1,827 research outputs found

    Topological Biomarker of Alzheimer’s Disease

    Get PDF
    For years, it has been assumed that the cerebral accumulation of pathologic protein forms is the main trigger of Alzheimer’s disease (AD) pathology; however, recent studies revealed strong evidences that the alternations in synaptic activity precede and affect the homeostasis of amyloid-beta and tau, both of which aggregate during AD. Given that the neuropathological changes, characteristic for AD, start decades before the onset of the first symptoms, when alternations become irreversible, it is crucial to find a biomarker that can detect the preclinical signs of disease, presumably synaptic dysfunction of specific cerebral areas. Here is presented a novel, a high potential neuroimaging biomarker that can detect the postsynaptic dysfunction of specific neural substrate located in medial prefrontal cortex (mPFC) during sensory gating processing of a simple auditory stimulus. The magnetoencephalography-based localization of mPFC gating activation has the potential not only to detect symptomatic AD but also to become a predictor of cognitive decline related to the pathophysiological processes of AD, both at the individual level. The strengths of proposed biomarker lie in the simplicity of using a binary value, i.e., activated or not activated a neural generator along with its potential to follow the evolution of the pathophysiological process of disease from preclinical phase. The novel biomarker does not require estimation of uniform cutoff levels and standardization processes, the main problems of so far proposed biomarkers. Ability to individually detect AD pathology during putative preclinical and clinical stages, absolute noninvasiveness, and large effect size give this biomarker a high translation capacity and clinical potential

    What Electrophysiology Tells Us About Alzheimer’s Disease::A Window into the Synchronization and Connectivity of Brain Neurons

    Get PDF
    Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer’s disease (AD), despite a surge in recent validated evidence. This Position Paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity reflecting thalamocortical and cortico-cortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies

    Development of Gaussian Learning Algorithms for Early Detection of Alzheimer\u27s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia affecting 10% of the population over the age of 65 and the growing costs in managing AD are estimated to be $259 billion, according to data reported in the 2017 by the Alzheimer\u27s Association. Moreover, with cognitive decline, daily life of the affected persons and their families are severely impacted. Taking advantage of the diagnosis of AD and its prodromal stage of mild cognitive impairment (MCI), an early treatment may help patients preserve the quality of life and slow the progression of the disease, even though the underlying disease cannot be reversed or stopped. This research aims to develop Gaussian learning algorithms, natural language processing (NLP) techniques, and mathematical models to effectively delineate the MCI participants from the cognitively normal (CN) group, and identify the most significant brain regions and patterns of changes associated with the progression of AD. The focus will be placed on the earliest manifestations of the disease (early MCI or EMCI) to plan for effective curative/therapeutic interventions and protocols. Multiple modalities of biomarkers have been found to be significantly sensitive in assessing the progression of AD. In this work, several novel multimodal classification frameworks based on proposed Gaussian Learning algorithms are created and applied to neuroimaging data. Classification based on the combination of structural magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers is seen as the most reliable approach for high-accuracy classification. Additionally, changes in linguistic complexity may provide complementary information for the diagnosis and prognosis of AD. For this research endeavor, an NLP-oriented neuropsychological assessment is developed to automatically analyze the distinguishing characteristics of text data in MCI group versus those in CN group. Early findings suggest significant linguistic differences between CN and MCI subjects in terms of word usage, vocabulary, recall, fragmented sentences. In summary, the results obtained indicate a high potential of the neuroimaging-based classification and NLP-oriented assessment to be utilized as a practically computer aided diagnosis system for classification and prediction of AD and its prodromal stages. Future work will ultimately focus on early signs of AD that could help in the planning of curative and therapeutic intervention to slow the progression of the disease

    Multiway Array Decomposition Analysis of EEGs in Alzheimer’s Disease

    Get PDF
    Methods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer’s disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied three state of the art multiway array decomposition (MAD) methods to extract features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE). We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease

    The Role of MEG in Unveiling Cognition

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Data fusion of complementary information from parietal and occipital event related potentials for early diagnosis of Alzheimer\u27s disease

    Get PDF
    The number of the elderly population affected by Alzheimer\u27s disease is rapidly rising. The need to find an accurate, inexpensive, and non-intrusive procedure that can be made available to community healthcare providers for the early diagnosis of Alzheimer\u27s disease is becoming an increasingly urgent public health concern. Several recent studies have looked at analyzing electroencephalogram signals through the use of many signal processing techniques. While their methods show great promise, the final outcome of these studies has been largely inconclusive. The inherent difficulty of the problem may be the cause of this outcome, but most likely it is due to the inefficient use of the available information, as many of these studies have used only a single EEG source for the analysis. In this contribution, data from the event related potentials of 19 available electrodes of the EEG are analyzed. These signals are decomposed into different frequency bands using multiresolution wavelet analysis. Two data fusion approaches are then investigated: i.) concatenating features before presenting them to a classification algorithm with the expectation of creating a more informative feature space, and ii.) generating multiple classifiers each trained with a different combination of features obtained from various stimuli, electrode, and frequency bands. The classifiers are then combined through the weighted majority vote, product and sum rule combination schemes. The results indicate that a correct diagnosis performance of over 80% can be obtained by combining data primarily from parietal and occipital lobe electrodes. The performance significantly exceeds that reported from community clinic physicians, despite their access to the outcomes of longitudinal monitoring of the patients

    Multiresolution wavelet analysis of event-related EEG potentials using ensemble of classifier data fusion techniques for early diagnosis of Alzheimer\u27s disease

    Get PDF
    The recent advances and knowledge in medicine and nutrition have greatly improved our average life expectancy. An unfortunate consequence of this longer life span, however, is a dramatic increase in the number of individuals suffering from dementia, and more specifically, from Alzheimer\u27s disease (AD). Furthermore, AD remains under-diagnosed and under-treated until its more severe stages due to lack of standard diagnostic tools available to community clinics. A search for biomarkers that will allow early diagnosis of the disease is therefore necessary to develop effective medical treatments. Such a biomarker should be non-invasive, simple to obtain, safe, inexpensive, accurate, and most importantly, must be made available to local health clinics for maximum effectiveness. Event related potentials (ERPs) of the electroencephalogram have the potential to become such a diagnostic biomarker for AD. This work investigates the use of ERP signals for the early detection of AD. The analysis of the ERP signals is accomplished through multiresolution wavelet decomposition, producing time-frequency features in successive spectral bands. In previous studies, these feature sets were concatenated and used as inputs to a neural network classifier. This contribution investigates training an ensemble of classifiers on each feature set separately, and combining the ensemble decisions in a data fusion setting. Comparisons of intra-signal and inter-signal ensemble combinations are presented in along with the benefits of using an ensemble of classifiers in data fusion

    Electroencephalogram Based Biomarkers for Detection of Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have not obtained a formal early diagnosis, and this may provide them with a chance to access suitable healthcare facilities. An early diagnosis biomarker capable of measuring brain cell degeneration due to AD would be valuable. Potentially, electroencephalogram (EEG) can play a valuable role in the early diagnosis of AD. EEG is noninvasive and low cost, and provides valuable information about brain dynamics in AD. Thus, EEG-based biomarkers may be used as a first-line decision-support tool in AD diagnosis and could complement other AD biomarkers
    • …
    corecore