3,988 research outputs found

    Using image morphing for memory-efficient impostor rendering on GPU

    Get PDF
    Real-time rendering of large animated crowds consisting thousands of virtual humans is important for several applications including simulations, games and interactive walkthroughs; but cannot be performed using complex polygonal models at interactive frame rates. For that reason, several methods using large numbers of pre-computed image-based representations, which are called as impostors, have been proposed. These methods take the advantage of existing programmable graphics hardware to compensate the computational expense while maintaining the visual fidelity. Making the number of different virtual humans, which can be rendered in real-time, not restricted anymore by the required computational power but by the texture memory consumed for the variety and discretization of their animations. In this work, we proposed an alternative method that reduces the memory consumption by generating compelling intermediate textures using image-morphing techniques. In order to demonstrate the preserved perceptual quality of animations, where half of the key-frames were rendered using the proposed methodology, we have implemented the system using the graphical processing unit and obtained promising results at interactive frame rates

    Automatically Controlled Morphing of 2D Shapes with Textures

    Get PDF
    This paper deals with 2D image transformations from a perspective of a 3D heterogeneous shape modeling and computer animation. Shape and image morphing techniques have attracted a lot of attention in artistic design, computer animation, and interactive and streaming applications. We present a novel method for morphing between two topologically arbitrary 2D shapes with sophisticated textures (raster color attributes) using a metamorphosis technique called space-time blending (STB) coupled with space-time transfinite interpolation. The method allows for a smooth transition between source and target objects by generating in-between shapes and associated textures without setting any correspondences between boundary points or features. The method requires no preprocessing and can be applied in 2D animation when position and topology of source and target objects are significantly different. With the conversion of given 2D shapes to signed distance fields, we have detected a number of problems with directly applying STB to them. We propose a set of novel and mathematically substantiated techniques, providing automatic control of the morphing process with STB and an algorithm of applying those techniques in combination. We illustrate our method with applications in 2D animation and interactive applications

    Controlled metamorphosis between skeleton-driven animated polyhedral meshes of arbitrary topologies

    Get PDF
    Enabling animators to smoothly transform between animated meshes of differing topologies is a long-standing problem in geometric modelling and computer animation. In this paper, we propose a new hybrid approach built upon the advantages of scalar field-based models (often called implicit surfaces) which can easily change their topology by changing their defining scalar field. Given two meshes, animated by their rigging-skeletons, we associate each mesh with its own approximating implicit surface. This implicit surface moves synchronously with the mesh. The shape-metamorphosis process is performed in several steps: first, we collapse the two meshes to their corresponding approximating implicit surfaces, then we transform between the two implicit surfaces and finally we inverse transition from the resulting metamorphosed implicit surface to the target mesh. The examples presented in this paper demonstrating the results of the proposed technique were implemented using an in-house plug-in for Maya™. © 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd

    3D mesh metamorphosis from spherical parameterization for conceptual design

    Get PDF
    Engineering product design is an information intensive decision-making process that consists of several phases including design specification definition, design concepts generation, detailed design and analysis, and manufacturing. Usually, generating geometry models for visualization is a big challenge for early stage conceptual design. Complexity of existing computer aided design packages constrains participation of people with various backgrounds in the design process. In addition, many design processes do not take advantage of the rich amount of legacy information available for new concepts creation. The research presented here explores the use of advanced graphical techniques to quickly and efficiently merge legacy information with new design concepts to rapidly create new conceptual product designs. 3D mesh metamorphosis framework 3DMeshMorpher was created to construct new models by navigating in a shape-space of registered design models. The framework is composed of: i) a fast spherical parameterization method to map a geometric model (genus-0) onto a unit sphere; ii) a geometric feature identification and picking technique based on 3D skeleton extraction; and iii) a LOD controllable 3D remeshing scheme with spherical mesh subdivision based on the developedspherical parameterization. This efficient software framework enables designers to create numerous geometric concepts in real time with a simple graphical user interface. The spherical parameterization method is focused on closed genus-zero meshes. It is based upon barycentric coordinates with convex boundary. Unlike most existing similar approaches which deal with each vertex in the mesh equally, the method developed in this research focuses primarily on resolving overlapping areas, which helps speed the parameterization process. The algorithm starts by normalizing the source mesh onto a unit sphere and followed by some initial relaxation via Gauss-Seidel iterations. Due to its emphasis on solving only challenging overlapping regions, this parameterization process is much faster than existing spherical mapping methods. To ensure the correspondence of features from different models, we introduce a skeleton based feature identification and picking method for features alignment. Unlike traditional methods that align single point for each feature, this method can provide alignments for complete feature areas. This could help users to create more reasonable intermediate morphing results with preserved topological features. This skeleton featuring framework could potentially be extended to automatic features alignment for geometries with similar topologies. The skeleton extracted could also be applied for other applications such as skeleton-based animations. The 3D remeshing algorithm with spherical mesh subdivision is developed to generate a common connectivity for different mesh models. This method is derived from the concept of spherical mesh subdivision. The local recursive subdivision can be set to match the desired LOD (level of details) for source spherical mesh. Such LOD is controllable and this allows various outputs with different resolutions. Such recursive subdivision then follows by a triangular correction process which ensures valid triangulations for the remeshing. And the final mesh merging and reconstruction process produces the remeshing model with desired LOD specified from user. Usually the final merged model contains all the geometric details from each model with reasonable amount of vertices, unlike other existing methods that result in big amount of vertices in the merged model. Such multi-resolution outputs with controllable LOD could also be applied in various other computer graphics applications such as computer games

    What determines growth potential and juvenile quality of farmed fish species?

    Get PDF
    Enhanced production of high quality and healthy fry is a key target for a successful and competitive expansion of the aquaculture industry. Although large quantities of fish larvae are produced, survival rates are often low or highly variable and growth potential is in most cases not fully exploited, indicating significant gaps in our knowledge concerning optimal nutritional and culture conditions. Understanding the mechanisms that control early development and muscle growth are critical for the identification of time windows in development that introduce growth variation, and improve the viability and quality of juveniles. This literature review of the current state of knowledge aims to provide a framework for a better understanding of fish skeletal muscle ontogeny, and its impact on larval and juvenile quality as broadly defined. It focuses on fundamental biological knowledge relevant to larval phenotype and quality and, in particular, on the factors affecting the development of skeletal muscle. It also discusses the available methodologies to assess growth and larvae/juvenile quality, identifies gaps in knowledge and suggests future research directions. The focus is primarily on the major farmed non-salmonid fish species in Europe that include gilthead sea bream, European sea bass, turbot, Atlantic cod, Senegalese sole and Atlantic halibut

    Indirect Image Registration with Large Diffeomorphic Deformations

    Full text link
    The paper adapts the large deformation diffeomorphic metric mapping framework for image registration to the indirect setting where a template is registered against a target that is given through indirect noisy observations. The registration uses diffeomorphisms that transform the template through a (group) action. These diffeomorphisms are generated by solving a flow equation that is defined by a velocity field with certain regularity. The theoretical analysis includes a proof that indirect image registration has solutions (existence) that are stable and that converge as the data error tends so zero, so it becomes a well-defined regularization method. The paper concludes with examples of indirect image registration in 2D tomography with very sparse and/or highly noisy data.Comment: 43 pages, 4 figures, 1 table; revise

    Approximation of Splines in Wasserstein Spaces

    Full text link
    This paper investigates a time discrete variational model for splines in Wasserstein spaces to interpolate probability measures. Cubic splines in Euclidean space are known to minimize the integrated squared acceleration subject to a set of interpolation constraints. As generalization on the space of probability measures the integral over the squared acceleration is considered as a spline energy and regularized by addition of the usual action functional. Both energies are then discretized in time using local Wasserstein-2 distances and the generalized Wasserstein barycenter. The existence of time discrete regularized splines for given interpolation conditions is established. On the subspace of Gaussian distributions, the spline interpolation problem is solved explicitly and consistency in the discrete to continuous limit is shown. The computation of time discrete splines is implemented numerically, based on entropy regularization and the Sinkhorn algorithm. A variant of the iPALM method is applied for the minimization of the fully discrete functional. A variety of numerical examples demonstrate the robustness of the approach and show striking characteristics of the method. As a particular application the spline interpolation for synthesized textures is presented.Comment: 25 pages, 9 figure
    corecore