Topological Biomarker of Alzheimer’s Disease

Abstract

For years, it has been assumed that the cerebral accumulation of pathologic protein forms is the main trigger of Alzheimer’s disease (AD) pathology; however, recent studies revealed strong evidences that the alternations in synaptic activity precede and affect the homeostasis of amyloid-beta and tau, both of which aggregate during AD. Given that the neuropathological changes, characteristic for AD, start decades before the onset of the first symptoms, when alternations become irreversible, it is crucial to find a biomarker that can detect the preclinical signs of disease, presumably synaptic dysfunction of specific cerebral areas. Here is presented a novel, a high potential neuroimaging biomarker that can detect the postsynaptic dysfunction of specific neural substrate located in medial prefrontal cortex (mPFC) during sensory gating processing of a simple auditory stimulus. The magnetoencephalography-based localization of mPFC gating activation has the potential not only to detect symptomatic AD but also to become a predictor of cognitive decline related to the pathophysiological processes of AD, both at the individual level. The strengths of proposed biomarker lie in the simplicity of using a binary value, i.e., activated or not activated a neural generator along with its potential to follow the evolution of the pathophysiological process of disease from preclinical phase. The novel biomarker does not require estimation of uniform cutoff levels and standardization processes, the main problems of so far proposed biomarkers. Ability to individually detect AD pathology during putative preclinical and clinical stages, absolute noninvasiveness, and large effect size give this biomarker a high translation capacity and clinical potential

    Similar works