exp

22 | |

T

t t t t td
p x x x x x



 
       

 
                              Eq. (6.12) 

 

In this example if the variance of the Gaussian proposals is too large in comparison with 

the width of the target distribution, the proposed samples often lie in regions with low 

probabilities. Thus, the Metropolis algorithm roughly rejects all the time causing slow 

exploration of the parameter space if smaller variances are not reset to obtain a higher 

acceptance rate.  The acceptance rate is the fraction of proposed samples accepted in the 

last S samples after reaching the stationary distribution. The shape of the distribution 

needs to be taken into account for choosing stepsizes. The existence of a long thin 

region in a target distribution restricts the stepsize that could be taken for the new 

sample to fall in a high probability region and that is the first problem. The choice of the 

stepsize must be small enough if the distribution is thin in one direction and long in the 

other. So the standard deviation choice for the proposal distribution should be 

comparable in size to the thinnest cross-section of the target distribution and that can be 

very small if compared with the overall distribution. The second problem, known as the 

random walk behaviour, results from the fact that the choice of the second step 

independently of the first leads to the possibility of walking back on the first step as 

shown in Figure 6.2. In the Metropolis algorithm, the simulation will usually move a 

distance proportional to N  (Neal, 1993) where N is number of iterations. The 

Metropolis-Hastings algorithm must be tailored to individual problems by dynamically 

adapting Gaussian proposal distributions as shown in Figure 6.3 for different kinds of 

scaling and rotating treatments. 

 

In high dimensional problems traditional MCMC methods suffer from a number of 

issues: low acceptance rate, high correlations between the consecutive steps, slow 

mixing, slow convergence and low efficiency. It is advised that the stepsize is chosen so 
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that the acceptance rate is about 20% to 40% (Gilks et al., 1996). The efficiency of the 

sampling is determined by the number of steps in the sequence needed to effectively 

provide a statistically independent sample from the target distribution. The efficiency of 

the Metropolis-Hastings with optimal choice of the proposal distribution falls as 

0.33 d (Dunkley et al., 2005; Gelman et al., 1996; Hanson, 2001). With the traditional 

MCMC, a huge number of samples are needed in order to adequately explore the 

parameter space, visit all high density regions, converge to the target distribution, and 

provide plausible and accurate estimates for some statistical properties of interest 

(Calderhead and Girolami, 2007; Gilks et al., 1996; Robert and Casella, 2000).  More 

details describing the MCMC algorithms and related concepts can be found in 

Gamerman (1997), Gilks et al. (1996), Mackay (2003), Murray (2007), Neal (1993), 

Ripley (1981, 1987, 1988), and Robert and Casella (2000).  

 

 
Figure 6.2: Metropolis-Hastings random walk behaviour using simple Gaussian proposals to 

navigate 2D Gaussian target distribution (Choo, 2000) 

 

 
Figure 6.3: Dynamic representation for choosing adapted Gaussian proposals 

 

end 

start 

x 



CHAPTER 6 – ADVANCED MCMC TECHNIQUES – PART I: HAMILTONIAN MONTE CARLO 

 

 

 

184 

 

History matching is an inverse problem that involves a large number of parameters and 

it is expected that the posterior distribution is complicated under most circumstances 

and may potentially have long narrow regions. Although, the Metropolis algorithm with 

simple proposals is a rigorous method frequently employed because of its simplicity, to 

sample from such complex posterior distribution with Metropolis-Hastings using 

Gaussian proposals that involve small variances may result in an inefficient random 

walk as described above. For these reasons we may need to run MCMC for a long time 

before converging to the target distribution. Consequently, that requires running 

thousands of flow simulations for the sampling which is described in the literature as 

random walk behaviour. The weaknesses illustrated make the use of Metropolis-

Hastings in sampling high dimensional space unsuitable and motivate a more 

sophisticated and appropriate method for sampling complicated posteriors, the hybrid 

Monte Carlo method, which is investigated in this thesis and described in the next 

section. 

6.3 Hamiltonian Monte Carlo (HMC) 

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo (MCMC) method 

introduced by Duane et al. (1987) for sampling. HMC merges the benefits of 

Hamiltonian dynamics (Anderson, 1980; Rossberg, 1983) and Metropolis algorithm 

(Hanson, 2001; Metropolis et al., 1953), to sample from complex posterior distributions.  

HMC aims to fix some of the MCMC problems.  For example, the Metropolis algorithm 

(Metropolis et al., 1953) can suffer from slow exploration of the probability distribution 

if the stepsize is too small, or can suffer from excessive rejection of proposed locations 

if the stepsize is too high. The main components of the HMC algorithm are derived 

from the classical mechanics. In this section we describe the basic definitions and 

equations followed by a demonstration of the implementation of the algorithm as a 

method for parameter estimation and uncertainty quantification. 

 

The idea of HMC is to regard each set of parameters as a point in parameter space and 

to introduce a set of auxiliary momentum variables u.  The potential energy is defined 

as the negative logarithm of the posterior probability U(x) = −log p(m|O), and a kinetic 

energy as in Eq. (6.13) with the set of masses   
1

d

i i
m


. 

2

1

( ) 2
d

i i

i

K u u m


                        Eq. (6.13) 



CHAPTER 6 – ADVANCED MCMC TECHNIQUES – PART I: HAMILTONIAN MONTE CARLO 

 

 

 

185 

 

For mi = 1, K(u) = u
T
u/2. The Hamiltonian or total energy is then H(x,u) = U(x)+ K(u). 

The extended probability distribution is the joint density.  Sampling is achieved at two 

steps: firstly the momenta are sampled from a normal distribution with mean zero and 

variance 1 while leaving the state x unchanged. This proposal can be considered as a 

Gibbs sampling update and always accepted. The joint probability distribution is given 

by Eq. (6.14).  

           ,
, | ;0,1

H x u U x K u
p x u e e e p m O N u

  
            Eq. (6.14) 

By sampling from the extended distribution in the second step and discarding the 

momentum variables, we can obtain samples from the posterior probability distribution.  

In the Hamiltonian Monte Carlo, new samples are generated by simulating the time 

evolution of the physical system with the defined Hamiltonian.  The simulation is 

achieved by solving Hamilton‟s equations of motion.  

6.3.1 Hamiltonian Dynamics 

Hamiltonian dynamics are given by Eqs. (6.15) and (6.16): 

 ,
( )

H x u
u U x

x


   


                             Eq. (6.15) 

 ,

i

H x u u
x

u m


 


            Eq. (6.16) 

 

The first equation Eq. (6.15) is Newton‟s second law of motion (the change of 

momentum is determined by the gradient of the potential energy U(x)).   The second 

equation Eq. (6.16) decides where the state x goes.  In this system the total energy H is 

conserved only if the dynamics are done accurately.  Hamiltonian dynamics are time-

reversible and preserve volume in state space and total energy.  If we simulate the 

dynamics exactly, we will leave the extended density invariant (Bishop, 2006; Neal, 

2011).  On the other hand, a Markov chain involving only the change in (x,u) is not 

irreducible since all samples produced from an initial sample do not part a hypershell of 

constant H,  which breaches the irreducibility constraint of MCMC (Choo, 2000). Thus, 

the momentum variables are adjusted in such a way that the Markov chain has some 

chance of reaching all the other values of H after a number of iterations to remedy the 

constraint. This is achieved through the replacement of momentum variables with new 

values drawn from the distribution exp(– K (u)). The step leaves the joint density 
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invariant since u is drawn from the conditional distribution that happens to be 

independent of x.  If the dynamical trajectory of a state is followed for a long time, a 

state that is less correlated with the initial state might be produced compared to the 

Metropolis with simple proposals samples. It is worth noting that Neal (1995, 1998) 

discussed an improvement of the HMC algorithm to further suppress the random walk 

in drawing the momentum variables by using ordered overrelaxation strategies in the 

Gibbs sampling stage.  This is not considered in this thesis.  

6.3.2 Leapfrog Proposals – Discretising Hamilton’s Equations 

In reality we are unable to simulate the Hamiltonian dynamics perfectly. Thus, for 

computer implementation, Hamilton‟s equations are simulated by discretising time with 

a small stepsize ∆t.  From an initial state at time zero, the state at times ∆t, 2∆t, 3∆t is 

approximately computed iteratively. 

 

A well-known method to approximate the solution to a system of differential equations 

is Euler‟s method.  Neal (2011) indicated that Euler‟s method has the tendency to 

produce a trajectory that diverges to infinity, so some care is required to ensure that the 

discretised version is reversible, since the Hamiltonian dynamics formulation is time 

reversible.  In practice, the system is simulated with much better results using a leapfrog 

approach where positions and momentums „leap frog‟ each other.  The leapfrog 

algorithm of size ∆t works as follows: 

 

      2
2

t
u t u t t U x t

 
     

 
           Eq. (6.17) 

 ( ) ( ) .
2

t
x t t x t t m u t

 
      

 
                     Eq. (6.18) 

      2 .
2

t
u t t u t t U x t t

 
        

 
        Eq. (6.19) 

 

Eq. (6.17)– Eq. ( 6.19) can be abbreviated to Eqs. (6.20) and (6.21): 

    ( ) ( ) ( )
2

t
x t t x t t m u t U x t

 
       

 
                   Eq. (6.20) 

           2u t t u t t U x t U x t t               Eq. (6.21) 

 

Although the leapfrog algorithm simulation is time-reversible and volume-preserving of 

region of the phase space (Bishop, 2006), finite ∆t does not keep H constant and it only 

preserves energy to second order in the time stepsize ∆t, O(∆t
2
) (Neal, 1993).  The total 

trajectory time L t   where L represents the number of leapfrog steps and η 
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represents the trajectory length.  This error is obtained after simulating for a fixed time 

interval  and is called, the global error.  The error produced after one step is called 

local error which resulted from time t to t + ∆t and is of order ∆t
3 

(Neal, 2011).  The 

effect of the global error can be eliminated by applying a Metropolis accept/reject step 

at the end of the trajectory.  The proposal step is accepted/rejected according to the 

Metropolis rejection test with acceptance probability given by Eq. (6.22), where 

 ,H x u   is the total energy at the proposed step  , .x u   

    min(1,exp( )) min 1,exp , ,H H x u H x u             Eq. (6.22) 

 In a perfect simulation δH = 0 leads to α = 1 for the proposed new state. That ensures 

the joint density is kept invariant and permits persistent, rapid movement across a state 

space while avoiding damaging the equilibrium distribution of the Markov chain 

through discretisation errors.  A pseudo-code for the HMC algorithm using the leapfrog 

in the dynamics simulation is given in Algorithm 6.3 with Figure 6.4 illustrating the 

main components. 

 

Leapfrog proposals satisfy the reversibility condition since the negation of the 

momentum at the end of the leapfrog trajectory of many steps implies that a trajectory 

from point A to point B is taken back from B to A.  However, the momentum negation 

is not shown in the Algorithm 6.3 implementation since the replacement of the 

momentum is achieved with resampling before starting new leapfrog trajectory. 

 

The HMC algorithm utilises long leapfrog trajectory lengths, thus avoids the random 

walk behaviour. As the parameters x travel in the direction of the momentum u during 

each dynamical proposal, the state of the system tends to move linearly with time, that 

is, L steps will thus tend to be proportional to L (Neal, 2011). In comparison, 

Metropolis-Hasting often travels distance proportional to √L for L steps with stepsize ∆t 

(Neal, 1993).   

 

The HMC algorithm utilises long leapfrog trajectory lengths, thus avoids the random 

walk behaviour. As the parameters x travel in the direction of the momentum u during 

each dynamical proposal, the state of the system tends to move linearly with time, that 

is, L steps will thus tend to be proportional to L (Neal, 2011). In comparison, 



CHAPTER 6 – ADVANCED MCMC TECHNIQUES – PART I: HAMILTONIAN MONTE CARLO 

 

 

 

188 

 

Metropolis-Hasting often travels distance proportional to √L for L steps with stepsize ∆t 

(Neal, 1993).   

 

Algorithm 6.3: Hamiltonian Monte Carlo Sampler 

1. Initialise t  = 0, ∆t, Nsamples, L, x0  

2. For i = 1 to Nsamples do 

3.            Draw [mean 0,variance ]u N m     #    Gibbs Sampling step 

4.            Set 
      0 0

1, ,ix u x u  

5.            For j = 1 to L do 

                            #  Alternate full steps for position and momentum 

6.                     
      

1

1 12 2
j

j j
u u t U x

 
         # Make a half step for momentum 

7.                     
     

1

1 2.
j

j j
x x t m u

 
          #  Make a full step for position 

8.                     
      

1

2 2
j

j j
u u t U x

 
 

     # Make another half step for momentum 

9.            End For  

10.            Set       , ,
L L

x u x u    

           #  Evaluate Hamiltonian (potential plus kinetic energies) at start and end of the trajectory    

11.            Evaluate 
         0 0 0 0 2

1

( , ) ( ) 2
d

k k

k

H x u U u u m


      

12.            Evaluate  2

1

( , ) ( ) 2
d

k k

k

H x u U u u m


      

13.            Evaluate       0 0
, ,H H x u H x u     

14.            Draw [0,1]Uniform  

15.            If   min 1,exp H   then    #    Metropolis algorithm step 

16.                        , ,i ix u x u                #  accept 

17.            Else 

18.                        1 1, ,i i i ix u x u          #  reject 

19.            End If 

20. End For 

21. Return  
0

,
Nsamples

i i i
x u
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Figure 6.4: The HMC steps algorithm for k = 1 iteration. 

 

HMC combines stochastic and deterministic sampling characteristics. The deterministic 

approach allows large steps in the parameter space to be taken with only a few 

evaluations of U and the gradient of U.  The ability to take large steps is the essential 

feature of the Hamiltonian method that makes it attractive.  

6.3.3 Algorithm Parameter Effect 

Choosing the appropriate tuning parameters for MCMC algorithms is a major issue 

within the MCMC community (Roberts and Rosenthal, 2001). Although some choices 

can be set via human ingenuity, a long-standing objective in MCMC is to construct 

these choices and the application of MCMC in an automatic way (Green and Murdoch, 

1998).  Updating tuning parameters of MCMC algorithms automatically as the 

algorithm runs is one of the recent advances in the adaptive MCMC algorithm. 

Carefully designed adaptation for the parameter values during the run can be valid and 

effective and have potential for a wider set of MCMC applications in the future 

(Andrieu and Atchadé, 2005; Andrieu and Moulines, 2003; Atchadé and Rosenthal, 

2005; Giordani and Kohn, 2010; Haario, Laine, Mira, and Saksman, 2005; Haario, 
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Saksman, and Tamminen, 2005; Roberts and Rosenthal, 2007; Roberts and Rosenthal, 

2009), whereas other naive adaptations can destroy ergodicity (Rosenthal, 2004).  

Atchadé et al. (2009) provides an introduction to adaptive MCMC and particularly 

reviews the methodological and theoretical aspects of the method. 

 

There are three parameters to tune while performing HMC, namely: m, stepsize ∆t, and 

the number of leapfrog steps L where ∆tL determines the trajectory length to be taken. 

A careful selection of stepsizes is crucial for HMC to perform well and provide accurate 

estimates with the best choices that would be obtained by monitoring the acceptance 

rate and the efficiency of the resulting chains.  Large stepsizes will bring errors into the 

simulation and the energy H at the end of the trajectory will differ significantly from the 

energy at the start of the trajectory that may result in repeated rejections caused by the 

Metropolis step, hence the acceptance rate declines.  Therefore, ∆t should be chosen 

small enough to carry out the Hamiltonian dynamics correctly, so that the average 

rejection rate resulting from the Metropolis step is not too large but not too small that 

effective exploration of the high probability region is hindered.  Theoretical analysis of 

optimal stepsizes ∆t and acceptance rates is presented in Beskos et al. (2010).  

 

For each dynamic progression in the deterministic step, the number of leapfrog steps L, 

the second parameter to be tuned, should be large enough to take the walker far from the 

starting point.  Too many steps may increase the computational cost, and a small 

number of steps may result in correlation between the samples.  Thus, a trade-off 

between short and long trajectories is needed for the studied problem. The values for the 

third parameter, the mass vector m, can be selected where an element mi is 1 for each i if 

the elements are of comparable scale. This can be guaranteed by normalising the 

uncertain parameters in the beginning. It turns out that selecting the masses mi is 

equivalent to selecting different stepsizes ∆t in different dimensions of the parameter 

(Choo, 2000; Neal, 2011).     

6.3.4 Algorithm Parameter Selection  

In evaluating how well the parameters, stepsize ∆t and the number of leapfrog steps L, 

are selected, preliminary runs need to be performed and trial values have to be selected. 

However, this may be time-consuming and impractical particularly in higher 

dimensions.  Adaptive stepsize is usually recommended over the constant stepsize 

(Neal, 2011; Roberts and Rosenthal, 2007; Roberts and Rosenthal, 2009) where the 
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dynamics evolve with different speeds in different regions of the trajectory based on the 

characteristics of the region such as the shape and orientation of the potential energy 

function.  This reduces the computational cost and simulation errors significantly 

(Choo, 2000).  The masses could be considered the extra degrees of freedom that allow 

leapfrog updates with different stepsizes for different components whilst still simulating 

Hamiltonian dynamics and approximately keeping H constant. This is achieved by 

substituting u u m in the leapfrog updates in Eqs. (6.17)– (6.19), resulting in Eqs. 

(6.23)– (6.25). 

       2
2

t
u t u t t m U x t

 
     

 
                   Eq. (6.23) 

 ( ) ( ) .
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t
x t t x t t m u t

 
      

 
                    Eq. (6.24) 

       2
2

t
u t t u t t m U x t t

 
        

 
      Eq. (6.25) 

 

Neal (1996a) optimised stepsizes for a quadratic Hamiltonian by estimating the local 

second derivative of the potential energy.  He concluded that H stays bounded under the 

leapfrog discretisation if ∆t < 2ζ while H diverges if a stepsize ∆t > 2ζ is used.  Choo 

(2000) generalised this result for non-quadratic H and suggested taking into account the 

local length scales of the distribution based on the width of potential energy bowl in the 

direction i, ∆ti as in Eq. (6.26) in which η represents the stepsize adjustment factor.  The 

properties outlined in Section 6.2.1 are satisfied for the Markov chain resulting from 

simulating H(x,u) under the new updates (Choo, 2000). 

1

2 2

2i

i

U
t

x




 
   

 
                                 Eq. (6.26) 

In this thesis, we estimated the stepsizes by the simple equation i it      where βi is 

the averaged distance for each dimension from the current values of the parameters and 

η is the stepsize adjustment factor adjusted during iterations while taking into account 

the appropriate scale in various dimensions.  The setting of the stepsizes is problem-

dependent.  Neal (1996a) makes a selection depending on the current location in a 

neural network model application where stepsizes have not been updated during a 

leapfrog trajectory course and thus the leapfrog trajectories are reversible. 

 

Once a proper stepsize is established, the number of leapfrog steps can be selected 

based on experimenting with different stepsizes and monitoring the autocorrelation and 
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efficiency of the chain.  L may be randomly selected from a discrete uniform 

distribution from 1 to some preselected Lmax to avoid getting into a resonance condition 

(Mackenze, 1989).  The resonance condition occurs when trajectories in the leapfrog 

loop circle the same closed trajectory for a number of cycles, but it seldom happens in 

practice. Autocorrelation is one of the diagnostic tools often used to analyse MCMC 

methods performance and it is discussed in Section 6.3.6. 

 

A variety of Hamiltonian based Monte Carlo methods discussed in significantly more 

detail and background material can be found in Andrieu et al. (2003), Chen et al. 

(2000), Cheung and Beck (2009), Choo (2000), Goldstein (1980), Hanson (2001), 

Leimkuhler and Reich (2004), MacKay (2003), Murray (2007), Neal (1993), 

Rasmussen (2003), Rossberg (1983), and Torby (1984).  

6.3.5 Hamiltonian Monte Carlo Convergence  

For HMC to converge asymptotically to an invariant unique distribution, it should be 

ergodic (aperiodic and irreducible) which relies upon the Hamiltonian, the leapfrog 

trajectory length, and the stepsize adjustment factor.  Periodicity in the majority of 

complex nonlinear problems is improbable.  Varying the stepsize adjustment factor 

randomly over a small range should eliminate any periodicities (Choo, 2000; Mackenze, 

1989).  Satisfying the irreducibility constraint is based on the exact shape of the 

potential energy surface in the underlying problem.  If for finite values of x, the 

potential energy does not become infinite, HMC should be irreducible.  A positive 

probability exists for obtaining large enough kinetic energy from momentum 

replacement to avoid entrapment and to explore other areas of the parameter space when 

sampling near a local minimum.  However, this can fail if the local minimum is located 

in very steep regions and bounded by walls of infinite potential minimum energy or 

very steep gradients such as presented in the petroleum example in Section 7.2.2.  Thus, 

we will have irreducibility.  Choo (2000) noted that, even though HMC only simulates 

Hamiltonian dynamics approximately, it is possible that a finite potential may be 

entrapped like an infinite one.  Even so, he argued that we can regard HMC simulation 

of the Hamiltonian dynamics as a justification to consider that the irreducibility 

condition holds.  For the history matching problem the Hamiltonian is finite for finite 

values of model parameters x.  In this case we do not face the convergence problem or a 

very complex surface.  In the first case we may adjust the prior ranges for the 

parameters to feasible realistic ones or consider another parameterisation approach like 
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the ones demonstrated in Section 2.5. In the later case some MCMC methods, called 

Population MCMC, with the coupled HMC principles could be utilised to illustrate how 

to handle such cases. This is motivated in IC Fault model example in Section 6.2.2.  

6.3.6 Diagnostic Tools for Evaluating HMC Sampling Performance 

Diagnostic tools are usually used for evaluating the sampling performance of the chains 

drawn by MCMC methods.  In this thesis, a few diagnostic tools are selected to carry 

out tests, namely the autocorrelation length, and the power spectrum to estimate 

efficiency.  The methods are illustrated in Cowles and Carlin (1996), Hajian (2007), and 

Wolff (2004).  Adapted MATLAB and R packages (Coda) are used to conduct the tests. 

 

6.3.6.1 Autocorrelation Function (ACF) 

The autocorrelation (Box and Jenkins, 1976) function of a random process describes the 

general dependence between the values of the samples at different points in time, as a 

function of the two times or the time difference.  The autocorrelation function (ACF) 

can be used to check correlations of successive steps of a chain. The autocorrelation 

function at lag l is defined by Eq. (6.27).  
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                           Eq. (6.27) 

High autocorrelations within chains signify slow mixing and slow convergence. In this 

case thinning out a chain with high autocorrelations before calculating summary 

statistics is a useful common practice since a thinned chain may hold most of the 

information, but occupy less space in memory.  An ideal sampler with no correlations 

between successive components of the chain will have an autocorrelation which wanes 

rapidly.  

 

6.3.6.2 Autocorrelation Length 

The autocorrelation length of a chain is described in Eq. (6.28) in which lmax represents 

the maximum lag.  The  l  is aggregated until the length of the series is less than lmax 

which is identified by monitoring noisy autocorrelation to limit the errors in the 
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autocorrelation length estimate.  Achieving a value L = 1 indicates an ideal sampler, 

while higher values represent more relationships between the data. 

 
max

1

( ) 1 2
l

l

L l l


                                            Eq. (6.28) 

6.3.6.3 Power Spectral Analysis  

The power spectrum of the finite MCMC chain is described by Eq. (6.29) in which αk 

are ratios between the discrete (inverse) Fourier transform of the chain and the square 

root of the number of samples in the MCMC chain, N.  Here,  2 /k j N  for 

  1, , 2 1 .j N   

 
2

kP k                        Eq. (6.29) 

MCMC chains often have correlations on small scales and as a result their power 

spectra will have curvature on small scale levels (Dunkley et al., 2005).  Achieving a 

flat power spectrum indicates an ideal sampler (Hajian, 2007).  The spectral density at 

frequency zero, P(k) at k = 0, estimates the variance of sample mean sample, ζ2, in Eq. 

(6.30). 

   2 0
0, 0x

P
N P P k

N
                           Eq. (6.30) 

6.3.6.4 Efficiency  

The statistical efficiency of an MCMC chain is described by Eq. (6.31), in which ζ0 is 

the variance of the target distribution and ζx̄  is the variance of the sample mean from the 

MCMC chain.  It is the ratio of the number of independent samples drawn from the 

target distribution to the number of MCMC iterations needed to attain the equivalent 

variance in an estimated quantity of interest.  

 

2

0

2
lim
N

x

N
E

N




                         Eq. (6.31) 

Substituting Eq. (6.30) in Eq. (6.31) yields the efficiency of an MCMC chain in terms of 

P0 as in Eq. (6.32).  To determine the fraction that makes MCMC chain longer than an 

ideal chain, E
−1

 can be computed.  

2

0

0

E
P


                                     Eq. (6.32) 
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6.4 Numerical Experiments  

The performance of HMC technique in sampling posterior distributions is investigated 

on two numerical examples where an analytical function can be visualised and the 

gradient can be readily evaluated. 

6.4.1 Numerical Example Test 1 

We consider sampling from two variables target distribution defined by Eq. (6.33) 

(Kaipio and Somersalo, 2005) with HMC algorithm.  

   
4

2
2 2

1 2 1 2 2

1
, exp 10

4
p p p p p

  
         

                         Eq. (6.33) 

Figure 6.5(a) shows the scaled contour of the target density where the curved white area 

represents the high probability region.  We consider the (p1,p2) position parameters and 

the augmented corresponding momentum variables are drawn from Gaussian 

distribution with means of zero, standard deviations of one and zero correlation.  Figure 

6.5(b) shows a sequence of four simulated leapfrog trajectories where position versus 

momentum for a single parameter, p1, is depicted.  The chain converges from an initial 

condition that is not close to the distinctive set of the target distribution.  The first 

trajectory turns outs to finish in a state closer to the bottom of the potential energy 

landscape.  As the potential energy U is smaller, the kinetic energy K = u
2
/2 is 

essentially larger than it was in the beginning of the leapfrog trajectory.  As soon as the 

momentum is randomised ahead of the second trajectory, the kinetic energy reaches 

greatly smaller value.  Following the simulation of the fourth leapfrog trajectory, the 

sampled state lies in an area typical of the target density.  HMC samples drawn are 

shown in Figure 6.5(c) and the plot clearly shows that the samples came from the high 

probability region in the target density. 

  
(a) Target density 

 
(b) Leapfrog trajectories 

 
(c) HMC samples 

Figure 6.5: 3D plot for the probability distribution of interest π(p1,p2) (a), position versus its 

augmented momentum coordinate (b), and HMC samples (c) 
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6.4.2 Numerical Example Test 2 

Here we consider sampling with the HMC algorithm from the distribution given by Eq. 

(6.34) (Dunkley et al., 2005; Hajian, 2007).  The target distribution is an example of a 

thin, curved, non-Gaussian distribution. 

 
      

2
2 2

2

2 2

1 2

2 1 2 1 1 2 1
,

8 2

x y y
x y

 

    
                    Eq. (6.34) 

The 3D plot of the negative log probability distribution is shown in Figure 6.6(a) in 

which 
1 2 10.035, 5     and x,y are scaled in the range [0,1] in Eq. (6.34) 

(Figure 6.6(b) and (c) are in the original scale).  Sampling from non-Gaussian or curved 

distributions can be very difficult and inefficient with common Metropolis-Hastings 

MCMC algorithms (Dunkley et al., 2005). That is because for a number of dimensions d 

≥ 2  a potential problem arises for these distributions in which the region of high 

probability is elongated and curved as shown in Figure 6.6(c).  In this plot, the 

connected region of high probability has the shape of a thin crescent. This is also 

illustrated in the magnified 3D plot in Figure 6.6(b). 

 
(a) 3D objective function  

 
(b) Magnified function 

 
(c) 2D one part view 

Figure 6.6: 3D plot for the probability distribution of interest π(x,y) (a), with a 3D plot magnified in 

(b), and the 2D plot for one side of distribution (c) 

. 

The leapfrog algorithm is illustrated in Figure 6.7(a) and (b). Starting from the state (0,–

1), the three coloured curves formed by crosses or dots represent the first three 

trajectories generated by the Hamiltonian dynamics coloured by red, green and blue. 

The circles at the end of each trajectory show the end points. Each trajectory consists of 

η = 40 leapfrog steps with stepsize ε = 0.025. These steps are indicated by the crosses 

on each trajectory. Similarly to the previous example, after each trajectory, the 

momentum is randomised, the arrows indicate the direction of the gradient where the 

potential energy U is smaller as in the point numbered 2 in Figure 6.7(a), and hence, the 

kinetic energy 2

1
( ) 2

d

ii
K u u


  is larger than it was at the start of the next trajectory to 
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preserve the Hamiltonian H. When the momentum is randomised before the third 

trajectory, its kinetic energy becomes much smaller (from the stochastic nature) and so 

converges. As a contrast in Figure 6.7(b) the Hamiltonian H is not approximately 

conserved for the rejected state indicated by „R‟. In Figure 6.7(a) all trajectories are 

accepted, while in Figure 6.7(b) two are accepted and one is rejected. 

 

 
(a) Three accepted states 

 
(b) Two accepted states 

Figure 6.7: HMC method uses leapfrog simulation where in (a) three accepted states are drawn and 

in (b) two accepted states are drawn 

 

HMC sampling from this distribution is shown in Figure 6.8(a) where the first 1000 

samples are depicted in 3D.  The gradient is calculated at every point in the parameter 

space directly from the analytical function.  The widths are chosen such that ζ2
2
/ζ1 = 5.  

Figure 6.8(b) and (c) show the same samples on a larger scale and 2D plot. 

 

 ( 

a) 3D objective function 
  

(b) Magnified samples 
 

(c) Samples in 2D 
Figure 6.8: Samples drawn in (a) 3D plot, (b) 3D larger scale plot, and (c) 2D plot 

6.5 Computation of the Gradient  

In theory, gradients are a much richer source of information and only cost a constant 

multiple of the computer time needed to calculate a function (Bischof and Bücker, 

2000; Murray, 2007). However, the difficulty with simulation tasks is that inaccuracies 

accumulate quickly unless time is discretised very finely, which may lead to a large 

computational cost. 
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Implementing Hamiltonian Monte Carlo requires us to compute the gradient of the 

negative logarithm of the posterior distribution, which is the sum of the misfit and the 

negative log of the prior. In general, this term cannot be computed analytically, so 

numerical approaches have to be used.  There are two approaches which can be 

followed to compute this term.  If the gradients of the solution with respect to uncertain 

variables are available, for example from an adjoint code, then this term can be 

computed directly.  Computing the gradient using finite differences for instance requires 

either d or 2d evaluations of U, where d represents the dimensionality of the uncertainty 

parameters.  Alternatively, it can be computed less accurately from a proxy to 

approximate the misfit surface obtained from a fast interpolation model instead of the 

exact one based on the flow simulation result.  The multi-layer perceptron (MLP) neural 

network is one of the efficient interpolation models that could be used (Christie et. al., 

2006).  

 

In the application presented in the thesis, we use a General Regression Neural Network 

(GRNN) (Specht, 1991; Nadaraya, 1964; Watson, 1964) with Gaussian Kernels to 

approximate the misfit surface, and then compute the gradient from the approximated 

surface.  It is important to note that there are some restrictions on updating the gradient 

surface to ensure consistency with the MCMC assumptions (Rosenthal, 2007, 2011). 

This is discussed in significant detail with illustrative examples in Gilks et al. (1998) 

and Roberts and Rosenthal (2007, 2009) and fall under adaptive MCMC topics.  A 

theoretical review of a machine learning approach, the general regression neural 

network, is provided next to develop an approximation that resembles the misfit surface, 

and to estimate the gradients.  

 

In the second equation in the leapfrog algorithm which involves computing the gradient 

of the negative logarithm of the posterior distribution, Eq. (6.17), is composed of the 

misfit term and the minus log (prior) term from the relation Eq. (6.35).  Using an 

auxiliary distribution that mimics the negative logarithm of the posterior distribution is 

fast to compute.  The leapfrogs can then be taken with no major additional cost of time.  

( ) log( ) log( )

( ) log( )

U x likelihood prior

M x prior

  

 
         Eq. (6.35) 

Substituting in Eq. (6.17) we get Eq. (6.37) in which M(x) is the misfit at x. 

         2 log
2

t
u t u t t M x t prior

 
       

 
       Eq. (6.36) 
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         2 log
2

t
u t t u t t M x t t prior

 
         

 
Eq. (6.37) 

6.5.1 Machine Learning Background 

The machine learning approach includes a wide selection of data-driven algorithms 

based on the concept of learning from examples (supervised learning). The so called, 

lazy learning approach provides a way to modify the model by means of continuous 

adaptive training once more information becomes available.  

 

In supervised learning, systems are built to compute the output from inputs without 

explicit programming but rather using examples as shown in Figure 6.9. This implies 

that our machines are trained instead of programmed as they usually are to perform a 

specific task.  

 
Figure 6.9: In the learning from example scheme, we learn a function f from input-output pairs 

(xi,Mi) called the training set. 

 

Training is the process whereby we choose the best function that describes the relation 

between each input (model) and the corresponding output (misfit).  By best function, we 

mean a function that not only performs well on the training data (interpolation), but also 

generalises well on unseen input data (extrapolation).  More formally, if the data are in 

the form (xi,Mi), i = 1,…,N the learning from examples scheme is to fit a multivariate 

function to the data so that this function predicts on unseen data.  That is the entire 

space.  

 

General Regression Neural Networks (GRNN) is one of the machine learning 

approaches that was tested previously to guide the stochastic sampling algorithms in 

assessing the uncertainty of predictions, and it has shown reasonable results 

(Demyanov, 2006). 

 

f
 

output input 
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6.5.2 General Regression Neural Network (GRNN) 

General Regression Neural Network (GRNN) is Donald Specht's term (Specht, 1991), 

for Nadaraya-Watson kernel regression (NWKRE) (Nadaraya, 1964; Watson, 1964).  It 

was recreated in the neural network literature by Schiøler and Hartmann (Tomandl and 

Schober, 2001) (kernels are also called parzen windows, and they are usually 

probability density functions). It is based on established statistical principles and 

converges with an increasing number of samples asymptotically to the optimal 

regression surface.  

 

Consider a nonlinear regression problem, described by a model whose observable 

output Mi in response to an input vector xi is defined by 

( )i i iM f x                          Eq. (6.38) 

where f(xi) is a smooth function,  20,
ii x  , and Mi is the i

th
 misfit defined by: 

  
2

2
1

;
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i

t

obs sim x
M i




                           Eq. (6.39) 

The aim is to construct the underling function, f(xi), given the training 

data   
1

, .
N

i i i
x M


  The key idea is to compute a linear combination (in Mi) of local 

kernel functions centred on the training data.  The Nadaraya-Watson kernel regression 

NWKRE estimator is then given by Eq. (6.40).  
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                                Eq. (6.40) 

where  M̂ x is the kernel density estimate at x and 
iM  are the weights (misfits).  The 

most commonly used kernel function is the Gaussian kernel in Eq. (6.41). 

 
 

2

2
, exp

2

i

i

x x
K x x



 
  

 
 

                                Eq. (6.41) 

ζ is called the smoothing parameter or bandwidth which represents the width of the 

kernel as in Figure 6.10. 
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Figure 6.10: Gaussian kernel centred at 10 

 

NWKRE can be rewritten as in Eq. (6.42). 
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                  Eq. (6.42) 

6.5.2.1 NWKRE as a Neural Network: GRNN 

GRNN consists of four layers: input, pattern, summation and an output layer.  Figure 

6.11 is a graphical representation of GRNN in terms of a neural network.  The input 

layer transfers an input signal vector x, into the next pattern layer.  The number of 

neurons (kernels) in the pattern layer is equal to the number of training samples, N.  For 

an input vector all pattern layer neurons compute the Euclidian distance between the 

input vector and the corresponding neuron location.  These Gaussian kernel distances 

are the activation function, and passed out to the next summation layer.  The summation 

layer consists of two neurons that calculate the numerator and denominator respectively 

in Eq. (6.42).  Each of these neurons computes a weighted sum of the output from a 

previous layer.  The weights correspond to the arrows between the neurons.  Each arrow 

from the pattern layer neuron to the nominator neuron is a target value associated with 

the corresponding neuron location.  All arrows between pattern layer neurons and a 

denominator neuron are equal to a unit.  The output layer neuron carries out the division 

operation and transfers the output value.   
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Figure 6.11: Pattern layer: consists of N kernels – one for every available data point 

 

In Figure 6.12 the GRNN estimator is shown in red based on N = 3 samples with kernel 

width ζ = 3 computed using Eq. (6.43). 
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 Eq. (6.43) 

       
Figure 6.12: GRNN estimate based on N = 3 samples with kernel width σ = 3 

 

 

6.5.2.2 Kernel Width Optimisation  

The kernel width ζ is a very crucial parameter as it controls the smoothness of the 

estimate which in turn determines the smoothness of the boundaries (this affects the 

probability of error).  

 As ζ decreases towards 0, the number of modes increases to the number of data 

points and the kernel density estimator is very noisy, as we have a sum of delta 

functions (very spiky approximation) as in Figure 6.13(a). 

Pattern layer 

 

σ =3 
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 As ζ increases towards one (depends on the scale of the problem), the number of 

modes drops to 1, so that any interesting structure has been smeared away and 

the kernel density estimator displays a unimodal pattern, as we have a sum of 

constant functions (approximated by a constant equal to the sample mean of the 

observations).   Figure 6.13(c) shows the GRNN approximation using kernel 

width = 0.9.  

 In between we get approximations that are gradually smoother as shown in 

Figure 6.13(b). 

 

 
(a) kernel width = 0.01 

 
(b) kernel width = 0.1 

 
(c) kernel width =  0.9 

Figure 6.13: Different kernel widths change controlling the smoothness of the surface 

 

There are several ways to tune the kernel widths parameter ζi (in the case of the 

anisotropic kernels).  These widths are usually chosen by cross-validation (leave-one-

out) procedures or by more complex methods that might use the gradient (Demyanov, 

2006).  Cross-validation procedures to choose the optimal parameters are iterative with 

each iteration costing O(N
2
).  So adding a new kernel costs O(N

3
).  The basic idea can 

be summarised in the following steps 

 Leave some data out of the training set (cross-validation set)  

 Train with different kernel widths  

 Evaluate performance on cross-validation set by calculating the root mean 

square deviation (RMSD) – the residuals 

 Pick best kernel width configuration (ζopt) corresponds to CVError given by Eq. 

(6.44) in which ˆ NET

iM is the estimate of the cross-validation set. 

 
2

1

1 ˆmin
N

NET

Error i i

i

CV M M
N 

  
  

  
                               Eq. (6.44) 

GRNN is a universal approximator for smooth functions, so it should be able to solve 

any smooth function approximation problem given enough data. The main drawback of 
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GRNN is that like kernel methods in general, it suffers badly from the curse of 

dimensionality.  A comprehensive study of other kernel width optimisation choices and 

more sophisticated methods are available in Kanevski and Maignan (2004) which also 

contains an exhaustive bibliography of the literature.  

 

As illustrated a critical step in the regression is computing the kernel width parameter.  

In our application, we used a fraction of the average distance between points in each 

dimension and cross-validation training only in the early stages for reasonable initial 

guesses.   

6.5.3 Gradient of the Regression Surface by the GRNN 

Yet, another feature of the GRNN is the ability to compute the gradient of the 

regression surface directly without the need for further numerical approximation.  

Considering the selected training data allows the gradient to be defined and computed, 

then for the special case of the isotropic Gaussian kernel (ζ) the gradient is computed by 

Eq. (6.45). 
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    Eq. (6.45) 

Other variants for anisotropic kernel widths case can be found in Tomandl and Schober 

(2001). 

6.5.4 Lower Boundary of Kernel Width 

The lower boundary is designed to guarantee numerical stability for preventing division 

by zero in Eq. (6.42) and Eq. (6.45) corresponding to the GRNN estimate and its 

gradient respectively.  Each term of the sum has to return a value larger than zero. In the 

case of the Gaussian kernel Eq. (6.41) leads to the following condition in Eq. (6.46). 
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                    Eq. (6.46) 
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where ε is the smallest number larger than zero (hardware dependent), and Di,min is 

distance of xi to its nearest neighbour.  Hence, the lower boundary for the i
th

 kernel 

width in Eq. (6.47) (anisotropic case) holds: 

2

,min

,min
2ln

i

i

D



                         Eq. (6.47) 

If the training data include two identical samples xi and xj, the lower boundaries ζi,min 

and  ζj,min  become zero. This undesirable behaviour can be prevented by eliminating all 

double samples. 

6.6 HMC Procedure Recap  

The sampling procedure for generating multiple history matched models is summarised 

in the following steps with diagrammatic illustration in Figure 6.14. 

1. The HMC algorithm is initialised with a population of an initial set of ninit 

models randomly generated in the search space by a random generator.  

2. For each model the forward problem is solved and the relevant misfit value M is 

obtained. The population of models with their misfits will be used to 

approximate the surface and obtain the gradients. 

3. Train GRNN on the initial population from an exploratory run to get the optimal 

sigma. 

4. Generate a new momentum vector u from the Gaussian distribution 

p(u) exp(−K(u)). This step is considered as the stochastic part of the algorithm, 

which ensures the whole phase space is explored. 

5. Starting from the current state, perform L leapfrog steps with a stepsize ∆t, 

resulting in the new state (x(∆t L), u(∆t L)) 

6. Employ the Metropolis rule, make the next sample (x
k+1

, u
k+1

) = (x(∆tL), u(∆t 

L)) with probability min(1, exp(−(H(x(∆t L), u(∆t L)) − H(x
k
, u

k
))), where k is 

the iteration number. 
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Figure 6.14: The HMC-GRNN algorithm steps for k = 1 iteration (1 forward simulation run) 

 

 

Some common methods for evaluating MCMC convergence is based on observing 

whether the sample estimation of a certain E(f(x)) stabilises for some chosen function f. 

However, this may provide misleading results because the stabilisation can be a result 

of the chain of samples being trapped in some region of the parameter space, even 

though, the Markov chain has not yet converged to the stationary distribution. Another 

main weakness of this approach is that if it is the only one, is that it is difficult to 

evaluate how far away the Markov chain is away from reaching stationarity or 

convergence given that it is not known a priori what value the estimate for E(f(x)) 

should converge to.  Thus this approach needs to be complementary to other plots to 

monitor sampling efficiency by testing the reduction in the value of the misfit as well as 

the trace plot to monitor whether the chain is exploring different parts in the parameter 

space. 

6.7 Numerical Example Test 

We consider the thin, curved, non-Gaussian distribution defined by analytical target 

density example in Section 6.4.2 to demonstrate and test the algorithm coupled with 
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gradients estimated with GRNN in this case.  The initial training dataset composed of 

36 kernels is shown in pink points in Figure 6.15(a), and the optimal kernel width 

obtained for this dataset is 0.04 using the cross-validation approach as shown in Figure 

6.15(b).  

 

 

(a) 36 kernels 

 

(b) kernel width optimisation 

Figure 6.15: (a) Initial training dataset and (b) cross-validation error vs. kernel width 

 

Using a kernel width = 0.04, the approximated GRNN surface is shown in Figure 6.16. 

The gradient for such surface is not a good approximation to the exact gradients 

computed at the 36 kernels.  

 

 
Figure 6.16: GRNN surface using the 36 kernels with kernel width = 0.04 

 

The optimal kernel width using the cross-validation for 1156 kernels is 0.0025604 

which gives the GRNN surface shown in Figure 6.17.  Since our objective is to carry 

out as few simulations as possible we used the 36-kernels surface and we increased the 

value of the kernel width as an alternative approach to obtain a smoother surface as the 

cross-validation is not suited when the dataset is small.   The cross-validation can then 
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be employed after a number of iterations to check if there is a benefit to using either of 

the two approaches at any stage in the optimisation.  

 

 
(a) GRNN surface 

 
(b) Optimal kernel width 0.0025604 

Figure 6.17: GRNN surface using the 1108 kernels and kernel width = 0.01 

 

Using the 36-kernels with kernel width = 0.07, the GRNN surface with the gradients are 

shown in Figure 6.18 which is a smoother surface.   

 

 
(a) GRNN surface using kernel width 

= 0.07 

 
(b) The scaled GRNN gradients using  

kernel width = 0.07 
Figure 6.18: GRNN surface and the gradient vectors in red 

 

The HMC acceptance rate is 68%. Each HMC trajectory consists of L = 40 leapfrog 

steps each with stepsize ∆t = 0.0025.  Figure 6.19(a) shows the first 680 samples drawn 

from this distribution and Figure 6.19(b) shows the same samples in a larger scale.  In a 

previous study which used the exact gradients, the acceptance rate was 80%.  This 

means that the gradients obtained using the approximated misfit surface by the GRNN 

give a lower acceptance rate and the better the surface is approximated the higher the 

acceptance rate is.   
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Figure 6.19: HMC samples using grad GRNN shown in pink pluses (left) 3D plot, (right) 3D larger 

scale 

 

6.8 HMC Sampling Strategies 

An experiment with MCMC involves an initial period in which the stepsizes and any 

control parameters are adjusted.  This is followed by a burn-in period in which we check 

that the simulation converges to the desired distribution.  Finally, we record the sample 

vector occasionally to create a list of samples that we hope are roughly independent 

samples from the desired distribution.  Figure 6.20 shows three possible MCMC 

strategies to obtain N defined samples where time is represented by horizontal lines and 

samples by yellow circles (MacKay, 2003).   

1. Make one long run consisting of one long burn in period followed by a sampling 

period obtaining all N samples from it. 

2. Make a few medium-length runs with different initial conditions, obtaining some 

samples from each. 

3. Make N short runs, each starting from a different random initial condition, with 

the only sample that is recorded being the final state of each simulation. 

 

The first strategy has the best chance of achieving convergence.  The last strategy may 

have the advantage that the correlations between the recorded samples are smaller.  The 

middle strategy is popular among MCMC experts (Gilks et al., 1996) because it avoids 

the waste of discarding burn-in iterations in many simulation runs, while still being able 

to detect a lack of convergence problems that would not be noticeable from a single run. 

Note that it is possible to average over dependent states.  This will not lead to any bias 

in the estimates, but estimating the accuracy of the estimate is harder when the states are 

dependent (MacKay, 2003). 
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Figure 6.20: Three possible MCMC strategies for obtaining nine samples in a fixed amount of 

computer time 

6.8.1 Numerical Example Test 1 

We test medium-length runs for the same example in Section 6.7 with GRNN 

approximation of gradients.  The setup used for this case is shown in Table 6.1. 

Table 6.1: HMC algorithm parameters  

HMC Parameter Sampling–1 Sampling–2 

The method used for generating ninit Latin Hypercube Sampling  Latin Hypercube Sampling 

ninit 36 36 

No. of runs (R) 20 36 

Upper limit for no. of leapfrog steps (Lu) 30 30 

Lower limit for no. of leapfrog steps (Ll) 10 10 

 

The obtained HMC samples for the two medium length runs are shown in Figure 6.21.  

The samples are colour coded according to the misfit value.  The samples are obtained 

with the same total number of simulations but with Sampling–2 using shorter chains 

than Sampling–1.  As can be seen in the plot, the results are comparable with no 

significant differences.  Samples obtained with the two sampling lengths obtained good 

quality models indicated with the blue colour for low misfit values. 

 

Medium Length 

Long 

Short 

Time 

Sample 
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(a) Sampling–1 

 

(b) Sampling–2 
Figure 6.21: HMC Samples drawn for two runs 

 

6.8.2 Numerical Example Test 2 

We test HMC sampling using medium-length runs on the Rastrigin function with two 

variables.  The Rastrigin function is a non-convex, non-linear, multimodal function, and 

has a large number of local optima.  It is used as a performance test problem for 

optimisation algorithms.  The 2-dimensional function was first introduced by Rastrigin 

and has been generalised by Mühlenbein et al. (1991).  Because of the large parameter 

space and the large number of local minima it is considered to be one of the fairly 

difficult optimisation problems.  The Rastrigin function is defined by Eq. (6.48). 

 2

1

( ) exp cos(2 )
d

i i

i

x Ad x A x 


  
     

  
        Eq. (6.48) 

The parameter range is: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , d.  For two independent 

parameters, Rastrigin's function is defined as in Eq. (6.49) in which A = 10. It has a 

global minimum of zero at zero. 

 

  2 2( , ) exp 20 10(cos2 cos2 )x y x y x y           Eq. (6.49) 

 

The setup used for this case is shown in Table 6.2.  The quality of the samples obtained 

is colour coded according to the misfit and shown in Figure 6.22 with blue coloured 

points.  
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Table 6.2: HMC algorithm parameters  

HMC Parameter  Setup 

The method used for generating ninit Regular grid  

ninit 36 

No. of runs (R) 36 

Upper limit for no. of leapfrog steps (Lu) 30 

Lower limit for no. of leapfrog steps (Ll) 10 

Number of iterations 30 

Total no. of simulations 1080 

 

 

(a) Grid 

 

(b) Run 1 

 

(c) Run 2 

Figure 6.22: HMC samples for Rastrigin function drawn for 2 runs (b) Run 1, and (c) Run 2 

 

6.9 HMC Application in Reservoir Modelling 

This section presents the results of producing history matched models used to quantify 

the uncertainty using HMC for the Teal South petroleum application parameterised with 

8 uncertain parameters as presented in Section 4.3.1.  

 

We used 607 days of production data for history matching (20 measurements out of 41 

measurements), and the remaining 3 years for all cases were used as prediction data to 

measure the predictive quality of the history matches.  The variance of oil rate is set to 

100.   Assuming an average error between observed and simulated data of about 75 with 

20 points, Eq. (6.50) suggests that a misfit of about 11.8 is reasonable.                                                                      

 
2

2

average errors
Misfit

qop

N




                      Eq. (6.50) 

The initial population comprised of 50 models generated randomly in parameter space 

are used to construct the misfit surface with GRNN as shown in Figure 6.23.  We ran 

three HMC chains each with 1350 reservoir model simulations starting from a random 
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one of the 50 initial points used.  We started the HMC sampling using gradients 

estimated from the GRNN with kernel width adjustment factor equal to 0.02. The 

leapfrog stepsizes were chosen to be ∆t = 0.02× ζi, where ζi, = (Cii)
 ½ 

and C is the 

covariance matrix.   At each HMC iteration, the number of leapfrog steps taken was 

randomly drawn from a uniform distribution from 10 to 25.   Table 6.3 represents the 

setup of HMC runs.  The best misfits obtained were 11.18, 12.55, and 12.1. 

 

  
Figure 6.23: Initial population composed of 50 models generated randomly 

 

Table 6.3: HMC algorithm parameters  

The HMC Strategy HMC-Long Run 

ninit 50 

No. of independent runs 3 

Upper limit for no. of leapfrog steps (Lu) 25 

Lower limit for no. of leapfrog steps (Ll) 10 

Stepsize adjustment factor (η ) 0.02 

ζGRNN adjustment factor 0.80 

Total number of simulations 1350 

 

All samples generated for the three runs starting from different location are shown in 2D 

projections in Figure 6.24 where the crosses represent the initial starting points.  HMC 

samples are shown in Figure 6.25.  Finally, the HMC samples used for the forecast 

period to estimate oil rate are depicted in Figure 6.26.   The Bayesian credible intervals 

are shown in Figures 6.27, 6.28, and 6.29 which captures the truth value.  The ranges 

are narrower than what we have seen in the Section 4.3.1 results for PSO. The reason is 

that here we used more observed data points.  Thus, adding more information restricts 
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and reduces the uncertainty in the estimates.  Chapter 7 shows more tests on the study in 

comparison with other stochastic methods. 

 

 
(a) Run 1 

 
(b) Run 2 

 
(c) Run 3 

Figure 6.24: All models generated 

 

 

 
(a) Run 1 

 
(b) Run 2 

 
(c) Run 3 

Figure 6.25: HMC samples generated 

 

 
(a) Run 1 

 
(b) Run 2 

 
(c) Run 3 

Figure 6.26: HMC samples generated – forecast period 
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Figure 6.27: Bayesian credible intervals for Run 1 

 

 
Figure 6.28: Bayesian credible intervals for Run 2 

 



CHAPTER 6 – ADVANCED MCMC TECHNIQUES – PART I: HAMILTONIAN MONTE CARLO 

 

 

 

216 

 

 
Figure 6.29: Bayesian credible intervals for Run 3 

 

 

6.10 Chapter Summary 

In this chapter we presented the Hamiltonian Monte Carlo (HMC) algorithm as a 

significant potential tool for rapid sampling of high dimensional parameter spaces 

which can be utilised for reservoir history matching, parameter estimation, and 

uncertainty quantification.  HMC is a Markov chain Monte Carlo (MCMC) technique 

that combines the characteristics of the Hamiltonian dynamics and the Metropolis 

algorithm to sample complex distributions.  The HMC approach integrates gradient 

information to address the random walk problem in the classical Metropolis algorithm 

by having auxiliary momentum variables that allow it to continue in the same direction 

for many steps followed by the Metropolis rejection test.  The leapfrog simulation has 

been used for discretisation of the Hamiltonian dynamics equations.  

 

An application for rapid generation of stochastic realisations, particularly of the 

permeability field, is reported in Bonet-Cunha et al. (1998).  The applications of the 

HMC algorithm to parameter estimation and uncertainty quantification in petroleum 

history matching examples have not been reported in petroleum literature.  This chapter 
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demonstrated our technical contribution of the work carried out and tested on Teal 

South field study using the HMC technique.  We have shown that algorithms based on 

Hamiltonian dynamics have the potential to be effective tools in uncertainty 

quantification in the oil industry.   In some complex cases as in the IC fault model case, 

more work needs to be carried out as we will outline in Chapter 8. 
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Chapter 7 – Comparison of 

Stochastic Sampling Algorithms 

for History Matching and 

Uncertainty Quantification 

The purpose of this chapter is to investigate the efficiency of three stochastic sampling 

algorithms for generating history matched reservoir models: Hamiltonian Monte Carlo 

(HMC) algorithm, Particle Swarm Optimisation (PSO) algorithm and the 

Neighbourhood Algorithm (NA). As we described in previous chapters, HMC is a 

Markov chain Monte Carlo (MCMC) technique that uses Hamiltonian dynamics to 

achieve larger jumps than are possible with other MCMC techniques.  PSO is a swarm 

intelligence algorithm that uses similar dynamics to HMC to guide the search, but 

incorporates acceleration and damping parameters to provide rapid convergence to 

possible multiple minima.  The NA is a sampling technique that uses the properties of 

Voronoi cells in high dimensions to achieve multiple history matched models. 

 

The comparative analysis in the next sections in this chapter is done for the two case 

studies in Section 4.3: the simple real Teal South and the complex IC Fault model. The 

algorithms are compared by generating multiple history matched reservoir models, and 

comparing the Bayesian credible intervals (p10-p50-p90) produced by each algorithm.  

We show that some algorithms are able to find models that fit the data well quickly, 

whereas others are able to find a more diverse set of models in parameter space.  The 

effects of the different sampling of model parameter space are compared in terms of the 

p10-p50-p90 uncertainty envelopes.  For the Teal South example we show that all 

algorithms are able to find equivalent match qualities and uncertainty estimates 
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(Mohamed et al., 2010b), while in the IC Fault example, the results vary (Mohamed et 

al., 2010c).  

7.1 Field Application Test 1: The Teal South Reservoir  

The same Teal South model setup with 8 uncertain parameters: horizontal 

permeabilities of all the five layers, a single value for kv/kh, rock compressibility and 

aquifer strength is used in the comparison with the uniform priors in the logarithms of 

the variables as indicated in Table 4.2.  The first 181 days of production data were used 

in the history match and the remaining 3 years is used as prediction data to measure the 

predictive quality of the history matches (6 measurements out of 41 measurements). The 

simulator production was controlled to match the total liquid rate, and history matching 

was carried out by matching the field oil rate.  A least squares misfit was used to 

measure how well a specific set of reservoir model parameters fits the observed data. 

The standard deviation of the oil production measurement errors was set to 100 STB/D 

based on previous works estimations (Christie et al., 2002; Valjak, 2008).  

7.1.1 Algorithm Setup Specifications   

For all the methods we started from the same initial population comprised of 30 models 

generated randomly in parameter space with 2D projections examples shown in Figure 

4.7.  

 

We ran 45 iterations for both NA and PSO algorithms.  For NA the parameters we 

chose were: ns/nr = 30/15 for balancing exploration and exploitation capabilities. For 

PSO the parameters we chose were: c1 = c2 = 2 with a linear decrease in the inertial 

weight w from 0.9 to 0.4 (Eberhart and Shi, 2007).  The random boundary strategy is 

used for handling particles flying outside of the feasible region, PSO–LDR (see Section 

4.1.3.3).  Although, this is not the best choice to handle the boundaries, it is useful to 

test the PSO performance with the NA in speed terms.  The total number of reservoir 

model simulations was 1380 in NA and PSO.  

 

We ran a single HMC chain of 1350 reservoir model simulations starting from a random 

one of the 30 initial points used for NA and PSO.  We started the HMC sampling using 

gradients estimated from the GRNN with kernel width adjustment factor equal to 0.4 

using the 30 initial points to construct the GRNN approximated misfit surface. Thus, the 

total number of simulations used is 1380.  The leapfrog stepsizes were chosen to be ∆t = 
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0.02 × ζi, where ζi,= (Cii)
 ½ 

and C is the covariance matrix of the data points. At each 

HMC iteration, the number of leapfrog steps taken was randomly drawn from a uniform 

distribution from 10 to 25.  

7.1.2 History Matching Results  

We will first compare the performance of the two sampling algorithms NA and PSO.  

Both NA and PSO generate multiple history matched models.  Uncertainty 

quantification is then carried out using the separate NAB code which converts the 

posterior probability density at each sampled location to a posterior probability (equal to 

density times the volume of Voronoi cell surrounding a point). 

 

Figure 7.1 (left) shows the best history match obtained by NA and PSO.  There is little 

to choose between the two history matched models.  Figure 7.1 (right) shows the 

optimal values for the 5 horizontal permeabilities – the best fitting parameters found by 

NA and PSO are different (although the differences are not large). Two other sets of 

parameter values providing almost equally good matches are shown in Figure 7.2. 

 

  

Figure 7.1: Comparison of the best history matches (left) and the corresponding permeability 

estimates (right) obtained from NA and PSO 
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Figure 7.2: Two alternative sets of parameter values providing almost equivalent match qualities to 

the maximum likelihood model 

     

Table 7.1 shows the best history matching misfits obtained by each method in both 

historical and forecast periods.  The history misfits for all methods are around 4.2.  The 

corresponding forecast misfit calculated with the same misfit definition in Eq. (4.6), in 

which the number of observations used is T = 35, is presented in the table with the best 

match in the forecast being obtained by HMC followed by PSO then NA.  The values 

show that there are small differences in the probability values of these models.     

Table 7.1: Best history and forecast misfits for all stochastic algorithms 

Algorithm Number of Simulations Best Misfit Forecast Misfit 

PSO 1380 4.2 7.45 

NA 1380 4.2 8.33 

HMC  1380 4.2 6.91 

 
 

Figure 7.3 shows the progress of the mean generational minimum misfit of NA and 

PSO.  To generate this plot we ran 5 runs of NA and PSO.  NA and PSO used identical 

sets of points for each run, with a new set of random starting conditions generated for 

each run. We then plotted the mean generational minimum misfit, along with the 

standard deviation around each point.  We can see that NA and PSO reach the same 

misfit, but that on average PSO reduces the misfit in each generation more rapidly than 

NA. 
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Figure 7.3: Evolution of the mean generational minimum misfit for NA and PSO 

 

 

The sampling history of NA is shown in Figure 7.4, and that of PSO in Figure 7.5.  

Each plot consists of 8 plots, showing the evolution of the parameter sampling as a 

function of sampling.  The points are colour coded according to the misfit, showing the 

concentration of sampling at low misfit values as the algorithm sampling evolves.  Note 

that the red points have misfit 10 or above, and include many models that do not match 

well at all. 

 

The parameter values for the good history matched models can be seen by looking at the 

range of the blue points.  Both algorithms appear to concentrate sampling for the 

permeability values in similar zones, although NA appears to be holding onto two 

possible minima for log(kh2) (upper right plot), whereas PSO has homed in on the 

higher value.  The sampling for rock compressibility, aquifer strength, and log(kv/kh) 

evolves differently for both algorithms.  Nonetheless, the best matches obtained are 

very comparable in quality as shown in Figure 7.1 (left). 

 

Figure 7.6 shows the sampling history for HMC.  Note that in HMC, the algorithm is 

not continually trying to improve the degree of match; rather it is constantly sampling 

models that are acceptable history matches.  Most of the models generated have misfits 
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of 8 or below – corresponding to an average deviation from observed values of 1.5 

standard deviations or below.  

  

 

 

Figure 7.4: Sampling history of NA for each of the 8 unknown parameters 
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Figure 7.5: Sampling history of PSO for each of the 8 unknown parameters 

 

 

 

Figure 7.6: Sampling history of HMC for each of the 8 unknown parameters 
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7.1.3 Uncertainty Quantification: Comparison of NA, PSO, HMC 

Hamiltonian Monte Carlo is designed so that the models generated sample correctly 

from the posterior distribution (within sampling error), which means that p10, p50, p90 

predictions can be generated from an appropriate sum of the generated models.  Neither 

PSO nor NA has this property, so a separate assessment has to be made to determine the 

posterior probability of each of the sampled models. We used the NAB code 

(Sambridge, 1999b) to determine these probabilities for PSO and NA.  NAB works by 

running a Gibbs sampler on the approximate misfit surface generated by assuming the 

misfit is constant over each of the Voronoi cells surrounding a sampled point. 

 

Diagnostic tools for HMC introduced in Section 6.3.6 are used to analyse HMC samples 

before computing predictions.  Some statistics are shown in Table 7.2 where the 

effective size for each parameter corresponds to the effective sample size for the 

parameter.  The effective size is calculated on the basis of the autocorrelation: the less 

the autocorrelation the higher the effective size.  The predicted value of the spectral 

density at frequency zero is denoted by  0 0P P k  .  Finally, the order is the order of 

the fitted model.  The plots in Figures 7.7, 7.8, 7.9, and 7.10 show the autocorrelation, 

the autocorrelation length, the power spectrum, and the marginal density per parameter 

respectively.  The effective size tells how many independent samples to get out of the 

600 accepted samples.  As shown in the table the minimum across all the parameters is 

24 meaning that it is allowed to use 24 for computing statistics of predictions.  If all the 

samples for predictions are used, slightly biased results may be obtained which was not 

the case in this example. Thus, all samples have been used.  In practice if biased results 

are obtained, then sub-sampling 1 sample every 600/24 is required. 



CHAPTER 7 – COMPARISON OF STOCHASTIC SAMPLING ALGORITHMS FOR UNCERTAINTY QUANTIFICATION 

 

 

 

226 

 

Table 7.2: Statistical measures 

Parameter Effective size  0P =P k=0  Order 

P1 35.43 0.89 1 

P2 49.00 0.48 2 

P3 35.85 0.92 4 

P4 24.47 1.91 2 

P5 33.63 0.75 2 

logkvkh 32.53 0.85 3 

Rock compressibility 56.91 0.59 4 

Aquifer strength 32.06 0.79 1 

 

 
Figure 7.7: Autocorrelation of HMC for each of the 8 unknown parameters 



CHAPTER 7 – COMPARISON OF STOCHASTIC SAMPLING ALGORITHMS FOR UNCERTAINTY QUANTIFICATION 

 

 

 

227 

 

 
Figure 7.8: Autocorrelation length of HMC for each of the 8 unknown parameters 

 

 
Figure 7.9: Power spectrum, P(k), of the 8 unknown parameters obtained from the HMC 
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Figure 7.10: Marginalised distributions of the 8 unknown parameters Teal South model obtained 

from the HMC 

 

Figure 7.11 and Figure 7.12 show the Bayesian credible intervals (p10-p50-p90) for oil 

rate after history matching to the first 181 days of production.  Both NA and PSO have 

produced similar ranges.  The equivalent plot for HMC is shown in Figure 7.13. 

 

Figure 7.14 shows the relative uncertainty,  90 10 50 ,p p p    for each timestep. PSO 

have wider uncertainty ranges after around 400 days while NA and HMC have narrower 

uncertainty estimates than the PSO one. The overall relative uncertainty estimates for 

the three methods have little differences between them in this example. 

 

Figure 7.15 presents the Bayesian credible intervals for total recovery where all 

methods captured the observed value. 
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Figure 7.11: Bayesian credible intervals 

generated by NA 

 
Figure 7.12: Bayesian credible intervals 

generated by PSO 

 

 
Figure 7.13: Bayesian credible intervals 

generated by HMC 

 
Figure 7.14: Relative uncertainty  of the three 

methods 

 

 
Figure 7.15: Bayesian credible intervals for total recovery 
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Figure 7.16 shows the cumulative density function of the oil rate at two different times. 

The left hand plot is the CDF for the oil rate after 181 days at the end of the history 

matching period. The uncertainty plots for all three algorithms are very similar. The 

right hand plot shows the CDF after 1187 days. In this case there is a greater difference 

between the algorithms, although they are still similar. HMC provides a slighter wider 

p10-p90 range after the end of the history matching period than NA and PSO. The solid 

black vertical lines show the observed value at the end of history match time (left) and 

at the forecasted time (right). 

 

  

Figure 7.16: Cumulative Distributions from NA, PSO and HMC at (left) and after (right) the end of 

history matching 

 

7.2 Field Application Test 2: The IC Fault Model  

In the previous section we compared the performance of Hamiltonian Monte Carlo with 

two stochastic optimisers (Particle Swarm Optimisation and the Neighbourhood 

Algorithm) on Teal South, a simple example. In this section we compare it on IC Fault 

Model with the complex misfit surface.  

7.2.1 Algorithm Setup Specifications   

The stochastic sampling algorithms were set up to be as similar as possible.  We used 

the set of 20 initial starting points obtained with Latin Hypercube Sampling (LHS) for 

PSO (refer to Section 4.3.2.3). We ran 65 iterations for PSO leading to a total of 1300 

reservoir model simulations.  The two versions of PSO used differed only in their 

handling of boundary effects: the first variant uses an absorbing boundary strategy 

(PSO1) where the normal component of a particle's velocity is zeroed at the boundary; 

the second variant used a reflecting strategy (PSO2), where a particle hitting the 
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boundary is reflected from the boundary. The PSO parameters we chose were: c1 = c2 = 

2 with a linear decrease in the inertial weight w from 0.8 to 0.4. We also ran two cases 

with the Neighbourhood Algorithm (NA) each with 1300 simulations in total. The first 

case, NA1, had ns= nr = 50 for 25 generations starting from 50 points. The second case, 

NA2, had ns= nr = 100 for 11 generations starting from a larger population of 200 

models.  

 

HMC sampling requires gradients, which were estimated from a general regression 

neural network (Specht, 1991). We started twenty independent chains each with 1000 

simulations. 

7.2.2 History Matching Results  

Table 7.3 shows the misfit values obtained with the two optimisers and HMC and their 

corresponding parameter values.  The best misfit value was obtained with PSO1 

followed by HMC, then NA misfits, and finally PSO2.  The corresponding history 

matches for all methods is shown in Figure 7.17. 

 

We compared the sampling performance with the previous identified structure, the 

twisting, ribbon-like structure in Figure 4.30 for the samples obtained with Uniform 

Monte Carlo sampling to act as a benchmark result.  Figure 7.18 shows the samples 

with misfit ≤ 25 generated the stochastic sampling algorithms. Both NA and PSO are 

able to sample from parts of the region of good fitting models, but neither captures the 

whole structure.  

Table 7.3: Best misfits values obtained with the three stochastic methods and their 

corresponding parameter values 

Algorithm 
Number of 

Simulations 
khigh klow throw Best Misfit 

Corresponding Forecast 

Misfit 

PSO1 (LDS) 1300 126.94 1.59 4.45    0.11 1.90 

PSO2 (LDB) 1300 137.67 2.50 42.45 1.27 20.94 

NA1 (50/50) 1300 135.19 2.80 36.54 0.45 22.71 

NA2 (100/100) 1300 126.24 3.06 4.18 0.40 6.93 

HMC  1000×20  126.59 1.58 3.66 0.12 2.07 
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(a) FOPR 
 

(b) FWPR 

 

(c) FOPT 
 

(d) WWIR 
 

Figure 7.17: Best history matches for all methods 
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(a) PSO1 ensemble 

 
(b) PSO2 ensemble 

 

(c) NA1 ensemble 
 

(d) NA2 ensemble 
Figure 7.18: Particle swarm and neighbourhood optimisers’ ensembles 

 

Figure 7.19 shows the sampling history for the two PSO and NA variants.  The points 

are colour coded according to misfit.  While PSO two runs exploring parameter space, 

both NA runs concentrate on good regions particularly with the most explorative mode 

for this example 

 

Figure 7.20 also shows two plots describing the performance of HMC. The twenty 

independent chains of HMC are shown in Figure 7.20(b) where each chain is 

represented with a different colour. We can see that each of the chains has explored a 

localised area near the random starting point.  Since HMC satisfies the Markov chain 

requirements, we know that it will eventually sample from the posterior, but for this 

complex surface it has not achieved that in a limited number of samples.  From these 

results, we can see that the initialisation and the choice of tuning parameters used in the 

sampling algorithms are crucial for achieving an effective exploration of the misfit 

surface. 

≤ 25 

Truth 
≤ 25 

Truth 

≤ 25 

Truth 
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(a) Sampling history of PSO1 

 
(b) Sampling history of PSO2 

 

 
(c) Sampling history of NA1 

  
(d) Sampling history of NA2 

Figure 7.19: Sampling history for two variants of PSO and NA 

 

 

 
(a) HMC – 20 chains ensemble 

 
(b) HMC – 20 chains ensemble 

Figure 7.20: Stochastic sampling algorithms ensembles 

LDR ≤ 25 
Truth 
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We indicated early on that MCMC algorithms propose small changes in the state vector 

in each iteration resulting in rare moves between modes that in turn would lead to slow 

convergence and high correlations between successive states. In multimodal 

distributions, large proposal states with high acceptance probability are sought.  The 

medium-length runs and short runs strategies discussed in Section 6.8 need to be 

employed with caution by assuring that modes are visited according to their probability. 

The reason behind this is that the frequencies of which the modes are represented are 

given by their “basin of attractions” not by the total probability within each mode. Thus, 

using local optimisation by running several chains with initial states given by 

optimisations from different starting points to locate the modes may not provide 

accurate results.  This was seen in the 20 medium-length chains obtained with HMC for 

IC Fault model application. 

 

Several remedies have been investigated to produce Markov chains with faster 

convergence speed. Tjelmeland and Hegstad (2001) suggested using mode jumping 

proposal in which they specified how optimisation for local optima of the target 

distribution can be incorporated in the specification of the Markov chain leading to a 

chain with frequent jumps between modes. A generalised scheme is later investigated in 

Tjelmeland and Eidsvik (2004).  Neal (1996b), Marinari and Parisi (1992) and Geyer 

and Thompson (1995) suggested two approaches to cope with multimodal distributions 

where a series of distributions between a “cold” distribution, equivalent to the desired 

distribution, and a “warm” one with no isolate modes, are defined and the chain moves 

between modes through the warmer distributions. Neal (1996b) proposed a tempered 

transitions approach whereby the chain moves between the different distributions 

systematically while Marinari and Parisi (1992) and Geyer and Thompson (1995) 

proposed simulated tempering in which the chain moves stochastically. Geyer (1991) 

employed Metropolis-coupled Markov chains variant where a single parameter of one 

state is used for all the distributions and a swap of values is proposed between 

neighbouring states. 

 

To address the desirable characteristics of the HMC chain we have proposed a 

generalised variant of the later method of Geyer for tackling multimodal complex 

distributions as the IC Fault model example. This is discussed in Chapter 8 for 

designing an MCMC. The method could incorporate the HMC mechanism to tackle 

multimodal distributions more effectively. 
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7.2.3 Uncertainty Quantification: Comparison of NA and PSO 

Figure 7.21 shows the Bayesian credible intervals (p10-p50-p90) for oil and water rates 

and total oil production after history matching to the first three years of production. The 

widest range is obtained with PSO1. PSO2 obtained uncertainty ranges very close to the 

database ones in Figure 4.47.  The two NA runs have different results, NA1 obtained 

narrower ranges than NA2 which had larger population size per generation and larger 

initial population size. It is noted that we used larger initial NA samples than PSO for 

reasonable results.    

 

Figure 7.22 presents the Bayesian credible intervals for total recovery where PSO1 

produced the larger ranges and captured the observed value while the PSO2 obtained 

similar results to the database one. 
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FOPR FWPR FOPT 

 
(a) PSO1 

 
(e) PSO1 

 
(i) PSO1 

 
(b) PSO2 

 
(f) PSO2 

 
(j) PSO2 

 
(c) NA1 

 
(g) NA1 

 
(k) NA1 

 
(d) NA2 

 
(h) NA2 

 
(l) NA2 

Figure 7.21: Bayesian credible intervals of oil and water rates and total recovery prediction for 

PSO and NA variants 
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Figure 7.22: Bayesian credible intervals for total recovery prediction PSO and NA variants 

 

 

7.3 Chapter Summary  

This chapter investigated the efficiency of three stochastic sampling algorithms: 

Hamiltonian Monte Carlo (HMC) algorithm, Particle Swarm Optimisation (PSO) 

algorithm and the Neighbourhood Algorithm (NA). We compared the algorithms by 

generating multiple history matched reservoir models for the Teal South reservoir with 

the 8 unknown parameters and the complex IC Fault model with 3 unknown parameters.  

 

Specific conclusions have been drawn from the Teal South study: 

 NA, PSO and HMC are able to find equivalent match qualities for this example 

 PSO is able to obtain a good history match in a fewer number of iterations than 

NA, and this behaviour is robust to changing the initial random starting 

conditions.  

 PSO tends to concentrate sampling more in the low misfit regions than NA.  For 

each algorithm, this behaviour depends on the algorithm parameter setting. 

 NA and PSO need a separate calculation to go from sampled models to forecasts 

of uncertainty. 
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 HMC is able to generate samples from the posterior in one step. 

 NA, PSO and HMC are all able to produce equivalent forecasts of uncertainty. 

 

Specific conclusions have been drawn from the IC Fault study: 

 PSO obtained good history matches, and a similar conclusion has been drawn 

from Figures 4.39, 4.40, 4.41, and 4.42. 

 NA and PSO produced different forecasts of uncertainty depending on the 

tuning of algorithms and seed. 

 Both NA and PSO have good convergence speed. The focus on this study which 

has multiple local minima is the ability to explore the entire parameter space and 

analyse the spread of good fitting models along with the speed since that has a 

direct impact on the inferences.  

 In this example diversity of models is a very important factor in obtaining 

reliable forecasts. We have seen that PSO is able to obtain diverse models, in 

which the variations in sampling can be determined with large population size 

and choice of more diversity modes of PSO. 

 HMC samples are localised in regions which are close to the initial state.  A 

proposed solution is discussed in Chapter 8. 
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Chapter 8 – Advanced MCMC 

Techniques for History Matching 

and Uncertainty Quantification – 

Part II: Population MCMC Methods  

Assisted history matching and uncertainty quantification techniques approaches 

presented in the literature encounter the problems that lie with the extremely complex 

form of the misfit surface. This provides a very challenging task for optimisation 

methods to find solutions of low misfit value, and it is very difficult to exhaustively 

explore the posterior distribution for MCMC methods. As an example, consider the 

work by Liu and Oliver (2003) where they designed a highly non-linear 1D 

heterogeneous reservoir problem where a single-phase transient flow problem was 

chosen. MCMC simulations were performed to generate a sequence of realisations that 

are samples from the target probability density accepted with the Metropolis-Hastings 

criterion. Even with a sequence of 320 million realisations, a correlation length of over 

100 million iterations (shown by vertical grey dotted lines in Figure 8.1) was observed 

indicating a slow mixing rate of the Markov chain. It typically took at least 100 million 

iterations (perturbations) to go from high to low misfit values. Thus, it is important to 

design MCMC approaches that are able to deal efficiently with the complex and 

multimodal form of posterior distributions.  It can be envisaged that more complex 

models would lead to greater multimodalities and standard Metropolis-Hastings 

samplers simply cannot cope with them. 

 

The aim of this chapter is to address the issue of multimodality in complex geophysical 

models.  This chapter presents the application of the Population MCMC (Pop-MCMC) 
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method to generate history matched reservoir models.  The technique has been 

developed by Liang and Wong (2000) and successfully adopted in challenging domains  

such as computational biology (Calderhead and Girolami, 2009) and stereo matching 

(Kim et al., 2009; Park et al., 2007). The main feature of the algorithm is its ability to 

explore a complex multimodal posterior efficiently, as it can easily escape local optima 

due to the global large steps. From an optimisation perspective, this means that Pop-

MCMC is able to locate the global optimum efficiently. Part of the work carried out 

here is presented in Mohamed et al. (2010c, 2011b).   

 

 
Figure 8.1: A sequence of 320 million realisations shows misfits correlation length of over 100 

million iterations (Liu and Oliver, 2003) 

 

8.1 Population Markov Chain Monte Carlo (Pop–MCMC)  

Population MCMC (also known as evolutionary Monte Carlo) is a method for 

efficiently exploring and drawing samples from a complex, multimodal probability 

distribution by means of a series of smoothed intermediate distributions with varying 

“temperatures”.  Separate chains are run for each tempered distribution and these are 

able to interact by exchanging positions, thus allowing chains to more easily escape 

local optima.  Population-Based MCMC is a variant of a method originated by 

Swendsen and Wang (1986), and later developed by Geyer (1991). Geyer‟s method, 

called parallel tempering (PT), aims to overcome the slow mixing problems of 

traditional MCMC using a Metropolis-Hastings update. This algorithm is derived from 

the parallel tempering method developed by Geyer (1991) and aims to overcome the 

problem of slow mixing associated with the use of traditional single-chain Metropolis-
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Hastings algorithms.  Geyer (1991) defined a new target density on the product space 

π
*
= π(x1) π1(x2), where π1 is different but linked to π and swapped x1 and x2 through an 

exchange step. In contrast to optimisation methods such as Genetic Algorithms and 

Particle Swarm, which aim to find the single “best” fit to the data, MCMC algorithms 

are built upon solid statistical foundations and aim to sample probabilistically all sets of 

parameters with which the model output most likely describes the observed data. 

 

A standard method of implementing Population Markov Chain Monte Carlo within the 

Bayesian framework is as follows.  We assume we wish to sample from a posterior 

distribution defined on the real space 

( | ) ( | ) ( )p y L y                                        Eq. (8.1) 

where L(y| θ) is the likelihood of the observed data, y, conditioned on the parameters, θ, 

that represents the product of all the possible measurements (refer to Eq. (3.2) and 

Figure 3.1).  In other words how well the data supports the model.  π(θ) is the prior 

distribution over the parameters.  We first define an N-step temperature schedule, t = ( 

t1,…, tN ) with t1 <… < tN = 1. Note that for the metaphor of temperature to make sense, 

the parameter schedule t is actually inversely proportional to temperature, with t1 

considered a high temperature and tN = 1 considered a low temperature. A sequence of 

distributions, corresponding to each step i = 1,…, N on the temperature schedule, is then 

constructed 

( | ) ( )
( | )

i

i

t

i i
i

t

L y
p y

Z

  
                        Eq. (8.2) 

where θi will be considered the position of the Markov chain running at temperature, ti, 

and 
it

Z is some, usually intractable, normalising constant called the partition function 

( | ) ( )i

i

t

t i i iZ L y d                  Eq. (8.3)  

We therefore have a series of probability distributions which runs from a posterior 

distribution, which is possibly difficult to explore, to the prior distribution, which is 

smooth and easy to explore.  One can picture a multimodal target distribution at tN = 1, 

which melts at higher temperatures so that the distributions at ti  < 1 are easier to draw 

samples from.  The resulting distribution at each temperature is explored using an 

individual Markov chain, so that the total number of Markov chains running 

simultaneously is N.  In Population Markov Chain Monte Carlo a product distribution is 
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considered when moving individual chains, thus taking the entire population of chains 

throughout the temperature schedule into account.  We therefore sample from 

1 1

1
( | ) ( | ) ( | ) ( )i

N N
t

i i i

i it

p y p y L y
Z

   
 

                          Eq. (8.4)  

where Θ is the population of Markov chains, θ1,…,θN at the temperatures, t1,…, tN  

respectively.  The (intractable) normalising constant is now 

1
i

N

t t

i

Z Z


                                           Eq. (8.5)  

Although we make no direct use of the normalising constant in this thesis, it is relevant 

for model comparison.  Calderhead and Girolami (2009) show how to use the concepts 

of thermodynamic integration through population MCMC to evaluate this constant.  

 

We note that other sequences are possible, but in this Bayesian setting we fix a 

geometric path between the prior and the posterior, by raising the likelihood term to a 

power between 0 and 1.  An investigation into the optimal path is presented in 

Calderhead and Girolami (2009).  Markov chains explore the distributions induced by 

the temperature schedule and these chains may also interact with one another by 

swapping positions across temperatures.  The algorithm proceeds as in Algorithm 8.1 if 

we use the componentwise Metropolis-Hastings.  

 

There is a trade-off between the exploration and convergence of the algorithm. The rates 

between global moves and local moves (mutation) can be controlled by adjusting 

mutation rate pm. The chain with the lowest temperature is used for parameter 

estimation and inferences while other chains are useful for calculating Bayes factors for 

Bayesian model comparisons of a statistical hypothesis to be able to rank a set of 

plausible model structures based on the experimental evidence available. Thus, there is 

no waste in the algorithm (Calderhead and Girolami, 2009). 
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Algorithm 8.1 Pop-MCMC Algorithm (Componentwise Metropolis-Hastings Version) 

1. Assign starting positions to each chain in a population, 
1( , , )N    

2. Define a temperature ladder attached to the population, 
1 1( , ) ( , , , , )N Nt t t    

3.  0iteration number   

4. Repeat (one iteration) 

a. If  0,1 mU p (where 
mp  is sometimes known as the mutation rate) then 

i. Apply local move (mutation) to each chain in the population  

For i = 1 to N do 

Select a Markov chain 
1  for the i

th
 chain from the population  

For j = 1 to d   (perform componentwise Metropolis-Hastings) 

Propose a new position 
ij   for the i

th
 chain and j

th
 

component of vector 
i  and determine whether accept it or 

not with probability pm (Metropolis-Hastings rule) 

End for 

End for  

Else 

ii. Apply crossover to each chain in the population  

b. Try to exchange i and j  for N pairs (i,j), with i sampled uniformly on (1,…,N ) and j  

=  i ± 1 with probability ( , )e j ip     where 1 1( , ) ( , ) 0.5e i i e i ip p       and 

1 2 1( , ) ( , ) 1e e N Np p        

c.   1iteration number iteration number   

5. Until chains converge or      iteration number maximum number of iterations  

6. Keep the chain with the lowest temperature 

 

Figure 8.2 illustrates the idea in which    1 | it

N i i iL y       is the distribution for chain 

i. The chain with the lowest temperature, the target distribution, is shown as 

   1 ( | ) ( | ) ( | )Nt

N N N N NL y L y p y           since tN = 1. For the chain with the 

highest temperature, the prior distribution,    1

1 1 1( | )
t

N L y       , is nearly flat as 

represented, where the heights of boundaries between local optima are very low. 

Consequently, the samples in such a chain can freely move by comparison to the 

samples in a chain with low temperature. By swapping these higher temperature 

configurations with the configuration of a low temperature of the desired density, the 

low temperature simulation can be assisted to sample configurations much more 

efficiently than with local Metropolis updates only. This results in faster mixing rate 

between samples, and allows escape from local optima. Usually, the Metropolis step in 

each chain is performed with local steps trying to achieve high acceptance rates . The 

crossover operator is done for example by choosing different chains and swap over part 

of them (Calderhead and Girolami, 2009). The three types of moves in Pop-MCMC are 

mutation, exchange and crossover and are described below. These moves stem from the 
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genetic algorithm and are modified to fit the MCMC framework (Del Moral and Doucet 

2003; Kim et al., 2009; Liu 2001; Liang and Wong, 2000, 2001; Park et al., 2007).  

 

 
Figure 8.2: Representation of Population MCMC where πN is the prior distribution with the highest 

temperature and π1  the posterior distribution with the lowest temperature (Kim et al., 2009) 

 

8.1.1 Local Metropolis Move (Mutation) 

A random Markov chain position, i , is selected from the population Θ, and a random 

vector is added to it to create a new proposed position, '

i .  Thus a new population is 

defined as '

1' ( , , , , )i N    , which is then accepted with probability min(1,rm) 

according to the Metropolis-Hastings rule, 

1

1

' '

1 1

1 1

( ' | ) ( | ')

( | ) ( ' | )

1
( | ) ( ) ( | ) ( ) ( | ) ( )

( | ')

1 ( ' | )
( | ) ( ) ( | ) ( ) ( | ) ( )

i N

i i

i N

m

t tt

N N

t

t tt

i i N N

t

p y T
r

p y T

L y L y L y
Z T

T
L y L y L y

Z

        

        

  


  

       
 

      

    

      

' '( | ) ( ) ( | ')

( | ) ( ) ( ' | )

i

i i

i

t

t

i i

L y T

L y T

  

  

 
 

 
            Eq. (8.6) 

where ( | )T    denotes the probability of transition from one population to another.  A 

common choice for the transition density T is a Gaussian centred on the current position 

exchange 

exchange 

exchange 

Time 

Time 

Time 

Time 
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of the chain, which is symmetric and thus allows the transition densities in the above 

equation to be cancelled. 

 

8.1.2 Exchange Move 

This is similar to a standard exchange move in temperature based Monte Carlo methods.  

A new population '  is created by swapping the positions of two chains, θi and θj on 

the temperature ladder so that 

1 1( ', ) ( , , , , , , , , , )j i i j N Nt t t t t                             Eq. (8.7) 

The new population is accepted with probability  1, emin r  according to the Metropolis-

Hastings rule: 

( ' | ) ( | ')

( | ) ( ' | )

( | ) ( | ) ( | ')

( ' | )( | ) ( | )

ji

ji

e

tt

j i

tt

i j

p y T
r

p y T

L y L y T

TL y L y

 

 

  


  

     
  

 

                                Eq. (8.8) 

where many of the terms, including the normalising constants, have conveniently 

cancelled out as shown previously for a local Metropolis step. Usually, the two selected 

chains are chosen to be direct neighbours in the temperature ladder to increase the 

likelihood of the interaction being accepted. 

8.1.3 Crossover Move 

This step is used as an alternative to the Metropolis local update. There are a few 

variations on the crossover operator.  A chain, θi, is selected uniformly from a 

population, Θ.  A second, different chain, θj, is also selected, either at random or for 

example with a probability proportional to its current likelihood.  Two new chain 

positions, θ'i and θ'j, are then produced by the so-called one-point, k-point or adaptive 

crossover.  The positions of the new chains replace the old positions to form a new 

population, ' , which is then accepted or rejected according to a standard acceptance 

probability.  The one-point crossover takes place by uniformly selecting a crossover 

point, c, from (1,…, (d–1)) where d is the dimensionality and then swapping all the 

values in the vectors θi and θj which occur after position c as shown in Eq. (8.9).   

 
  

  
  

  

1 11 1

1 11 1

, , , , , , , , , ,

, , , , , , , , , ,

i i ic iD i i ic jDi c j c

j j jc jD j j jc iDj c i c

p p p p p p p p

p p p p p p p p

 

 

      
   
            

Eq. (8.9) 
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In the k-point crossover operator, k points are chosen randomly (two-point crossover, 

three-point crossover, etc).  The k-point crossover is similar except there are multiple 

uniformly selected crossover points, dictating which parts of the vector should be 

swapped.  The adaptive crossover is more complicated and the reader is referred to 

Liang and Wong (2000) for the details. 

 

More details about Population MCMC methods can be found in Laskey and Myers 

(2003), Iba, Y. (2001), Hukushima and Iba (2003), Hukushima and Nemoto (1996), Del 

Moral et al. (2006), and Cappé et al. (2004). 

8.2 Numerical Experiments  

In this thesis, a MATLAB code developed at the Inference Group within the 

Department of Computing Science at Glasgow University (Calderhead and Girolami, 

2009) is used to carry out this work. The code is adjusted and coupled with a reservoir 

simulator and misfit calculation routine for objective function evaluation.  Numerical 

tests are firstly performed on simple analytical examples presented in previous chapters 

before examining the Population MCMC method on reservoir application for 

consistency purposes. For all the analytical tests the burn-in period was set to 2000 

iterations with a further 1500 iterations to collect the posterior samples for parameter 

estimates.  

8.2.1 Numerical Example Test 1 

In this example, we test Pop-MCMC algorithm with the target density defined in 

Section 6.4.1.  Pop-MCMC sampling runs chain with 10 different temperature 

schedules.  Pop-MCMC samples are shown as purple points in the contour plot in 

Figure 8.3(a).  Kernel density estimate using the sampled points produced estimates 

shown in Figure 8.3(b) and which shows samples effectively came from target density 

since it is similar to the shape of target density.  Figure 8.3(c) shows the parameter 

width for each of the two parameters and we can see that the parameter widths decrease 

as the temperature schedule increases (moving to a cool state). 
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(a) Pop-MCMC samples 

 
(b) Kernel density estimate 

 
(c) Parameter width vs. 

temperature 
Figure 8.3: Pop-MCMC application on example test 1 

 

8.2.2 Numerical Example Test 2  

In the second example, we test the Pop-MCMC algorithm with the target density 

defined in Section 6.4.2.  Pop-MCMC sampling runs chains with 10 different 

temperature schedules.  Similarly to the previous example, Pop-MCMC samples are 

shown as purple points in the contour plot in Figure 8.4(a).  Kernel density estimate 

using the sampled points produced is shown in Figure 8.4(b).  This shows samples 

effectively came from target density suggesting that sampling with Pop-MCMC was 

effective and contained reasonable information to estimate quantities of interests and 

produce the connected region of high probability that has the shape of a thin crescent.  

Figure 8.4(c) shows the parameter width for each of the two parameters and again we 

can see that the parameter widths decrease as the temperature schedule increases.  We 

note that the number of temperatures only affects the acceptance rate.  Increasing the 

number of members in each population within a chain increases only the number of 

samples. 

 

 
(a) Pop-MCMC samples 

 
(b) Kernel density estimate 

 
(c) Parameter width vs. 

temperature 
Figure 8.4: Pop-MCMC application on example test 2 
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8.2.3 Numerical Example Test 3 

In the third example, we test the Pop-MCMC algorithm with the target density defined 

as the negative log of the objective function defined by the non-convex, non-linear, 

multimodal Rastrigin function detailed in Section 6.8.2.  The application of Pop-MCMC 

for the 2-parameter case is shown in Figure 8.5 where the purple points shows 1500 

posterior samples. It is clear that the points are sampled from the many minima shown 

clearly in the contour plot.  This is a useful characteristic since in reservoir history 

matching we need to locate as many minima as possible in complex response surfaces 

to be able to produce reliable forecasts.  The 3D view of the sampling in Figure 8.5(b) 

shows this complexity of surface.  The similar decrease in the parameter width is shown 

in Figure 8.5(c) where small steps are needed for the coolest temperature (temperature 

number 10) for higher acceptance rates in narrow regions while in the hottest one the 

free movement of indicated with large parameter widths. 

 

 
(a) Pop-MCMC samples 

 
(b) Pop-MCMC samples-

3D view 

 
(c) Parameter width vs. 

temperature 
Figure 8.5: Pop-MCMC application on 2-parameter Rastrigin function 

 

The application of Pop-MCMC for the 3-parameter case is shown in Figure 8.6 where 

the points are the 1500 posterior samples as shown in Figure 8.6(a).  The red colour 

points in the 3D view shows the models with misfits below or equal to 3 and pink points 

are models where misfits > 3.  It is clear that the points are clustered around minima 

shown as red points in different locations.  The 3D view of the sampling in Figure 

8.6(b) shows this complexity of surface.  The corresponding decrease for the three 

parameters widths for the last iteration per temperature is shown in Figure 8.6(b).  
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(a) Kernel density estimate 

 
(b) Parameter width vs. temperature 

Figure 8.6: Pop-MCMC application on 3-parameter Rastrigin function 

 

8.2.4 Numerical Example 4 

An application for a biological system is noted here from Calderhead and Girolami 

(2009) where a multidimensional representation of a complex posterior distribution is 

shown in Figure 8.7(a). The same posterior distribution shown from the top is in Figure 

8.7(b) where the blue colour represents the low density regions and the red colour 

represents the high density regions. Running the standard Metropolis-Hastings samplers 

with 20 independent chains is shown in the same plot where the cross symbol denotes 

the start of the chains then follows a path to circles denoting the end positions of the 

chains. When a chain starts from a high density region position near the global 

maximum it is plausible to climb up to the hill. If sampling start somewhere else it tends 

to follow the ridges to higher density areas and if it starts far away, then it goes 

somewhere else in parameter space, so the chains do not converge as seen in the plot. It 

is noted that adapted parameter widths (stepsizes) were used to get high acceptance rate 

(Gilks et al., 1996; Gelman et al., 2004). In order to obtain an accurate sample from the 

posterior distribution, the algorithm is required to adequately explore the parameter 

space, visit all high density regions and converge to the target distribution. In the 

advanced Pop-MCMC technique instead of sampling single independent chains a 

population of chains that communicate with each other are used. In this case if one 

chain finds a high density region than another, then it can move towards that region.  

This is achieved by introducing a temperature ladder and thus different chains exploring 

different distributions in parallel rather than sampling just a single posterior distribution. 

Thus, a range of intermediate temperatures with a typical easy-to-sample prior 

distribution are usually used. In the application uniform starting positions from prior 

distribution are drawn. Pop-MCMC results are shown in Figure 8.8 where samples for 
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prior distribution have free movement shown and the chain with the lowest temperature 

is quickly focused on sampling the absolute maximum due to the interactions of 

samples. The samples for the chain with the lowest temperature can be used for 

parameter estimation, uncertainty quantification, and inferences.   

 

 
(a) Complex surface (b) Metropolis-Hastings Sampling 

Figure 8.7: Multidimensional representation of complex biological system posterior distribution (a) 

and Metropolis Hastings sampling (b) 

 

 
Figure 8.8: Population MCMC Sampling for biological system example (Source: Calderhead and 

Girolami (2009)) 

T  = 20.0 

TN →∞  

T  = 7.70 

T1 = 1.00 

T = 3.50 

T  = 1.80 
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8.3 Petroleum Field Application 

In previous section we have shown the motivation to apply this technique while testing 

the method in analytical examples and applications in other areas.  In this section, we 

test the application of Pop-MCMC on the IC Fault Model (Tavassoli et al., 2004).  This 

model characterises the kind of complexities that can arise in the posterior distributions 

of geological models.  We use this model as a pilot study and intend to apply this 

methodology to more complex geologically realistic models in the future.  As was 

shown in Section 7.2.2 with the standard HMC the sampling focused in areas close to or 

near starting points as depicted in Figure 7.20 similar to the results obtained in the 

biological system example with the Metropolis-Hastings in Figure 8.7(b), indicating 

ineffective sampling and therefore our forecasts will be questioned.  Although, the idea 

is to couple the Hamiltonian dynamics within the Pop-MCMC structure, we only 

present in this thesis the application of Pop-MCMC without the coupling as a proof of 

concept in this example due to limited time.  Further research on combining the HMC 

within the Pop-MCMC framework on challenging real field examples is undergoing. 

8.3.1 Population MCMC Algorithm Setup Specifications for IC Fault Model 

We ran a Pop-MCMC algorithm on the IC Fault model to sample a ladder of ten 

temperatures with spacing 5( 10)it i , to allow for good mixing of chains. Each one of 

the ten chains has a single member in the population. The componentwise Metropolis-

Hastings algorithm was used for sampling.  Within one iteration, there are N evaluations 

of the likelihood, if all the model parameters are updated jointly, where N is the number 

of chains.  In our case, given that each chain uses a componentwise version of 

Metropolis-Hastings, also called Metropolis within Gibbs (Ntzoufras, 2009), each 

iteration requires d×N (d is the number of model parameters) evaluations of the 

likelihood.  We have carried out two runs.  In the first run the burn-in period was set to 

1000 iterations with a further 500 iterations to collect the posterior samples for 

parameter and prediction estimates. Each iteration consists of generating a new proposal 

for each temperature, and since we are using a Gibbs sampler, each proposal requires a 

function evaluation for each dimension, leading to 30 function evaluation per iteration. 

This is clearly not efficient, nor it is achievable for anything other than the smallest 

reservoir models. However, we can use the Gaussian process to build emulators for the 

simulation outputs, which lead to a dramatic reduction in expensive calls to the 

reservoir simulator and vastly improves efficiency, see for example Fillipone et al. 
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(2010).  The total number of simulation is 45,000 (1500 × 30) computed with Eq. 

(8.10). In the second run the burn-in period was set to 2000 iterations with a further 

1500 iterations to collect the posterior samples for parameter and prediction estimates. 

The total number of simulation is 105,000. We decided to run the chains with 1000 or 

2000 burn-in samples to ensure full convergence of the chains to all potential modes.  

The 500 and 1500 posterior samples were adequate for illustrative purposes, showing 

full coverage of the posterior distribution.  The number of posterior samples to be drawn 

depends on the statistical estimators of interest and accuracy of the estimate required.  

Standard Metropolis-Hastings methods generally cannot sample adequately from 

multimodal posteriors and their use could lead to extremely biased inferences and 

predictions.  The proposal widths (proposal steps) are sampled from a normal 

distribution with mean of the current parameter and its variance. These parameters 

widths are adapted automatically, so that sampling improves with the number of 

iterations. The parameter width adapts depending on the current values of the chain. The 

initial widths used are (5, 1, 1) for (khigh, klow, throw).   

 

The total number of simulations = the number of members in the population × 

the number of chains (i.e. number of temperatures in the tempering scheme) × 

the number of parameters (d) × the number of iterations (burn-in and posterior)               

                     Eq. (8.10) 

8.3.2 History Matching Results  

In Chapter 7 we compared the performance of Hamiltonian Monte Carlo with two 

stochastic optimisers (Particle Swarm Optimisation and the Neighbourhood Algorithm) 

on Teal South, a simple single well field in the Gulf of Mexico (Mohamed et al., 

2010b).  

 

We will compare Pop-MCMC with HMC and the two stochastic samplers (PSO and 

NA) on the IC Fault Model that exhibits a complex misfit surface as has been analysed 

in Chapter 7. The stochastic sampling algorithms were set up to be as similar as possible 

(refer to Section 7.2.1). 

 

Bayesian inference allows us to obtain posterior distributions on parameters and 

predictive distributions.  In order to compare results from a Bayesian method with non-

Bayesian ones, some sort of threshold on the likelihood (negative misfit) based on 
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intervals obtained from the Bayesian method, is needed.  In our case, we chose 25 as the 

threshold. 

 

Figure 8.9 shows an equivalent set of results to Figure 7.18 and Figure 7.20 from Pop-

MCMC with 500 posterior samples for the first run.  Each plot represents the 500 

samples obtained after burn-in for each temperature.  Temp1 corresponds to the prior, 

and clearly shows essentially uniform sampling over the parameter space.  As the 

temperature decreases, we can see that the sampling localises onto the ribbon-like 

structure found from the database. Figure 8.10 shows an equivalent set of results from 

Pop-MCMC with 1500 posterior samples (Pop-MCMC-1500) for the second run.  We 

can see that in this run the posterior samples were able to capture more or less the 

database ribbon-like structure shown in Figure 4.30 where it captures the samples at the 

corner that was not seen in Figure 8.9. The small differences that can be seen between 

the database models with M ≤ 25 plot shown in Figure 4.30 and the Temp10 plot shown 

in Figure 8.9 and Figure 8.10 occur because Pop-MCMC importance samples, so that 

there are many lower misfit points in Temp10 in Figure 8.9 and Figure 8.10 than in 

Figure 4.30.   

 

Similarly, if we restrict the misfits shown for the database, Pop-MCMC-500, and Pop-

MCMC-1500 results to M ≤ 3 as shown in Figure 8.11, we can see that Pop-MCMC is 

able to reach configurations of very low misfit value particularly apparent in Figure 

8.11(c).  The reason that Temp10 in Pop-MCMC obtains part of the ribbon-structure 

compared to the other intermediate higher temperatures is because model samples of 

misfits equal to 3 or less with lower misfits were given importance weights since these 

models will have more impact on the parameter being estimated than others. Since, 

these "important" values are emphasised by sampling more frequently, the estimator 

variance can be reduced. Note that, the simulation results are weighted to correct for the 

use of the biased distribution, and this guarantees that the new importance sampling 

estimator is unbiased where the weight is given by the likelihood ratio.  
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Figure 8.9: Pop-MCMC-500 sampling plot at various temperatures 

 

The local Metropolis step proposals within each tempered distribution were selected 

using a general recommendation to achieve good mixing [see for example Gilks et al. 

(1996)], that is keeping the acceptance rate between 20% and 40%. Monitoring the 

exchange acceptance rate, which tells us whether the Markov chains are successfully 

jumping between the tempered distributions, shows high acceptance values indicating a 

good mixing of chains.   Figure 8.12 shows the parameter widths for Pop-MCMC of 

500 samples (Pop-MCMC-500) in Figure 8.12(b) and of 1500 samples (Pop-MCMC-

1500) in Figure 8.12(c) using 10 temperature schedules.  The jumps in the longer state 

have large parameter widths decreasing over the temperature value.  This is clearly 

noticeable in the case similar to Figure 8.12(b) of 500 samples but with only 5 

temperatures as shown in Figure 8.12(a).  The jumps are larger in Figure 8.12(c) 

compared to Figure 8.12(b) since each temperature here has 1500 samples to use for 

estimating the mean of the width of the parameter with, rather than the 500 in the 

second.  Yet, that result is not very different in terms of sampling performance as both 

obtain similar structure as shown in Figure 8.11 with differences seen in Figure 8.9 and 

Figure 8.10.   

Temp1 (Prior) Temp2 

Temp5 Temp6 Temp7 Temp8 

Temp9 Temp10 (Posterior) 

Temp3 

≤ 25 
> 25 

Truth  

Temp4 
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Figure 8.10: Pop-MCMC-1500 sampling plot at various temperatures 

 

 
(a) DB ensemble M ≤ 3 

 
(b) Pop-MCMC-500 

ensemble M ≤ 3 

 
(c) Pop-MCMC-1500 

ensemble M ≤ 3 
Figure 8.11: DB ensemble in comparison to Pop-MCMC ensembles 

 

 
(a) Pop-MCMC parameter 

width per 5 temperatures 

 
(b) Pop-MCMC-500 

parameter width per 10 

temperatures 

 
(c) Pop-MCMC-1500 

parameter width per 

temperatures 
Figure 8.12: Pop-MCMC parameter width per temperature at the end of sampling 
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Sampling history evolutions of the three parameters are shown in Figure 8.13 for Pop-

MCMC-500 and Figure 8.14 for Pop-MCMC-1500 for the selected four temperatures.  

Comparing the evolution for each run only we can see the performance of sampling and 

the quality of models (how well they fit the data) obtained during the course of posterior 

sampling in which models are colour coded according to the misfit.  In the Pop-MCMC-

1500 run there are many good quality models found as depicted as blue points in Figure 

8.14(d) in comparison to Pop-MCMC-500 one in Figure 8.13(d)).  

 

 
(a) Sampling history of Pop-MCMC-500 

– Temp1 

 
(b) Sampling history of Pop-MCMC-500 

– Temp4 

 
(c) Sampling history of  Pop-MCMC-

500 – Temp7 

  
(d) Sampling history of Pop-MCMC-500 

– Temp10 
Figure 8.13: Sampling history of the chains with the 10 temperatures – Pop-MCMC-500 

 



CHAPTER 8 – ADVANCED MCMC TECHNIQUES – PART II: POPULATION MCMC METHODS 

 

 

 

258 

 

 
(a) Sampling history of Pop-MCMC-

1500 – Temp1 

 
(b) Sampling history of Pop-MCMC-

1500 – Temp4 

 
(c) Sampling history of  Pop-MCMC-

1500 – Temp7 

 
(d) Sampling history of Pop-MCMC-

1500 – Temp10 
Figure 8.14: Sampling history of the chains with the 10 temperatures – Pop-MCMC-1500 

   

8.3.3 Uncertainty Quantification  

Before using the ensemble of models for quantifying the uncertainty and making 

predictions, we can look at the autocorrelation function within Temp10 chains (the 

posterior samples that will be used in predictions) along the three parameters.   Figure 

8.15(a) illustrates the autocorrelation function (ACF) for Pop-MCMC-500 and Figure 

8.15(b) shows the ACF for Pop-MCMC-1500.  The chains have low correlation which 

indicates no random walk and thus the estimation of predictions is based on these 

samples. 
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(a) ACF for Pop-MCMC-500 – Temp10 

  
(b) ACF for Pop-MCMC-1500 – Temp10 

Figure 8.15: ACF for Temp10 temperatures sampled chains 

 

The Bayesian credible intervals for cumulative oil production from both Pop-MCMC 

runs and the database are shown in Figure 8.16. The results in particular Pop-MCMC-

500 one, have obtained estimates for the uncertainty envelopes of total recovery that are 

very close to exhaustive UMC sampling in the database. 

 

The true model has the minimal cumulative oil production. The whole point of 

quantifying uncertainty is to obtain confidence intervals for parameters and predictions. 

Data were generated as explained in Tavassoli et al. (2004); inference on the 

parameters, assuming that the model is correct, would converge to the true parameters 

in the limit of infinite data. In this case there is a slight mismatch between models, as 

the permeabilities used in the simulation to obtain the historical data are not fixed to the 

values used in the misfit evaluations. 

 

 

 

 

 

 

 

 



CHAPTER 8 – ADVANCED MCMC TECHNIQUES – PART II: POPULATION MCMC METHODS 

 

 

 

260 

 

DB Pop-MCMC-500 Pop-MCMC-1500 

(a) FOPR: P90-P10 = 

0.0024877  

 
(d) FOPT: P90-P10 = 

0.003387 

 
(g) FOPT: P90-P10 = 

0.005246 

(b) FWPR: P90-P10 = 

0.07842  

 
(e) FWPR: P90-P10 = 

0.088 

 
(h) FWPR: P90-P10 = 

0.08394 

(c) FOPT: P90-P10 = 49.6  
 

(f) FOPT: P90-P10 = 52.6  
 

(i) FOPT: P90-P10 = 74.1  

Figure 8.16: Comparison of Bayesian credible intervals for oil rate (MSTB/D), water rate 

(MSTB/D), and cumulative oil produced (MSTB) – database vs. Pop-MCMC-500 and Pop-MCMC-

1500 

8.3.4 Uncertainty Assessment Comparison with Other Techniques  

We also show a comparison of the 'forecast misfit' and history misfit for each algorithm. 

The forecast misfit is computed using the known production for years 4 to 10 using the 

same expression used to evaluate the misfit during the history period in Eq. (4.7) while 

using a number of observations equal to 7 for the forecast period.  For the stochastic 

sampling algorithms, the corresponding figure in the restricted ranges including the 

points that are resampled using the NAB algorithm (Sambridge, 1999b) is shown.  

Figure 8.17 is a comparison of history match and prediction quality guide where the 

lower-left corner represents the region where the models match historical data well and 

are good predictors. We note that the two clusters of models in this plot fall inside the 

ellipse indicating a set of reservoir models for which the prediction quality is similar to 
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the history match quality. However, the other cluster of models falling outside of the 

ellipse represents the ensemble of reservoir models for which the prediction quality 

significantly diverges from the history quality. Such unreliable reservoir models could 

yield very poor predictions in the forecast period (Walker and Lane, 2007).  Thus, we 

want the predictions to be based on both good and poor history matched models for 

more accurate assessment of uncertainty. 

 

The picture in Figure 8.18 shows the database forecast misfit versus history misfit with 

the restricted ranges for history misfit ≤ 25 and forecast misfit ≤ 50.  Figure 8.19 clearly 

shows how certain combinations of input parameters for the stochastic sampling 

algorithms leads to sampling that matches well (low history misfit) but forecasts poorly 

(NA1, Figure 8.19(a), PSO2, Figure 8.19(d)). Different choices of algorithm parameters 

lead to much better sampling and more reliable forecasts (NA2, Figure 8.19(b), PSO1, 

Figure 8.19(c)).  The results from Pop-MCMC show very good history matches (most 

misfits less than 4 in Pop-MCMC-500 as depicted in Figure 8.19(e) and less than 10 in 

Pop-MCMC-1500 as shown in Figure 8.19(f)) and a very good spread of forecast 

misfits, demonstrating that the algorithm has been able to capture all the models that 

contribute to the forecast uncertainty.   

 

Figure 8.20 shows a comparison of the Bayesian credible intervals for cumulative oil 

produced at the end of the forecast period for all the methods in which PSO2 and Pop-

MCMC-500 obtain FOPT estimates close to the database one.  

 

Figures 8.21, 8.22 and 8.23 show the 1D marginal distribution of the 3-parameter model 

obtained from the posterior samples (Temp10) for Pop-MCMC-500 and Pop-MCMC-

1500 (scaled to the range [0,1]) compared to the database marginal of the 3-parameter 

model where it is shown the truth value lies between low probability valleys. The results 

of klow and throw parameters are very close to the database ones indeed and particularly 

so for khigh.  The Pop-MCMC-1500 posterior density is very comparable to the database 

density one. 
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Figure 8.17: Comparison of history match quality and prediction quality guide  

 

 

 
Figure 8.18: Forecast misfit (Mf) vs. history misfit (Mh): DB benchmark constrained in x and y 

ranges  
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(a) NA1 

 
(b) NA2 

 
(c) PSO1 

 
(d) PSO2 

 
(e) Pop-MCMC-500 

 
(f) Pop-MCMC-1500 

Figure 8.19: Forecast misfit (Mf) vs. history misfit (Mh) for two runs for each technique 
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Figure 8.20: Prediction uncertainties derived from the database, NA1, NA2, PSO1, PSO2, Pop-

MCMC-500, and Pop-MCMC-1500 

 

 
Figure 8.21: The 1D marginal posterior distribution estimates for Pop-MCMC-500 

 

 
Figure 8.22: The 1-D marginal posterior distribution estimates for Pop-MCMC-1500 

 



CHAPTER 8 – ADVANCED MCMC TECHNIQUES – PART II: POPULATION MCMC METHODS 

 

 

 

265 

 

 
Figure 8.23: The 1-D marginal for DB 

 

To check the accuracy of the forecasts, plotting the forecast probability estimates versus 

observed frequency of an event is a useful tool (Christie et al., 2005) as shown in Figure 

8.24 for a similar problem in weather forecasting with a large number of observations 

where each data point represents the number of observations for that forecast indicated 

at that point.  

 

 
Figure 8.24: The calibration curve for weather forecasts (Source: Christie et al., 2005) 

 

Figure 8.25 shows the equivalent calibration curve plot for selected runs of each 

technique.  The plot shows illustrations for oil rate, water rate, water injection rate, 

water cut, and total oil recovery.  Pop-MCMC results are shown in purple colour lines 

which are close to the black line.  This indicates a close match to the database 

estimation particularly in oil rate and water cuts.  In most other cases, PSO shows more 

accurate results while NA seems to overestimate uncertainty on three occasions. 
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(a) FOPR  
 

(b) FWPR 
 

(c) FOPT 

(d) WWIR  
 

(e) WWCT 
Figure 8.25: Calibration curve for selected runs for each of the stochastic methods in comparison 

with Pop-MCMC-500 at the end of the forecast period 

 

 

For this study, we have not worried about the efficiency of the process as the IC Fault 

model is fast to run.  However, there are a number of ways to reduce the number of 

forward simulations.  Firstly, the use of a different MCMC sampler – for example 

Hamiltonian Monte Carlo (Duane et al, 1987) or Riemann Manifold HMC (Girolami 

and Calderhead, 2011) – in place of the componentwise Metropolis-Hastings sampler 

would reduce the number of simulations needed by a factor of 3 for the IC Fault Model.  

Secondly, it is relatively straightforward to use a Gaussian Process (GP) to emulate the 

simulator and reduce the number of expensive full simulations for Pop-MCMC 

particularly that the intermediate temperatures‟ chains can use an estimated value for 

the misfit and may not require an exact simulation result.  This work is under 

investigation with promising preliminary results as published in Filippone et al. (2010). 

Busby (2009), Busby and Feraille (2008), and Busby et al. (2007a, 2007b) tested a 

similar approach on the IC Fault model and PUNQ model (refer to the synthetic case 

study in Section 5.9) where they proposed a sequential strategy called hierarchical 

adaptive experimental design (HAED) to obtain an accurate emulator while using the 

least possible number of simulations (285 in Busby and Feraille (2008)). They 

concluded that the HAED method is superior to other standard state-of-the-art 

methodologies as well as providing a plausibly accurate approximation of the emulator 



CHAPTER 8 – ADVANCED MCMC TECHNIQUES – PART II: POPULATION MCMC METHODS 

 

 

 

267 

 

accuracy and an effective stopping criterion. Our preliminary results and theirs suggest 

that this is an interesting line of further research in combination with Pop-MCMC. 

8.4 Chapter Summary 

This chapter presents the application of a population MCMC technique to generate 

history matched models. The technique has been developed and successfully adopted in 

challenging domains such as computational biology and stereo matching, but has not yet 

seen application in reservoir modelling.  In population MCMC, multiple Markov chains 

are run on a set of response surfaces that form a bridge from the prior to posterior.  

These response surfaces are constructed from the product of the prior with the 

likelihood raised to a varying power less than one. The chains exchange positions, with 

the probability of a swap being governed by a standard Metropolis accept/reject step, 

which allows for large steps to be taken with high probability.  

 

We show results of Population MCMC on the IC Fault Model – a simple 3 parameter 

model that is known to have a highly irregular misfit surface and hence be difficult to 

match.  Our results show that population MCMC is able to generate samples from the 

complex, multimodal posterior probability distribution of the IC Fault model very 

effectively.  By comparison, previous results from stochastic sampling algorithms often 

focus on only part of the region of high posterior probability depending on algorithm 

settings and starting points. 
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Chapter 9  – Brugge Reservoir Model 

History Matching: Comparison of 

Particle Swarm Optimisation and 

Ensemble Kalman Filter  

In the present chapter we focus on testing the applicability of the novel Particle Swarm 

on history matching an SPE benchmark reservoir example from the Netherlands 

Organisation for Applied Scientific Research (TNO), and compare the results with the 

ensemble Kalman filter data assimilation method. The study has been conducted on the 

Brugge reservoir where the setup was particularly tailored for particle filter methods and 

the challenge for evolutionary and swarm intelligence methods lies in using an 

ensemble of prior geological realisations in which the more-global optimisation 

methods appeared to be at a disadvantage (Denney, 2009). We show that PSO can 

history match while honouring the data from the wells and can obtain comparable 

results with the EnKF in this study. This chapter has made two contributions (Mohamed 

et al., 2010a).  Firstly, the combined use of particle swarm optimisation and model 

reduction techniques, such as kernel principal component analysis (PSO-PCA), has 

helped in tackling large number of uncertainty parameters and parameterising spatially 

correlated random fields. Secondly, we show that by using Principal Component 

Analysis, Particle Swarm Optimisation is able to obtain a diverse set of good fitting 

models comparable to the EnKF ones.  

 

In the next subsections we present the Brugge model that has been built as part of this 

study in Eclipse to carry out the work from the data provided by TNO.  The application 
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and the comparison results of both ensemble Kalman filter technique (discussed in 

Section 3.4.3) and particle swarm optimisation then follow.  

9.1 Brugge Reservoir  

The Brugge reservoir is a unique SPE benchmark synthetic reservoir designed by the 

TNO from an existing waterflooded oil field (dead oil) to test a closed loop 

waterflooding optimisation and history matching methods. Nine groups took part and 

showed their results during the SPE Applied Technology Workshop (ATW) (Closed-

Loop Reservoir Management Workshop) held in Bruges, Belgium, in June 2008. 

 

The sandstone reservoir consists of an east-west elongated half-dome formation 

enclosed within a fault-bounded structure at its northern edge. Figure 9.1 shows the 

Brugge reservoir top structure map. The lateral flow is impacted with the only internal 

fault with a modest throw at an approximate angle of 20° to the Northern Boundary 

Fault (NBF). The reservoir model is divided into 9 geological layers where its 

properties and thickness are typical for a North Sea Brent-type reservoir. The estimated 

STOIIP is about 755 MMSTB.  There is no pressure support from the inactive aquifer 

on the edge of the reservoir. The field is depleting with voidage replacement. The 

Brugge field has in total 30 smart wells with three perforation intervals per well and 

vertical flow control. Smart wells are wells equipped with smart completion that can 

mitigate unexpected water production due to fractures and therefore enhance the 

ultimate recovery accomplished by selectively controlling production from multiple 

laterals.  Three downhole inflow control valves (ICVs) were installed in all producers 

and injectors to enable controlling separately the rates for the Schelde, Waal, and Maas 

formations. There are 20 vertical oil producers and 10 vertical peripheral water injectors 

as shown in Figure 9.1.  
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Figure 9.1: 3D Top structure map, OWC and fault (Source: Peters et al., 2010) 

 

The 10-year reservoir history production consists of well oil and water rates, in addition 

to well pressures for producers and injectors. The wells‟ historical data includes 

measurement errors created by adding noise. The organisers prepared a high-resolution 

reservoir model containing 20 million grid cells which has been upscaled to 450,000 

grid cells later exploited to simulate the truth case. The “truth” reservoir model has a 

size of 75×75×2.5 m and a total of 327,067 active gridblocks. It was modelled in the 
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proprietary Shell‟s new Modular Reservoir Simulator (MoReS) (Peters et al., 2010). A 

total of 104 upscaled geological realisations of a 3D geological model have been created 

representing the prior knowledge about the field containing 60,048 grid blocks. Brugge 

upscaled model dimensions are 139×48×9. The data provided for the participants 

included wells perforations, well logs, relative perms, free water level, PVT, economic 

parameters for oil and water, and discount rate.  In addition, an inverted time-lapse 

seismic survey in terms of (uncertain) pore pressures and saturations on the coarse scale 

is provided twice: initially and after 10 years (Geel, 2008; Peters et al., 2010).  The 

original objective of the study is to history match using any technique and to come up 

with an optimal production control strategy for the next 20 years to estimate the 

cumulative oil production and optimise the net-present-value (NPV) with no further 

wells drilled.  The Brugge field includes dead oil (no gas) and water characterised in 

Table 9.1.  The field is a considerably oil-wet field.  

Table 9.1: Fluid properties in the Brugge Field (Source: Geel, 2008). 

Fluid  Surface density (lb/ft
3
) Viscosity (cp) Compressibility (psi

–1
) 

Oil  56 1.29 9.26.10
–6

 

Water  62.6 0.32 3.10
–6

  

 

 

In this thesis we focus on history matching of the reservoir model only. The description 

of the realisations as noted by Geel (2008) is provided below. 

 

9.1.1 Stratigraphy of the Brugge Reservoir  

The properties and thicknesses of the reservoir zones are typical for a North Sea Brent-

type field, i.e. a delta plain/barrier type of reservoir, however, with the vertical sequence 

of the formations altered with respect to the general Brent stratigraphy (consisting of the 

Broom–Rannoch-Etive-Ness-Tarbert formations) to improve the exercise‟s 

attractiveness. Thus, the highly permeable reservoir zone changed places with the 

underlying less-permeable, heterogeneous zone. Brent is an acronym for the members 

of the Jurassic Brent formation that make up the field: Broom, Rannoch, Etive, Ness 

and Tarbert (in turn named after features in the Scottish Highlands).  The Brugge 

reservoir consists of a stratigraphy as presented in Table 9.2 (Geel, 2008).  
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Table 9.2: Stratigraphy used in the Brugge Field with the main characteristics (Source: 

Geel, 2008) 

Formation 

(Reservoir 

Zone) 

Average 

Thickness 

(m) 

Average 

Porosity 

(%) 

Average 

Permeability 

(mD) 

Average 

N/G (%) 

Depositional 

Environment 
Remarks 

Schelde 

Fm 
10 20.7 1105 60 Fluvial 

Discrete sand 

bodies in shale 

Waal Fm 26 19.0 90 88 
Lower 

Shoreface 

Contains loggers: 

carbonate 

concretions 

Maas Fm 20 24.1 814 97 
Upper 

Shoreface 
– 

Schie Fm 5 19.4 36 77 Sandy Shelf 
Irregular carbonate 

patches 

 

9.1.2 Realisations of Reservoir Properties 

A total of 104 upscaled (60,048 grid cells with 44,550 active cells) realisations of the 

field were created to reflect the prior distribution. The selected control parameters fell 

into the following four classes: 

1. Facies: subdivide the reservoir into facies classes with associated poroperm 

characteristics (FY), or alternatively, ignore facies (FN) 

2. Fluvial: if facies modelling is enabled (FY), then the fluvial reservoir zone can 

be modelled either as channel objects in a shale background (SF), or it can be 

modelled as a Sequential Indicator Simulation (SS) 

3. Porosity: porosity is generated stochastically using Sequential Gaussian 

Simulation (PS) 

4. Permeability: permeability can be generated deterministically, as a single 

poroperm regression (KS), or as a poroperm regression per facie (KM) or it can 

be generated stochastically, with co-Kriging on porosity (KP) 

 

Porosity is generated by PS where sequential simulation is used to maintain the spatial 

structure (honour the histogram and variogram inferred from the known data).  Kriging 

condition models to static hard data at the wells (see Section 2.4).  

 

A total of 104 realisations were constructed by combining the different options.  Each 

modelling technique has 13 realisations.  Each of the realisations has the following 

properties: Facies, Porosity, NTG, Water Saturation, and Permeability in X, Y, and Z 

directions. There are 7 regions distinguished in the reservoir based on the porosity 

distribution with each one having its own saturation table.  Different rock types exist 

with 7 different relative permeability curves, but only one relative permeability curve is 



CHAPTER 9 – BRUGGE HISTORY MATCHING: PARTICLE SWARM VS. ENSEMBLE KALMAN FILTER 

 

 

 

273 

 

used in this study.  It is important however to further integrate the capillary pressure 

data for modelling initial water saturation and pressure with the 7 equilibration regions. 

9.2 Parameterisation  

Compartmentalisation (zonation/regionalisation) parameterisation approach is a 

common method usually used in evolutionary and swarm intelligence techniques to 

adjust the uncertainty parameters of the reservoir to reduce the number of parameters. 

This form of parameterisation has been the standard in the Petroleum Industry (Floris et 

al., 2001). Schulze-Riegert et al. (2009) have previously tested coupling an 

Evolutionary Strategy (ES) with the ensemble Kalman filter (EnKF) in order to benefit 

from and overcome the weaknesses of both methods using Brugge as a test case. 

However, in real field applications geologists can create more than one scenario to 

account for the underestimated uncertainty introduced by using only one realisation. 

The Brugge case could be considered as a good candidate to test the applicability in 

using stochastic techniques as a stand-alone optimiser to generate multiple history 

matched models that honour the geology and the spatial correlation features. The 

available data provided by TNO does not incorporate any defined regions, but 104 

realisations that describe the spatial correlation of the properties. Recent 

parameterisation techniques, which integrate geostatistical information and tries to 

preserve geological consistency and continuity of an ensemble of models created, 

include, to name a few, Principal Component Analysis (Sarma et al., 2008a, 2008b), 

Gradual Deformation (Hu, 2000), Discrete Cosine Transform (Jafarpour and 

McLaughlin, 2009), Kernel Ridge Regression (Sætrom and Omre, 2010), Discrete 

Wavelet Transform (Kind and Quinteros, 2007), and Multiple Kernel Learning 

(Demyanov, Foresti, Christie, and Kanevski, 2011; Demyanov, Foresti, Kanevski, and 

Christie, 2010) (refer to Section 2.5 for further details). In our application here we have 

picked the Principal Component Analysis strategy to predict the reservoir properties of 

this study. This work is presented in Mohamed et al. (2010a).  Very recent work by 

Fernández-Martínez et al. (2010) adopted in a similar way our PSO-PCA approach on a 

synthetic history matching problem, extracted from the Stanford VI (Castro et al., 2005) 

sand and shale synthetic reservoir.  Below is a brief theoretical demonstration upon 

which this work draws. 
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9.2.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a way of identifying patterns in data, and 

expressing the data in such a way as to highlight their similarities and differences.  

Since patterns in data can be hard to find in higher dimensions, where the luxury of 

graphical representation is not available, PCA is a powerful tool for analysing data 

(Hastie et al., 2009).  Once these patterns in the data have been found, the data can be 

compressed by reducing the number of dimensions without much loss of information. 

This technique is popular and has been extensively used in the literature in several areas 

such as reservoir engineering, fluid dynamics, turbulence, signal processing, operational 

oceanography, image compression, , dimensionality reduction, feature extraction, data 

visualisations, weather prediction, statistics, and in many machine learning applications 

(Bishop, 2006; Jolliffe, 2002).   Figure 9.2 shows the principal components for dataset 

represented in 2D.  The largest principal component is the direction that maximises the 

variance of the projected data and the smallest principal component is the one which 

minimises that variance (Hotelling, 1933).  PCA is also defined as the linear projection 

that minimises the mean squared distance between the data points and their projections 

(Pearson, 1901).  The method is also known as Orthogonal Empirical Bases, Karhunen-

Loève Transform and Proper Orthogonal Decomposition (Bishop, 2006).  

 

 
Figure 9.2: Principal Components in 2D 
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The common steps for applying the PCA: 

1. Obtain the geological data. 

2. Calculate the covariance matrix C. 

3. Calculate the eigenvectors (E ) and eigenvalues (Λ ) of the covariance matrix C. 

4. Choose principal components (PCs) and form a feature vector Eq. (9.1) – as 

illustrated in Figure 9.3.  

1

1

R

R

N

i i

i

N

i

i

y

y














       
             Eq. (9.1) 

5. Derive the new data set 

 

We adopted the methodology used by Sarma et al. (2008b) which uses the standard 

Karhunen-Loeve (K–L) expansion or Linear PCA. Linear PCA only preserves the two-

point statistics of the random field.  

         
Figure 9.3: Simple example of how to form feature vector from 104 prior images with Linear PCA 

by applying a polynomial “kernel” of order 1 (see Section 9.2.1.1) 

 

9.2.1.1 Linear PCA Application 

PCA application involves searching an orthogonal base of the experimental covariance 

matrix estimated with the prior 104 geological models, and then selecting a subset of the 

most important values with their associated eigenvectors that are used as a reduced 

model space base. 

The K–L expansion is a linear functional relationship as β = f(ξ). The random field y is 

parameterised in terms of Nm independent random variables ξ where Nm is the largest Nc 

total eigenvalues maintained. The largest Nm eigenvalues capture the general field 

features whilst the (Nc – Nm) smallest eigenvalues represent the detailed geological 

features.    

 

For getting a new realisation, the diagonalisation of the covariance matrix C needs to be 

worked out by solving the equation:  

v Cv                 Eq. (9.2)  

104    
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Solving this with singular value decomposition (SVD) is very expensive, with a 

computational complexity of O(NC
3
), where Nc is the size of the vector y. The exact 

equivalent alternative formulation of the same problem demonstrated in the previous 

equations is called the kernel eigenvalue problem in which a “kernel” is defined.  

Hence, the problem can now be solved much more efficiently to determine the non-zero 

eigenvalues λ.  The kernel matrix K where kij = (yi,yj) is the dot product of realisations i 

and j is of size NR × NR matrix and is called polynomial kernel of order 1.  It can be 

shown that the eigenvalues and eigenvectors of the eigenvalue problem are equivalent 

of the following kernel eigenvalue problem in Eq. (9.3) in which   is a coefficient 

vector.   

RN K                Eq. (9.3) 

The solution of Eq. (9.3) is equivalent to solving Eq. (9.2) since the non-zero 

eigenvalues of Eq. (9.2) are of that of Eq. (9.3) scaled by NR.  Thus, the eigenvalue 

problem of this is given by RN   and the eigenvectors are given by .  

 

For the application in this work, the following procedure has been followed: 

1. We collect the uncertain variables of interest into a yi vector composed of 

Porosity, NTG, and Permeability in X, Y, and Z directions at each grid block. 

[ , , ln , ln , ln ]T T T T T

i x y zy NTG k k k    
                Eq. (9.4) 

where  ,  1,2,...,104 .x yk k i   The components of yi are all vectors 

containing the static variables at every grid block. For the application of Linear 

PCA, an ensemble of vectors is collected in a matrix Y 

 
1 2[ ; ;...; ]; 104

RN RY y y y N   where Y is NR × 5NC  matrix.  NC  = 60048 is 

the model size. 

 

2. Calculate kernel matrix as in Eq.(9.5) where K is NR × NR  matrix and kij is 

defined as in Eq. (9.7): 

 , 1, ,ij RK k i j N                Eq. (9.5) 
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3. Construct the eigenvectors matrix E (NR × NR) of the matrix K and Λ (NR × NR) 

the diagonal matrix of the eigenvalues of K. The PCA can generate realisations 

as i i i

i i

y y    where  

1/ 2 / RE N                 Eq. (9.6) 

 

9.2.1.2 Kernel PCA Application for Preserving Multipoint Statistics 

The K–L expansion can be employed for geostatistical simulation to produce a 

realisation having the same covariance as the random field acquired with the training 

image.  However, the outcome realisations do not reproduce complex structures like 

channelised models regardless of the amount of energy maintained.  That is because the 

K–L expansion is a linear combination of Gaussian random parameters maintaining the 

two-point statistics of the original realisations and two-point statistics do not define 

channels.  In non-Gaussian realisation y = (y1,y2), y1 and y2 may be nonlinearly 

correlated in 2 such as values of log permeability in two particular grid blocks as 

shown in Figure 9.4 (left) in which the linear PCA application will give the right plot.  

 

 
Figure 9.4: y1 and y2 correlations for multi-Gaussian y (Source: Sarma et al. (2008b)) 

 

By applying a nonlinear map Φ which links the realisation space RN to feature space F 

that has a large dimensionality as shown in Figure 9.5 we can capture these 

nonlinearities. 
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Figure 9.5: Kernel trick idea in kernel PCA approach (Source: Sarma et al. (2008b)) 

 

The map is the kernel function that after the transform can make the realisations that 

were nonlinearly uncorrelated in realisation space be linearly correlated in feature space 

where linear PCA could be applied.  The application of linear PCA in feature space 

regarding to the polynomial kernel of ( . )dx y  maintains the 2d
th

 order moment or 2d-

point statistics of parameter space.  The kernel in Eq. (9.7) maintains up to the 2d
th

 order 

moment.   

   
1

( ) ( ) ( , )
d

i

i

x y k x y x y


                 Eq. (9.7) 

 

9.2.1.3 The Pre-Image problem 

Now we assume that we have a virtual realisation FY   and we want to come back into 

the parameter space in order to have the real new realisation cN
y  such that  

 Yy 1 .  This problem is called the “Pre-Image problem”.  However, it is noted that 

such y  may not exist or indeed many of them may exist because the problem is ill-

posed and thus the pre-image problem is an optimisation problem that need to be 

solved. The following optimisation problem need to be solved so as to find this y   

         
2

min 2
y

y y Y y y Y y Y Y                   Eq. (9.8) 

The fixed-point approach in Eq. (9.9) will be used to solve this problem 
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                Eq. (9.9) 
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where i  is the i
th

 eigenvalue of the matrix K and i  is the i
th

 eigenvector of the matrix 

K, for  1, , Rj N .  A recap of the kernel approach is given in Figure 9.6.  Model 

reduction techniques are described in detail in Bishop (2006), Cheng (2010), Hastie et 

al. (2009), Sarma et al. (2008b), Soismier (2009), and machine learning literature. 

        

 
Figure 9.6: Kernel PCA principle (linear PCA in feature space) 

 

 

9.3 History Matching Application – Brugge Reservoir 

So far, Chapter 2 has presented the Ensemble Kalman Filter (EnKF) data assimilation 

method while Chapter 4 has reviewed the Particle Swarm Optimisation (PSO).  This 

section will present the objective functions definitions and then the comparison of PSO 

and EnKF follows. 

9.3.1 Brugge History Matching Uncertain Parameters 

The PSO objective is to find the best particle represented by the set of the 104 

parameters ordered from the largest eigenvalue to the lowest eigenvalue represented by 

() which leads to the minimum misfit value of the corresponding realisation. 

No explicit physical meaning is linked to these parameters.  The prior ranges for the 

parameters are uniform priors sampled from the ranges obtained by the minimum and 

maximum values for each parameter computed from Eq. (9.10).   

 
1

1/2 / RE N 


                        Eq. (9.10) 

By choosing I   (the identity matrix), the prior realisations can be obtained where 

Eq. (9.11) are the parameter values that can be chosen.  

 
1

1/2

0 / RE N


                          Eq. (9.11) 
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Figure 9.7 summarises the history matching workflow developed for the Brugge field 

with linear PCA equations for demonstration.  A similar procedure for kernel case is 

applied.   

 

 
Figure 9.7: The history matching workflow for the Brugge reservoir 

9.3.2 Objective Function Definition  

The objective function for PSO is defined as in Eq. (9.12).  

2 2

2 2
1

( ) ( )

2 2

obs sim obs simT
w w t t

t qwp WBHP

q q P P
Misfit

 

  
  

 
 

                        Eq. (9.12) 

 

where T is the number of observations, q is the water rate, P is the well pressure for 

observed (denoted as obs) and simulated data (denoted as sim) respectively, and 2 is 

the variance of the observed data.  

 

This definition is based on the assumption that the measurement errors are Gaussian and 

independent. White noise was added to the observations to make the data more 

representative.  A standard deviation of =30qwp qop  STB/D for oil and water 
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production rates measurement errors and 7.35WPHP  PSI for pressures were used 

(Peters et al., 2010). The injection rate is constant at 4000 STB/D. The producers are 

shut if the water cut exceeds 0.9. The simulator is controlled to match well oil rates.   

       

9.3.3 Results  

In this section we report the results of obtaining multiple history matched models with 

the particle swarm optimisation using the linear PCA parameterisation approach. 

History matching results are compared with EnKF. The result shown here are the best 

results among the couple of initial runs with different settings for both the EnKF and 

PSO. 

 

In PSO, we started from an initial population comprising 100 models generated 

randomly in parameter space. The optimisation is done for 30 iterations, each generation 

comprising 100 models. The total number of reservoir model simulations is 3000 for the 

performed tests.  A fair match obtained around 1000 forward simulations with 10 

generations as shown in Figure 9.8. Runtime with the Brugge field has taken around 

11.5 hours (roughly 13.8 minutes per simulation) with 25 nodes (50 CPUs) in the in-

house Heriot-Watt University cluster.  Figure 9.8 monitors the global best misfit versus 

the generation number where the misfit is reducing over time.  After 1000 simulations 

(generation 10) the misfit is not reducing much, so we may stop the run at that point.  

Sampling history evolution is shown in Figure 9.9 and Figure 9.10 in which we plot 104 

parameters ordered according to the corresponding 104 coefficients associated with the 

highest eigenvalues.  The algorithm is sampling different parts of the parameter space as 

we see in some of the parameters such as P6, P7, and P30.   

         



CHAPTER 9 – BRUGGE HISTORY MATCHING: PARTICLE SWARM VS. ENSEMBLE KALMAN FILTER 

 

 

 

282 

 

 
Figure 9.8: Misfit reduction for PSO 

 

 
Figure 9.9: Sampling evolution for the first 52 parameters 
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Figure 9.10: Sampling evolution for the 53-104th parameters 

 

9.3.4 Comparison with EnKF 

The work carried out in this comparison used an in-house Total E&P UK Standard 

Ensemble Kalman Filter MATLAB code.  It is noted that the application of EnKF here 

does not use localisation of covariance, a technique introduced to EnKF to tackle the 

limitation of the EnKF standard approach in having sparse values such as high 

permeability.  Perturbation of these unknowns in locations far away from the wells 

would have different impact on the results of the technique.  Primarily the intention has 

been to test the standard stand-alone versions.  Nevertheless, the technique has been 

investigated recently with localisation step in Chen et al. (2010) and it is reported that it 

mitigates the sampling errors for data assimilation in EnKF and this improved the 

results over the canonical EnKF for the same Brugge study.  Thus, it will be interesting 

research to compare the methods with the recommended localisation step. 
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The EnKF setup used for this preliminary comparison involves a different misfit 

definition by allowing higher noise level values per well for every timestep while it is 

kept constant in PSO.   With the same misfit definition the EnKF has not obtained a 

better history matching results than the ones reported here.  Therefore, this was not 

achieved and misfit definitions choices which suit each technique best were adopted to 

make the comparison.  Furthermore, the oil rate error term from Eq. (9.12) has been 

included in the EnKF misfit definition. The measurement errors for oil rate, water rate 

and pressure used were as follows: 10% of oil production, 15% of water production, and 

5% of well pressure respectively. In addition one observation is used per each five 

observations for a total of 32 timesteps for computational reasons. Since the data points 

have a specified trend, this should not affect the results as much as the variance used to 

estimate the measurement errors.  The total number of complete simulations in EnKF is 

equal to the number of realisations which is 104.  Since there are differences in the 

distribution of misfit values for the prior 104 realisations with the EnKF misfit 

definition in comparison with the distribution of misfits obtained with the definition 

used for PSO and EnKF, the optimisation procedures will be achieved differently.  For 

comparing the history matching results with PSO, all data points originally provided in 

the study were restored in the plots for achieving the comparative analysis of both 

methods‟ performance.    

 

For the comparative study purpose we used the best 100 fitting models of the PSO to 

compare with the EnKF models obtained. We assumed that all the best 100 fitting 

models of the PSO were equally likely then we plotted the P10-P50-P90 uncertainty 

envelopes. The grey colour shows the models found by each method. Here are examples 

for a few wells selected as shown in Figures 9.11 to 9.16 for the comparison: 

 Well pressure for producer 13 is better matched by EnKF as shown in Figure 

9.11(a), compared to PSO as shown in Figure 9.11(b).  

 Well pressure for producer 15 is better matched by PSO as shown in Figure 

9.12(b), compared to EnKF as shown in Figure 9.12(a).  

 Well water production rate for producer 2 is well matched by both as shown in 

Figure 9.13(a) and (b).  

 Well water production rate for producer 5 is not matched by both as shown in 

Figure 9.14(a) and (b).  
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 Well water production rate for producer 17 is better matched by PSO as shown 

in Figure 9.15(b), compared to EnKF as shown in Figure 9.15(a).  

 Well water production rate for producer 18 is better matched by EnKF as shown 

in Figure 9.16(a), compared to PSO as shown in Figure 9.16(b).  

 

The complete history matched performance for both EnKF and PSO are given in 

Figures A.1 to A.10 in Appendix A.  The EnKF obtained better history matches of 

pressures for producers for some wells while PSO obtained wider ranges and better 

captured the observed values in water production rates for some wells.  Figure 9.17 

summarises the overall performance of both techniques. We can see comparable results 

achieved by both methods with PSO having a slight improvement. Wells which were 

difficult to match with EnKF have a better match with PSO, however some wells have 

not obtained a satisfactory match with PSO as indicated earlier. 
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(a) EnKF 

 
(b) PSO 

Figure 9.11: Well pressure history matches for producer 13 for EnKF (a) and PSO (b) 

 

 
(a) EnKF 

 
(b) PSO 

Figure 9.12: Well pressure history matches for producer 15 for EnKF (a) and PSO (b) 

 

 
(a) EnKF 

 
(b) PSO 

Figure 9.13: Well water production rate history matches for producer 2 for EnKF (a) and PSO (b) 
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(a) EnKF 

 
(b) PSO 

Figure 9.14: Well water production rate history matches for producer 5 for EnKF (a) and PSO (b) 

 

 
(a) EnKF 

 
(b) PSO 

Figure 9.15: Well water production rate history matches for producer 17 for EnKF (a) and PSO (b) 

 

 
(a) EnKF 

 
(b) PSO 

Figure 9.16: Well water production rate history matches for producer 18 for EnKF (a) and PSO (b) 
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(a) EnKF 

 

 
(b) PSO 

Figure 9.17: Recap of wells history matches for EnKF (a) and PSO (b) 

 

The petrophysical properties for the nine layers: the NTG and permeability in X 

direction (in mD) for the best fitting model obtained by EnKF and PSO are shown in 

Figures (a) and (b) of 9.18, and 9.19 respectively.  The porosity for the best fitting 

model obtained by EnKF and PSO is shown in (a) and (b) of Figure B.1 respectively in 

Appendix B.  The permeability in Z direction (in mD) for the best fitting model 

obtained by EnKF and PSO is shown in (a) and (b) of Figure B.2 respectively in 

Appendix B.  Generally, continuity is observed in PSO best-fitting realisation compared 

to the EnKF best-fitting one, where heterogeneity is observed. Geological knowledge of 
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the field may help evaluate and modify the realisations consistently with the observed 

reality. 

 
(a)  EnKF result 

 
(b)  PSO result 

Figure 9.18: NTG for the 9 layers for EnKF (a) and PSO (b) 
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(a)  EnKF result 

 

 
(b)  PSO result 

Figure 9.19: Natural logarithm of permeability in X direction for the 9 layers for EnKF (a) and 

PSO (b) 
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9.3.5 Location of Oil-Water Contact  

The location of the oil-water contact (both abbreviations OWC and WOC are used in 

the literature) can often be interpreted from 4D time-lapse seismic image surveys with 

some confidence. From the reservoir model, the location OWC can be obtained by 

inspecting the water saturation trend in each vertical column of cells in the model and 

using a threshold saturation value to point out the depth at which a transition takes place 

(Walker and Lane, 2007).  In poorly porous intervals, the oil-water, gas-water or gas-oil 

contacts can be concealed, which makes the assessment of hydrocarbon reserves 

difficult, noticeably showing the uncertainties included. The well's petrophysical 

information frequently used to verify and describe these further. Brugge reservoir 

reference pressure at a depth of 1700 m is 170 bar.  The free water level is indicated to 

be positioned at 1678 m and OWC at 1670 (Geel, 2008). 

There were two observations with the PSO results (as well as EnKF) that showed 

 High pressures with low water rates for some wells or no water at others.  

 Low pressures with high water rates. 

This triggered a potential water elevation level problem in this study.  We therefore 

have examined adding a new OWC parameter to be optimised with the prior range 

[5430,5480] ft.  Improved PSO results are obtained by adding an OWC parameter with 

the initial 104 PCA parameters.   OWC optimisation is shown in Figure 9.20 compared 

with the original optimisation where the dashed black line represents the 105 parameters 

misfit reduction plot and the blue line represents the one obtained with 104 parameters. 

Sampling history is depicted in Figure 9.21.  A difference of about 17 meters (55 ft) is 

obtained from the one indicated in the study.  Table 9.3 shows clearly the best misfit 

achieved with 105 parameters reduced the misfit by around a factor of two.   
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Figure 9.20: OWC optimisation adding value to misfit reduction 

 

 

 

(a)  Sampling History 

 

(b) Misfit vs. OWC  
Figure 9.21: OWC addition 

 

Table 9.3: Best misfits achieved both with and without adding OWC parameter 

Number of parameters Best misfits 

104 parameters (PCA parameters) 758060 

105 parameters (PCA parameters and OWC parameter) 375313 

 

original value 
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For examples of improvements, the p10-p50-p90 results obtained by adding the OWC 

parameter is shown in (b) of Figures 9.22 to Figure 9.28 compared to the results 

obtained with the 104 parameter earlier in (a).  A complete list of history matching 

results is shown in Figures A.11 to A.15 in Appendix A. 

 Well pressure for producer 5, as shown in Figure 9.22(b) compared to previous 

in Figure 9.22(a). 

 Well pressure for producer 10, as shown in Figure 9.23(b) compared to previous 

in Figure 9.23(a). 

 Well pressure for producer 15, as shown in Figure 9.24(b) compared to previous 

in Figure 9.24(a). 

 Water production rate for producer 5, as shown in Figure 9.25(b) compared to 

previous in Figure 9.25(a). 

 Water production rate for producer 6, as shown in Figure 9.26(b) compared to 

previous in Figure 9.26(a). 

 Water production rate for producer 10, as shown in Figure 9.27(b) compared to 

previous in Figure 9.27(a). 

 Water production rate for producer 16, as shown in Figure 9.28(b) compared to 

previous in Figure 9.28(a). 
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(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.22: Well pressure history matches for producer 5 for PSO with 104 parameters (a) and 

with OWC parameter added (b) 

 

 
(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.23: Well pressure history matches for producer 10 for PSO with 104 parameters (a) and 

with OWC parameter added (b) 

 

 
(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.24: Well pressure history matches for producer 15 for PSO with 104 parameters (a) and 

with OWC parameter added (b) 
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(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.25: Well water production rate history matches for producer 5 for PSO with 104 

parameters (a) and with OWC parameter added (b) 

 

 
(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.26: Well water production rate history matches for producer 6 for PSO with 104 

parameters (a) and with OWC parameter added (b) 

 

 
(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.27: Well water production rate history matches for producer 10 for PSO with 104 

parameters (a) and with OWC parameter added (b) 
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(a) PSO – 104  

 
(b) PSO – 105 

Figure 9.28: Well water production rate history matches for producer 16 for PSO with 104 

parameters (a) and with OWC parameter added (b) 
 
 

Figure 9.29 shows the initial field oil and water rates of the initial run of the 104 

ensemble and the observations.  The p10-p50-p90 uncertainty estimate equivalent plots 

are shown in Figure 9.30 for the models obtained with PSO (for both 104 parameters in 

(a),(b), and (c) and 105 parameters in (d),(e), and (f)).  The field oil rate is well matched 

while the field water rate is captured particularly at the end of the historical period. 

 

 

 
Figure 9.29: Field oil and water rates of the initial run of the ensemble and the observations 
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(a) PSO – 104 

 
(d) PSO – 105 

 
(b) PSO – 104 (e) PSO – 105 

 
(c) PSO – 104 

 
(f) PSO – 105 

Figure 9.30: Field oil rate, field water rate, and total oil recovery of the two PSO runs – 104 and 105 

parameters 
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The petrophysical properties for the nine layers: the NTG and permeability in X 

direction (in mD) for the best fitting model obtained for 105 parameters are shown in 

Figures (a) and (b) of 9.31.  The corresponding porosity and permeability in Z direction 

(in mD) for the best fitting model are shown for completeness in (a) and (b) of Figure 

B.3 in Appendix B. 

 

Figure 9.32 shows the misfit reduction when we changed the number of parameters to 

be the first 10, 20, 30,  40, 50, 60, and 104 PCA parameters plus an OWC parameter 

making total of 11, 21, 31, 41, 51, 61, and 105 respectively. The first PCA parameters, 

which correspond to the highest eigenvalues coefficients, would control the general 

features while the remaining PCA parameters control the geological details.  Note that 

the values will not be ordered since these are the coefficients associated with the 104 

eigenvalues.  The best results were obtained when we used all the 104 PCA parameters 

indicating that the small scale geological details have a useful input in the optimisation 

procedure.  When we have fixed the first 64 parameters properties by the values 

associated with the best misfit value obtained from the best model of the 104 parameters 

to study how that influenced the optimisation, the plot in Figure 9.33 has been obtained. 

This shows that the optimisation is sensitive to the number of parameters used since the 

misfit values are higher than the one original with 104 parameters.  In addition, the 

misfit has been reduced during the optimisation procedure. 
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(a)  NTG 

 

 
(b)  Permeability in X direction 

Figure 9.31: OWC result for the 9 layers with NTG (a) and natural logarithm of permeability in X 

direction (b) 
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Figure 9.32: Misfit reduction using different number of parameters 

 

 
Figure 9.33: Misfit reduction using 105 parameters, 40 parameters (with fixed OWC parameter), 

and 41 (including variable OWC parameter). The first 64 parameter values are set from the best 

fitting model obtained from the 105 parameter case 
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We also showed the results of using different swarm sizes: 10, 20, 40, 50, 60, and 100. 

Figure 9.34 shows the misfit reduction results of changing the swarm size for the PSO 

while using the same total number of simulations.  The best misfit achieved was 

obtained with 30 particles per generation shown in Table 9.4.   

 

 
Figure 9.34: Misfit reduction using different swarm sizes 

 

Table 9.4: Best misfits achieved with two swarm sizes – 105 parameters  

Number of particles Best misfits 

100 375313 

30 303948 

 
 

9.3.6 Kernel Principal Component Analysis Application 

In this section we report the results of applying nonlinear PCA with high order 

polynomial kernels.   The kernel PCA parameters are optimised with PSO.  We used a 

second (KPCA2) and third (KPCA3) order polynomial kernels.  Figure 9.35 shows the 

misfit reduction comparison when applying the Linear PCA (KPCA1), kernel PCA with 
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order two and three.  KPCA3 has reduced faster, although the best misfit achieved has 

been obtained with the KPCA1.  KPCA 2 started from a higher value than both KPCA1 

and KPCA3and reducing sharply at the first stages of optimisation although it has 

obtained a higher misfit value at the end than the other two. 

 

 
Figure 9.35: Misfit reduction comparison of KPCA1, KPCA2, and KPCA3 

 

The petrophysical properties for the nine layers: the NTG and permeability in X 

direction (in mD) for the best fitting model obtained for KPCA2 and KPCA3 are shown 

in Figures (a) and (b) of 9.36 and 9.37.  The porosity maps for the best fitting model 

obtained for KPCA2 and KPCA3 are shown in (a) and (b) of Figure B.4 in Appendix B.  

The corresponding permeability fields in Z direction (in mD) for the best fitting model 

obtained for KPCA2 and KPCA3 are shown in (a) and (b) of Figure B.5 in Appendix B.  

Heterogeneity is observed in KPCA2 and KPCA3 in comparison to KPCA1 in Figure 

Figures 9.18(b), 9.19(b) and 9.31. 
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(a)  KPCA2 result 

 

 
(b)  KPCA3 result 

Figure 9.36: NTG for the 9 layers for KPCA2 (a) and KPCA3 (b) 
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(a)  KPCA2 result 

 

 
(b)  KPCA3 result 

Figure 9.37: Natural logarithm of permeability in X direction for the 9 layers for KPCA1 (a) and 

KPCA3 (b) 
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9.4 Chapter Summary 

In this chapter we have applied Particle Swarm Optimisation (PSO) on a large synthetic 

test case with 104 parameters and have obtained good matches with successful 

parameterisation using Principal Component Analysis (PCA).  Further improvements 

for PSO results were obtained when adding an OWC parameter.  Principal Component 

Analysis is successfully applied to deal with large number of parameters.  PSO 

optimisation was faster particularly at early generations when kernel PCA is used 

although the results were more or less comparable to the linear PCA one. 

Based on comparative analysis with EnKF the following specific conclusions could be 

drawn: 

 PSO has produced good history matching results comparable with EnKF.  

 EnKF has obtained better pressure matches for some producers. 

 PSO has obtained wider ranges and captured the observed water rates better for 

some wells. 

 EnKF has obtained the good history matching results with 104 simulations while 

PSO has obtained similar history matching performance in a higher number of 

simulations.  

 Continuity was observed in PSO realisations compared to EnKF ones where 

heterogeneity is observed. 

 

It is hard to argue that either algorithm is a clear winner for this problem, which 

suggests that each algorithm has its own strengths and weaknesses, and will work well 

for specific problems that suit it and may not work on other problems.   

 

While our study does not show that PSO outperforms EnKF in all cases, it does 

illustrate the need for a range of algorithms to be available for history matching.  
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Chapter 10 – Summary and 

Conclusions 

The main aim of this thesis is to investigate and develop effective techniques that can 

produce models capable of improving the statistics of oil predictions in petroleum 

industry in a faster and more reliable way.  Advancement in computer technology has 

encouraged researchers to develop novel computer science techniques and software for 

history matching and uncertainty quantification.  An emphasis in this study has been on 

how different optimisation and inference techniques affect the recovery from petroleum 

systems.  This has led to the examination and development of novel state-of-the-art 

optimisation and inference methods from computer science, statistical and mathematical 

background.  Importantly, examining the techniques working mechanisms can provide 

clear insights into what problems suit them best.  Synthetic and simple field studies 

have been used to inspect systematically the techniques and to make sound reasonable 

concluding remarks.  This chapter summarises the main contributions of this thesis.  

Furthermore, key findings from this research have suggested a number of areas which 

warrant further investigation and these will be provided towards the end. 

 

Four petroleum case studies served and contributed as test examples to carry out the 

research and experiments for the thesis.  The Teal South reservoir presented in Chapter 

4 is an oil field located in the Gulf of Mexico.  Because of realistic nature, existence of 

measurement errors, and the model simplicity in having only one well, it was used to 

examine the efficiency of different optimisation techniques.  The model represents an 

eight-parameter optimisation problem, a reasonable high-dimensional problem for 

testing the performance of the techniques and realistic setup to devise and develop 

visualisation tools to help in analysing results for the rest of the work performed.
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The second case study is the IC Fault Model introduced in Chapter 4.  While the 

synthetic model is a low-dimensional model having only three parameters, it represents 

a challenging optimisation problem because of it has highly irregular misfit surface and 

thus be difficult to match for assisted history matching evolutionary and swarm 

intelligence optimisation algorithms. This model is a significant platform for 

investigating how different optimisation mechanisms in sampling complex surfaces can 

influence the predictions and studying how to handle such cases with developed 

methods. 

 

The third study is PUNQ-S3, presented in Chapter 5, which is a synthetic model having 

a number of wells sufficient to identify multiple objectives whilst involving simplicity 

in terms of time required to carry out simulations for the intention of confirming the 

effectiveness of multi-objective history matching approach. It was used to serve that 

purpose in this thesis; to give insights prior to tackling complex models with huge 

number of wells and large historical data.  The model is a high-dimensional problem 

involving 45 parameters. 

 

Finally, the last model is the Brugge model, introduced in Chapter 9, which is a 

synthetic model based on real field representing what we see in a real field as a fairly 

complex model having 30 smart wells with their oil rates, water rates and pressures 

recorded for 10 years.  The Brugge model is not too complex model to prevent progress 

in carrying out experimental tests nor too small to invalidate developed methodologies 

and conclusions.  The study was developed by the Netherlands Organisation for Applied 

Scientific Research (TNO).  Brugge field was originally constructed and tailored to test 

close-loop particle filter methods, and recognised to represent a challenge for 

evolutionary optimisation algorithms to be at a disadvantage.  Thus, it was used to 

illustrate how such cases can be adapted to be used with evolutionary methods.  The 

developed model is high-dimensional problem including 105 parameters. 

10.1 Thesis Summary  

The thesis has been structured into ten chapters to carry out the study.  Chapter 4 has 

introduced the high performance global particle swarm optimisation (PSO) algorithm to 

navigate the parameter space and to find an ensemble of history matched reservoir 

models that are used to probabilistically quantify the uncertainty in Bayesian framework 

with the use of the NAB routine for resampling and postprocessing. PSO is a swarm 
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intelligence algorithm uses a swarm of particles composed of positions representing the 

models and velocities.  PSO search mechanism incorporates acceleration and damping 

parameters to accelerate towards multiple solutions.  The technique has very interesting 

exploration – exploitation capabilities. The thesis has studied basic modifications of the 

PSO that greatly influence the performance of the method in order to experiment and 

understand the reliability of the technique.  The examined different variants of PSO 

include four boundary strategies dealing with particles which fly outside the boundary 

of the search space and four inertial weight choices in which an inertia parameter, 

representing the fraction of previous flight that could be integrated in the next one, is 

modified (sometimes with the cognition and social components).  The technique has 

been tested on three reservoir examples.  The first example is the Teal South reservoir 

with 8 unknown parameters, the second one is the 3-paramter multimodal IC Fault 

model, and the third is the Brugge model.  It is seen that the forecasted uncertainty 

envelopes are influenced by two factors: both the quality and diversity of the models in 

the PSO ensemble obtained.  It is shown that PSO has the flexibility in converging fast 

towards good solutions as well as in carrying out global exploration depending on the 

task.  The use of static inertial weights like Trelea Set Type I' (c1 = c2 = 1.494, ω = 

0.729) and I'' (c1 = c2 = 1.7, and ω = 0.6), converges faster to good fitting regions in 

parameter space provided that the boundary strategy is fixed in most cases. This leads to 

a fewer number of reservoir simulation runs while the dynamic versions (linear 

decreasing and linear increasing inertial weights) maintain diversity of the reservoir 

models.  The absorbing and damping boundary strategies in most cases have faster 

convergence speed while random and reflecting boundary strategies maintain the 

diversity.  This behaviour is robust.  In the Teal South model the smoothness of the 

surface leads to similar predictions while in the low-dimensional IC Fault model the 

results varied according to the diversity of models found.  Testing different variants for 

different problems is a way forward to ensure the reliability of the produced inferences 

and choosing the variant that is more suitable to a particular problem.  For instance, 

linear decrease inertial weight with absorbing boundary strategy was shown to be 

suitable for high-dimensional problems because there is a large possibility that many 

local minima are located at boundaries in high spaces.  

 

Assisted history matching algorithms in previous research studies primarily focused on 

optimising a single objective function in which all the objective function components 
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are aggregated into a single number. Whereas, history matching process is physically 

multi-objective since there are multiple wells and measurements are recorded at 

different times.  An alternative innovative methodology proposed is the multi-objective 

approach where we aim at optimally balancing the different objectives simultaneously 

while maintaining solutions diversity.  The advantageous of such representation is that it 

is possible to examine the trade-offs between the objectives and construct a reservoir 

model that makes an equivalent level of match for all the reservoir objectives. In other 

words, none of the multiple objectives is dominating, in which case the set of non-

dominated solutions is called Pareto optimal front.  

 

Chapter 5 has investigated Multi-Objective Particle Swarm Optimisation (MOPSO) 

scheme on the IC Fault and PUNQ-S3 synthetic models.  The conclusions from the two 

case studies have been that the MOPSO scheme gives flexibility in optimising different 

objectives simultaneously and obtains better history matches with faster convergence 

speed (based on the way the objectives are aggregated that has been seen in PUNQ-S3). 

Consequently, the number of simulations required for achieving a similar matching 

performance has been reduced with faster estimation of uncertainty.  In addition, the 

multi-objective optimisation approach can also be used to understand and analyse the 

simulations and group the conflicting objectives in different ways.   Geological spatial 

correlations, the energy balance of the reservoir, and calculating the contribution of each 

objective to the misfit function can be employed as ways of grouping the objectives.  

The observations from the PUNQ-S3 example where two aggregation approaches were 

used have an impact on the speed convergence and quality of history matches. Yet, the 

differences in uncertainty estimates were insignificant. Since, the results of aggregation 

have been obtained on the single field PUNQ-S3 dataset, further studies on more 

complex fields will be needed to establish definitive guidelines.  The implementation of 

PSO and MOPSO is achieved in a synchronous master/slave parallelisation scheme that 

can be easily coupled with any other method. 

 

Chapter 6 has presented the application development of the novel Hamiltonian Monte 

Carlo (HMC) algorithm for uncertainty quantification.  HMC is a Markov Chain Monte 

Carlo (MCMC) inference technique that combines the characteristics of the Hamiltonian 

dynamics and the Metropolis algorithm to sample complex posterior distributions.  The 

developed HMC approach integrates gradient information estimated with General 
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Regression Neural Network to address the random walk problem in the classical 

Metropolis.  The method could use adjoint code directly for gradients if available.  

HMC generates samples from the posterior with one step.  The work carried out on Teal 

South as a realistic case showed that for its smooth surface HMC results were 

comparable to that of other stochastic methods.  In some complex cases such as the IC 

fault model case, more work need to be carried out as outlined in Chapter 8. 

 

Chapter 7 investigated the efficiency of the three stochastic sampling algorithms.  The 

algorithms are compared by generating multiple history matched reservoir models for 

the Teal South and IC Fault model.  The conclusion drawn from the smooth Teal South 

study was that all three methods NA, PSO and HMC are able to find equivalent match 

qualities and equivalent forecasts of uncertainty.  PSO with the random boundary 

strategy (not the fastest variant) had faster convergence than NA for the example.  

Furthermore, in the complex IC Fault example, the NA, with different tuning 

parameters and the same population size used for PSO, failed to obtain a close estimate 

of uncertainty to the benchmarked database one and got trapped in local minima, while 

in PSO some variants were able to do so.  Using a large size of population for those 

variants can help in finding even more diverse solutions.  On the other hand, HMC 

samples are localised in regions which are close to the initial states.  Proposed solutions 

to deal with these cases have been discussed in Chapter 8.   

 

Chapter 8 has presented the first application of a Population MCMC (Pop-MCMC) 

technique to generate multiple history matched models. Pop-MCMC combines 

techniques from evolutionary algorithms and parallel MCMC algorithms to design new 

algorithms for sampling or optimising complex distributions.  The sampling efficiency 

of Population MCMC has been tested on the IC Fault Model that has a highly irregular 

misfit surface caused by the nonlinearity between model solutions and simulated 

reservoir response, and hence is difficult to match.  The fundamental idea of Population 

MCMC parallel tempering is to enable the system to “exchange” configurations 

corresponding to differently “tempered” distributions, allowing the sampler to explore 

the state space in a more flexible way.  Population MCMC was able to generate samples 

very effectively from the complex, multimodal posterior probability distribution. By 

comparison, previous results from stochastic sampling algorithms often focus on only 

part of the region of high posterior probability depending on algorithm settings and 
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starting points as shown in Chapter 7. Pop-MCMC algorithm provides better sampling 

and more robust inference than standard MCMC or previous evolutionary algorithms.  

Clearly, the merger of the evolutionary algorithms and MCMC paradigms represent a 

rich source for future development of powerful sampling and optimisation algorithms. 

A further study on combining the GP emulator with Pop-MCMC is ongoing with 

promising initial results. 

 

Global evolutionary or swarm intelligence optimisation methods are often employed to 

solve global optimisation history matching problems with a small number of parameters 

to adjust around hundreds which hinders the use of global optimisation algorithms in 

large problems.  Chapter 9 has illustrated that the sampling and optimisation can be 

achieved in a reduced model space through the combined use of high performance 

global algorithms such as Particle Swarm Optimisation and model reduction techniques 

or kernel methods such as Principal Component Analysis (PCA).  PCA has been 

performed on a set of prior scenarios that were constructed from integrating prior 

geological information via stochastic-based simulation approaches. PCA benefits from 

the assumption, which is realistic, that there exist correlations between model 

parameters originated from the physics of the forward problem.  Thus, through PCA 

application, a new good fitting ensemble of geomodels has been constructed to preserve 

and integrate in correspondence with the prior realisations.  This merged PSO-PCA 

facilitates tackling thousands of parameters encountered in real world applications and 

uncertainty analysis around the minimum objective function solution. The developed 

approach can be utilised with any other global optimisation technique. 

 

Chapter 9 has also investigated Particle Swarm Optimisation for history matching and 

uncertainty on a large synthetic test case with 105 parameters and compared history 

matching performance results with Ensemble Kalman Filter.  PSO has obtained good 

matches with successful parameterisation using Principal Component Analysis (PCA). 

Further improvements for PSO history matching results were obtained when adding 

more parameters. Based on our comparison with EnKF it is hard to tell which algorithm 

is the better method of the two suggesting that each algorithm has its own strengths and 

weaknesses, and will work well for problems that suit them.   
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10.2 Thesis Contributions 

The contributions of the thesis can be summarised as follows  

1. Developing efficient simple variants of Particle Swarm to history matching 

optimisation. The variants have the flexibility in converging fast towards good 

solutions and carrying out global exploration. 

2. Developing Hamiltonian Monte Carlo algorithm for uncertainty quantification 

that uses approximated gradients. 

3. Comparison of PSO, HMC, and Neighbourhood Algorithm (NA) for history 

matching and showing that PSO variant obtained by coupling the random 

strategy with linear decreasing inertial weight choice, PSO–LDR variant, has 

faster convergence than NA. The algorithms based on Hamiltonian dynamics 

and swarm intelligence concepts have the potential to be effective tools in 

history matching and uncertainty quantification. 

4. Introduction of Population MCMC that provides better sampling and more 

robust results. 

5. Introduction of innovative Multi-objective Particle Swarm Optimisation 

(MOPSO) to petroleum engineering.  MOPSO can obtain a diverse set of better 

history matches with faster convergence speed than the standard single objective 

case (SOPSO). Thus, the number of simulations required for achieving a similar 

matching performance has been reduced with faster estimation of uncertainty.   

6. Coupling Particle Swarm Optimisation and Principal Component Analysis 

(PSO-PCA) for reservoir modelling and demonstrating that the approach is 

applicable to practically large problems. 

7. Comparison of Particle Swarm Optimisation (PSO) and Ensemble Kalman Filter 

(EnKF).   

10.3 Overall Conclusion  

The performance of sampling algorithms has an impact on the predictive inferences in 

reservoir simulation, and therefore careful uncertainty assessment analysis is required to 

enhance confidence in the predictions.  In this thesis, the efficient particle swarm 

optimisation has been proposed for history matching and uncertainty quantification in a 

Bayesian framework. The algorithm is extended to enhance diversity of models for 

more confidence in oil recovery predictions with the introduction of a multi-objective 

particle swarm scheme.  It has been shown that with the global exploration 

characteristics of the particle swarm, the uncertainty can be quantified effectively. In 
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addition, the history matching optimisation with particle swarm optimisation is faster 

than the neighbourhood algorithm and can obtain comparable uncertainty estimates 

compared with ensemble Kalman filter approaches.  

 

Advanced MCMC techniques such as Hamiltonian Monte Carlo and Population 

MCMC, which have been introduced here, provide much better sampling than 

conventional sampling methods, including MCMC and evolutionary methods, and 

hence more accurate statistics of oil predictions. They both have the ability to sample 

directly from the posterior distribution. Population MCMC merges the advantages of 

MCMC and evolutionary algorithms by using multiple chains in parallel and establishes 

faster convergence rate by exchanging information between the parallel chains.  

Population MCMC provides much better sampling than conventional sampling methods 

including MCMC and evolutionary methods.  

 

The applicability of these methods has been demonstrated using synthetic and real field 

applications. Furthermore, prior geological models can be integrated to obtain new 

possible geomodels through the use of kernel methods.  Coupling particle swarm with 

model reduction techniques for predicting reservoir properties can further produce 

realisations that not only encapsulate prior geological knowledge from different sources 

about the field but also significantly match the dynamic production data for more 

improved inferences and better understanding of the problem.   

 

The thesis has demonstrated the value and benefits to the petroleum industry of 

integrating and testing the most recent and efficient computer science algorithms in 

petroleum engineering problems. The employment of the new algorithms significantly 

speeds up history matching procedures and improves the accuracy of uncertainty 

estimations substantially.  

10.4 Future Perspectives 

I conclude this thesis with the following suggestions for further research  

 The particle swarm optimisation algorithm is a population-based algorithm and 

thus it has parallel nature characteristics that can take full advantageous of the 

scalability of computer clusters.  The application in the thesis used a global 

neighbourhood topology when exchanging information about swarm best values 

and positions, (the star topology scheme). The synchronous parallelisation 
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scheme is used in which the swarm best value, particle best remembered 

positions, velocities and fitness values are updated on a per swarm basis, rather 

than on a per individual basis.  Other parallelisation schemes exist such as finely 

and coarsely-grained parallelisation as indicated in Chapter 4, as well as the ring, 

wheel and other topologies that can be implemented.  A careful study is required 

with the aim to investigate the solution characteristics, parallel speedup and 

efficiency as well as maintaining the load balance between processors when the 

other new parallelisation schemes are used.   

 As highlighted in Chapter 5, there is a vital need to see how the developed 

Multi-Objective Particle Swarm Optimisation (MOPSO) approach can be 

exploited and validated in realistic complex field examples with a large number 

of wells to come up with guidelines to identify multiple objectives.  Novel and 

interesting methods which need to be investigated and introduced to the 

petroleum industry and to be compared with MOPSO are Multi-Objective 

Honey-Bees Mating Optimisation (MOHBMO) and Multi-objective Shuffled 

Complex Evolution Metropolis (MOSCEM).  These two innovative techniques 

have performed good results in water resources engineering inverse problems 

(Barros et al., 2008; Barros et al., 2010) which are similar to history matching 

inverse problems.   

 Chapter 8 has introduced the novel advanced Population MCMC to deal with 

complex response surfaces as a proof of concept where the number of 

simulations was not taken into account.  There are many ways to reduce the 

number of forward simulations required in the study for practical application in 

industry that have not been achieved yet.  Firstly, Hamiltonian Monte Carlo 

(introduced in Chapter 6) or Riemann Manifold HMC (Girolami and 

Calderhead, 2011) can be incorporated in place of the componentwise 

Metropolis-Hastings sampler.  Secondly, a Gaussian Process (GP) could be used 

to emulate the simulator and reduce the number of expensive full simulations for 

Population MCMC indicated.  This is an interesting line of further research in 

combination with Population MCMC.  The Population MCMC technique also 

needs to be investigated in real examples as the ultimate goal. 

 New hybrids methods that merge the evolutionary algorithms and MCMC 

paradigms as well as with other evolutionary or swarm intelligence algorithms 

represent a rich source for future development of powerful sampling and 
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optimisation algorithms.  Other combinations of MCMC with evolutionary 

algorithms are available as well as combinations with the evolutionary 

algorithms that take the strengths of different techniques.  

 As mentioned in Chapter 9, the results of Ensemble Kalman Filter and Particle 

Swarm Optimisation may further be improved by coupling the localisation step 

with EnKF. Applying this step with the PCA coupling may be a fruitful line to 

be examined for improving efficiency. 

 The development of geomodels based on kernels like Kernel PCA and Partial 

Least Squares Regression while coupling with global optimisation algorithm is 

one of the prospective, interesting and challenging areas for future research.  

Kernel methods are advanced methods that have the capacity of integrating 

geological features at different scales, better understanding, and consistency to 

the problem.  Thus, incorporating more geological knowledge can help to 

provide more confidence in the predictions.  There are also still gaps that 

warrant further investigation related to the pre-image problem highlighted in 

Chapter 9 that maps back to the realisation space from feature space.  Gaps in 

these areas have been articulated to affect kernel methods generally, and there is 

a need to invest effort in tackling this problem. 
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Appendix A – Brugge Reservoir 

History Matching Results 
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Figure A.1: EnKF p10-p50-p90 results  
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Figure A.2: EnKF p10-p50-p90 results 
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Figure A.3: EnKF p10-p50-p90 results 
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Figure A.4: EnKF p10-p50-p90 results 
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Figure A.5: EnKF p10-p50-p90 results 
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Figure A.6: PSO p10-p50-p90 results 
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Figure A.7: PSO p10-p50-p90 results 
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Figure A.8: PSO p10-p50-p90 results 
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Figure A.9: PSO p10-p50-p90 results 
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Figure A.10: PSO p10-p50-p90 results 
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Figure A.11: PSO p10-p50-p90 result – adding OWC parameter 
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Figure A.12: PSO p10-p50-p90 result – adding OWC parameter 
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Figure A.13: PSO p10-p50-p90 result – adding OWC parameter 
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Figure A.14: PSO p10-p50-p90 result – adding OWC parameter 
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Figure A.15: PSO p10-p50-p90 result – adding OWC parameter 
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Appendix B – Brugge Reservoir Best 

Fitting Model Results 
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(a)  EnKF result 

 
(b)  PSO result 

Figure B.1: Porosity for the 9 layers for EnKF (a) and PSO (b)
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(a)  EnKF result 

 

 
(b)  PSO result 

Figure B.2: Natural logarithm of permeability in Z direction for the 9 layers for EnKF (a) and PSO 

(b) 
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(a)   Porosity 

 

 
(b)    Permeability in Z direction 

Figure B.3: PSO with OWC addition result for the 9 layers with porosity (a) and natural logarithm 

of permeability in Z direction (b) 
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(a)  KPCA2 result 

 

 
(b)  KPCA3 result 

Figure B.4: Porosity for the 9 layers for KPCA2 (a) and KPCA3 (b) 
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(a)  KPCA2 result 

 

 
(b)  KPCA3 result 

Figure B.5: Natural logarithm of permeability in Z direction for the 9 layers for KPCA1 (a) and 

KPCA3 (b) 
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